

The MPC-in-the-Head Paradigm for Post-Quantum Signatures: Recent Frameworks and Applications

Thibauld Feneuil

Seminar Crypto UCLouvain

January 27, 2026, Louvain-la-Neuve

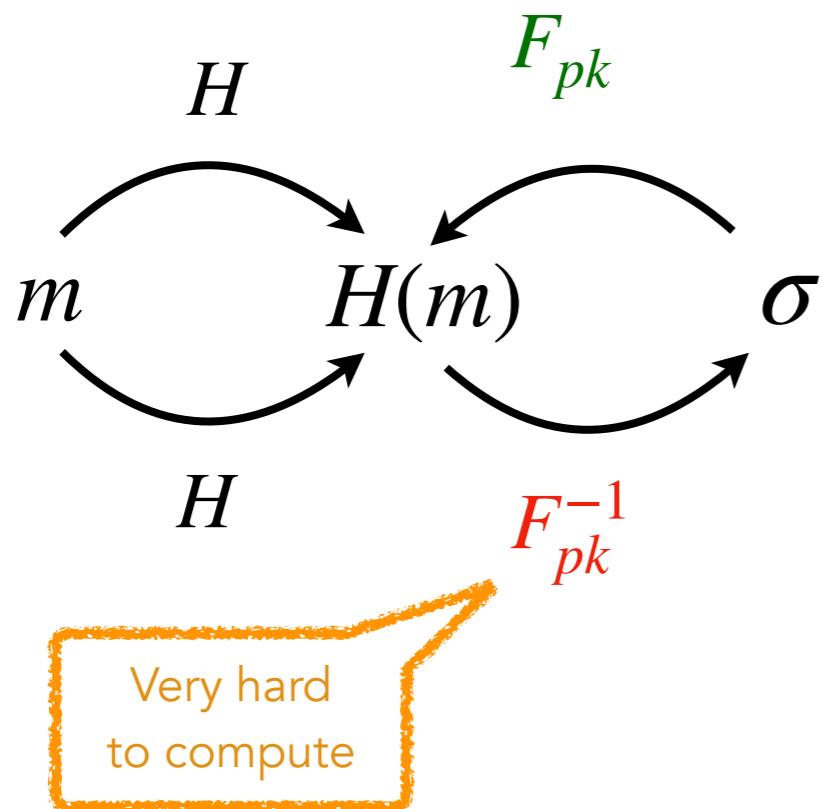
Table of Contents

- Introduction
- MPC-in-the-Head: general principle
- PIOP-based MPCitH Frameworks
- Instantiations

Introduction

How to build signature schemes?

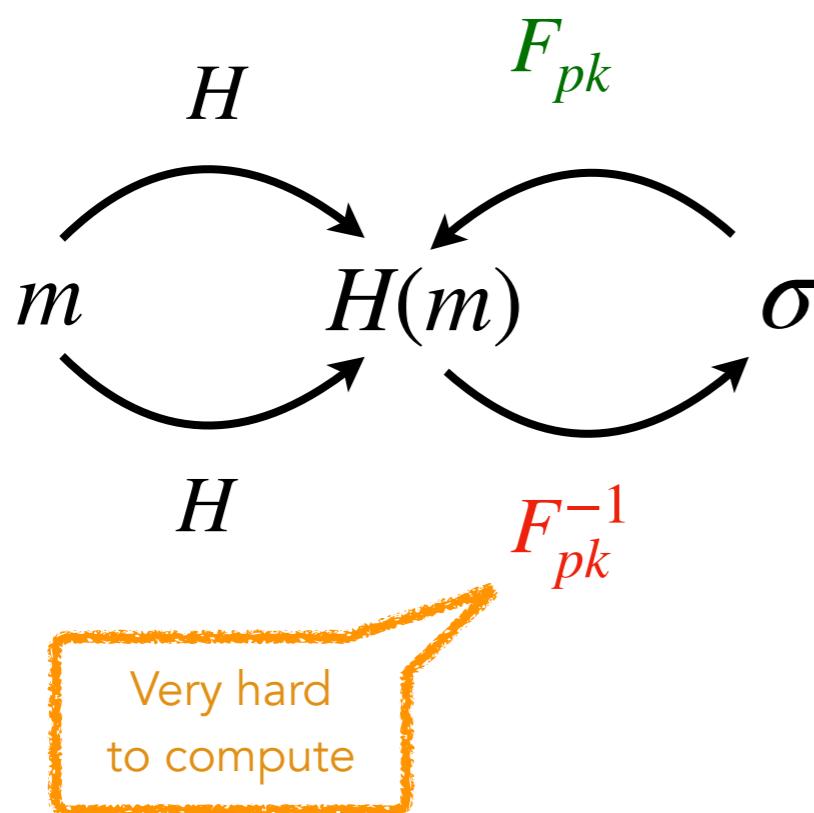
Hash & Sign



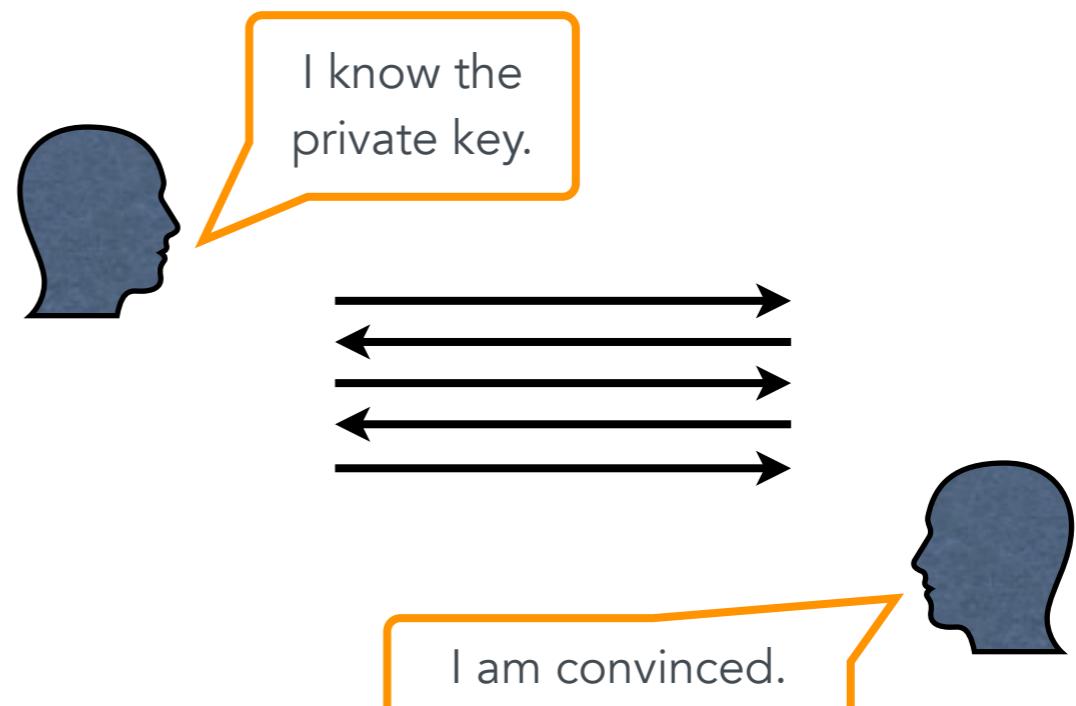
- Short signatures
- “Trapdoor” in the public key

How to build signature schemes?

Hash & Sign



From an identification scheme

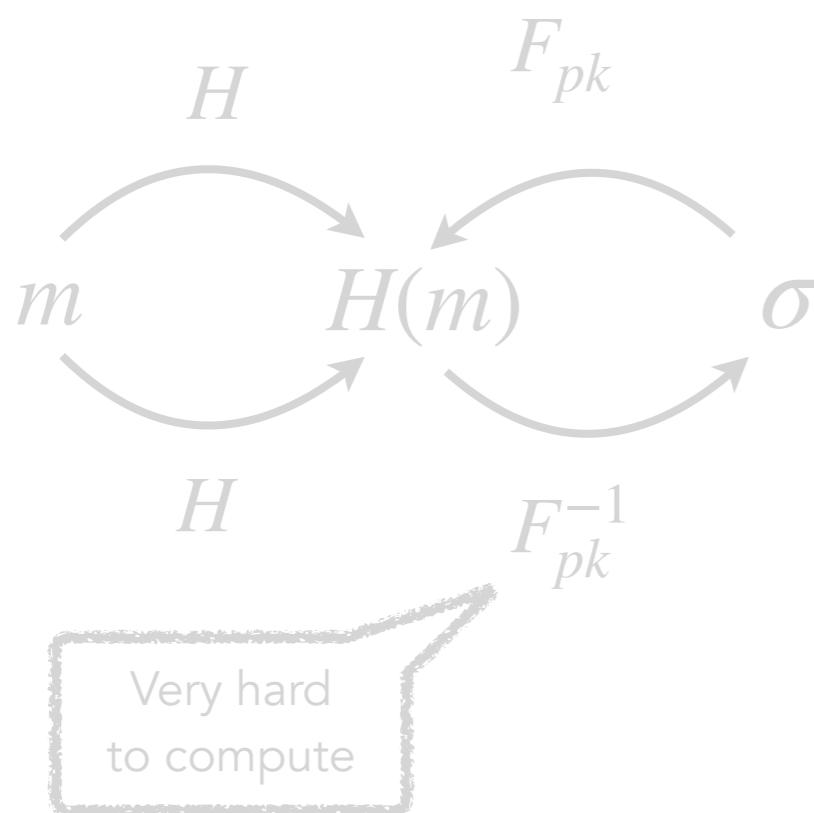


- Short signatures
- “Trapdoor” in the public key

- Large(r) signatures
- Short public key

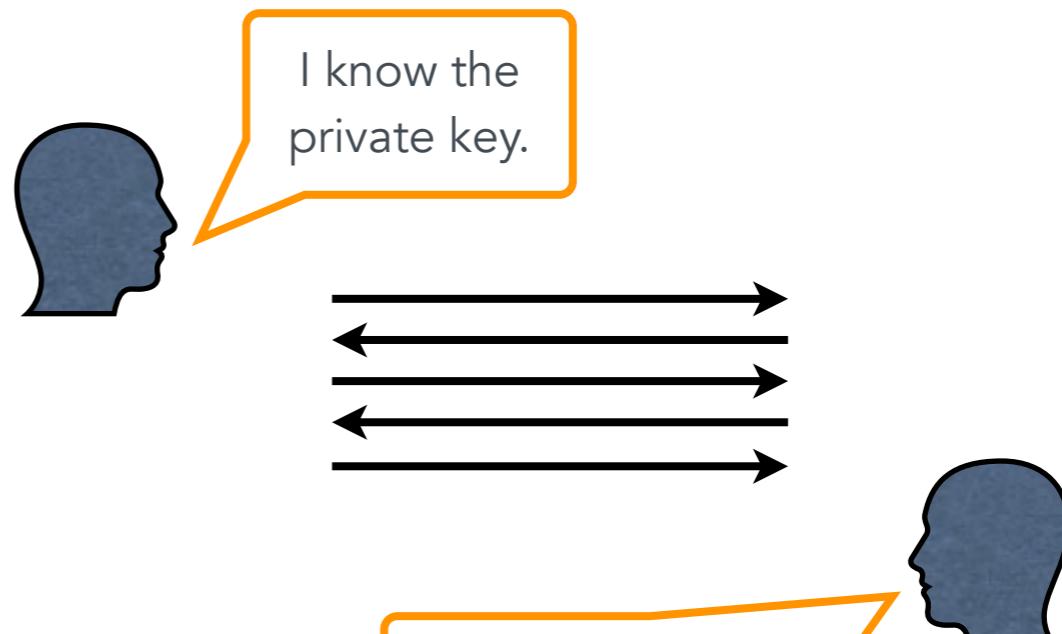
How to build signature schemes?

Hash & Sign



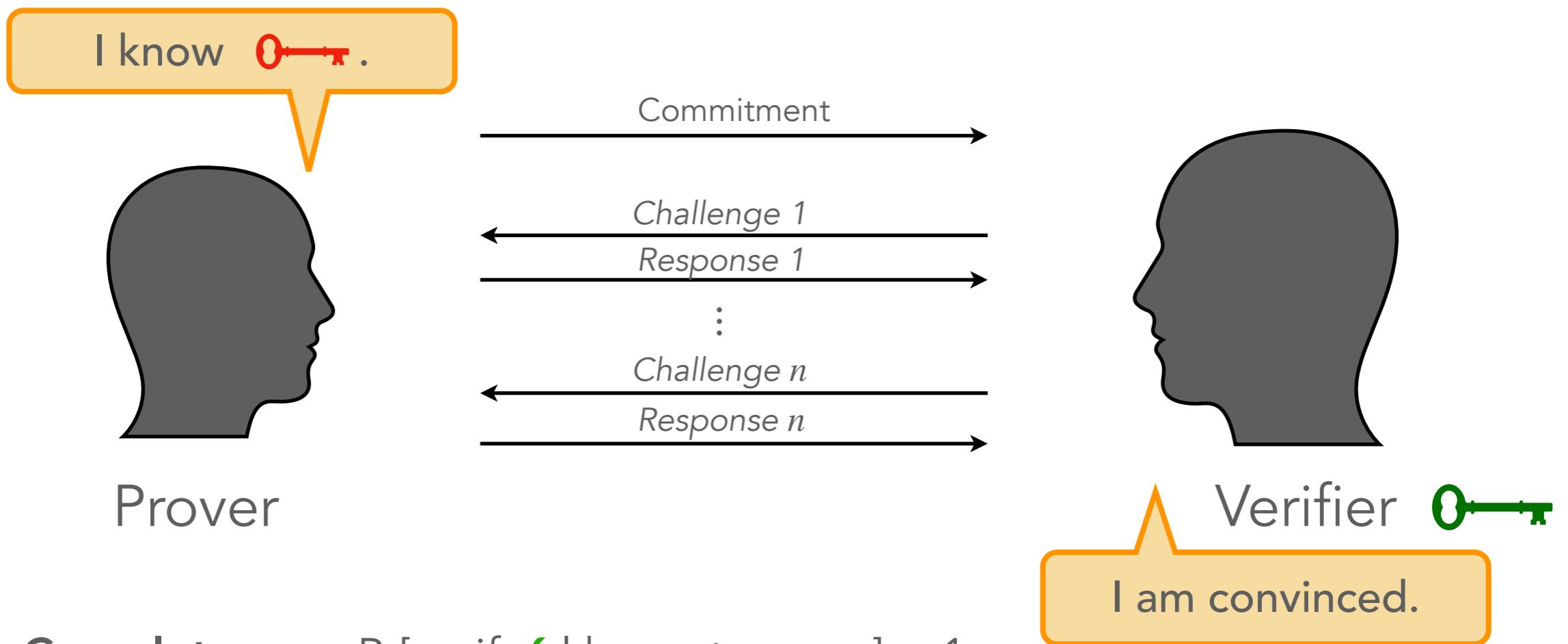
- Short signatures
- “Trapdoor” in the public key

From an identification scheme



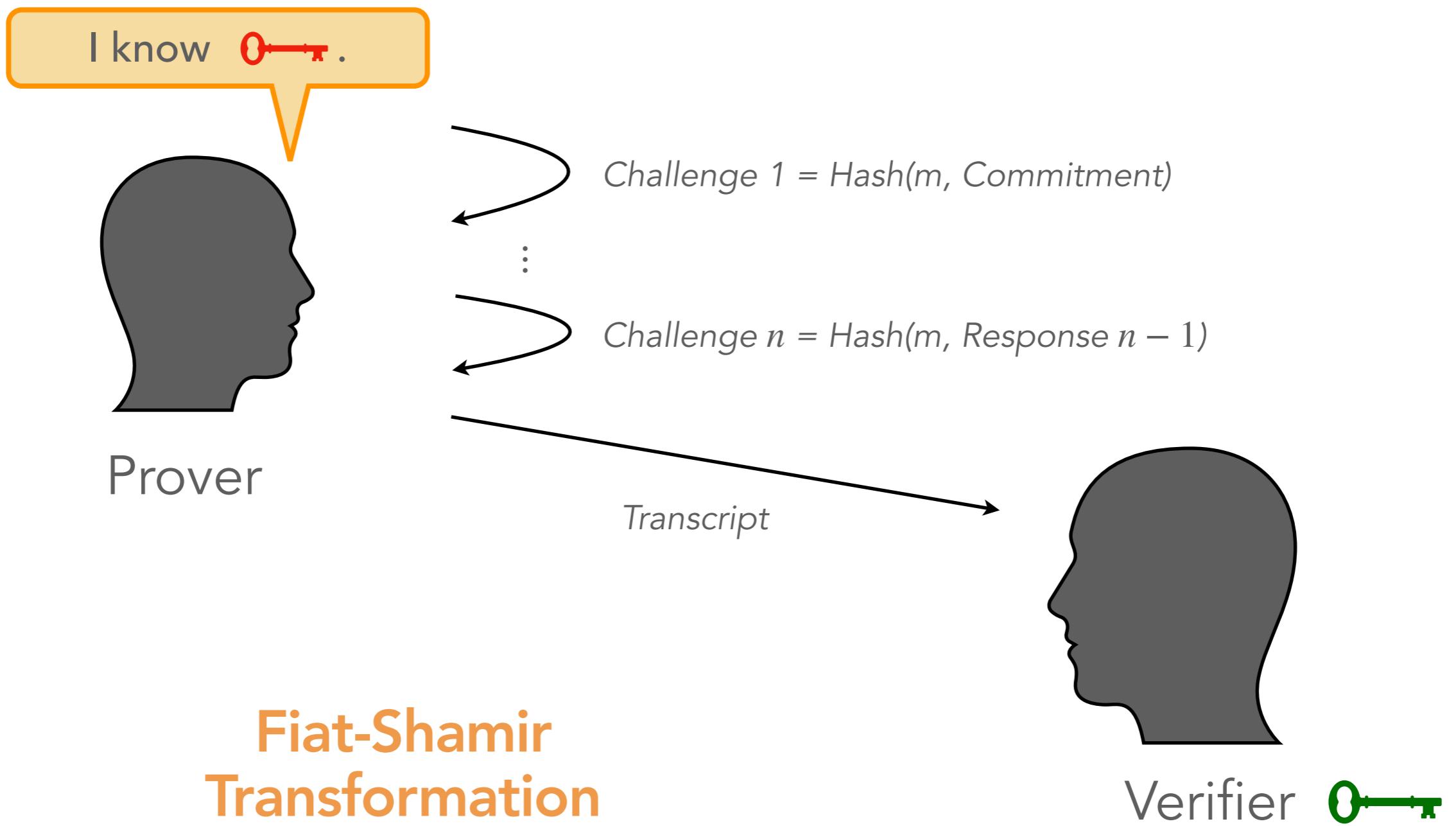
- Large(r) signatures
- Short public key

Identification Scheme



- **Completeness:** $\Pr[\text{verif } \checkmark \mid \text{honest prover}] = 1$
- **Soundness:** $\Pr[\text{verif } \checkmark \mid \text{malicious prover}] \leq \varepsilon$ (e.g. 2^{-128})
- **Zero-knowledge:** verifier learns nothing on key .

Identification Scheme

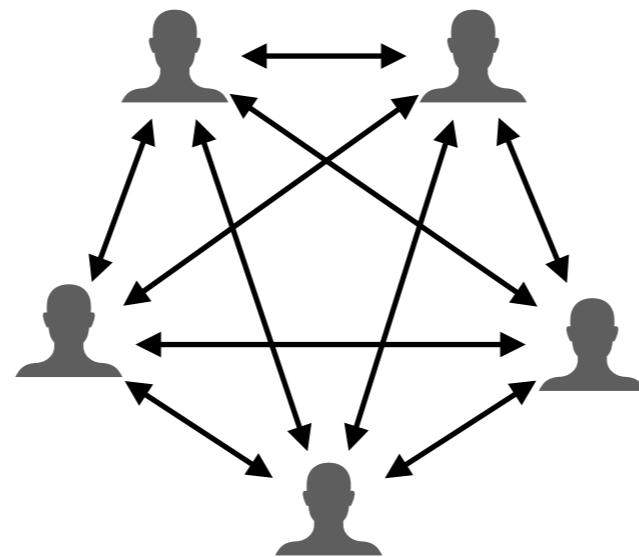


m : message to sign

MPCitH: general principle

MPC in the Head

- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: “Zero-knowledge from secure multiparty computation” (STOC 2007)
- Turn a *multiparty computation* (MPC) into an identification scheme / zero-knowledge proof of knowledge



- **Generic:** can be applied to any cryptographic problem

MPC in the Head

- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Convenient to build (candidate) **post-quantum signature** schemes
- **Picnic**: submission to NIST (2017)
- First round of recent NIST call: 7~9 MPCitH schemes / 40 candidates

AIMer
Biscuit
FAEST
MIRA
MiRith

MQOM
PERK
RYDE
SDith

MPC in the Head

- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Convenient to build (candidate) **post-quantum signature** schemes
- **Picnic**: submission to NIST (2017)
- First round of recent NIST call: 7~9 MPCitH schemes / 40 candidates
- Second round of recent NIST call: 5~6 MPCitH schemes / 14 candidates

FAEST

Mirath

MQOM

PERK

RYDE

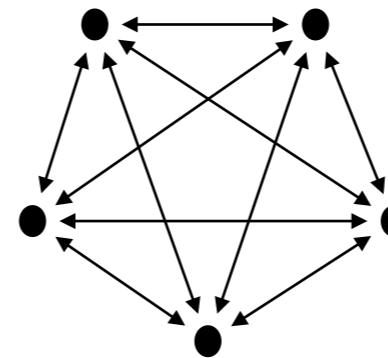
SDith

One-way function

$$F : x \mapsto y$$

E.g. AES, MQ system,
Syndrome decoding

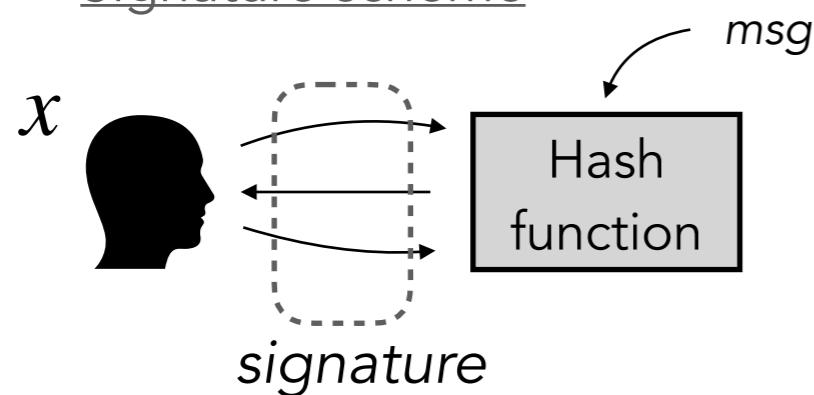
Multiparty computation (MPC)



Input sharing $[\![x]\!]$
Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

Signature scheme



Zero-knowledge proof

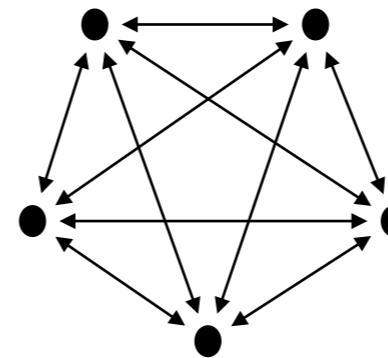


One-way function

$$F : x \mapsto y$$

E.g. AES, MQ system,
Syndrome decoding

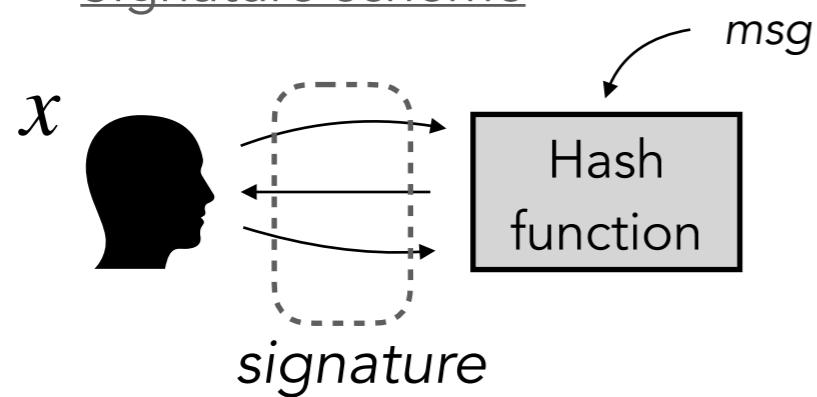
Multiparty computation (MPC)



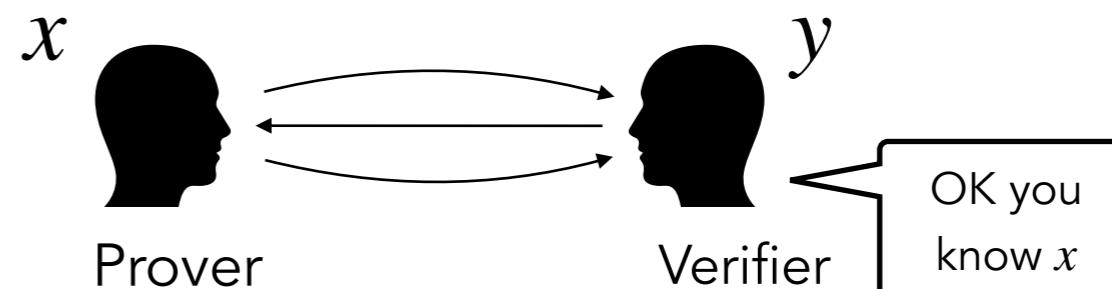
Input sharing $[\![x]\!]$
Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

Signature scheme



Zero-knowledge proof

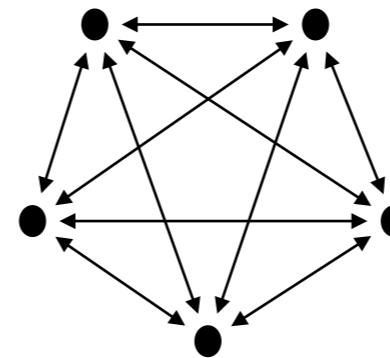


One-way function

$$F : x \mapsto y$$

E.g. AES, MQ system,
Syndrome decoding

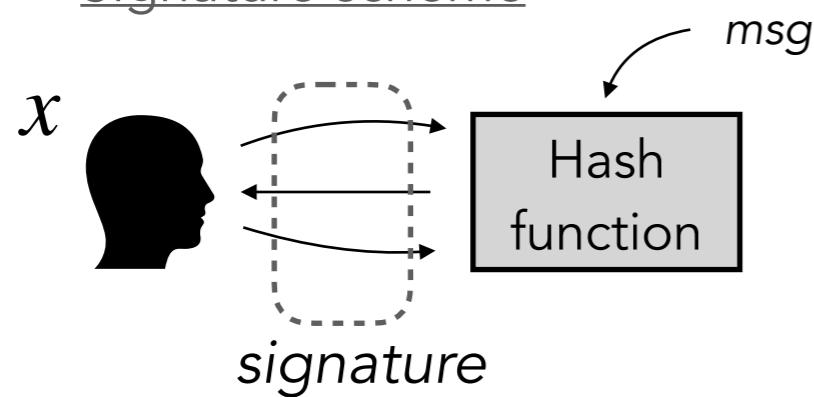
Multiparty computation (MPC)



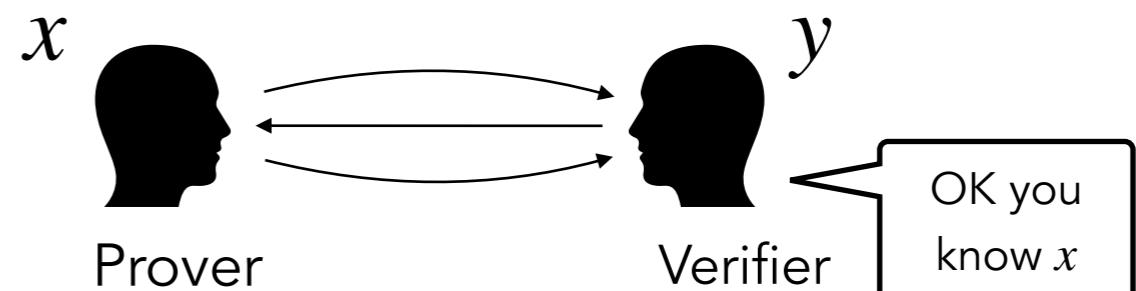
Input sharing $[[x]]$
Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

Signature scheme



Zero-knowledge proof

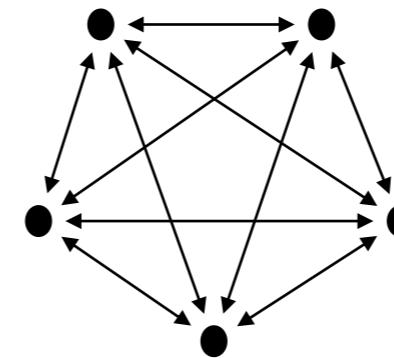


One-way function

$$F : x \mapsto y$$

E.g. AES, MQ system,
Syndrome decoding

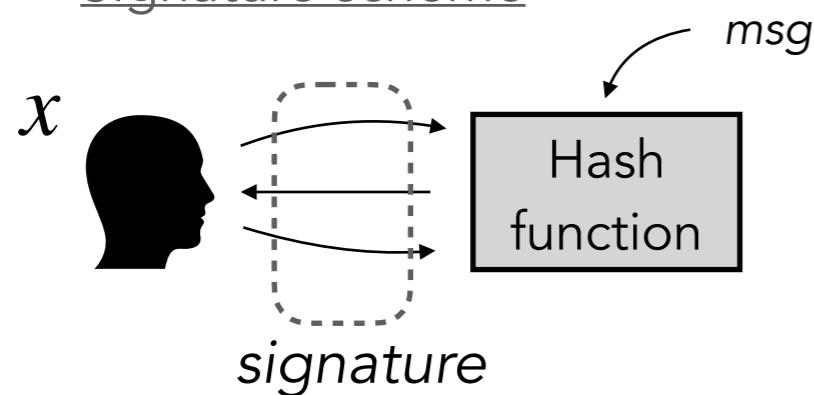
Multiparty computation (MPC)



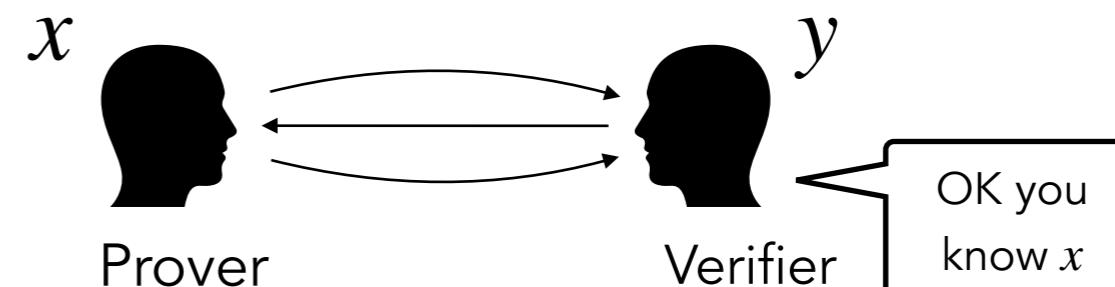
Input sharing $[[x]]$
Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

Signature scheme



Zero-knowledge proof

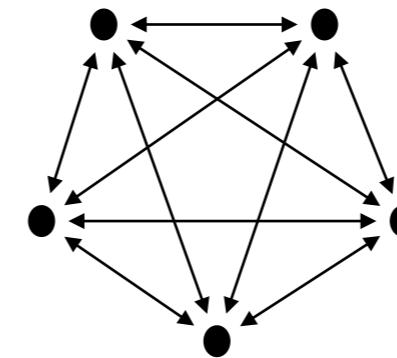


One-way function

$$F : x \mapsto y$$

E.g. AES, MQ system,
Syndrome decoding

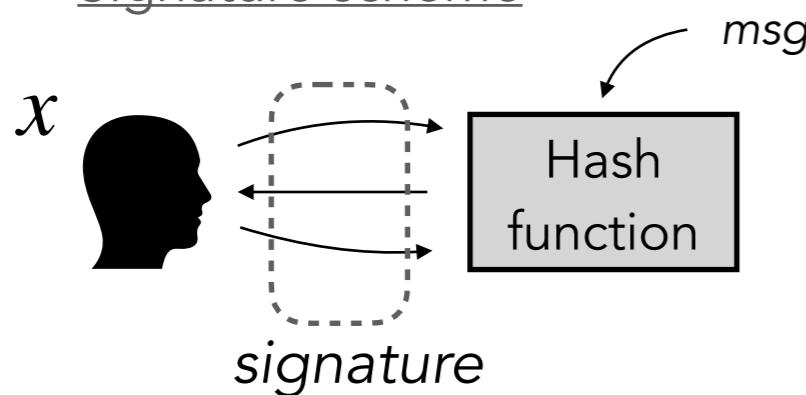
Multiparty computation (MPC)



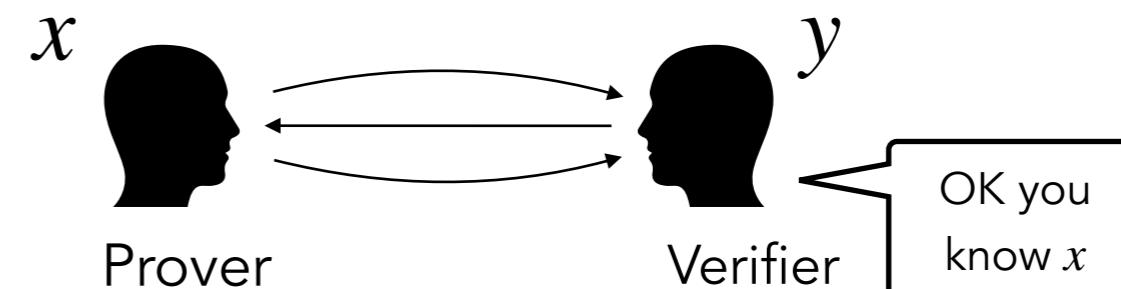
Input sharing $[[x]]$
Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

Signature scheme



Zero-knowledge proof

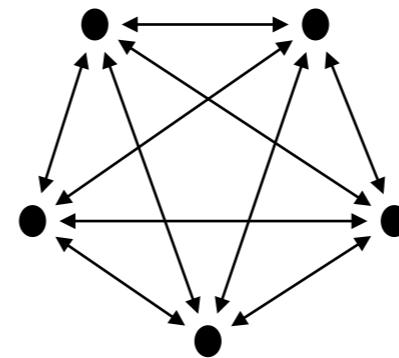


One-way function

$$F : x \mapsto y$$

E.g. AES, MQ system,
Syndrome decoding

Multiparty computation (MPC)

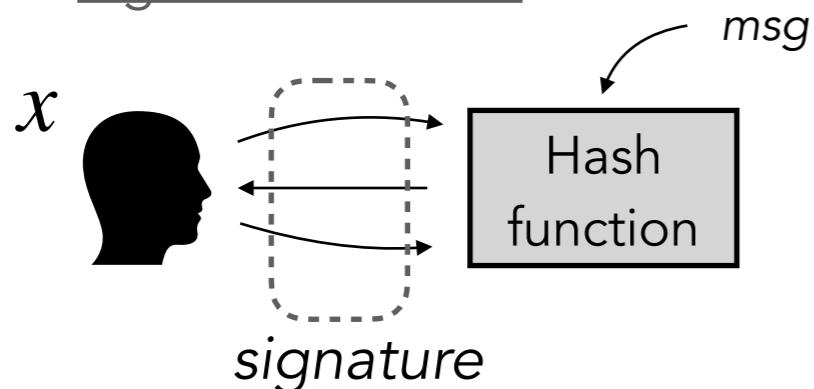


Input sharing $[[x]]$
Joint evaluation of:

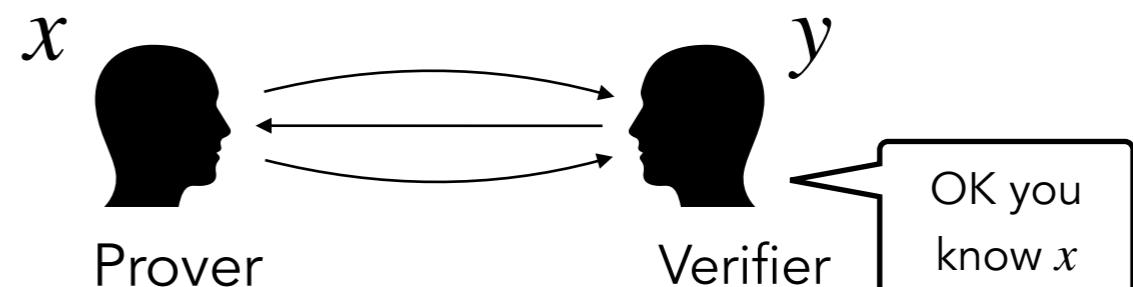
$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

MPC-in-the-Head transform

Signature scheme



Zero-knowledge proof



MPC-in-the-Head Framework

Secret x which satisfies
some public relation $y = F(x)$

How to build a zero-knowledge
proof of knowledge for x ?

MPC-in-the-Head Framework

Secret x which satisfies
some public relation $y = F(x)$

Sharing $\llbracket x \rrbracket$ of the secret x

Additive secret sharing:

$$x = \llbracket x \rrbracket_1 + \llbracket x \rrbracket_2 + \dots + \llbracket x \rrbracket_N$$

Shamir's secret sharing:

$$\forall i, \llbracket x \rrbracket_i = P(e_i),$$

where P is a random degree- ℓ polynomial such that $P(0) = x$.

MPC-in-the-Head Framework

Secret x which satisfies
some public relation $y = F(x)$

Sharing $\llbracket x \rrbracket$ of the secret x

Additive secret sharing:

$$x = \llbracket x \rrbracket_1 + \llbracket x \rrbracket_2 + \dots + \llbracket x \rrbracket_N$$

Shamir's secret sharing:

$\forall i, \llbracket x \rrbracket_i = P(e_i),$
where P is a random degree- ℓ polynomial such that $P(0) = x$.

MPC-in-the-Head Framework

Secret x which satisfies
some public relation $y = F(x)$

Sharing $\llbracket x \rrbracket$ of the secret x

Additive secret sharing:

$$x = \llbracket x \rrbracket_1 + \llbracket x \rrbracket_2 + \dots + \llbracket x \rrbracket_N$$

Shamir's secret sharing:

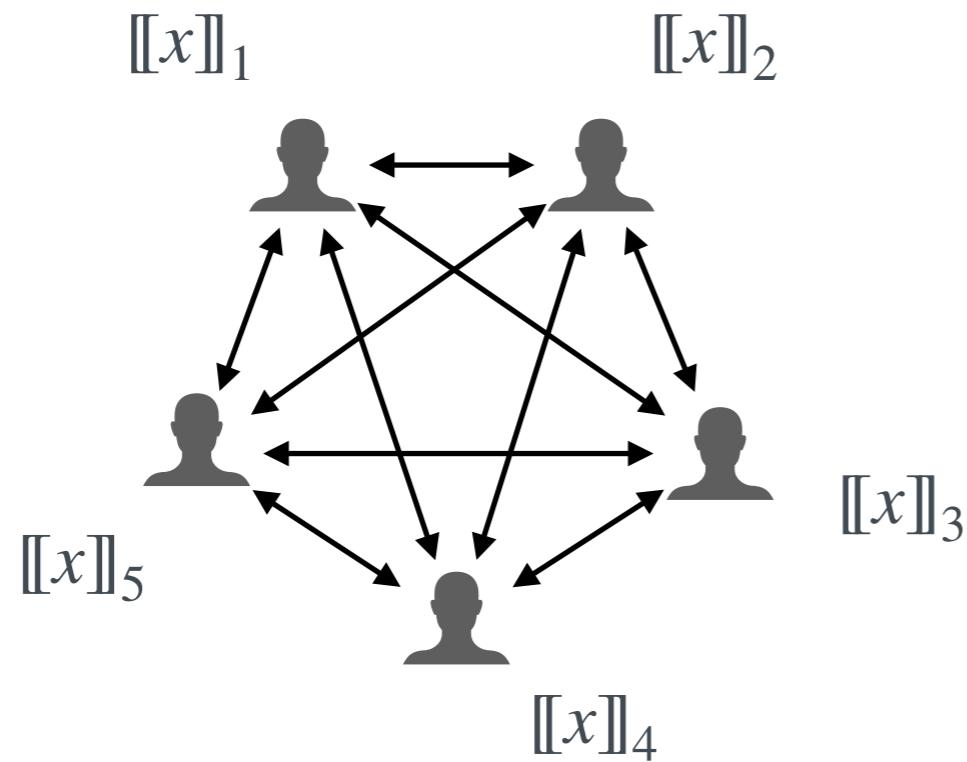
$$\forall i, \llbracket x \rrbracket_i = P(e_i),$$

where P is a random degree- ℓ polynomial such that $P(0) = x$.

If $x := 42$ lives in \mathbb{F}_{1021} , a possible sharing of x is

$$x = 429 + 19 + 583 + 231 + 822 \text{ over } \mathbb{F}_{1021}$$

MPC-in-the-Head Framework

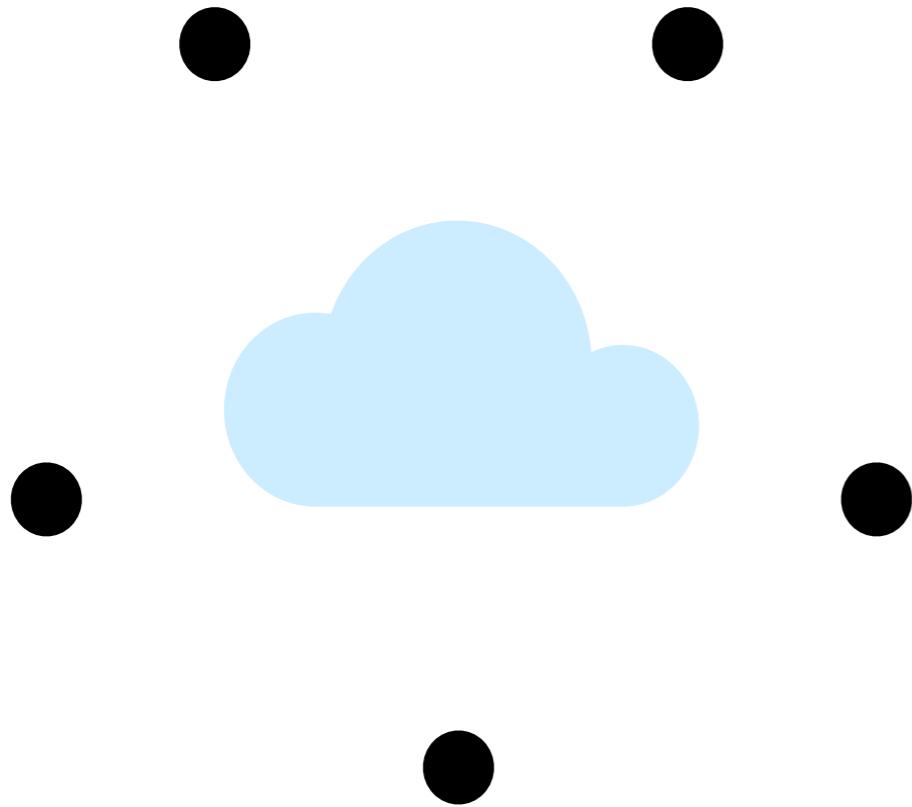


Input sharing $\llbracket x \rrbracket$

Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

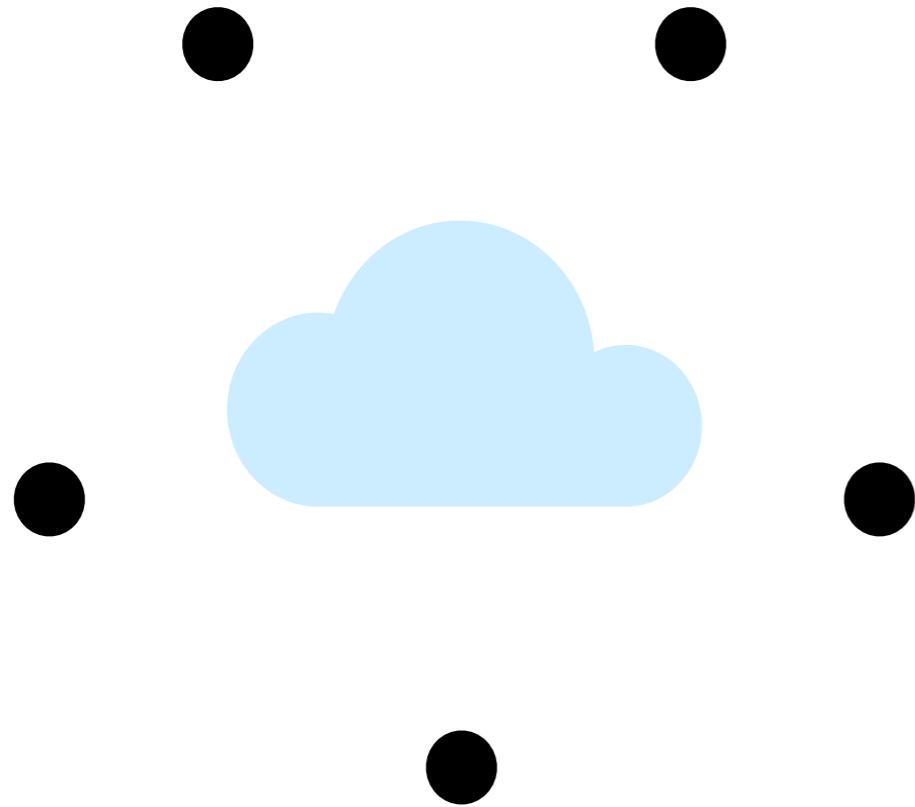
MPC model: discrete logarithm



- Secret x satisfies $y = z^x$, with z public.
- We want a multiparty computation that computes

$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$

MPC model: discrete logarithm

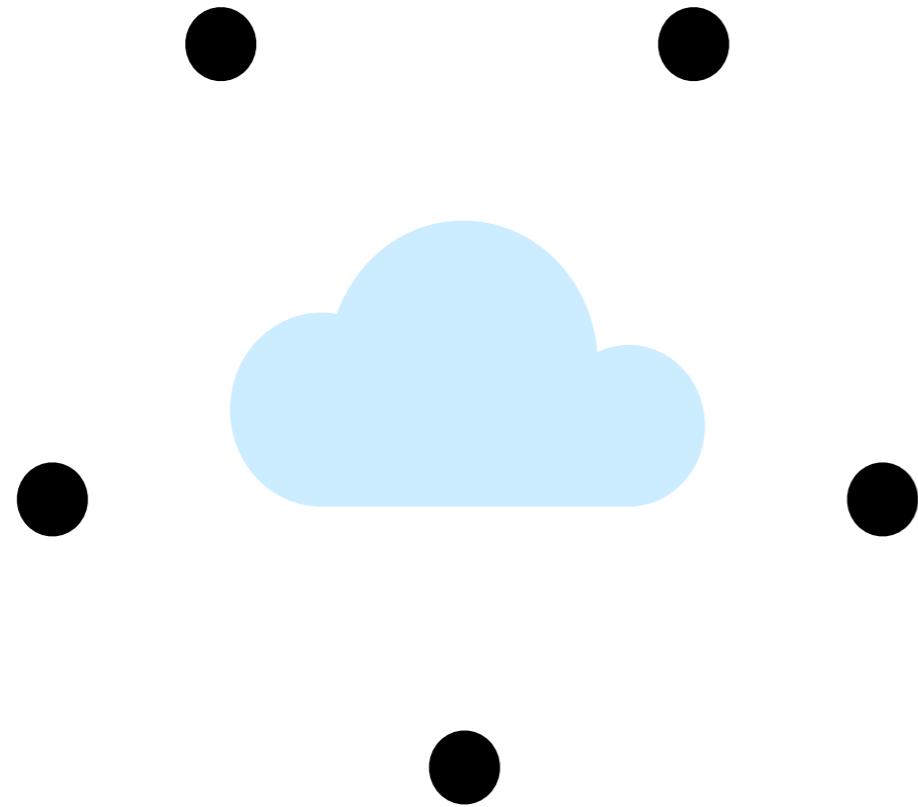


- Secret x satisfies $y = z^x$, with z public.
- We want a multiparty computation that computes

$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$

- Party i :
 - ▶ Receive the i^{th} share $\llbracket x \rrbracket_i$
 - ▶ Compute $\llbracket z^x \rrbracket_i \leftarrow z^{\llbracket x \rrbracket_i}$.
 - ▶ Broadcast $\llbracket z^x \rrbracket_i$.
 - ▶ Receive all the broadcasted values $\llbracket z^x \rrbracket_1, \dots, \llbracket z^x \rrbracket_N$
 - ▶ Recover z^x and check that y .

MPC model: discrete logarithm



$$z = 3 \pmod{1907}$$

$$x = 575$$

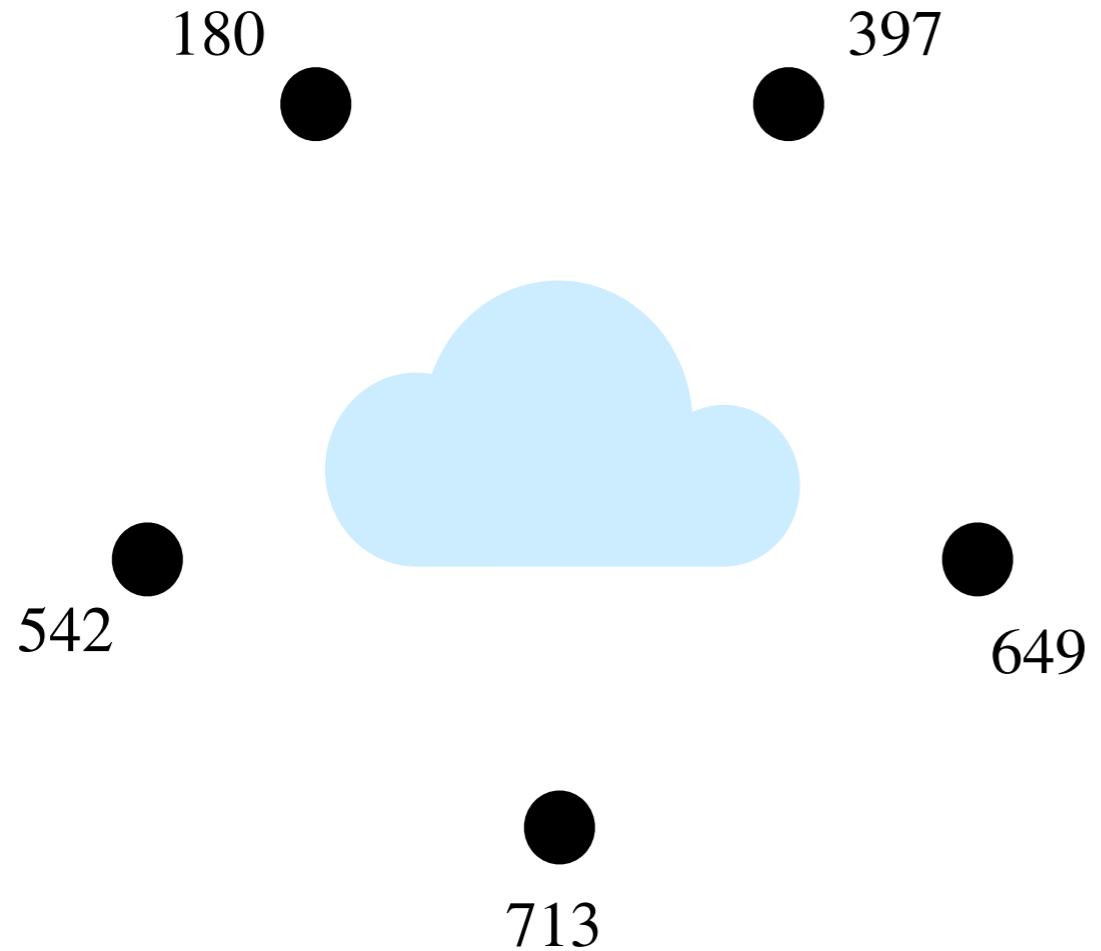
$$y = 1467 = z^x \pmod{1907}$$

- Secret x satisfies $y = z^x$, with z public.
- We want a multiparty computation that computes

$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$

- Party i :
 - ▶ Receive the i^{th} share $\llbracket x \rrbracket_i$
 - ▶ Compute $\llbracket z^x \rrbracket_i \leftarrow z^{\llbracket x \rrbracket_i}$.
 - ▶ Broadcast $\llbracket z^x \rrbracket_i$.
 - ▶ Receive all the broadcasted values $\llbracket z^x \rrbracket_1, \dots, \llbracket z^x \rrbracket_N$
 - ▶ Recover z^x and check that y .

MPC model: discrete logarithm



$$z = 3 \pmod{1907} \quad x = 575 \quad y = 1467 = z^x \pmod{1907}$$

$$[\![x]\!]_1 = 180, \quad [\![x]\!]_2 = 397, \quad [\![x]\!]_3 = 649, \quad [\![x]\!]_4 = 713, \quad [\![x]\!]_5 = 542$$

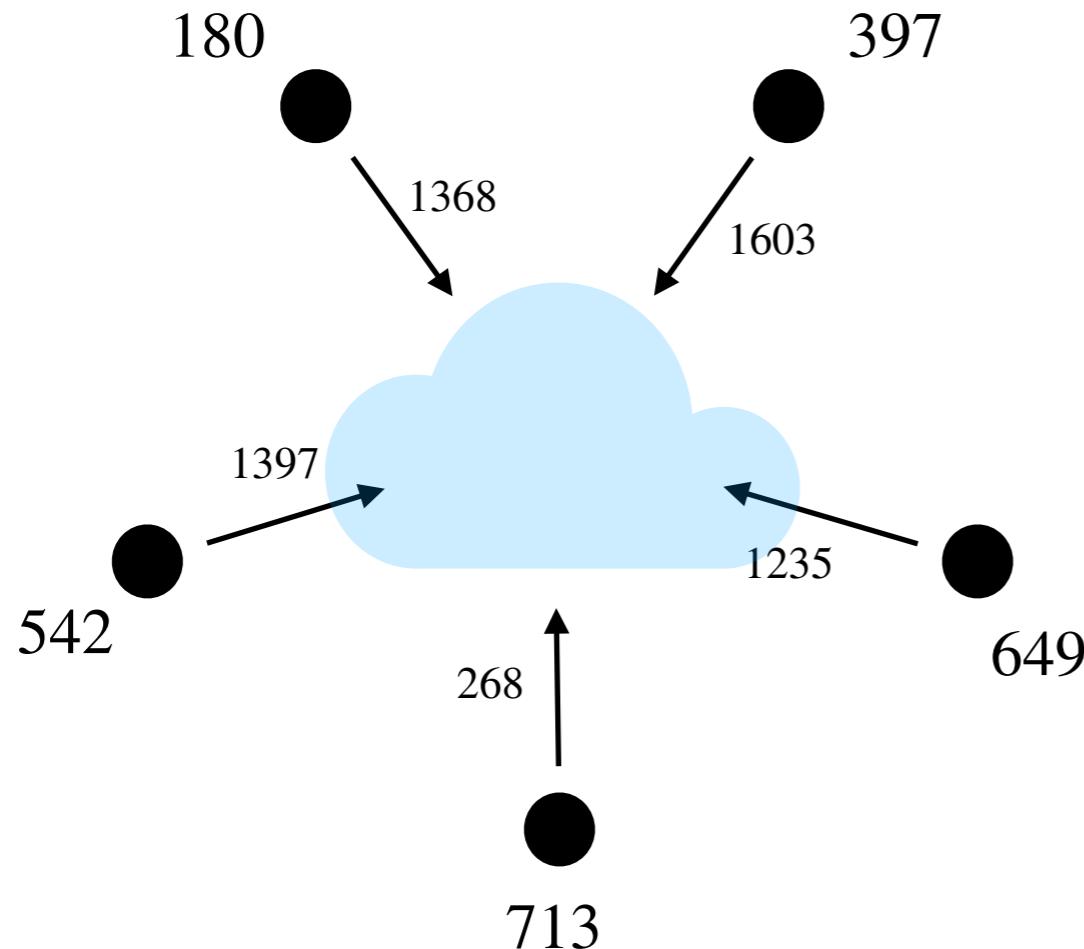
$$x = [\![x]\!]_1 + [\![x]\!]_2 + [\![x]\!]_3 + [\![x]\!]_4 + [\![x]\!]_5 \pmod{953}$$

- Secret x satisfies $y = z^x$, with z public.
- We want a multiparty computation that computes

$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$

- Party i :
 - ▶ Receive the i^{th} share $[\![x]\!]_i$
 - ▶ Compute $[\![z^x]\!]_i \leftarrow z^{[\![x]\!]_i}$.
 - ▶ Broadcast $[\![z^x]\!]_i$.
 - ▶ Receive all the broadcasted values $[\![z^x]\!]_1, \dots, [\![z^x]\!]_N$
 - ▶ Recover z^x and check that y .

MPC model: discrete logarithm



$$z = 3 \pmod{1907} \quad x = 575 \quad y = 1467 = z^x \pmod{1907}$$

$$[\![x]\!]_1 = 180, \quad [\![x]\!]_2 = 397, \quad [\![x]\!]_3 = 649, \quad [\![x]\!]_4 = 713, \quad [\![x]\!]_5 = 542$$

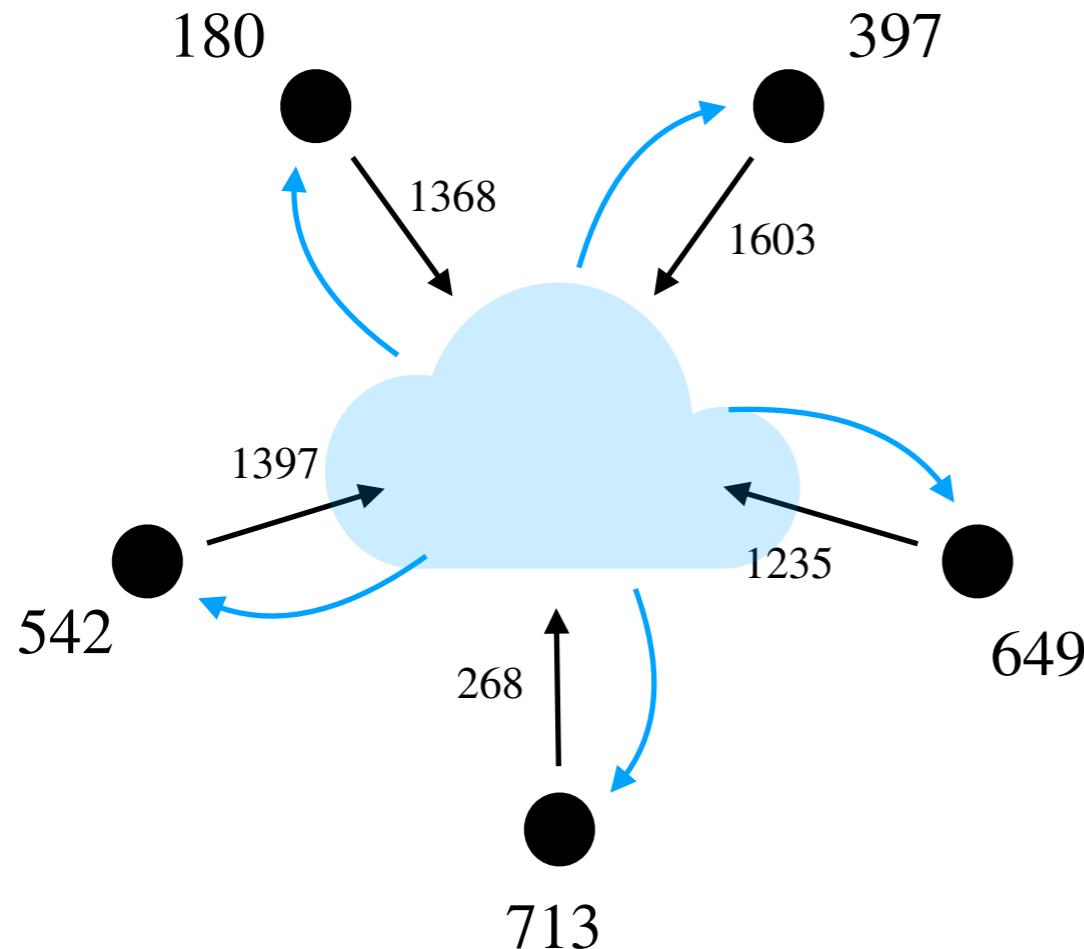
$$x = [\![x]\!]_1 + [\![x]\!]_2 + [\![x]\!]_3 + [\![x]\!]_4 + [\![x]\!]_5 \pmod{953}$$

- Secret x satisfies $y = z^x$, with z public.
- We want a multiparty computation that computes

$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$

- Party i :
 - ▶ Receive the i^{th} share $[\![x]\!]_i$
 - ▶ Compute $[\![z^x]\!]_i \leftarrow z^{[\![x]\!]_i}$.
 - ▶ Broadcast $[\![z^x]\!]_i$.
 - ▶ Receive all the broadcasted values $[\![z^x]\!]_1, \dots, [\![z^x]\!]_N$
 - ▶ Recover z^x and check that y .

MPC model: discrete logarithm



$$z = 3 \pmod{1907} \quad x = 575 \quad y = 1467 = z^x \pmod{1907}$$

$$[\![x]\!]_1 = 180, \quad [\![x]\!]_2 = 397, \quad [\![x]\!]_3 = 649, \quad [\![x]\!]_4 = 713, \quad [\![x]\!]_5 = 542$$

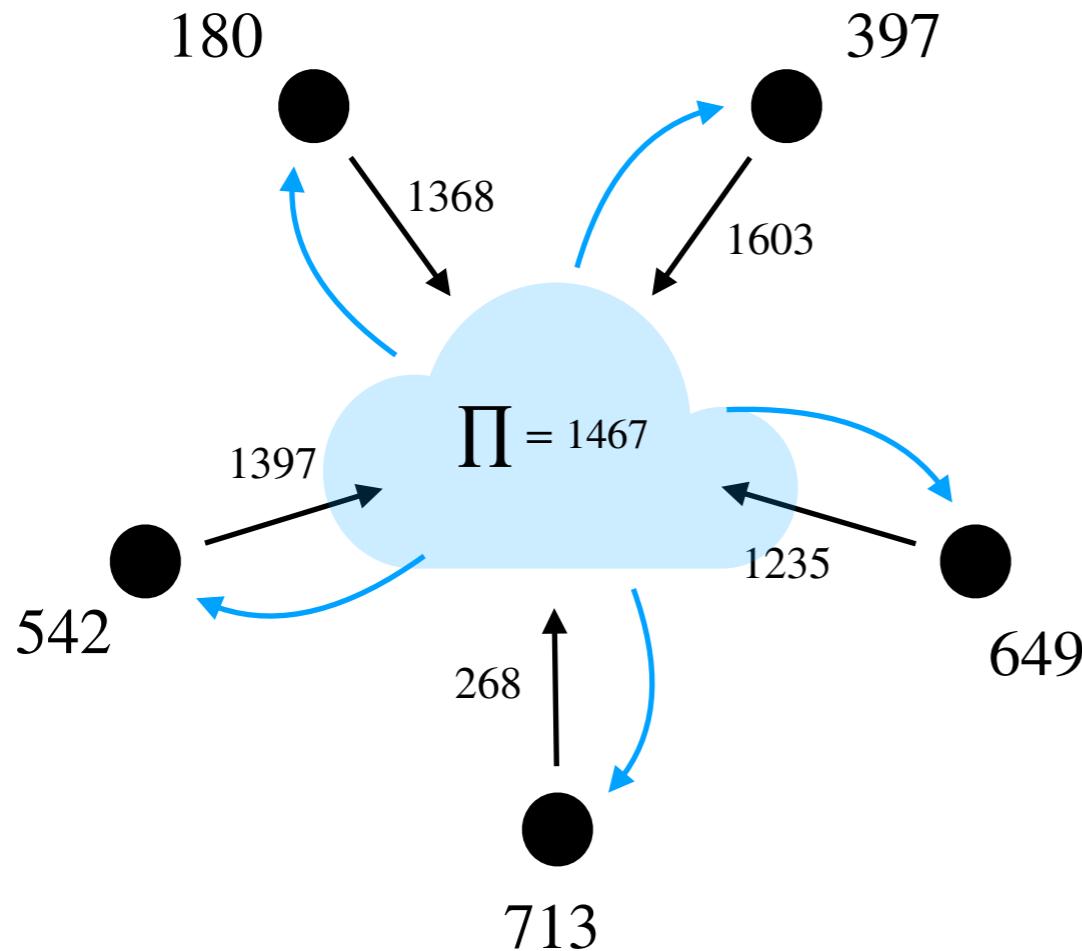
$$x = [\![x]\!]_1 + [\![x]\!]_2 + [\![x]\!]_3 + [\![x]\!]_4 + [\![x]\!]_5 \pmod{953}$$

- Secret x satisfies $y = z^x$, with z public.
- We want a multiparty computation that computes

$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$

- Party i :
 - ▶ Receive the i^{th} share $[\![x]\!]_i$
 - ▶ Compute $[\![z^x]\!]_i \leftarrow z^{[\![x]\!]_i}$.
 - ▶ Broadcast $[\![z^x]\!]_i$.
 - ▶ Receive all the broadcasted values $[\![z^x]\!]_1, \dots, [\![z^x]\!]_N$
 - ▶ Recover z^x and check that y .

MPC model: discrete logarithm



$$z = 3 \pmod{1907} \quad x = 575 \quad y = 1467 = z^x \pmod{1907}$$

$$[\![x]\!]_1 = 180, \quad [\![x]\!]_2 = 397, \quad [\![x]\!]_3 = 649, \quad [\![x]\!]_4 = 713, \quad [\![x]\!]_5 = 542$$

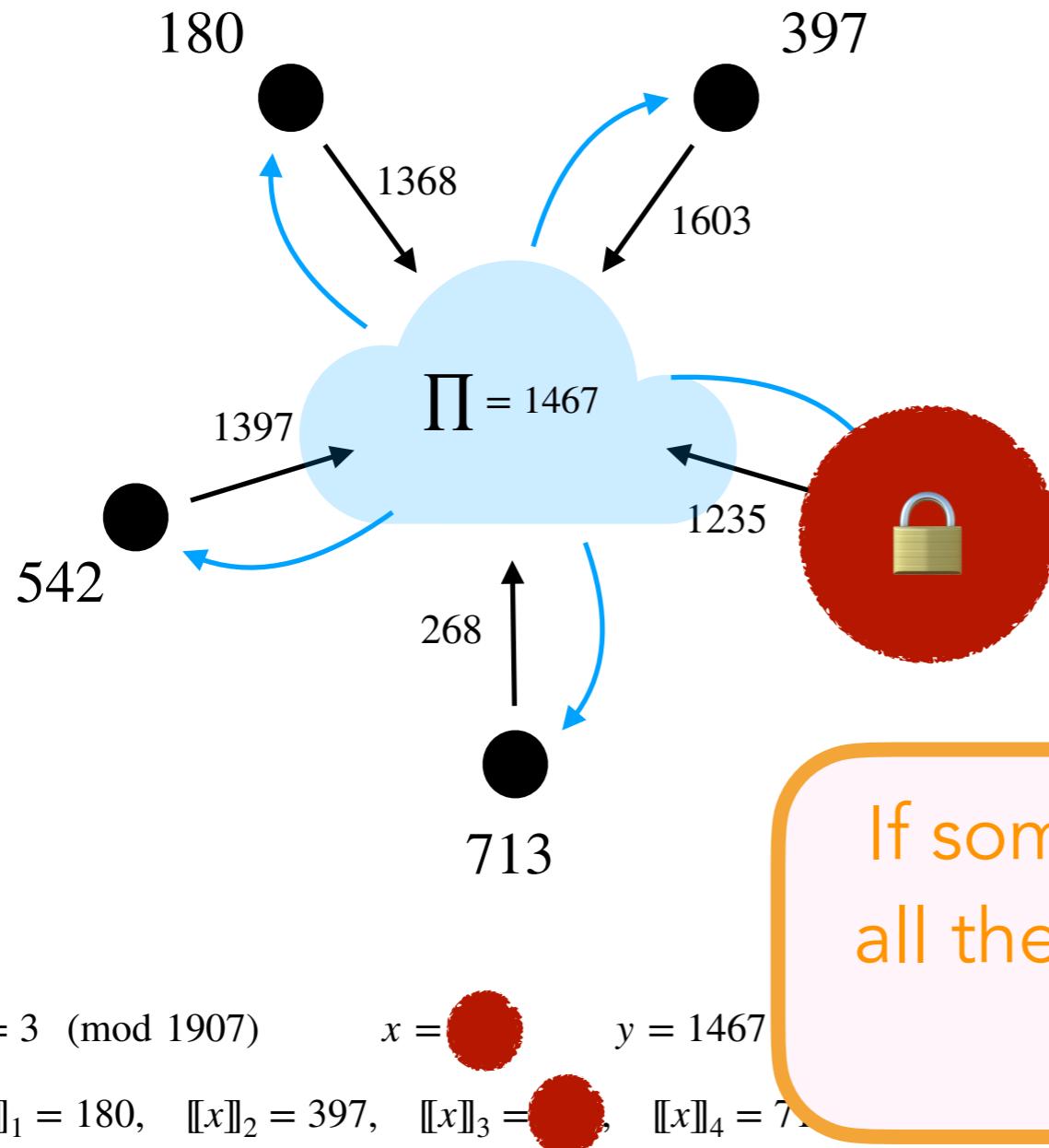
$$x = [\![x]\!]_1 + [\![x]\!]_2 + [\![x]\!]_3 + [\![x]\!]_4 + [\![x]\!]_5 \pmod{953}$$

- Secret x satisfies $y = z^x$, with z public.
- We want a multiparty computation that computes

$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$

- Party i :**
 - Receive the i^{th} share $[\![x]\!]_i$
 - Compute $[\![z^x]\!]_i \leftarrow z^{[\![x]\!]_i}$.
 - Broadcast $[\![z^x]\!]_i$.
 - Receive all the broadcasted values $[\![z^x]\!]_1, \dots, [\![z^x]\!]_N$
 - Recover z^x and check that y .

MPC model: discrete logarithm



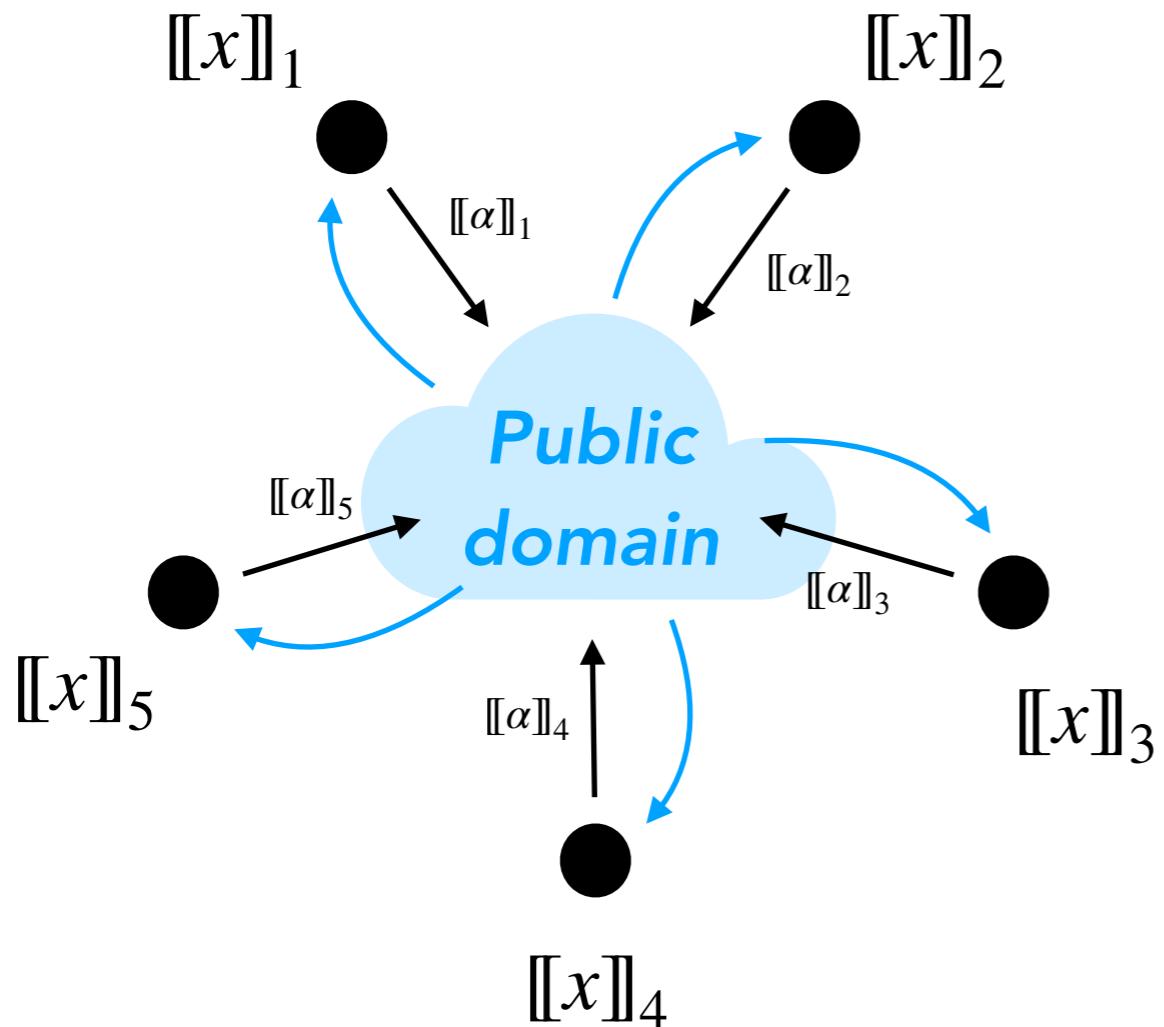
- Secret x satisfies $y = z^x$, with z public.
- We want a multiparty computation that computes

$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$

- Party i :
 - ▶ Receive the i^{th} share $\llbracket x \rrbracket_i$
 - ▶ Compute $\llbracket z^x \rrbracket_i \leftarrow z^{\llbracket x \rrbracket_i}$.

If someone sees the computation of all the parties except one, it leaks no information on x . 😐

MPC model



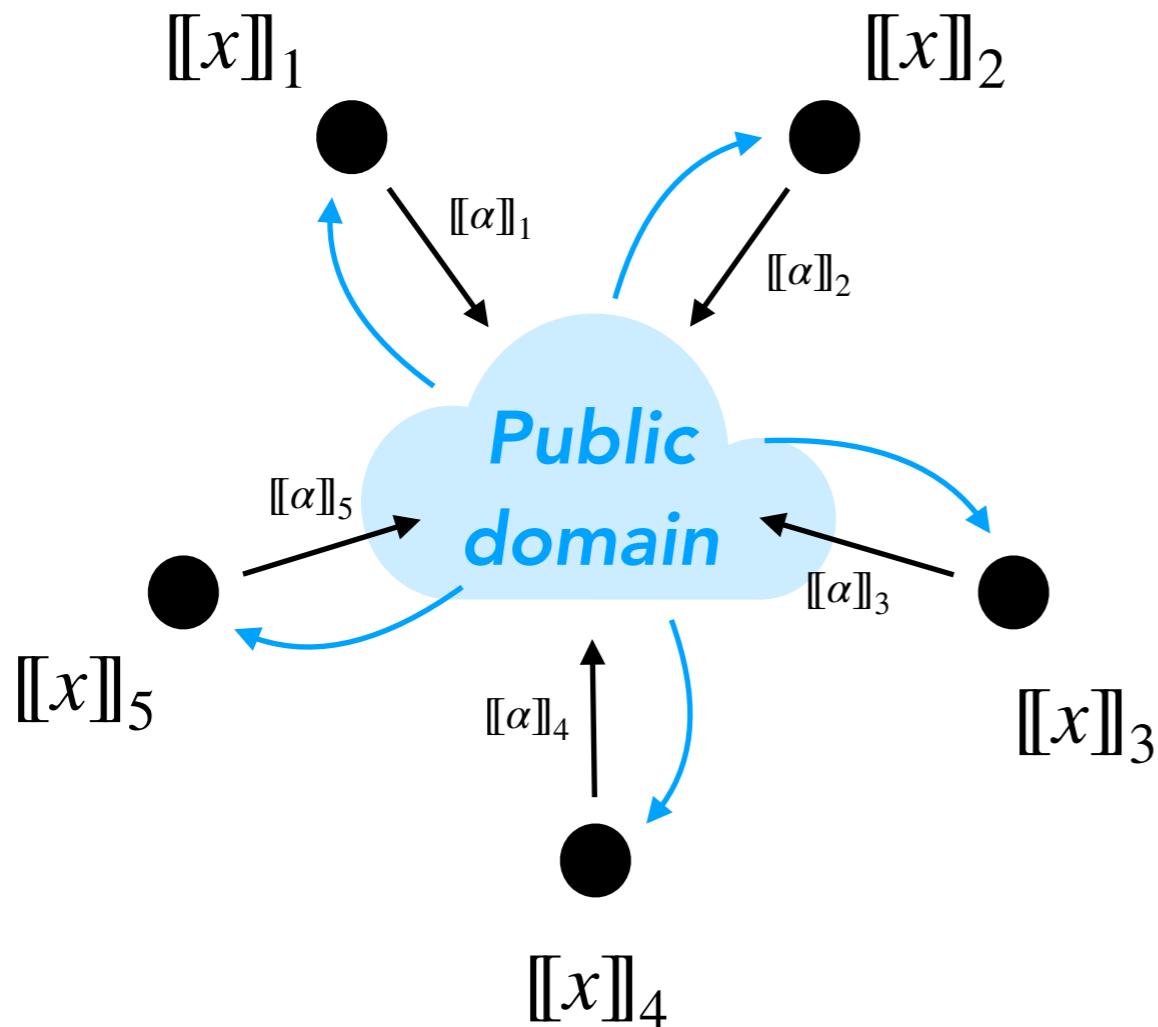
- **Jointly compute**

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- **$(N - 1)$ private:** the views of any $N - 1$ parties provide no information on x
- **Semi-honest model:** assuming that the parties follow the steps of the protocol

$$x = \llbracket x \rrbracket_1 + \llbracket x \rrbracket_2 + \dots + \llbracket x \rrbracket_N$$

MPC model



- **Jointly compute**

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- **$(N - 1)$ private:** the views of any $N - 1$ parties provide no information on x
- **Semi-honest model:** assuming that the parties follow the steps of the protocol
- **Broadcast model**
 - ▶ Parties locally compute on their shares $[\![x]\!] \mapsto [\![\alpha]\!]$
 - ▶ Parties broadcast $[\![\alpha]\!]$ and recompute α
 - ▶ Parties start again (now knowing α)

$$x = [\![x]\!]_1 + [\![x]\!]_2 + \dots + [\![x]\!]_N$$

MPCitH transform

Prover

Verifier

MPCitH transform

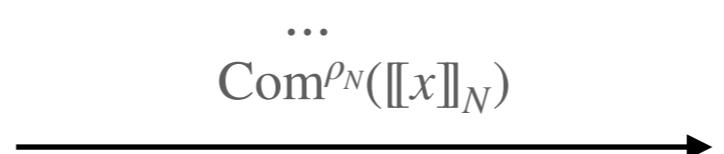
① Generate and commit shares

$$[\![x]\!] = ([\![x]\!]_1, \dots, [\![x]\!]_N)$$

$$\text{Com}^{\rho_1}([\![x]\!]_1)$$

...

$$\text{Com}^{\rho_N}([\![x]\!]_N)$$



Prover

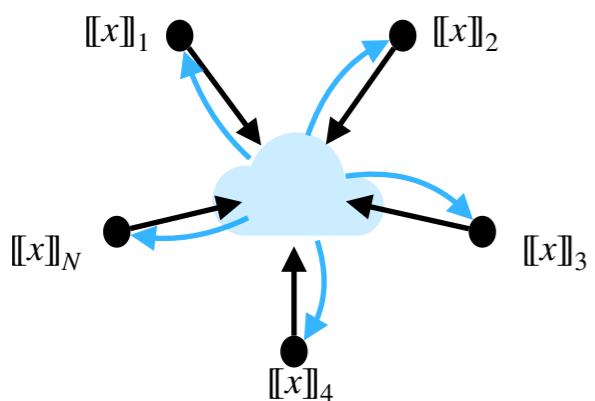
Verifier

MPCitH transform

① Generate and commit shares

$$\llbracket x \rrbracket = (\llbracket x \rrbracket_1, \dots, \llbracket x \rrbracket_N)$$

② Run MPC in their head



$\text{Com}^{\rho_1}(\llbracket x \rrbracket_1)$

\dots
 $\text{Com}^{\rho_N}(\llbracket x \rrbracket_N)$

send broadcast

$\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N$

Prover

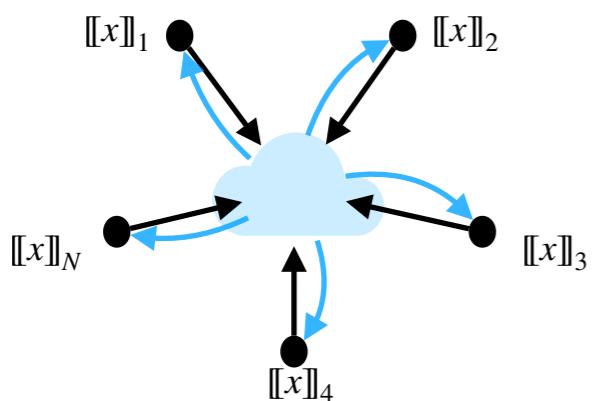
Verifier

MPCitH transform

① Generate and commit shares

$$\llbracket x \rrbracket = (\llbracket x \rrbracket_1, \dots, \llbracket x \rrbracket_N)$$

② Run MPC in their head



$$\text{Com}^{\rho_1}(\llbracket x \rrbracket_1)$$

$$\dots$$
$$\text{Com}^{\rho_N}(\llbracket x \rrbracket_N)$$

send broadcast

$$\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N$$

$$i^*$$

③ Choose a random party

$$i^* \xleftarrow{\$} \{1, \dots, N\}$$

Prover

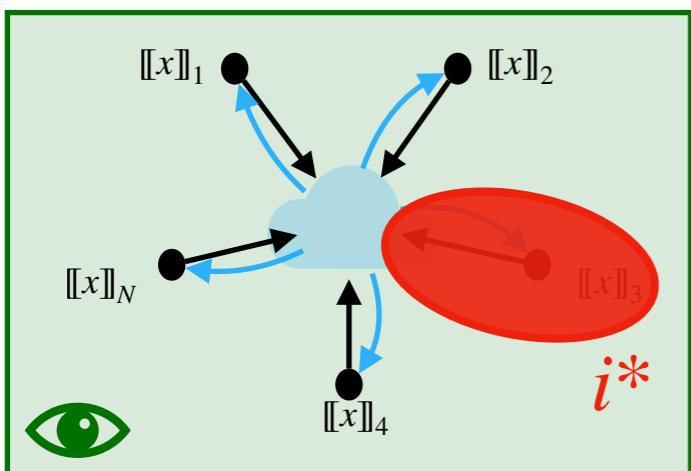
Verifier

MPCitH transform

① Generate and commit shares

$$\llbracket x \rrbracket = (\llbracket x \rrbracket_1, \dots, \llbracket x \rrbracket_N)$$

② Run MPC in their head



④ Open parties $\{1, \dots, N\} \setminus \{i^*\}$

$\text{Com}^{\rho_1}(\llbracket x \rrbracket_1)$

\dots
 $\text{Com}^{\rho_N}(\llbracket x \rrbracket_N)$

send broadcast

$\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N$

i^*

$(\llbracket x \rrbracket_i, \rho_i)_{i \neq i^*}$

③ Choose a random party

$$i^* \xleftarrow{\$} \{1, \dots, N\}$$

Prover

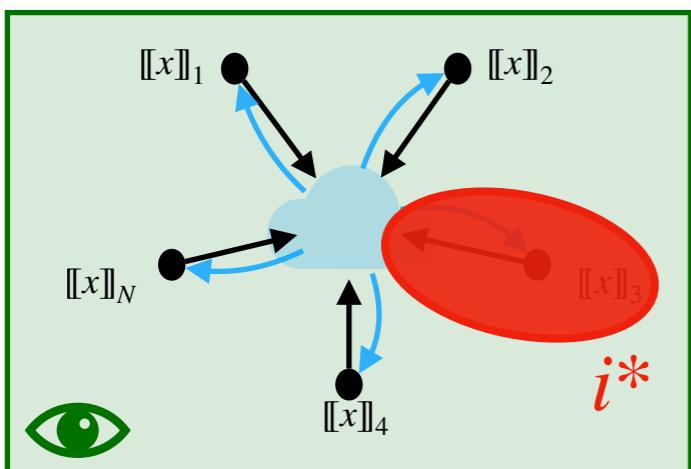
Verifier

MPCitH transform

① Generate and commit shares

$$\llbracket x \rrbracket = (\llbracket x \rrbracket_1, \dots, \llbracket x \rrbracket_N)$$

② Run MPC in their head



④ Open parties $\{1, \dots, N\} \setminus \{i^*\}$

$\text{Com}^{\rho_1}(\llbracket x \rrbracket_1)$

\dots
 $\text{Com}^{\rho_N}(\llbracket x \rrbracket_N)$

send broadcast

$\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N$

i^*

$(\llbracket x \rrbracket_i, \rho_i)_{i \neq i^*}$

③ Choose a random party

$$i^* \xleftarrow{\$} \{1, \dots, N\}$$

⑤ Check $\forall i \neq i^*$

- Commitments $\text{Com}^{\rho_i}(\llbracket x \rrbracket_i)$
- MPC computation $\llbracket \alpha \rrbracket_i = \varphi(\llbracket x \rrbracket_i)$

Check $\tilde{g}(y, \alpha) = \text{Accept}$

Prover

Verifier

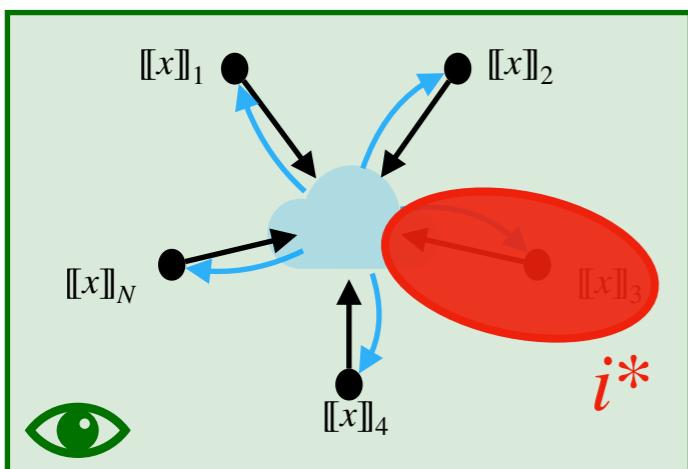
MPCitH transform

- ✓ Completeness
- ✓ Zero-Knowledge

① Generate and commit shares

$$\llbracket x \rrbracket = (\llbracket x \rrbracket_1, \dots, \llbracket x \rrbracket_N)$$

② Run MPC in their head



④ Open parties $\{1, \dots, N\} \setminus \{i^*\}$

$\text{Com}^{\rho_1}(\llbracket x \rrbracket_1)$

\dots
 $\text{Com}^{\rho_N}(\llbracket x \rrbracket_N)$

send broadcast

$\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N$

i^*

$(\llbracket x \rrbracket_i, \rho_i)_{i \neq i^*}$

③ Choose a random party

$$i^* \xleftarrow{\$} \{1, \dots, N\}$$

⑤ Check $\forall i \neq i^*$

- Commitments $\text{Com}^{\rho_i}(\llbracket x \rrbracket_i)$
- MPC computation $\llbracket \alpha \rrbracket_i = \varphi(\llbracket x \rrbracket_i)$

Check $\tilde{g}(y, \alpha) = \text{Accept}$

Prover

Verifier

MPCitH transform

① Generate and commit shares

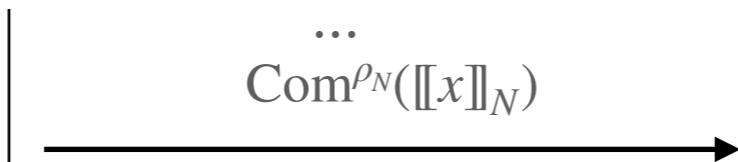
$$[\![x]\!] = ([\![x]\!]_1, \dots, [\![x]\!]_N)$$

We have $F(x) \neq y$ where
 $x := [\![x]\!]_1 + \dots + [\![x]\!]_N$

$$\text{Com}^{\rho_1}([\![x]\!]_1)$$

$$\dots$$

$$\text{Com}^{\rho_N}([\![x]\!]_N)$$



Malicious Prover

Verifier

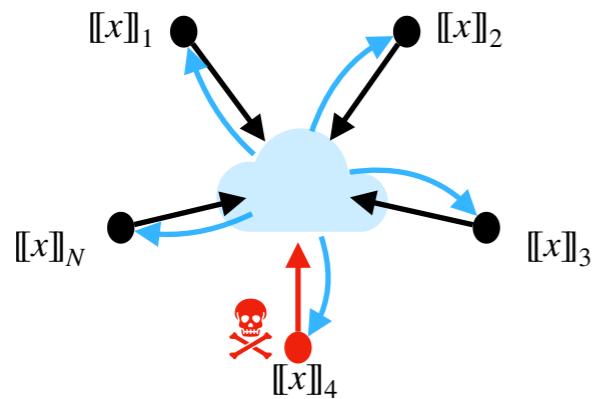
MPCitH transform

① Generate and commit shares

$$[\![x]\!] = ([\![x]\!]_1, \dots, [\![x]\!]_N)$$

We have $F(x) \neq y$ where
 $x := [\![x]\!]_1 + \dots + [\![x]\!]_N$

② Run MPC in their head



$\text{Com}^{\rho_1}([\![x]\!]_1)$

\dots
 $\text{Com}^{\rho_N}([\![x]\!]_N)$

send broadcast

$[\![\alpha]\!]_1, \dots, [\![\alpha]\!]_N$

Malicious Prover

Verifier

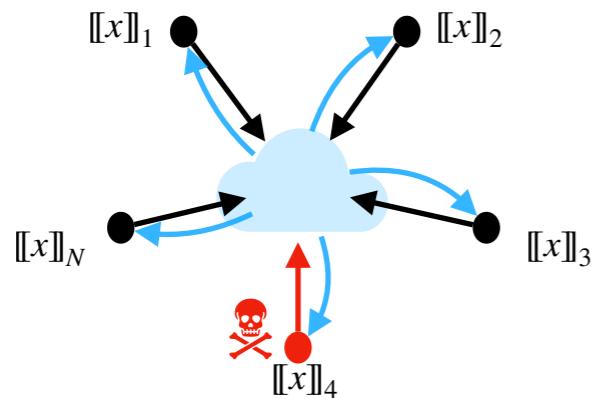
MPCitH transform

① Generate and commit shares

$$[\![x]\!] = ([\![x]\!]_1, \dots, [\![x]\!]_N)$$

We have $F(x) \neq y$ where
 $x := [\![x]\!]_1 + \dots + [\![x]\!]_N$

② Run MPC in their head



$\text{Com}^{\rho_1}([\![x]\!]_1)$

\dots
 $\text{Com}^{\rho_N}([\![x]\!]_N)$

send broadcast

$[\![\alpha]\!]_1, \dots, [\![\alpha]\!]_N$

i^*

③ Choose a random party

$$i^* \xleftarrow{\$} \{1, \dots, N\}$$

Malicious Prover

Verifier

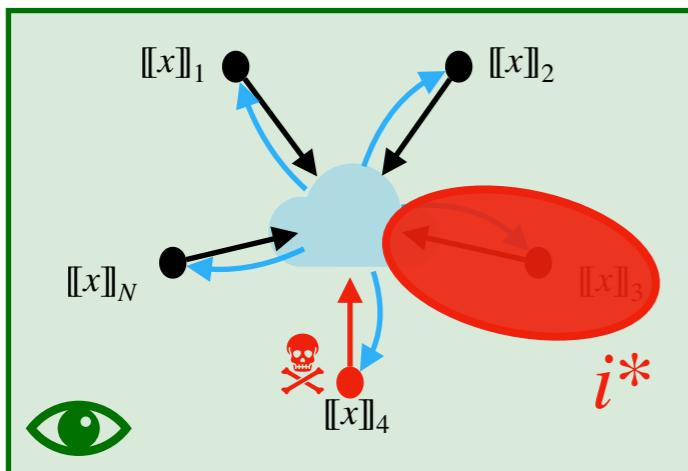
MPCitH transform

① Generate and commit shares

$$[\![x]\!] = ([\![x]\!]_1, \dots, [\![x]\!]_N)$$

We have $F(x) \neq y$ where
 $x := [\![x]\!]_1 + \dots + [\![x]\!]_N$

② Run MPC in their head



④ Open parties $\{1, \dots, N\} \setminus \{i^*\}$

$\text{Com}^{\rho_1}([\![x]\!]_1)$

\dots
 $\text{Com}^{\rho_N}([\![x]\!]_N)$

send broadcast

$[\![\alpha]\!]_1, \dots, [\![\alpha]\!]_N$

i^*

$([\![x]\!]_i, \rho_i)_{i \neq i^*}$

③ Choose a random party

$$i^* \xleftarrow{\$} \{1, \dots, N\}$$

Malicious Prover

Verifier

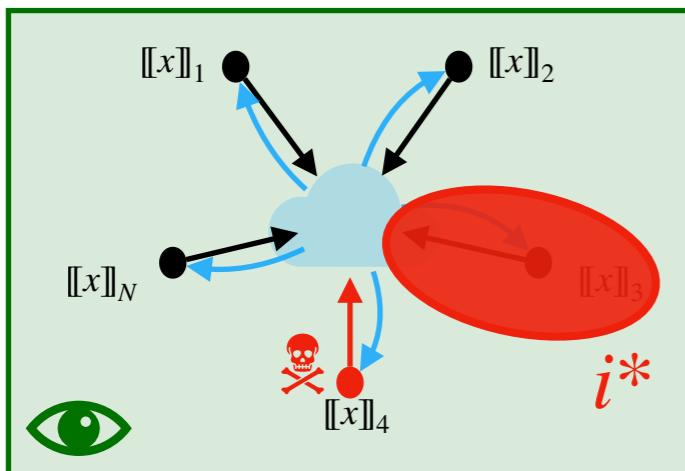
MPCitH transform

① Generate and commit shares

$$[\![x]\!] = ([\![x]\!]_1, \dots, [\![x]\!]_N)$$

We have $F(x) \neq y$ where
 $x := [\![x]\!]_1 + \dots + [\![x]\!]_N$

② Run MPC in their head



④ Open parties $\{1, \dots, N\} \setminus \{i^*\}$

$$\text{Com}^{\rho_1}([\![x]\!]_1)$$

$$\dots$$

$$\text{Com}^{\rho_N}([\![x]\!]_N)$$

send broadcast

$$[\![\alpha]\!]_1, \dots, [\![\alpha]\!]_N$$

$$i^*$$

$$([\![x]\!]_i, \rho_i)_{i \neq i^*}$$

③ Choose a random party

$$i^* \xleftarrow{\$} \{1, \dots, N\}$$

⑤ Check $\forall i \neq i^*$

- Commitments $\text{Com}^{\rho_i}([\![x]\!]_i)$
- MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$

Check $\tilde{g}(y, \alpha) = \text{Accept}$

Malicious Prover

Verifier

Cheating detected!

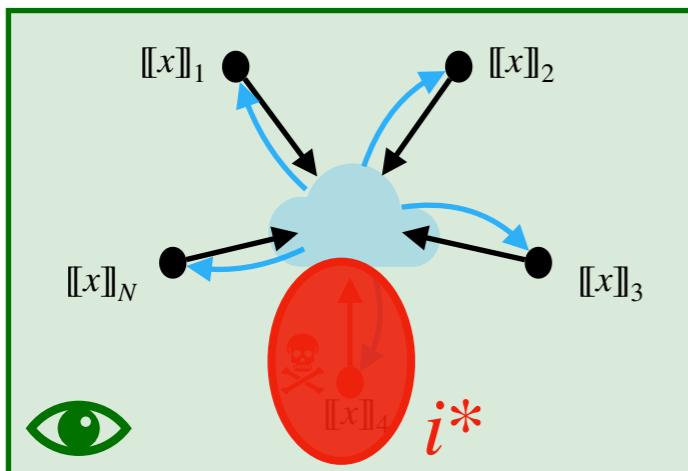
MPCitH transform

① Generate and commit shares

$$[\![x]\!] = ([\![x]\!]_1, \dots, [\![x]\!]_N)$$

We have $F(x) \neq y$ where
 $x := [\![x]\!]_1 + \dots + [\![x]\!]_N$

② Run MPC in their head



④ Open parties $\{1, \dots, N\} \setminus \{i^*\}$

$\text{Com}^{\rho_1}([\![x]\!]_1)$

\dots
 $\text{Com}^{\rho_N}([\![x]\!]_N)$

send broadcast

$[\![\alpha]\!]_1, \dots, [\![\alpha]\!]_N$

i^*

$([\![x]\!]_i, \rho_i)_{i \neq i^*}$

③ Choose a random party

$$i^* \xleftarrow{\$} \{1, \dots, N\}$$

⑤ Check $\forall i \neq i^*$

- Commitments $\text{Com}^{\rho_i}([\![x]\!]_i)$
- MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$

Check $\tilde{g}(y, \alpha) = \text{Accept}$

Malicious Prover

Verifier

Seems OK.

MPCitH transform

- **Zero-knowledge** \iff MPC protocol is $(N - 1)$ -private

MPCitH transform

- **Zero-knowledge** \iff MPC protocol is $(N - 1)$ -private
- **Soundness:**

$$\begin{aligned}\mathbb{P}(\text{malicious prover convinces the verifier}) \\ = \mathbb{P}(\text{corrupted party remains hidden}) \\ = \frac{1}{N}\end{aligned}$$

MPCitH transform

- **Zero-knowledge** \iff MPC protocol is $(N - 1)$ -private

- **Soundness:**

$$\begin{aligned}\mathbb{P}(\text{malicious prover convinces the verifier}) \\ = \mathbb{P}(\text{corrupted party remains hidden}) \\ = \frac{1}{N}\end{aligned}$$

- **Parallel repetition**

Protocol repeated τ times in parallel \rightarrow soundness error $\left(\frac{1}{N}\right)^\tau$

*Polynomial Interactive
Oracle Proof*

PIOP-based MPCitH Frameworks

[BBB⁺23] Baum, Braun, Delpech, Klooß, Orsini, Roy, Scholl. Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures From VOLE-in-the-Head. *Crypto* 2023.

[FR25] Feneuil, Rivain. *Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments*. *Journal of Cryptology*, 2025.

TCitH and VOLEitH Frameworks, in the PIOP formalism

I know w_1, \dots, w_n such that

$$f(w_1, \dots, w_n) = 0$$

where f is a public **degree- d polynomial**.

Prover

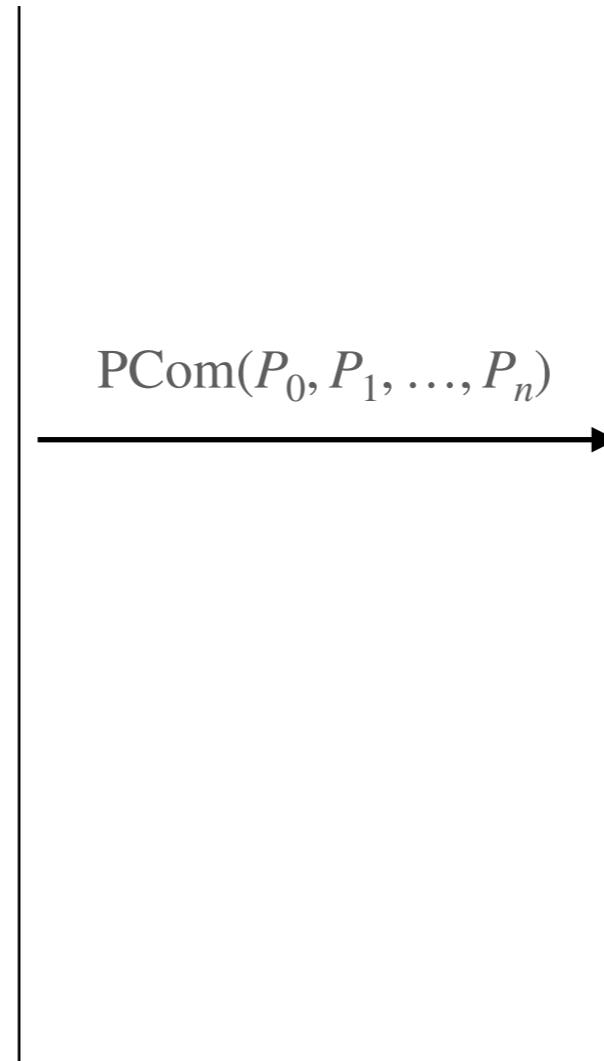
Prove it!

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

② Commit to the polynomials P_0, P_1, \dots, P_n



Prover

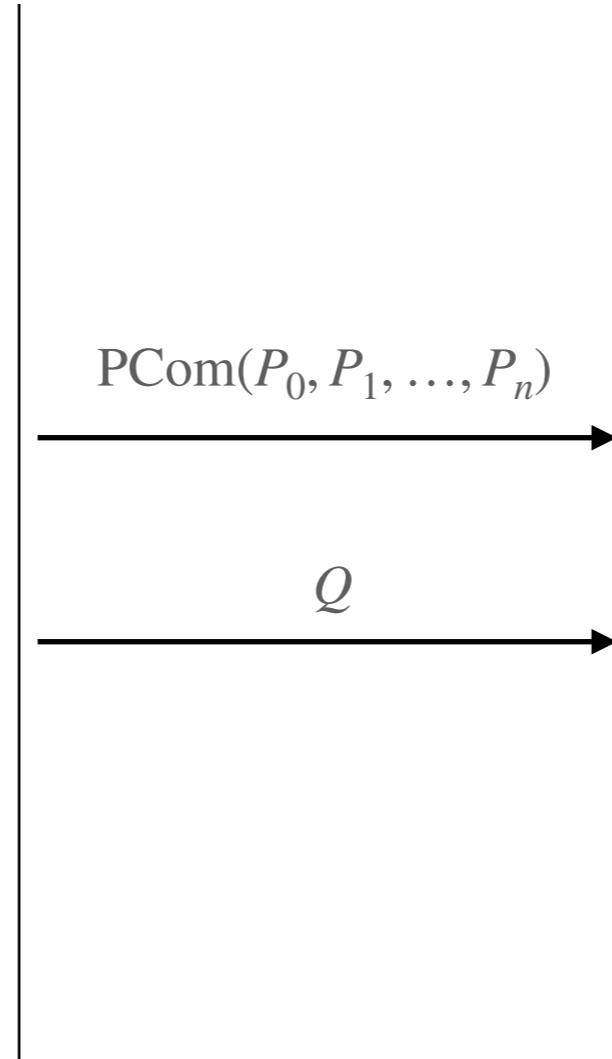
Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

② Commit to the polynomials P_0, P_1, \dots, P_n

③ Reveal the polynomial $Q(X)$ such that
$$X \cdot Q(X) = X \cdot P_0(X) + f(P_1(X), \dots, P_n(X))$$

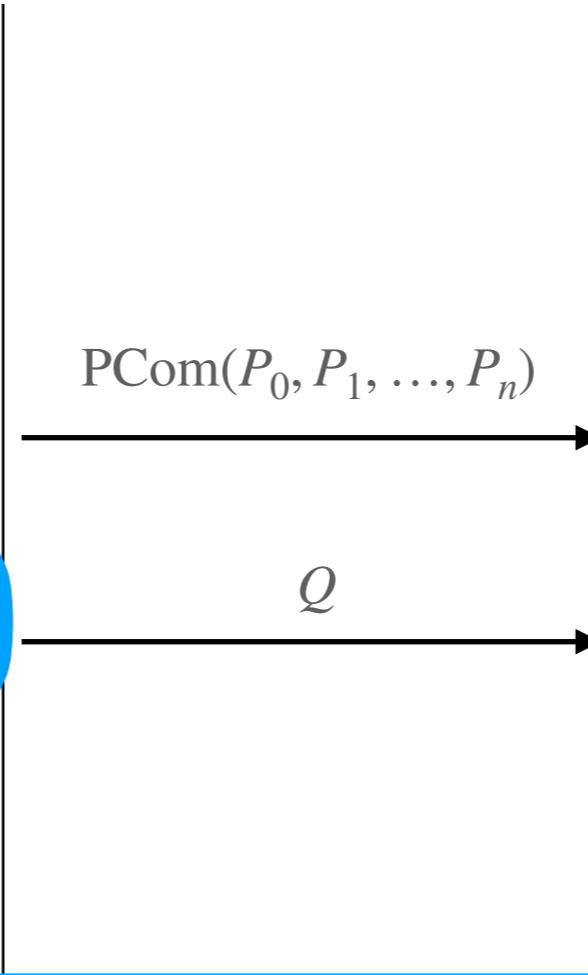


Prover

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

- ① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$
- ② Commit to the polynomials P_0, P_1, \dots, P_n
- ③ Reveal the polynomial $Q(X)$ such that
$$X \cdot Q(X) = X \cdot P_0(X) + f(P_1(X), \dots, P_n(X))$$



Well-defined!

$$0 \cdot P_0(0) + f(P_1(0), \dots, P_n(0)) = 0 + f(w_1, \dots, w_n) = 0$$

Prover

Verifier

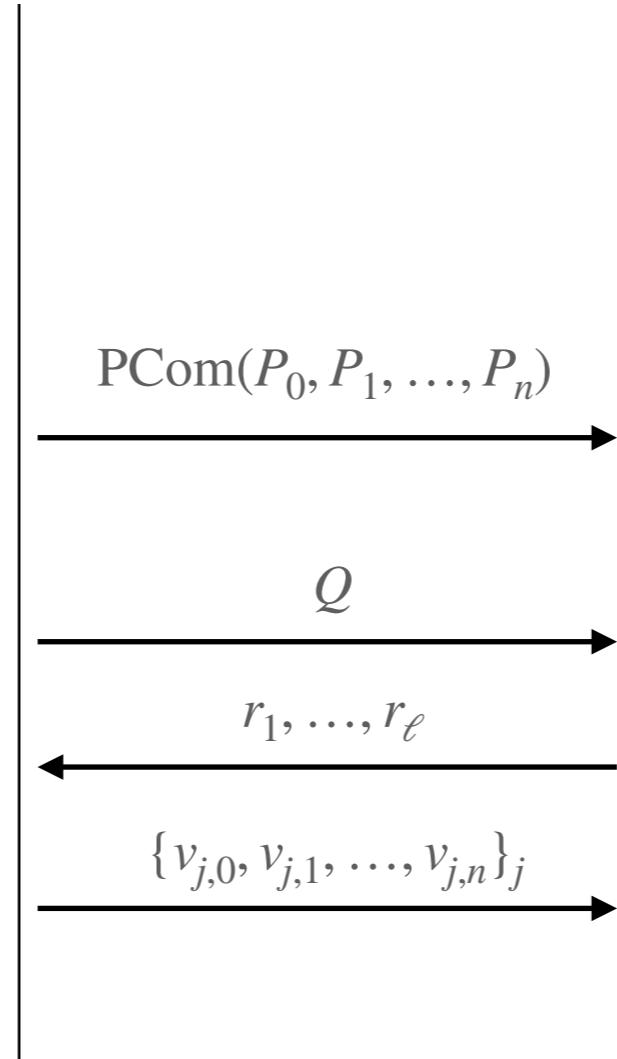
TCitH and VOLEitH Frameworks, in the PIOP formalism

① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

② Commit to the polynomials P_0, P_1, \dots, P_n

③ Reveal the polynomial $Q(X)$ such that
$$X \cdot Q(X) = X \cdot P_0(X) + f(P_1(X), \dots, P_n(X))$$

⑤ For all (i, j) , reveal the evaluation
$$v_{j,i} := P_i(r_j)$$



Prover

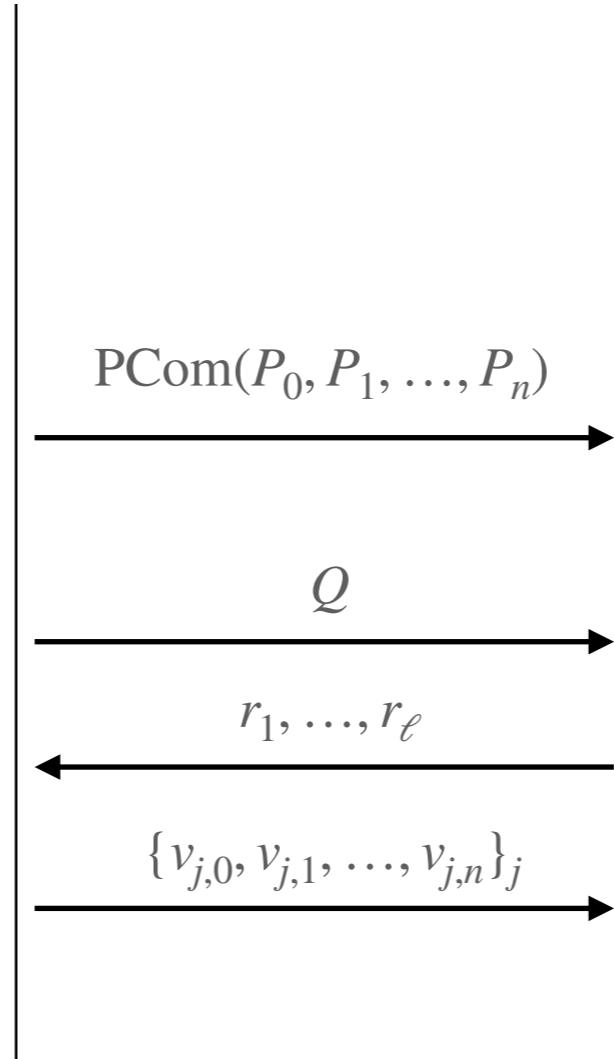
Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

- ① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$
- ② Commit to the polynomials P_0, P_1, \dots, P_n
- ③ Reveal the polynomial $Q(X)$ such that

$$X \cdot Q(X) = X \cdot P_0(X) + f(P_1(X), \dots, P_n(X))$$
- ⑤ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$



- ④ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$
- ⑥ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.
Check that, for all j ,

$$r_j \cdot Q(r_j) = r_j \cdot v_{j,0} + f(v_{j,1}, \dots, v_{j,n})$$

Prover

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

① For all i , choose a degree- ℓ polynomial

$P_i(X)$. We have

$$f(P_1(0), \dots, P_n(0)) \neq 0.$$

Choose a degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

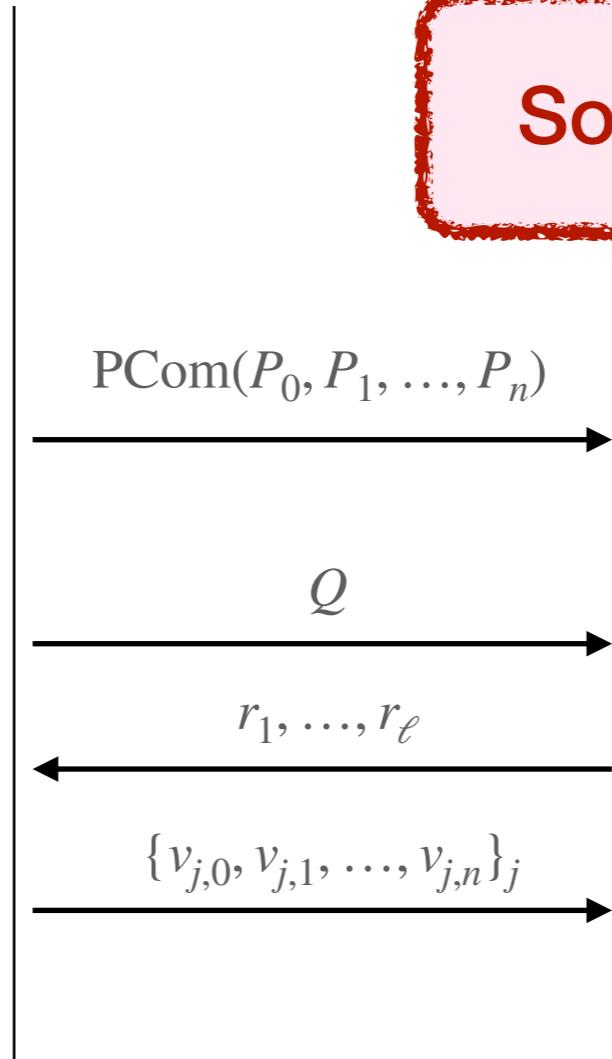
② Commit to the polynomials P_0, P_1, \dots, P_n

③ Reveal a polynomial $Q(X)$. We know that

$$X \cdot Q(X) \neq X \cdot P_0(X) + f(P_1(X), \dots, P_n(X))$$

⑤ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$



Soundness Analysis

④ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

⑥ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.

Check that, for all j ,

$$r_j \cdot Q(r_j) = r_j \cdot v_{j,0} + f(v_{j,1}, \dots, v_{j,n})$$

Malicious Prover

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

① For all i , choose a degree- ℓ polynomial

$P_i(X)$. We have

$$f(P_1(0), \dots, P_n(0)) \neq 0.$$

Choose a degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

② Commit to the polynomials P_0, P_1, \dots, P_n

③ Reveal a polynomial $Q(X)$. We know that

$$X \cdot Q(X) \neq X \cdot P_0(X) + f(P_1(X), \dots, P_n(X))$$

⑤ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$

Evaluation into 0

$$= 0$$

$$\neq 0$$

Malicious Prover 😈

Soundness Analysis

$\text{PCom}(P_0, P_1, \dots, P_n)$

Q

r_1, \dots, r_ℓ

$\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$

④ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

⑥ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.

Check that, for all j ,

$$r_j \cdot Q(r_j) = r_j \cdot v_{j,0} + f(v_{j,1}, \dots, v_{j,n})$$

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

① For all i , choose a degree- ℓ polynomial $P_i(X)$. We have

$$f(P_1(0), \dots, P_n(0)) \neq 0.$$

Choose a degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

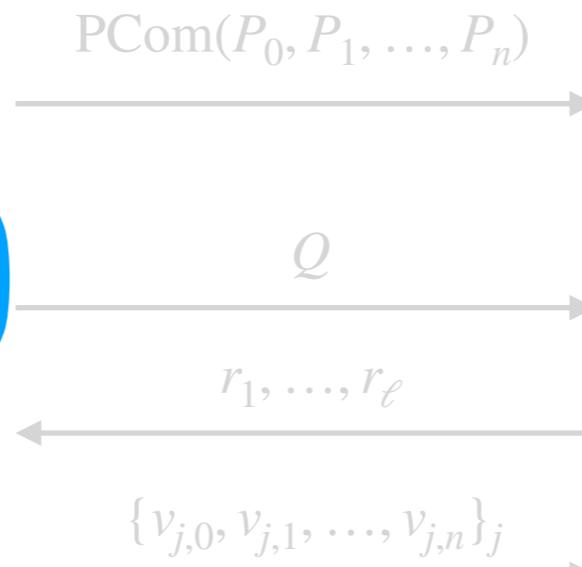
② Commit to the polynomials P_0, P_1, \dots, P_n

③ Reveal a polynomial $Q(X)$. We know that

$$X \cdot Q(X) \neq X \cdot P_0(X) + f(P_1(X), \dots, P_n(X))$$

⑤ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$



Soundness Analysis

④ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

⑥ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.

Check that, for all j ,

$$r_j \cdot Q(r_j) = r_j \cdot v_{j,0} + f(v_{j,1}, \dots, v_{j,n})$$

Malicious Prover 😈

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

① For all i , choose a degree- ℓ polynomial $P_i(X)$. We have

$$f(P_1(0), \dots, P_n(0)) \neq 0.$$

Choose a degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

② Commit to the polynomials P_0, P_1, \dots, P_n

③ Reveal a polynomial $Q(X)$. We know that

$$X \cdot Q(X) \neq X \cdot P_0(X) + f(P_1(X), \dots, P_n(X))$$

$\text{PCom}(P_0, P_1, \dots, P_n)$

Q

r_1, \dots, r_ℓ

Soundness Analysis

Schwartz-Zippel Lemma: Let D be the **non-zero** degree- $(d \cdot \ell)$ polynomial defined as

$$D := X \cdot Q(X) - X \cdot P_0(X) - f(P_1(X), \dots, P_n(X))$$

We have

④ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

⑥ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.

Check that, for all j ,

$$r_j \cdot Q(r_j) = r_j \cdot v_{j,0} + f(v_{j,1}, \dots, v_{j,n})$$

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

① For all i , choose a degree- ℓ polynomial $P_i(X)$. We have

$$f(P_1(0), \dots, P_n(0)) \neq 0.$$

Choose a degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

② Commit to the polynomials P_0, P_1, \dots, P_n

③ Reveal a polynomial $Q(X)$. We know that

$$X \cdot Q(X) \neq X \cdot P_0(X) + f(P_1(X), \dots, P_n(X))$$

Soundness Analysis

$\text{PCom}(P_0, P_1, \dots, P_n)$

Q

r_1, \dots, r_ℓ

④ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

Schwartz-Zippel Lemma: Let D be the **non-zero** degree- $(d \cdot \ell)$ polynomial defined as

$$D := X \cdot Q(X) - X \cdot P_0(X) - f(P_1(X), \dots, P_n(X))$$

We have

$$\Pr[\text{verification passes}] = \Pr \left[\forall j, D(r_j) = 0 \mid \{r_j\}_j \subset_{\$} \mathcal{C} \right] \leq \frac{\binom{d \cdot \ell}{\ell}}{\binom{|\mathcal{C}|}{\ell}}.$$

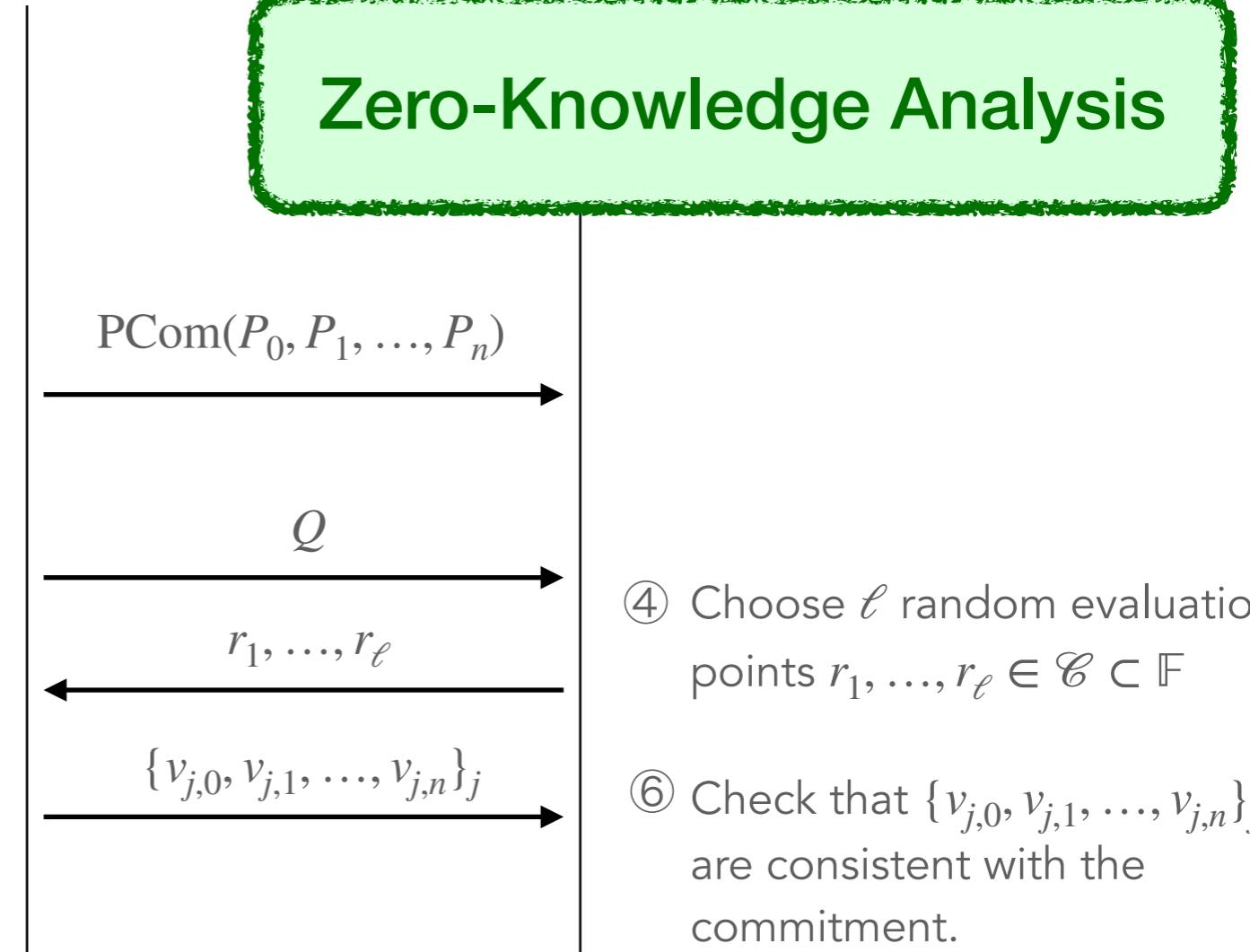
Check that, for all j ,

$$r_j \cdot Q(r_j) = r_j \cdot v_{j,0} + f(v_{j,1}, \dots, v_{j,n})$$

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

- ① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$
- ② Commit to the polynomials P_0, P_1, \dots, P_n
- ③ Reveal the polynomial $Q(X)$ such that
$$X \cdot Q(X) = X \cdot P_0(X) + f(P_1(X), \dots, P_n(X))$$
- ⑤ For all (i, j) , reveal the evaluation
$$v_{j,i} := P_i(r_j)$$



- ④ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$
- ⑥ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.
Check that, for all j ,
$$r_j \cdot Q(r_j) = r_j \cdot v_{j,0} + f(v_{j,1}, \dots, v_{j,n})$$

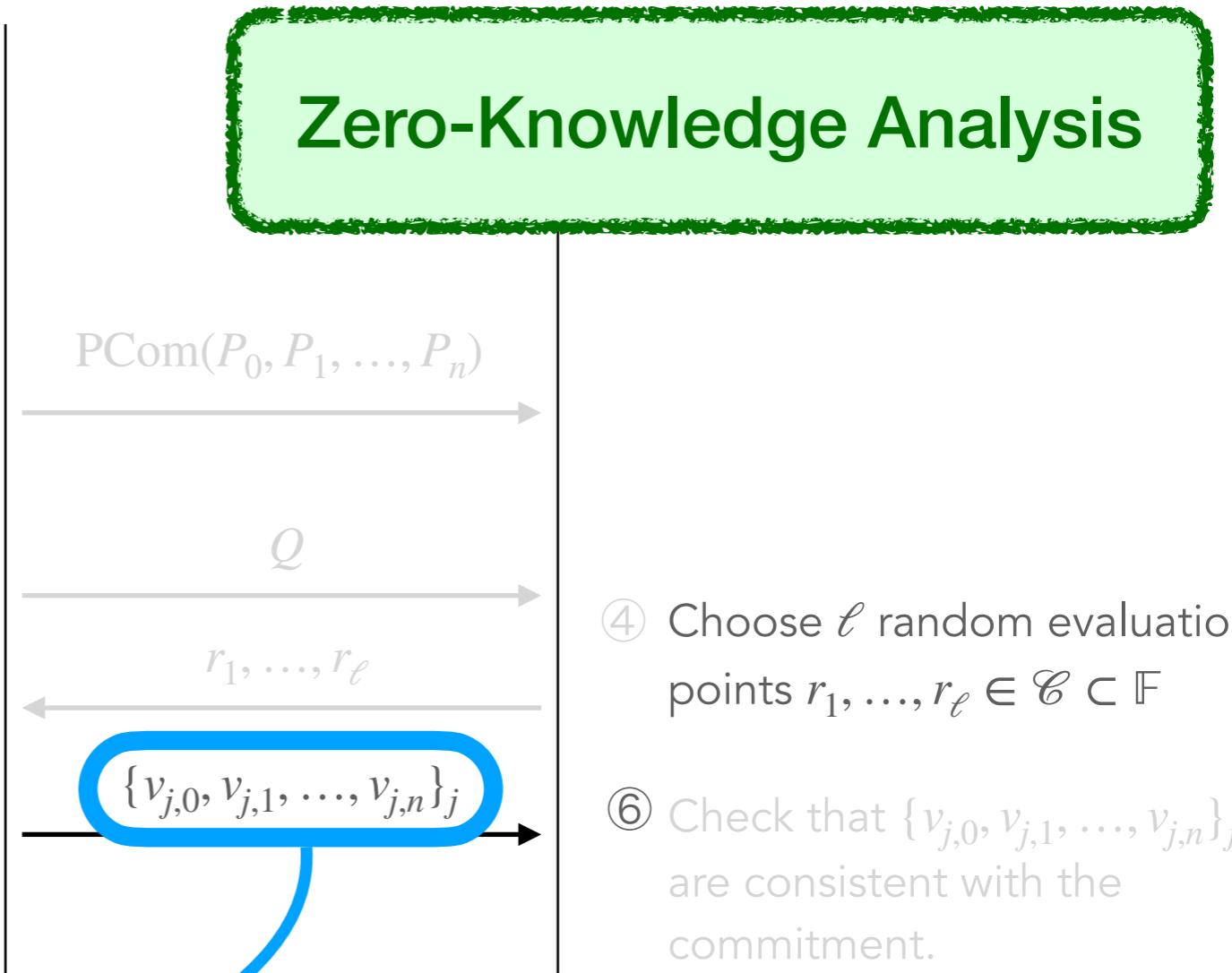
Prover

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

- ① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$
- ② Commit to the polynomials P_0, P_1, \dots, P_n
- ③ Reveal the polynomial $Q(X)$ such that
$$X \cdot Q(X) = X \cdot P_0(X) + f(P_1(X), \dots, P_n(X))$$
- ⑤ For all (i, j) , reveal the evaluation
$$v_{j,i} := P_i(r_j)$$

Revealing ℓ evaluations of $P_i(X)$
leaks no information about w_i .



- ④ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$
- ⑥ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.

Check that, for all j ,

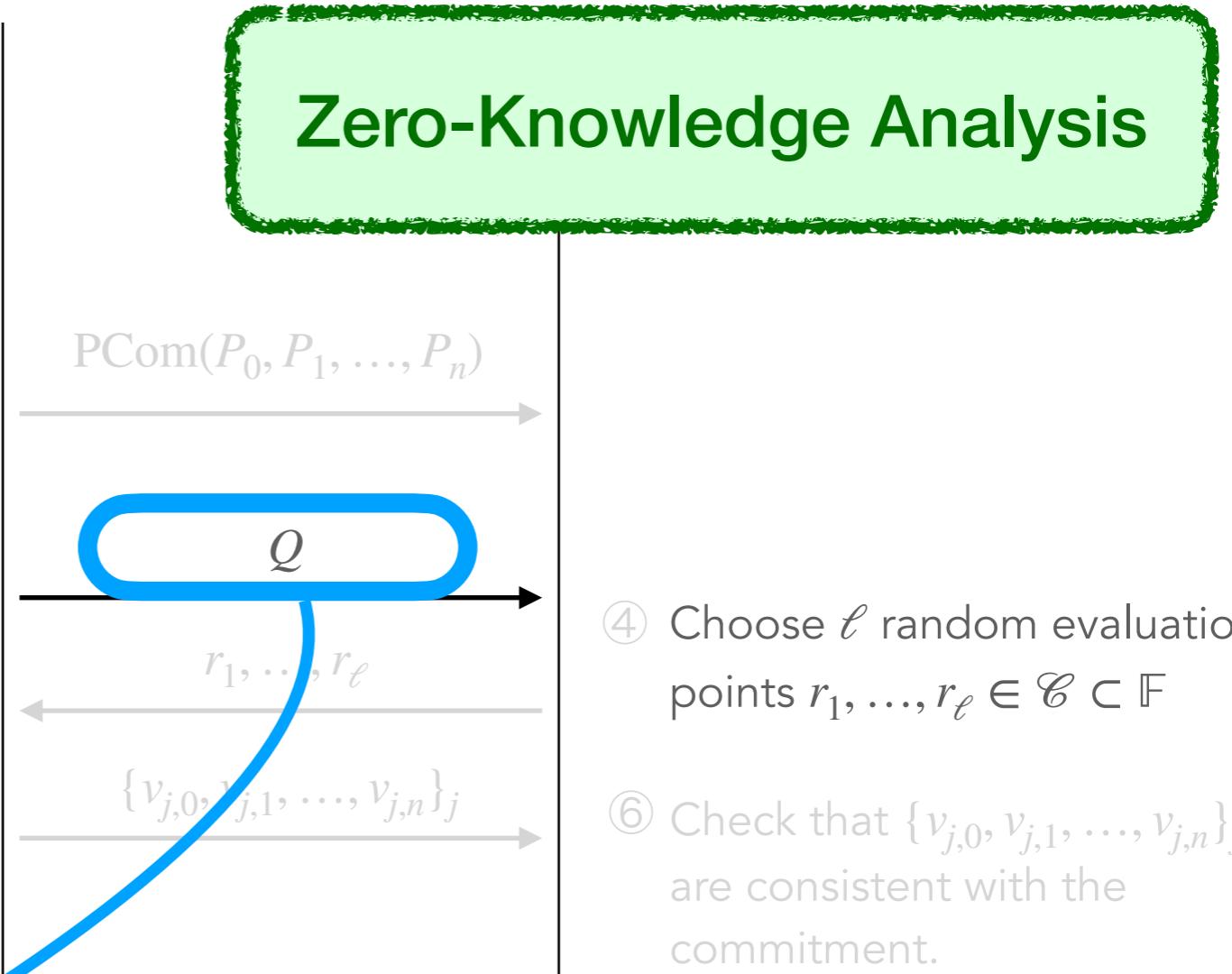
$$r_j \cdot Q(r_j) = r_j \cdot v_{j,0} + f(v_{j,1}, \dots, v_{j,n})$$

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

- ① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- ② Commit to the polynomials P_0, P_1, \dots, P_n
- ③ Reveal the polynomial $Q(X)$ such that
$$X \cdot Q(X) = X \cdot P_0(X) + f(P_1(X), \dots, P_n(X))$$
- ⑤ For all (i, j) , reveal the evaluation
$$v_{j,i} = P_i(r_j)$$

Revealing $Q(X)$ leaks no information about w_i , thanks to $P_0(X)$.



- ④ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

- ⑥ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.

Check that, for all j ,
$$r_j \cdot Q(r_j) = r_j \cdot v_{j,0} + f(v_{j,1}, \dots, v_{j,n})$$

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

I know w_1, \dots, w_n such that

$$f(w_1, \dots, w_n) = 0$$

where f is a public **degree- d polynomial**.

Prover

Prove it!

Verifier

$$\text{Soundness Error} = \frac{\binom{d \cdot \ell}{\ell}}{\binom{|S|}{\ell}}$$

Probability that a malicious prover
can convince the verifier.

TCitH and VOLEitH Frameworks, in the PIOP formalism

I know w_1, \dots, w_n such that

$$\begin{cases} f_1(w_1, \dots, w_n) = 0 \\ \vdots \\ f_m(w_1, \dots, w_n) = 0, \end{cases}$$

where f_1, \dots, f_m are public **degree- d polynomials**.

Prover

Prove it!

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

- ① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
 Sample m random degree- $(d \cdot \ell)$ polynomials $\mathbf{P}_0(X) = (P_{0,1}(X), \dots, P_{0,m}(X))$
- ② Commit to the polynomials $\mathbf{P}_0, \mathbf{P}_1, \dots, \mathbf{P}_n$
- ③ Reveal the polynomials $Q_1(X), \dots, Q_m(X)$ such that

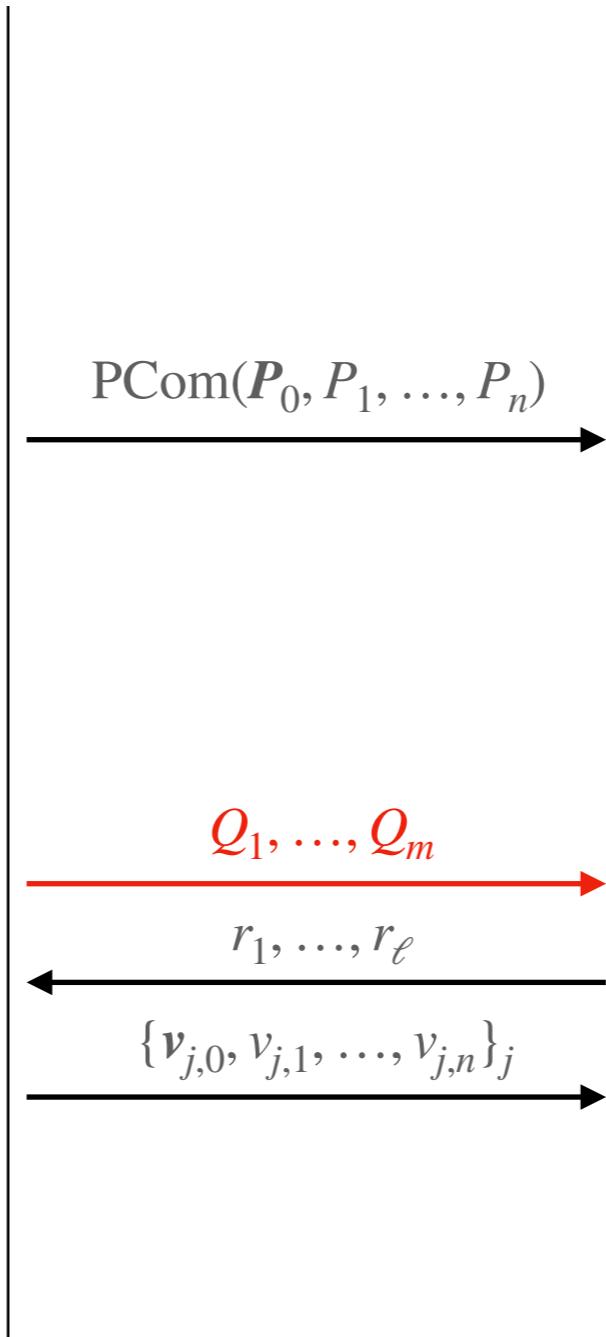
$$X \cdot Q_1(X) = X \cdot P_{0,1}(X) + f_1(P_1(X), \dots, P_n(X))$$

$$\vdots$$

$$X \cdot Q_m(X) = X \cdot P_{0,m}(X) + f_m(P_1(X), \dots, P_n(X))$$
- ⑤ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$

Prover



- ④ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

- ⑥ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.

Check that, for all j ,

$$r_j \cdot Q_1(r_j) = r_j \cdot v_{j,0,1} + f_1(v_{j,1}, \dots, v_{j,n})$$

$$\vdots$$

$$r_j \cdot Q_m(r_j) = r_j \cdot v_{j,0,m} + f_m(v_{j,1}, \dots, v_{j,n})$$

TCitH and VOLEitH Frameworks, in the PIOP formalism

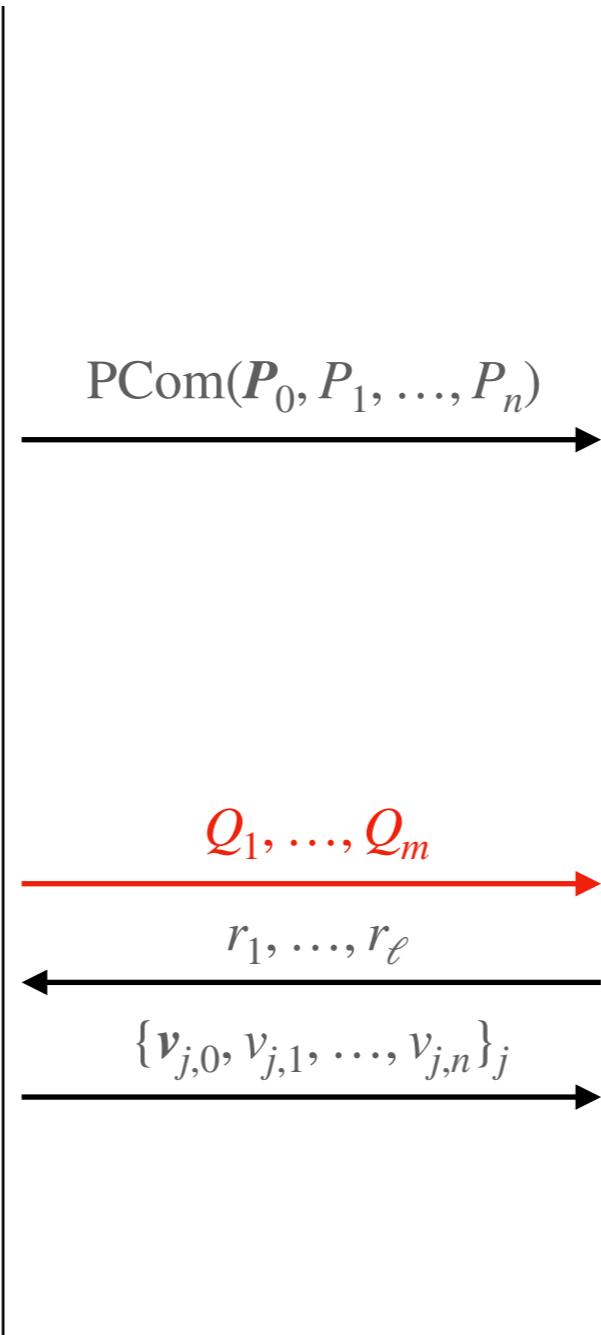
- ① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
 Sample m random degree- $(d \cdot \ell)$ polynomials $\mathbf{P}_0(X) = (P_{0,1}(X), \dots, P_{0,m}(X))$
- ② Commit to the polynomials $\mathbf{P}_0, \mathbf{P}_1, \dots, \mathbf{P}_n$
- ③ Reveal the polynomials $Q_1(X), \dots, Q_m(X)$ such that

$$X \cdot Q_1(X) = X \cdot P_{0,1}(X) + f_1(P_1(X), \dots, P_n(X))$$

$$\vdots$$

$$X \cdot Q_m(X) = X \cdot P_{0,m}(X) + f_m(P_1(X), \dots, P_n(X))$$
- ⑤ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$



- ④ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

- ⑥ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.

Check that, for all j ,

$$\begin{aligned}
 r_j \cdot Q_1(r_j) &= r_j \cdot v_{j,0,1} + f_1(v_{j,1}, \dots, v_{j,n}) \\
 &\vdots \\
 r_j \cdot Q_m(r_j) &= r_j \cdot v_{j,0,m} + f_m(v_{j,1}, \dots, v_{j,n})
 \end{aligned}$$

Sigma/3-round variant of MQOM v2

TCitH and VOLEitH Frameworks, in the PIOP formalism

- ① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
Sample m random degree- $(d \cdot \ell)$ polynomials $\mathbf{P}_0(X) = (P_{0,1}(X), \dots, P_{0,m}(X))$
- ② Commit to the polynomials P_0, P_1, \dots, P_n
- ③ Reveal the polynomials $Q_1(X), \dots, Q_m(X)$ such that

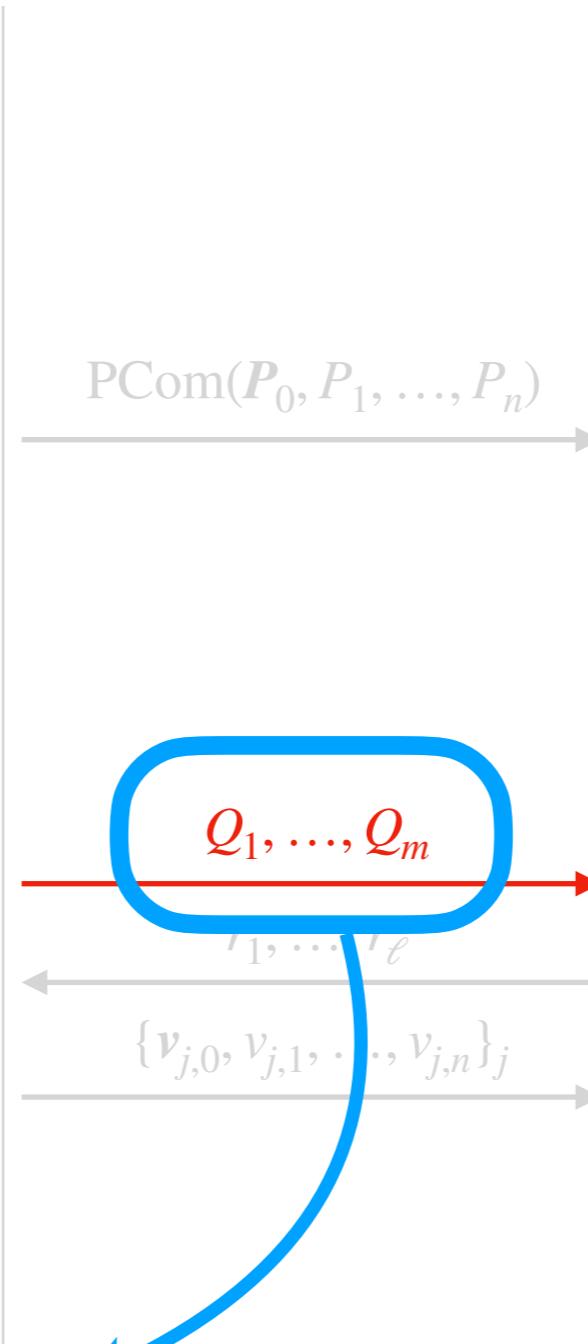
$$X \cdot Q_1(X) = X \cdot P_{0,1}(X) + f_1(P_1(X), \dots, P_n(X))$$

$$\vdots$$

$$X \cdot Q_m(X) = X \cdot P_{0,m}(X) + f_m(P_1(X), \dots, P_n(X))$$
- ⑤ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$

Prover



A bit costly!

- ④ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$
- ⑥ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.

Check that, for all j ,

$$r_j \cdot Q_1(r_j) = r_j \cdot v_{j,0,1} + f_1(v_{j,1}, \dots, v_{j,n})$$

$$\vdots$$

$$r_j \cdot Q_m(r_j) = r_j \cdot v_{j,0,m} + f_m(v_{j,1}, \dots, v_{j,n})$$

TCitH and VOLEitH Frameworks, in the PIOP formalism

- ① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
Sample m random degree- $(d \cdot \ell)$ polynomials $\mathbf{P}_0(X) = (P_{0,1}(X), \dots, P_{0,m}(X))$
- ② Commit to the polynomials $\mathbf{P}_0, \mathbf{P}_1, \dots, \mathbf{P}_n$
- ③ Reveal the polynomials $Q_1(X), \dots, Q_m(X)$ such that

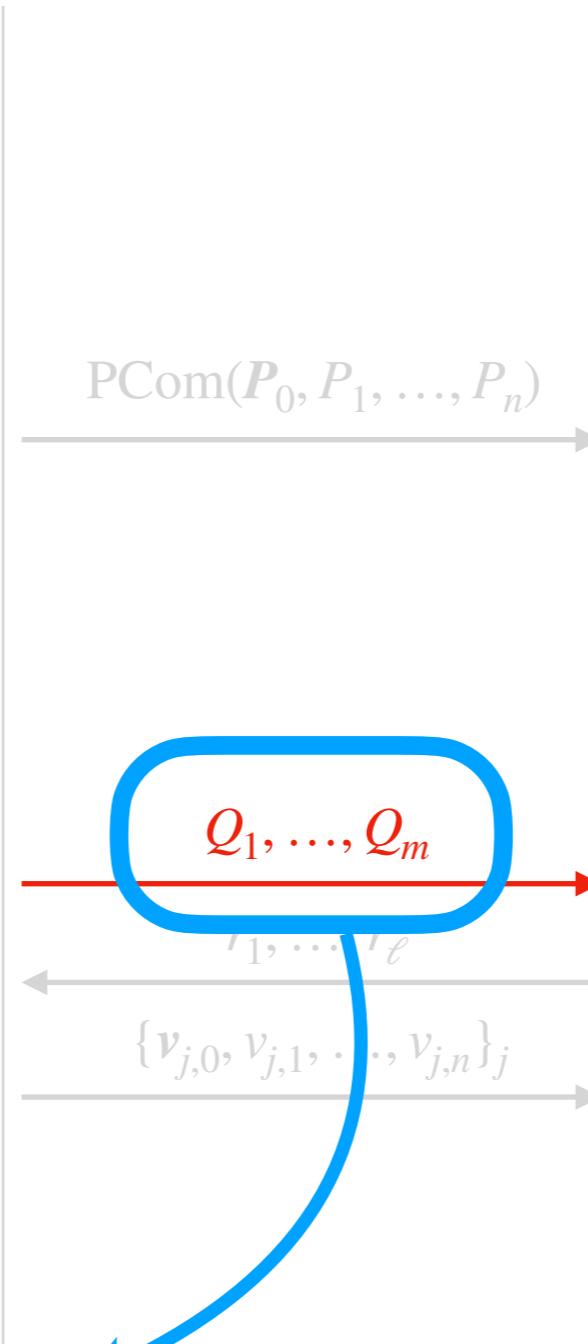
$$X \cdot Q_1(X) = X \cdot P_{0,1}(X) + f_1(P_1(X), \dots, P_n(X))$$

$$\vdots$$

$$X \cdot Q_m(X) = X \cdot P_{0,m}(X) + f_m(P_1(X), \dots, P_n(X))$$
- ⑤ For all (i, j) , reveal the evaluation
 $v_{j,i} := P_i(r_j)$

Prover

Solution: batching



A bit costly!

- ④ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

- ⑥ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.

Check that, for all j ,

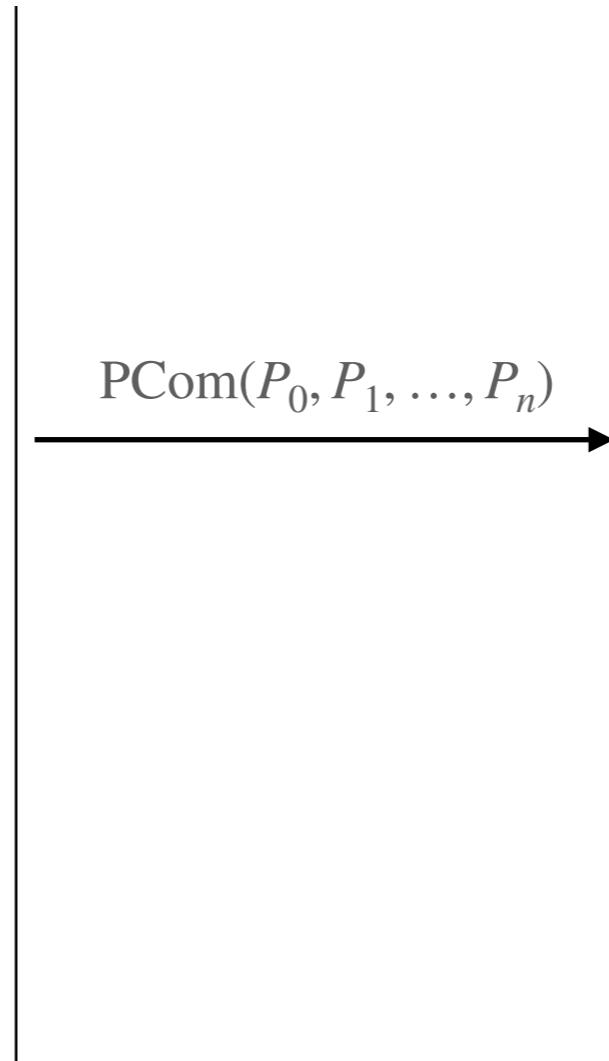
$$r_j \cdot Q_1(r_j) = r_j \cdot v_{j,0,1} + f_1(v_{j,1}, \dots, v_{j,n})$$

$$\vdots$$

$$r_j \cdot Q_m(r_j) = r_j \cdot v_{j,0,m} + f_m(v_{j,1}, \dots, v_{j,n})$$

TCitH and VOLEitH Frameworks, in the PIOP formalism

- ① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$
- ② Commit to the polynomials P_0, P_1, \dots, P_n



Prover

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

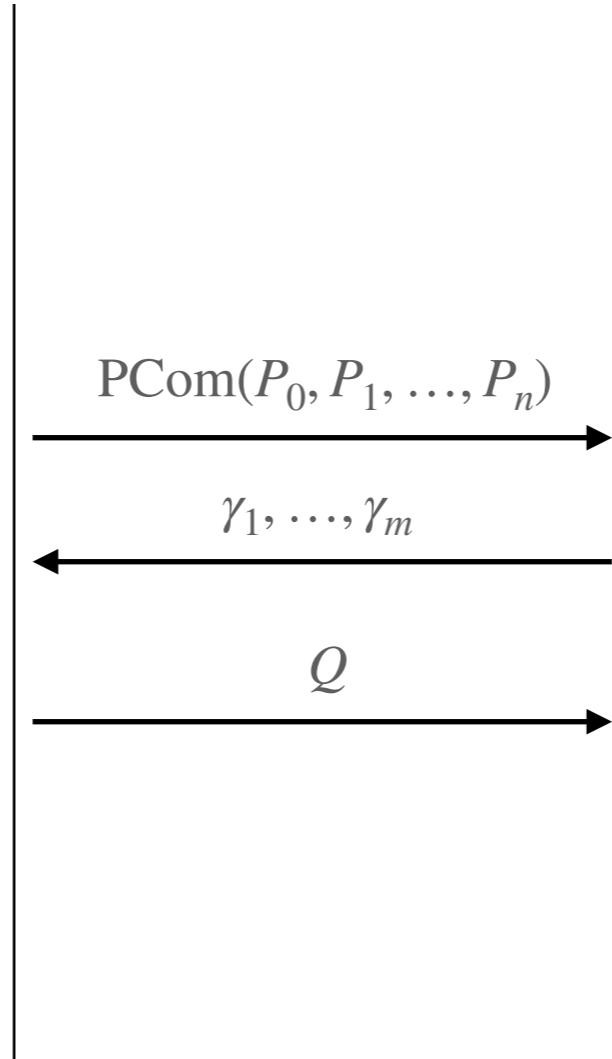
① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

② Commit to the polynomials P_0, P_1, \dots, P_n

④ Reveal the polynomial $Q(X)$ such that

$$X \cdot Q(X) = X \cdot P_0(X) + \sum_{k=1}^m \gamma_k \cdot f_k(P_1(X), \dots, P_n(X))$$



Prover

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

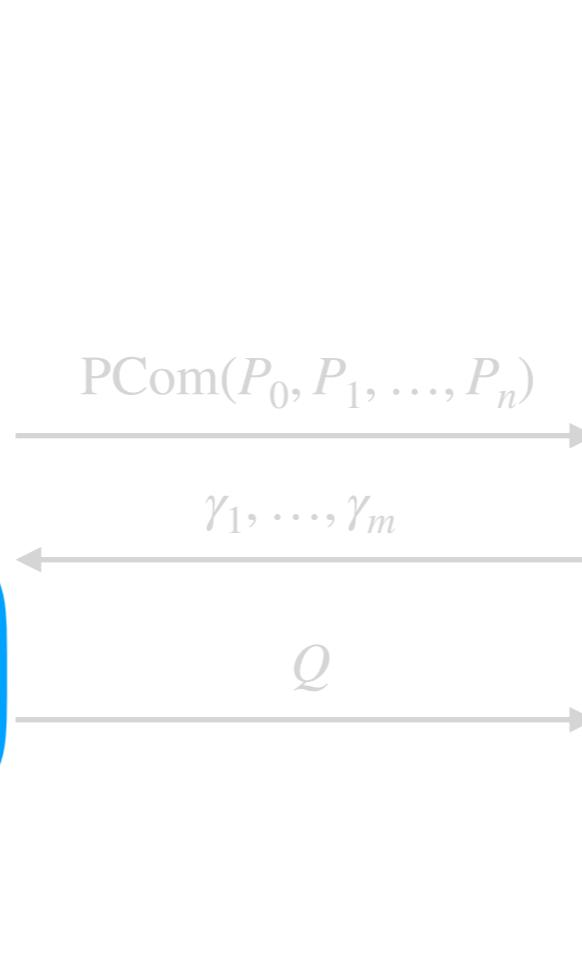
① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

② Commit to the polynomials P_0, P_1, \dots, P_n

④ Reveal the polynomial $Q(X)$ such that

$$X \cdot Q(X) = X \cdot P_0(X) + \sum_{k=1}^m \gamma_k \cdot f_k(P_1(X), \dots, P_n(X))$$



③ Choose random coefficients
 $\gamma_1, \dots, \gamma_m \xleftarrow{\$} \mathbb{F}$

Well-defined!

Prover

$$\begin{aligned} \sum_{k=1}^m \gamma_k \cdot f_k(P_1(0), \dots, P_n(0)) &= \sum_{k=1}^m \gamma_k \cdot f_k(w_1, \dots, w_n) \\ &= \sum_{k=1}^m \gamma_k \cdot 0 = 0 \end{aligned}$$

TCitH and VOLEitH Frameworks, in the PIOP formalism

① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

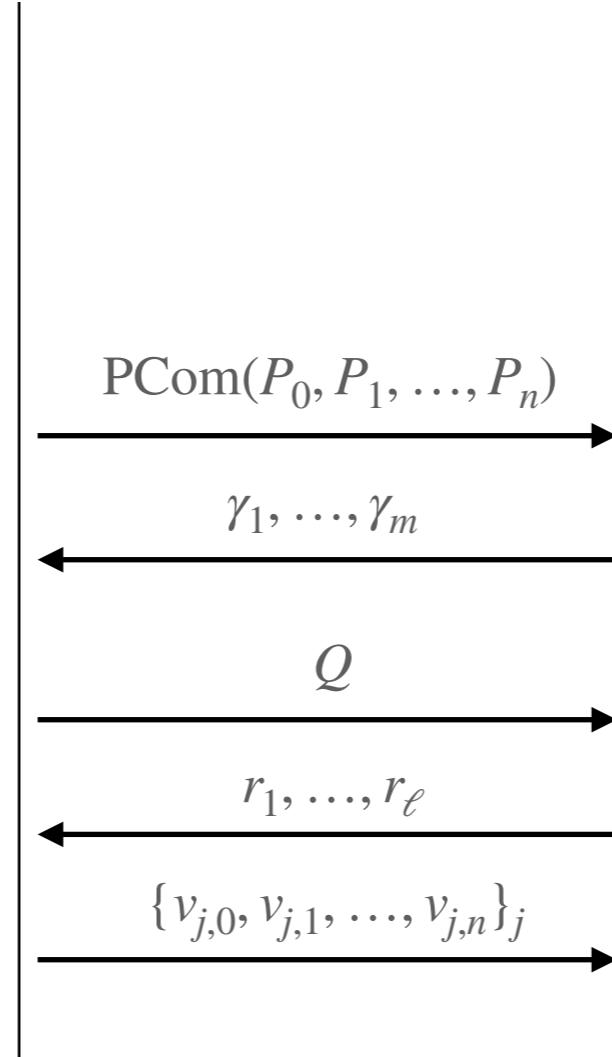
② Commit to the polynomials P_0, P_1, \dots, P_n

④ Reveal the polynomial $Q(X)$ such that

$$X \cdot Q(X) = X \cdot P_0(X) + \sum_{k=1}^m \gamma_k \cdot f_k(P_1(X), \dots, P_n(X))$$

⑥ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$



③ Choose random coefficients
 $\gamma_1, \dots, \gamma_m \xleftarrow{\$} \mathbb{F}$

⑤ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

Prover

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

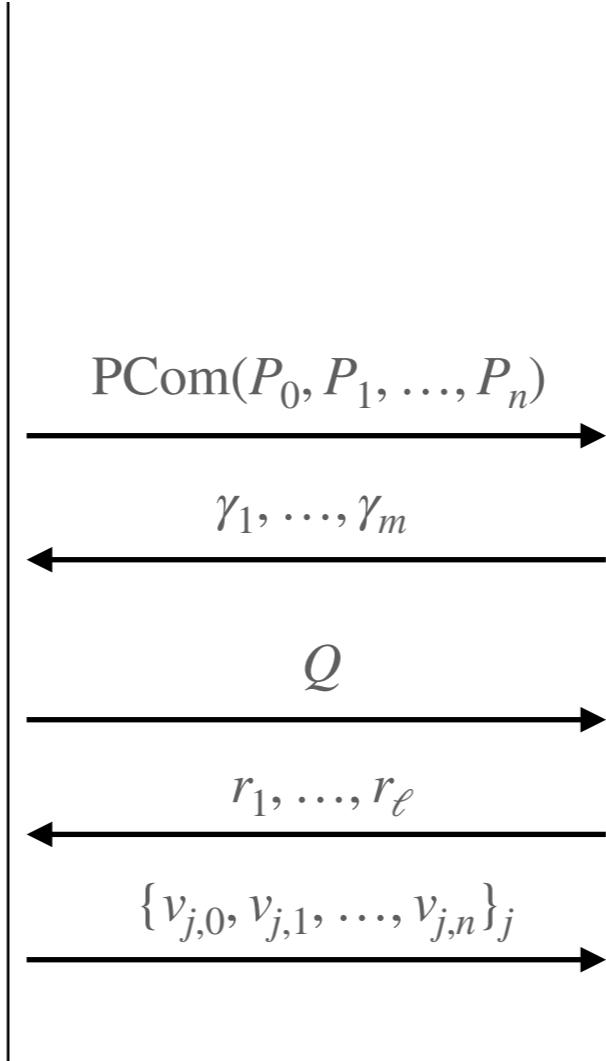
② Commit to the polynomials P_0, P_1, \dots, P_n

④ Reveal the polynomial $Q(X)$ such that

$$X \cdot Q(X) = X \cdot P_0(X) + \sum_{k=1}^m \gamma_k \cdot f_k(P_1(X), \dots, P_n(X))$$

⑥ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$



③ Choose random coefficients
 $\gamma_1, \dots, \gamma_m \xleftarrow{\$} \mathbb{F}$

⑤ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

⑦ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.

Check that, for all j ,

$$r_j \cdot Q(r_j) = r_j \cdot v_{j,0} + \sum_{k=1}^m \gamma_k \cdot f_k(v_{j,1}, \dots, v_{j,n})$$

Prover

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

① For all i , choose a degree- ℓ polynomial

$P_i(X)$. There exists j^* s.t.

$$f_{j^*}(P_1(0), \dots, P_n(0)) \neq 0.$$

Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

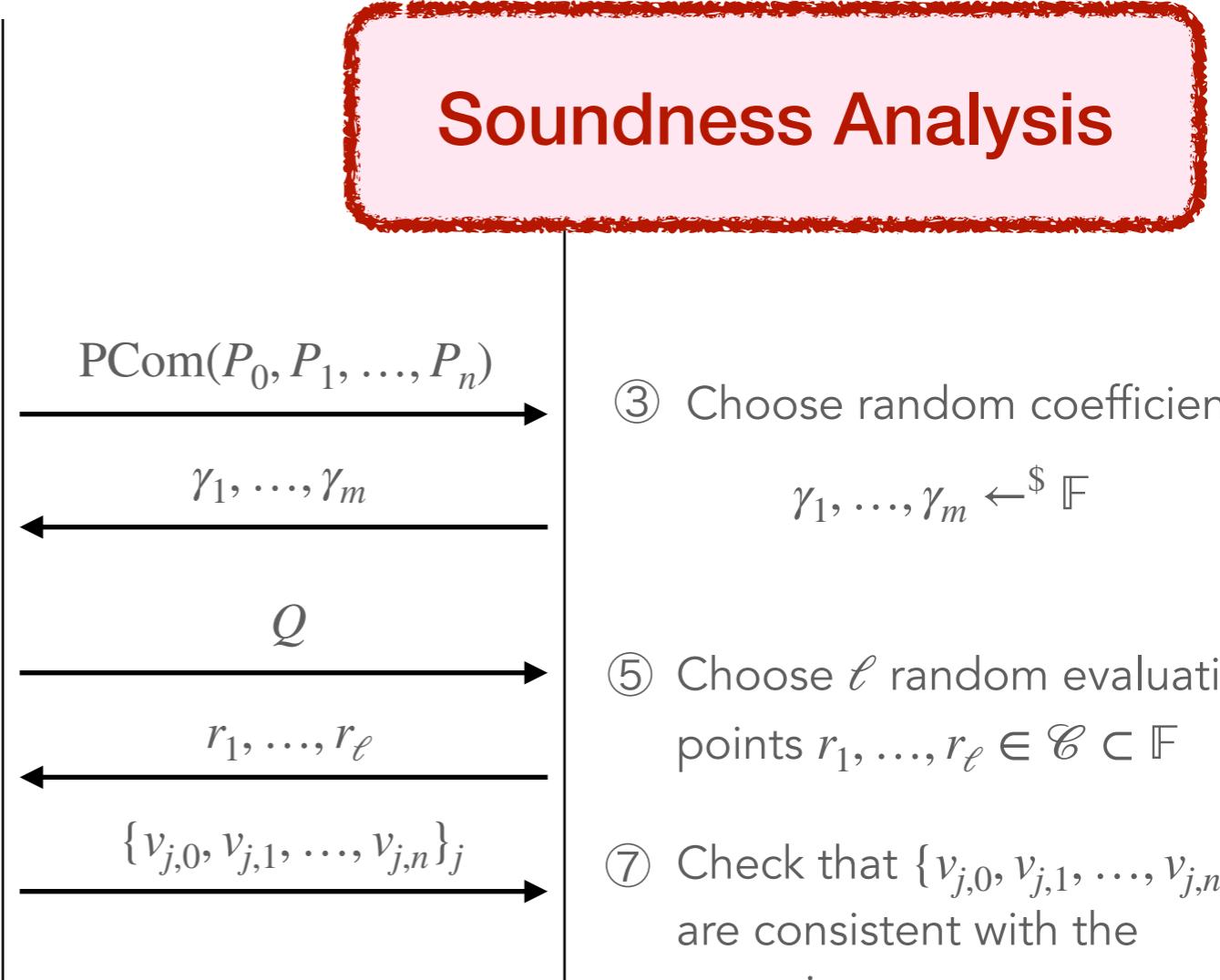
② Commit to the polynomials P_0, P_1, \dots, P_n

④ Reveal the polynomial $Q(X)$ such that

$$X \cdot Q(X) \neq X \cdot P_0(X) + \sum_{k=1}^m \gamma_k \cdot f_k(P_1(X), \dots, P_n(X))$$

⑥ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$



③ Choose random coefficients

$$\gamma_1, \dots, \gamma_m \xleftarrow{\$} \mathbb{F}$$

⑤ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

⑦ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.

Check that, for all j ,

$$r_j \cdot Q(r_j) = r_j \cdot v_{j,0} + \sum_{k=1}^m \gamma_k \cdot f_k(v_{j,1}, \dots, v_{j,n})$$

Prover

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

① For all i , choose a degree- ℓ polynomial $P_i(X)$. There exists j^* s.t.
 $f_{j^*}(P_1(0), \dots, P_n(0)) \neq 0$.

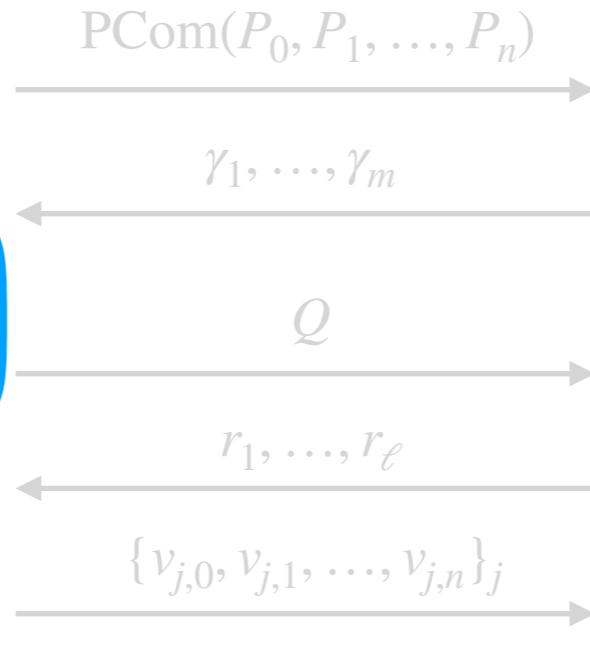
Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

② Commit to the polynomials P_0, P_1, \dots, P_n

④ Reveal the polynomial $Q(X)$ such that
$$X \cdot Q(X) \neq X \cdot P_0(X) + \sum_{k=1}^m \gamma_k \cdot f_k(P_1(X), \dots, P_n(X))$$

⑥ For all (i, j) , reveal the evaluation
 $v_{j,i} := P_i(r_j)$

Soundness Analysis



③ Choose random coefficients $\gamma_1, \dots, \gamma_m \leftarrow \mathbb{F}$

⑤ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

⑦ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the

It is an inequality with **high probability** over the randomness of $\gamma_1, \dots, \gamma_m$, since we have

$$\sum_{k=1}^m \gamma_k \cdot f_k(P_1(0), \dots, P_n(0)) \neq 0$$

Prover

TCitH and VOLEitH Frameworks, in the PIOP formalism

① For all i , choose a degree- ℓ polynomial $P_i(X)$. There exists j^* s.t. $f_{j^*}(P_1(0), \dots, P_n(0)) \neq 0$.

Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

② Commit to the polynomials P_0, P_1, \dots, P_n

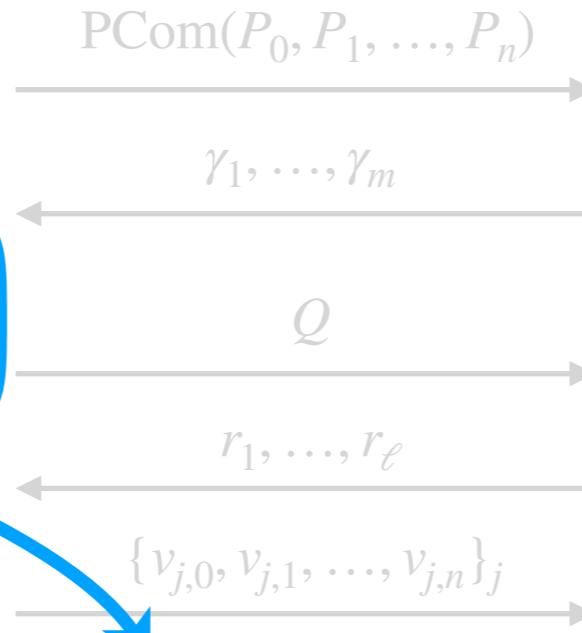
④ Reveal the polynomial $Q(X)$ such that

$$X \cdot Q(X) \neq X \cdot P_0(X) + \sum_{k=1}^m \gamma_k \cdot f_k(P_1(X), \dots, P_n(X))$$

⑥ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$

Soundness Analysis



③ Choose random coefficients $\gamma_1, \dots, \gamma_m \leftarrow \mathbb{F}$

⑤ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

⑦ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.

Schwartz-Zippel Lemma: Since it is a degree- $(d \cdot \ell)$ relation,

$$\Pr[\text{verification passes}] \leq \frac{\binom{d \cdot \ell}{\ell}}{\binom{|S|}{\ell}}.$$

Check that, for all j ,

$$r_j \cdot Q(r_j) = r_j \cdot v_{j,0} + \sum_{k=1}^m \gamma_k \cdot f_k(v_{j,1}, \dots, v_{j,n})$$

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism

① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

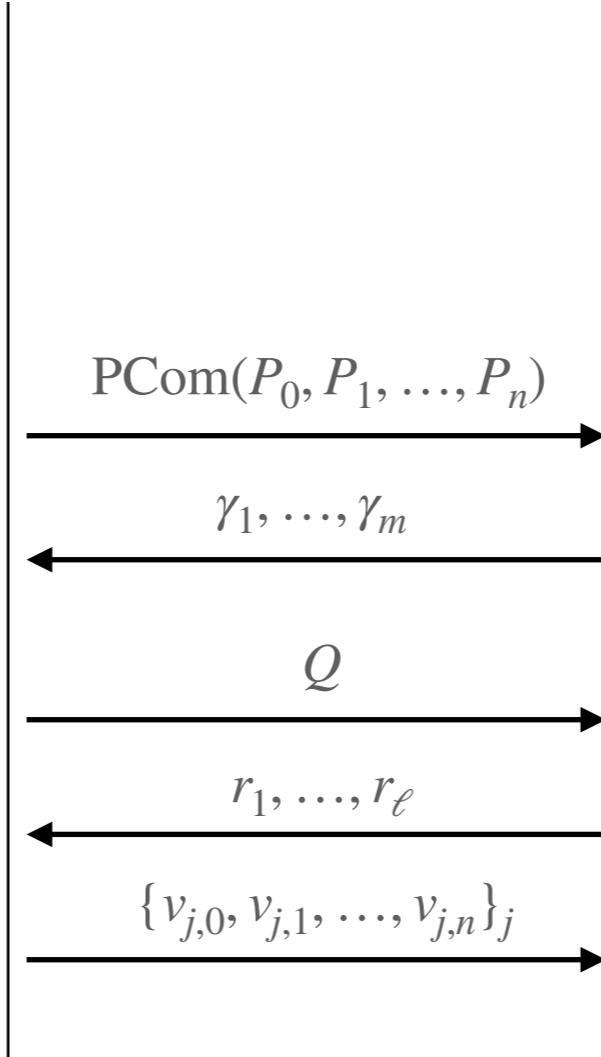
② Commit to the polynomials P_0, P_1, \dots, P_n

④ Reveal the polynomial $Q(X)$ such that

$$X \cdot Q(X) = X \cdot P_0(X) + \sum_{k=1}^m \gamma_k \cdot f_k(P_1(X), \dots, P_n(X))$$

⑥ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$



③ Choose random coefficients $\gamma_1, \dots, \gamma_m \leftarrow \mathbb{F}$

⑤ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

⑦ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.

Check that, for all j ,

$$r_j \cdot Q(r_j) = r_j \cdot v_{j,0} + \sum_{k=1}^m \gamma_k \cdot f_k(v_{j,1}, \dots, v_{j,n})$$

Verifier

5-round variant used in most of the recent MPCitH-based signature schemes

TCitH and VOLEitH Frameworks, in the PIOP formalism

① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

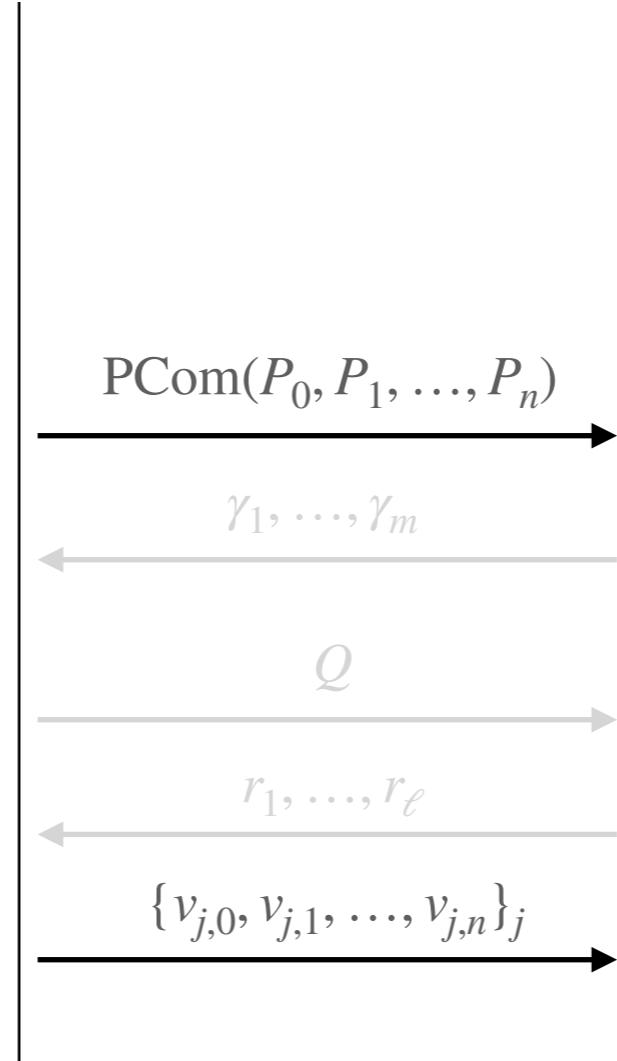
② Commit to the polynomials P_0, P_1, \dots, P_n

④ Reveal the polynomial $Q(X)$ such that

$$X \cdot Q(X) = X \cdot P_0(X) + \sum_{k=1}^m \gamma_k \cdot f_k(P_1(X), \dots, P_n(X))$$

⑥ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$



③ Choose random coefficients $\gamma_1, \dots, \gamma_m \leftarrow \$ \mathbb{F}$

⑤ Choose ℓ random evaluation points $r_1, \dots, r_\ell \in \mathcal{C} \subset \mathbb{F}$

⑦ Check that $\{v_{j,0}, v_{j,1}, \dots, v_{j,n}\}_j$ are consistent with the commitment.

Check that, for all j ,

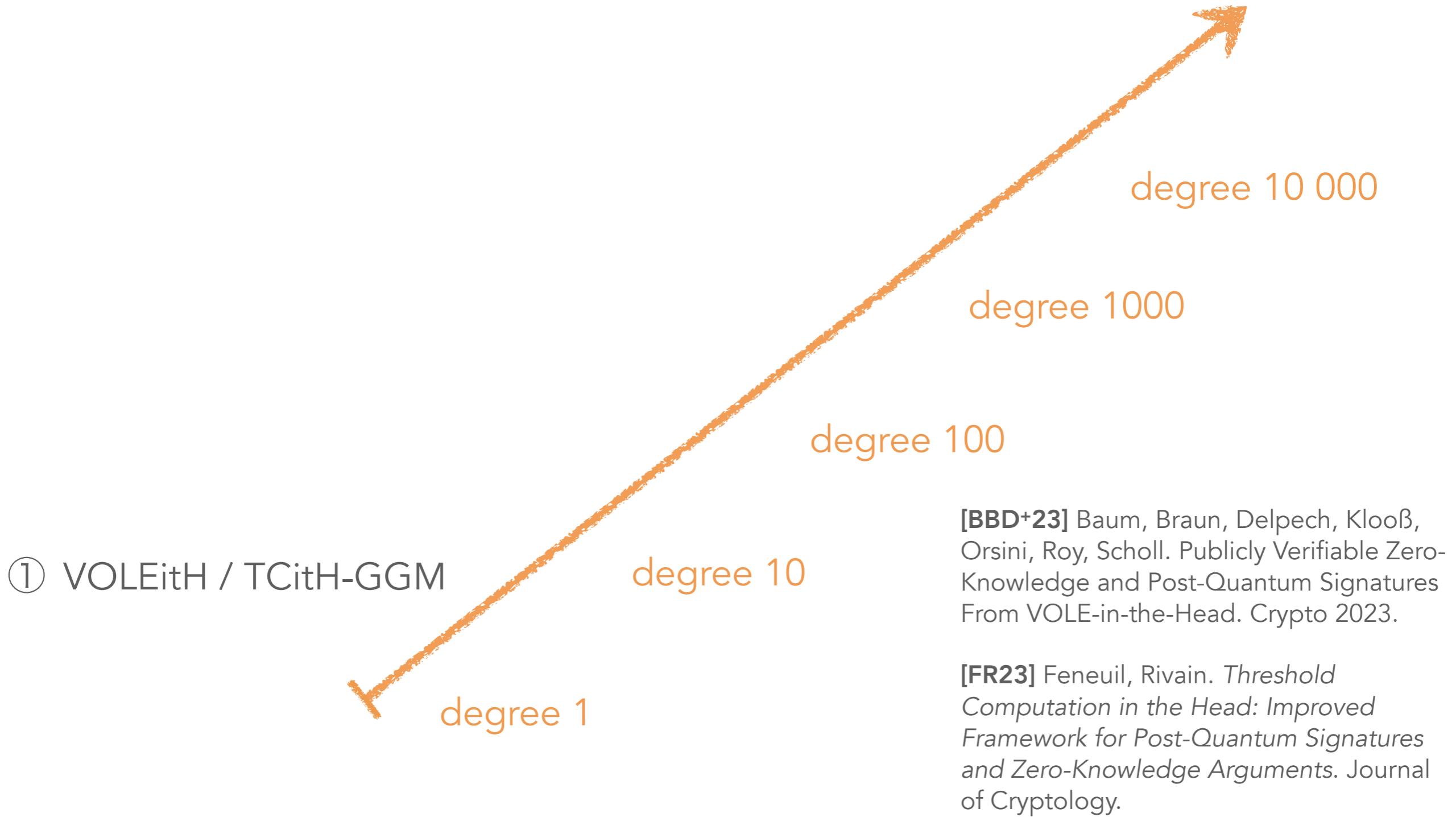
$$r_j \cdot Q(r_j) = r_j \cdot v_{j,0} + \sum_{k=1}^m \gamma_k \cdot f_k(v_{j,1}, \dots, v_{j,n})$$

Prover

Verifier

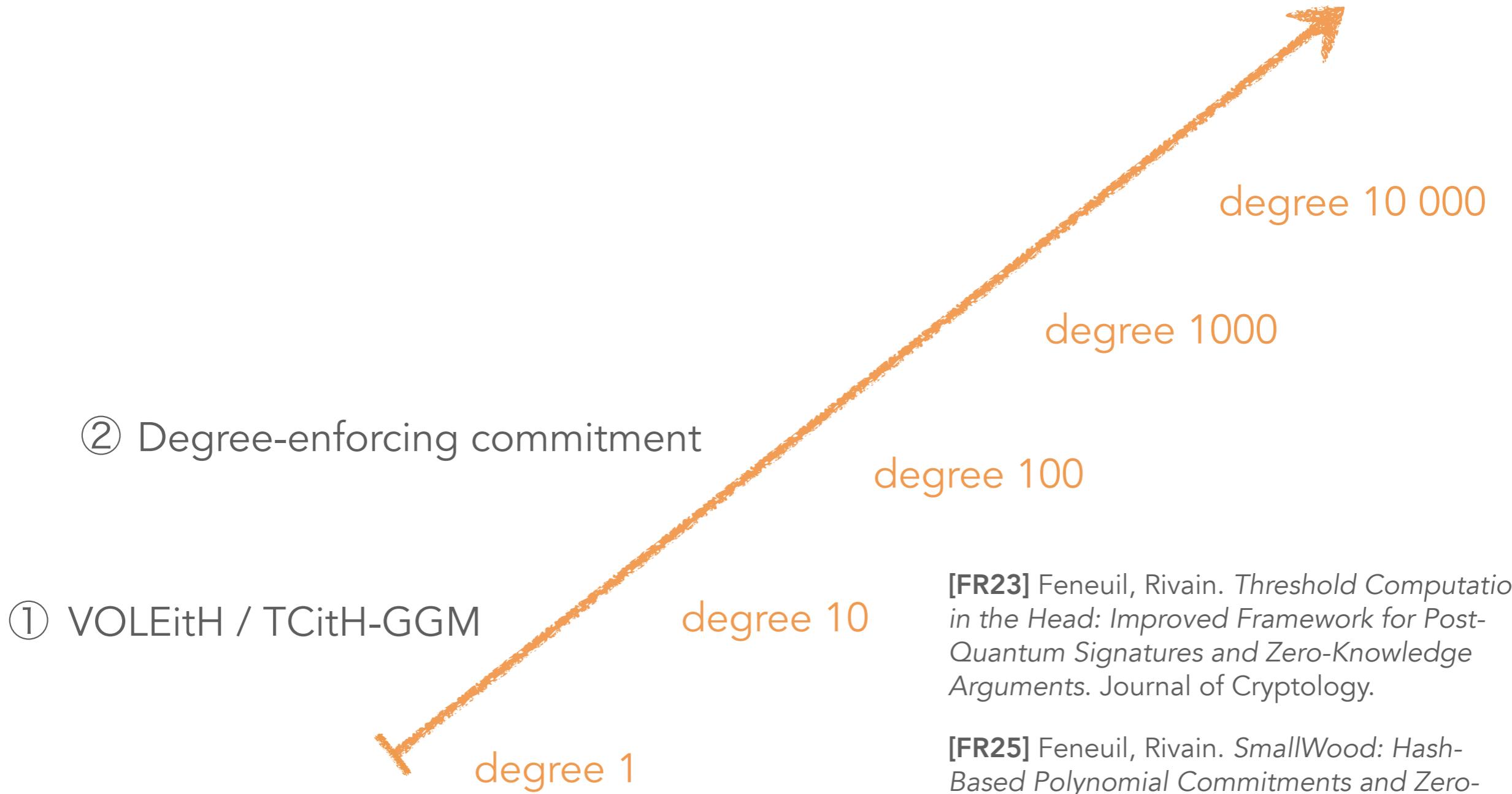
How to commit to polynomials?

(using symmetric primitives)



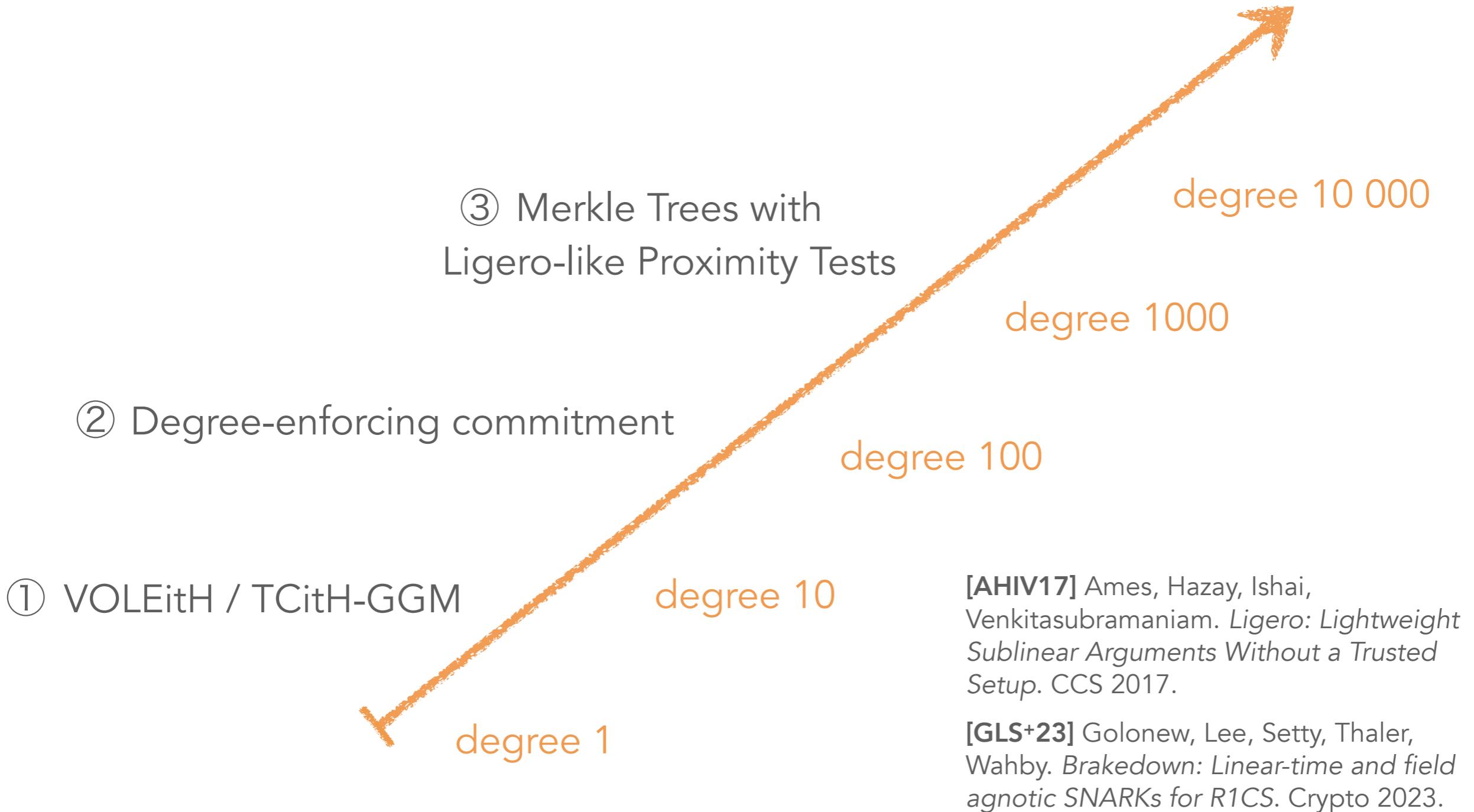
How to commit to polynomials?

(using symmetric primitives)



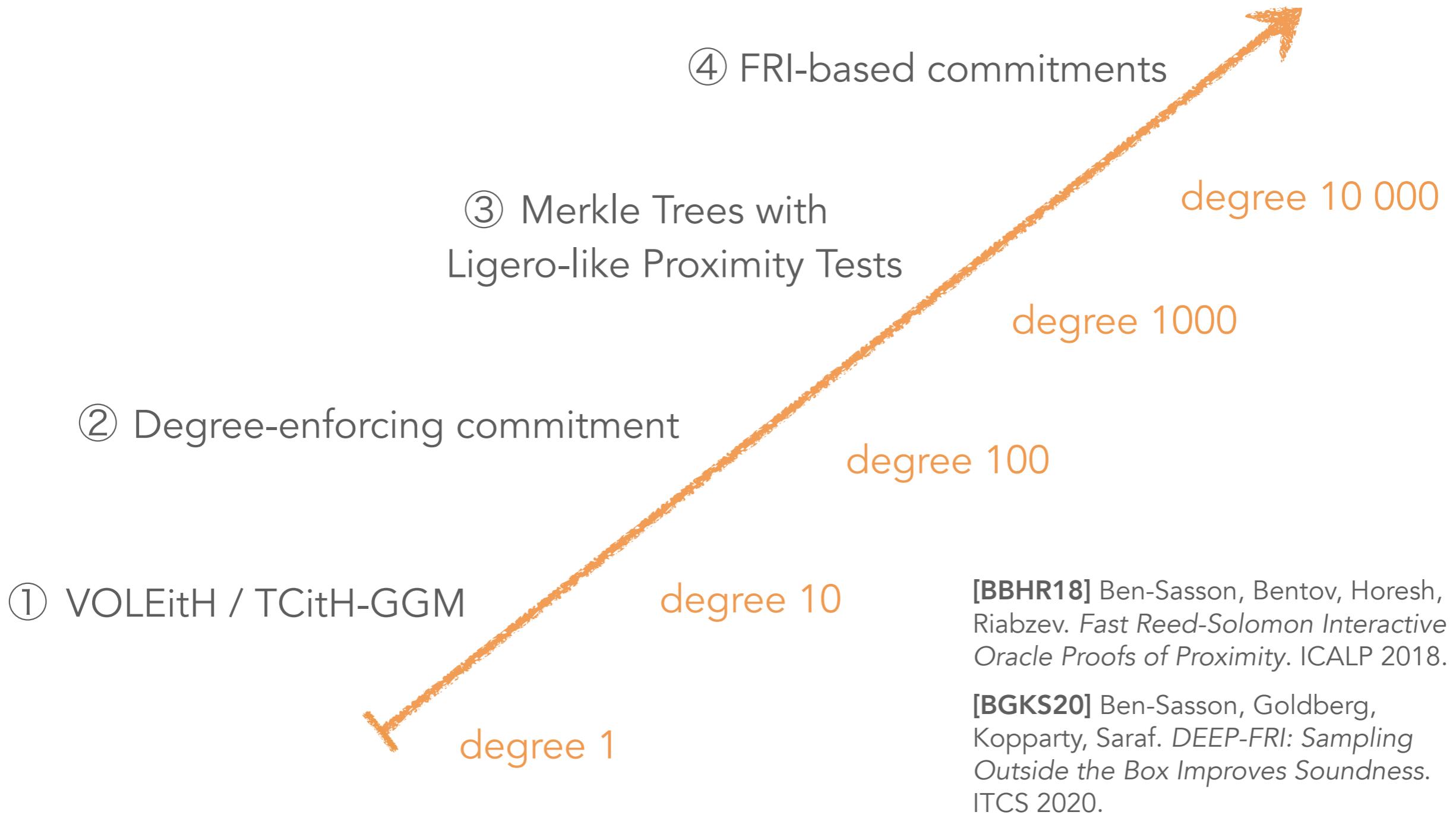
How to commit to polynomials?

(using symmetric primitives)



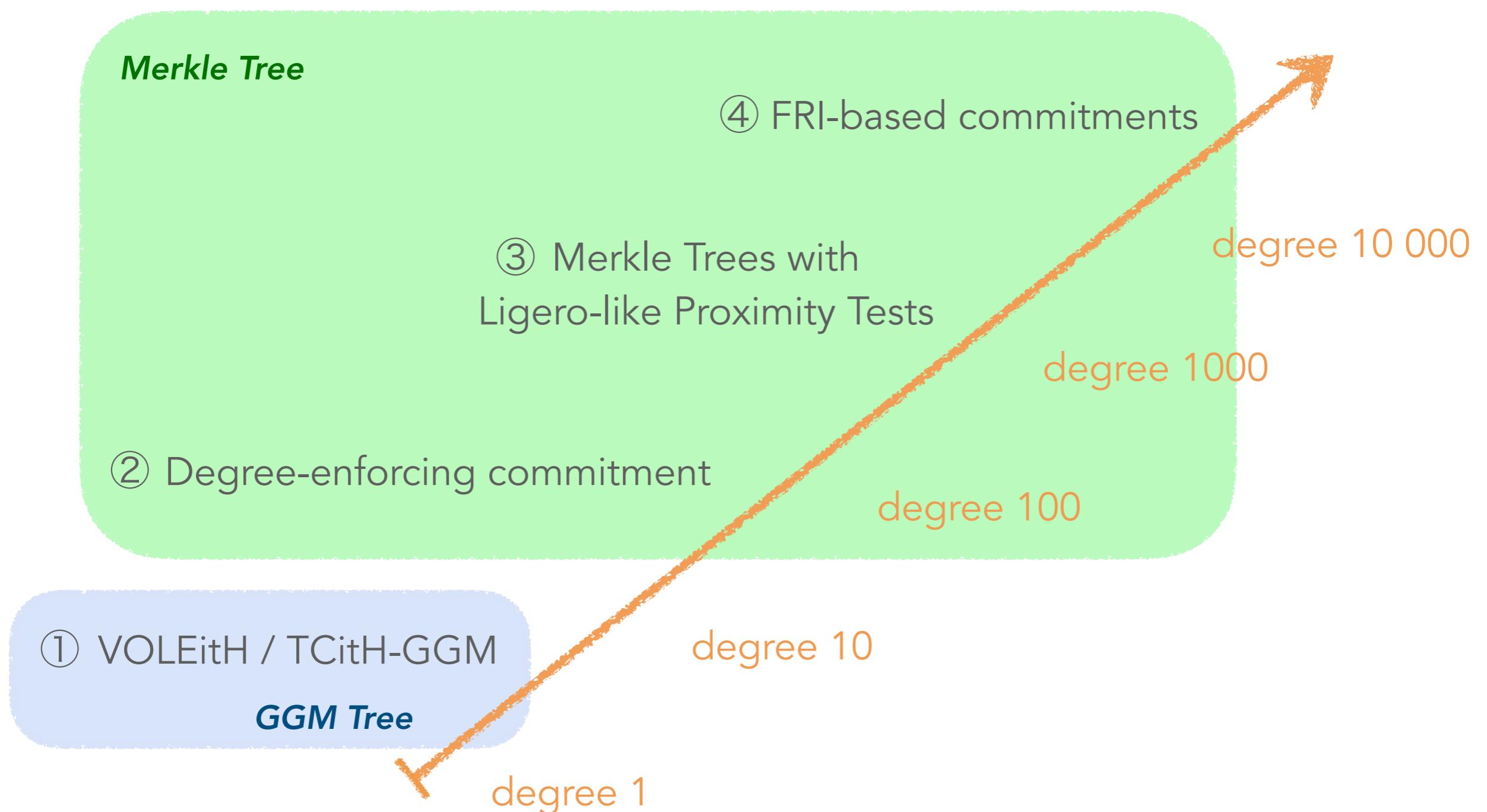
How to commit to polynomials?

(using symmetric primitives)



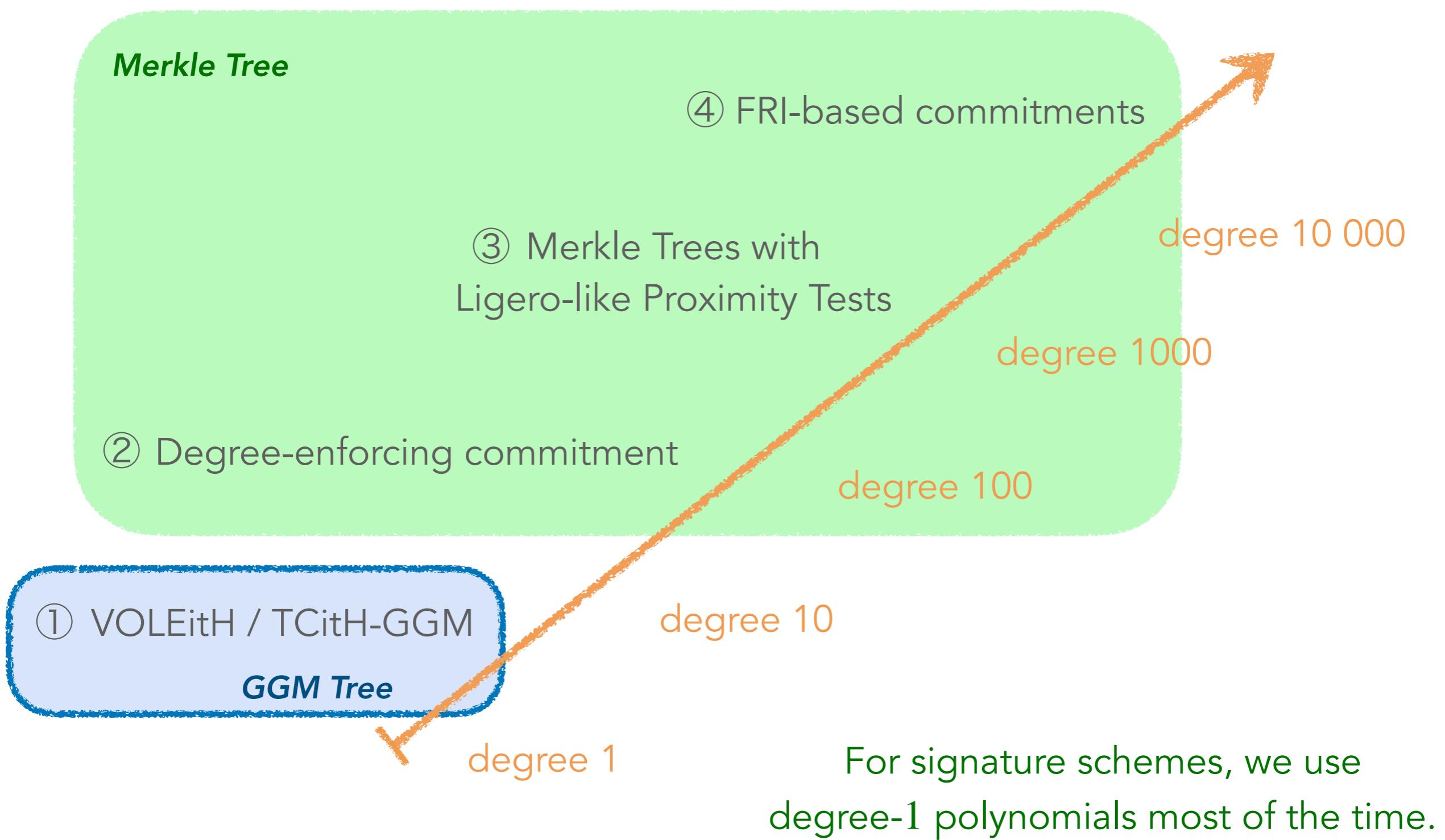
How to commit to polynomials?

(using symmetric primitives)



How to commit to polynomials?

(using symmetric primitives)



Committing to a Polynomial using a Seed Tree

A seed tree of N leaves to commit to degree-1 polynomials

👉 The prover can provably open N evaluations (i.e. $N = |\mathcal{C}|$)

👉 Soundness error of $\frac{d}{N}$

$$\frac{\binom{d \cdot \ell}{\ell}}{\binom{|\mathcal{C}|}{\ell}} \text{ with } \ell := 1$$

Committing to a Polynomial using a Seed Tree

A seed tree of N leaves to commit to degree-1 polynomials

- 👉 The prover can provably open N evaluations (i.e. $N = |\mathcal{C}|$)
- 👉 Soundness error of $\frac{d}{N}$

How to have a negligible soundness error?

Committing to a Polynomial using a Seed Tree

A seed tree of N leaves to commit to degree-1 polynomials

- 👉 The prover can provably open N evaluations (i.e. $N = |\mathcal{C}|$)
- 👉 Soundness error of $\frac{d}{N}$

How to have a negligible soundness error?

1. Taking $N \geq 2^\lambda$. Impossible since the complexity would be in $O(2^\lambda)$.

Committing to a Polynomial using a Seed Tree

A seed tree of N leaves to commit to degree-1 polynomials

- 👉 The prover can provably open N evaluations (i.e. $N = |\mathcal{C}|$)
- 👉 Soundness error of $\frac{d}{N}$

How to have a negligible soundness error?

1. Taking $N \geq 2^\lambda$. Impossible since the complexity would be in $O(2^\lambda)$.
2. TCitH-GGM Approach. Taking N small (e.g. $N = 256$) and repeating the protocol τ times. Soundness error of $\left(\frac{d}{N}\right)^\tau$.

Committing to a Polynomial using a Seed Tree

A seed tree of N leaves to commit to degree-1 polynomials

- 👉 The prover can provably open N evaluations (i.e. $N = |\mathcal{C}|$)
- 👉 Soundness error of $\frac{d}{N}$

How to have a negligible soundness error?

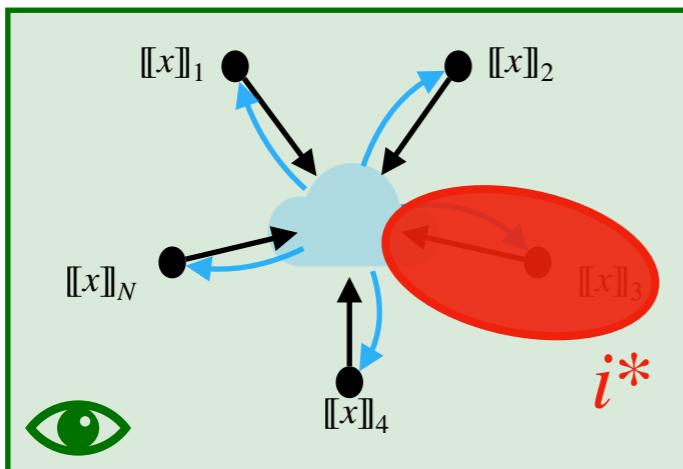
1. Taking $N \geq 2^\lambda$. Impossible since the complexity would be in $O(2^\lambda)$.
2. TCitH-GGM Approach. Taking N small (e.g. $N = 256$) and repeating the protocol τ times. Soundness error of $\left(\frac{d}{N}\right)^\tau$.
3. VOLEitH Approach. Embed τ polynomials over \mathbb{F}_q into a unique polynomial over \mathbb{F}_{q^τ} , for which we will be able to open N^τ evaluations.
Soundness error of $\frac{d}{N^\tau}$.

Link between MPCitH and PIOP

① Generate and commit shares

$$[\![x]\!] = ([\![x]\!]_1, \dots, [\![x]\!]_N)$$

② Run MPC in their head



④ Open parties $\{1, \dots, N\} \setminus \{i^*\}$

① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

② Commit the polynomials P_0, P_1, \dots, P_n

④ Reveal the polynomial $Q(X)$ such that

$$X \cdot Q(X) = X \cdot P_0(X) + \sum_{k=1}^m \gamma_k \cdot f_k(P_1(X), \dots, P_n(X))$$

⑥ For all (i, j) , reveal the evaluation

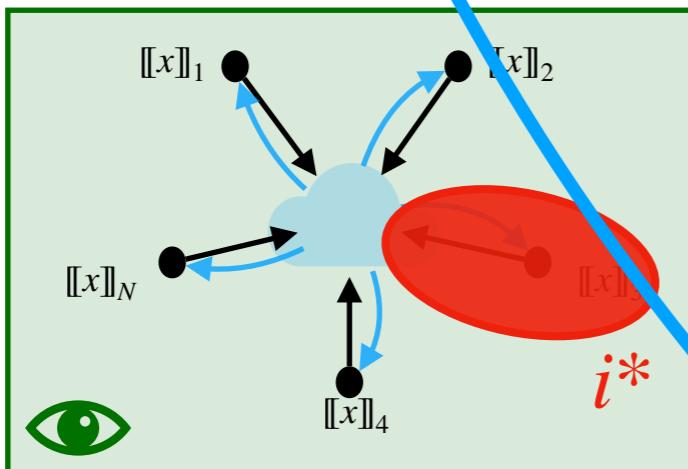
$$v_{j,i} := P_i(r_j)$$

Link between MPCitH and PIOP

- ① Generate and commit shares

$$[\![x]\!] = ([\![x]\!]_1, \dots, [\![x]\!]_N)$$

- ② Run MPC in their head



- ④ Open parties $\{1, \dots, N\} \setminus \{i^*\}$

- ① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

- ② Commit to the polynomials P_0, P_1, \dots, P_n

- ④ Reveal the polynomial $Q(X)$ such that

$$X \cdot Q(X) = X \cdot P_0(X) + \sum_{k=1}^m \gamma_k \cdot f_k(P_1(X), \dots, P_n(X))$$

- ⑥ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$

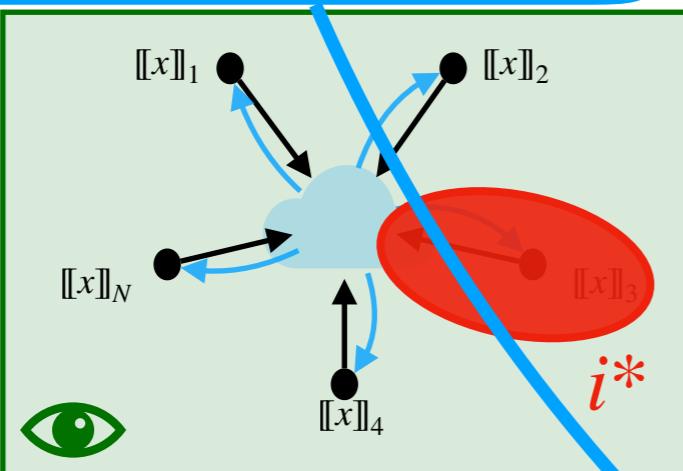
Commit to a (ℓ, N) -Shamir secret sharing

Link between MPCitH and PIOP

① Generate and commit shares

$$[\![x]\!] = ([\![x]\!]_1, \dots, [\![x]\!]_N)$$

② Run MPC in their head



④ Open parties $\{1, \dots, N\} \setminus \{i^*\}$

① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

② Commit to the polynomials P_0, P_1, \dots, P_n

④ Reveal the polynomial $Q(X)$ such that

$$X \cdot Q(X) = X \cdot P_0(X) + \sum_{k=1}^m \gamma_k \cdot f_k(P_1(X), \dots, P_n(X))$$

⑥ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$

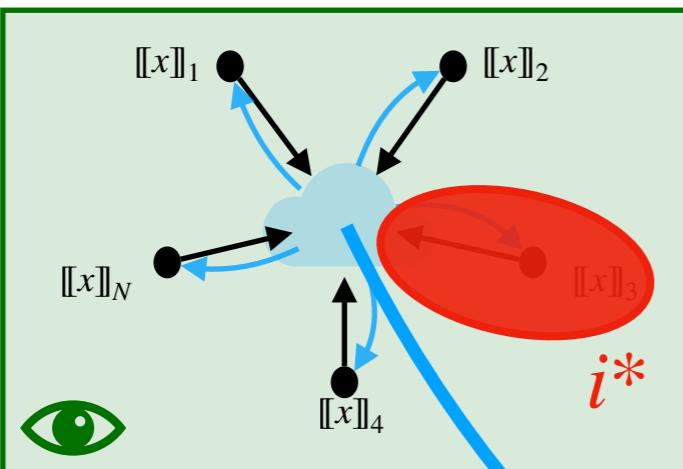
Computation of the MPC protocol, assuming that a multiplication is computed share by share

Link between MPCitH and PIOP

① Generate and commit shares

$$[\![x]\!] = ([\![x]\!]_1, \dots, [\![x]\!]_N)$$

② Run MPC in their head



④ Open parties $\{1, \dots, N\} \setminus \{i^*\}$

① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

② Commit to the polynomials P_0, P_1, \dots, P_n

④ Reveal the polynomial $Q(X)$ such that

$$X \cdot Q(X) = X \cdot P_0(X) + \sum_{k=1}^m \gamma_k \cdot f_k(P_1(X), \dots, P_n(X))$$

⑥ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$

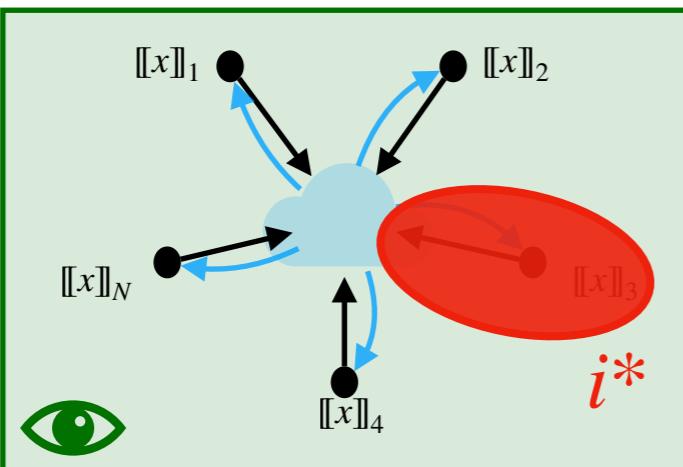
Revealing the polynomial is equivalent to revealing the broadcast Shamir secret sharing.

Link between MPCitH and PIOP

① Generate and commit shares

$$[\![x]\!] = ([\![x]\!]_1, \dots, [\![x]\!]_N)$$

② Run MPC in their head



④ Open parties $\{1, \dots, N\} \setminus \{i^*\}$

① For all i , sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree- $(d \cdot \ell - 1)$ polynomial $P_0(X)$

② Commit to the polynomials P_0, P_1, \dots, P_n

④ Reveal the polynomial $Q(X)$ such that

$$X \cdot Q(X) = X \cdot P_0(X) + \sum_{k=1}^m \gamma_k \cdot f_k(P_1(X), \dots, P_n(X))$$

⑥ For all (i, j) , reveal the evaluation

$$v_{j,i} := P_i(r_j)$$

It is equivalent to revealing some party computations.

Instantiations

For the sake of diversity...

AES Key Recovery	LWE	Syndrome Decoding
AIM Key Recovery	SIS	Regular Syndrome Decoding
LowMC Key Recovery	Subset Sum	Permuted Kernel
Rain Key Recovery		Linear Code Equivalence
		Restricted Syndrome Decoding
Anemoi Hash Preimage		MinRank
Poseidon Hash Preimage		Rank Syndrome Decoding
Griffin Hash Preimage		Subfield Collision Problem
RescuePrime Hash Preimage		Matrix Subcode Equivalence
Legendre PRF	Discrete Logarithm	Multivariate Quadratic
BHHG's PRF	Integer Factorization	PowAff2
	Double Discrete Logarithm	

For the sake of diversity...

AES Key Recovery	LWE	Syndrome Decoding
AIM Key Recovery	SIS	Regular Syndrome Decoding
LowMC Key Recovery	Subset Sum	Permuted Kernel
Rain Key Recovery		Linear Code Equivalence
		Restricted Syndrome Decoding
		MinRank
Anemoi Hash Preimage		Rank Syndrome Decoding
Poseidon Hash Preimage		Subfield Collision Problem
Griffin Hash Preimage		Matrix Subcode Equivalence
RescuePrime Hash Preimage		Multivariate Quadratic
Legendre PRF	Discrete Logarithm	PowAff2
BHHG's PRF	Integer Factorization	
	Double Discrete Logarithm	

To use the PIOP-based MPCitH frameworks,
one just needs to write those problems using polynomial constraints.

For the sake of diversity...

AES Key Recovery
AIM Key Recovery
LowMC Key Recovery
Rain Key Recovery

Anemoi Hash Preimage
Poseidon Hash Preimage
Griffin Hash Preimage
RescuePrime Hash Preimage

Legendre PRF
BHHG's PRF

LWE
SIS
Subset Sum

Syndrome Decoding
Regular Syndrome Decoding
Permuted Kernel
Linear Code Equivalence
Restricted Syndrome Decoding

MinRank

Rank Syndrome Decoding
Subfield Collision Problem
Matrix Subcode Equivalence

Multivariate Quadratic
PowAff2

Discrete Logarithm
Integer Factorization
Double Discrete Logarithm

We can build highly conservative schemes!

For the sake of diversity...

AES Key Recovery

AIM Key Recovery
LowMC Key Recovery
Rain Key Recovery

Anemoi Hash Preimage
Poseidon Hash Preimage
Griffin Hash Preimage
RescuePrime Hash Preimage

Legendre PRF
BHHG's PRF

LWE
SIS
Subset Sum

Syndrome Decoding

Regular Syndrome Decoding

Permuted Kernel

Linear Code Equivalence
Restricted Syndrome Decoding

MinRank

Rank Syndrome Decoding

Subfield Collision Problem
Matrix Subcode Equivalence

Multivariate Quadratic

PowAff2

Discrete Logarithm
Integer Factorization
Double Discrete Logarithm

We can build highly conservative schemes!

NIST Candidates

		<i>NIST Submission</i>	
<i>Security Assumptions</i>	<i>Candidate Name</i>	<i>Sig. Size</i>	<i>PK Size</i>
AES Block cipher	FAEST v2	3.9-4.5 KB	32 B
MinRank	Mirath	3.0-3.2 KB	57-73 B
Multivariate Quadratic	MQOM v2	2.8-3.2 KB	52-80 B
Permuted Kernel	PERK v2.1	3.5 KB	100 B
Rank Syndrome Decoding	RYDE v2	3.1 KB	69 B
Syndrome Decoding	SDitH v2	3.7 KB	70 B

Using seed trees of around 2048 leaves

NIST Candidates

NIST Submission			
Security Assumptions	Candidate Name	Sig. Size	PK Size
AES Block cipher	FAEST v2	3.9-4.5 KB	32 B
MinRank	Mirath	3.0-3.2 KB	57-73 B
Multivariate Quadratic	MQOM v2	2.8-3.2 KB	52-80 B
Permuted Kernel	PERK v2.1	3.5 KB	100 B
Rank Syndrome Decoding	RYDE v2	3.1 KB	69 B
Syndrome Decoding	SDitH v2	3.7 KB	70 B

Using seed trees of around 2048 leaves

What about the computational cost?

Implementation

When using **seed trees** to commit to polynomials, we have

Signing time \approx Verification time

Implementation

When using **seed trees** to commit to polynomials, we have

Signing time \approx Verification time

Over laptop-grade CPU,

Signing time \approx Verification time \approx few milliseconds (1-10 Mc)

*Using intensively **AES instructions**,
vectorialization instructions, and **large** memory footprint*

Implementation

When using **seed trees** to commit to polynomials, we have

Signing time \approx Verification time

Over laptop-grade CPU,

Signing time \approx Verification time \approx few milliseconds (1-10 Mc)

*Using intensively **AES instructions**,
vectorization instructions, and **large** memory footprint*

Over embedded microcontrollers,

[BBBPP24] Bettaieb, Bidoux, Budroni, Palumbi, Perin. *Enabling PERK and other MPC-in-the-Head Signatures on Resource-Constrained Devices*. TCHES 2024.

[ADENS25] Aranha, Degn, Eilath, Nielsen, Scholl. *FAEST for Memory-Constrained Devices with Side-Channel Protections*. ePrint 2025/1261.

[BF26] Benadjila, Feneuil. *Breaking the Myth of MPCitH Inefficiency: Optimizing MQOM for Embedded Platforms*. ePrint 2026/078.

Implementation (over embedded devices)

Article	NIST Candidate	Memory Footprint	Signing time	Sig. Sizes
[BBBPP24]	PERK v1	28 KB	1136 Mc	~ 6 KB
[ADENS25]	FAEST (EM) v1	31 KB	158 Mc	~ 5.6 KB
[BF26]	MQOM v2	10 KB	76 Mc	~ 3.3 KB
		5 KB	183 Mc	

Using seed trees of around 256 leaves

Article	NIST Candidate	Memory Footprint	Signing time	Sig. Sizes
[BBBPP24]	PERK v1	-	-	-
[ADENS25]	FAEST (EM) v1	31 KB	1288 Mc	~ 4.6 KB
[BF26]	MQOM v2	14 KB	308 Mc	~ 2.9 KB
		5.5 KB	792 Mc	

Using seed trees of around 2048 leaves

Physical Security

👉 Side-Channel Leakage

[GAGLM24] Godard, Aragon, Gaborit, Loiseau, Maillard. *Single Trace Side-Channel Attack on the MPC-in-the-Head Framework*. PQCrypto 2025.

[JD25a] Jendral, Dubrova. *Side-Channel on VOLEitH Signature Schemes Breaking Masked FAEST*. CiC 2025.

👉 Fault attacks

[JD25b] Jendral, Dubrova. *Fault Attacks on VOLEitH Signature Schemes*. TCHES 2026.

[SD26] Sarde, Debande. *Differential Fault Attacks on MQOM, Breaking the Heart of Multivariate Evaluation*. CASCADE 2026.

[BBK25] Banda, Brinkmann, Krämer. *Fault Attacks on MPCitH Signature Schemes*. ePrint 2025/1745.

Comparison with the other families

	Lattice-based schemes				UOV-like schemes			Alternative code-based schemes	
	MPCitH	Dilithium ML-DSA	Falcon FN-DSA	SPHINCS+	UOV	Mayo	SQLsign	LESS	CROSS
Type	FS	FS	H&S	Hash-based	H&S	H&S	FS	FS	FS
Sig	2.5-4.5	2.4	0.7	7.8-17	0.1	0.2-0.5	0.1	1.3-2.3	9.0-18
PK	< 0.2	1.3	0.9	< 0.1	44-67	1.4-4.9	0.1	14-97	0.1
Sig + PK	2.5-4.6	3.7	1.6	7.9-17	44-67	1.9-5.1	0.2	17-98	9.0-18
Sign. Time	~	++	++	--	~	~	-	-	+
Verif. Time	~	++	++	~	++	++	~	-	+
Security	AES Unstructured SD Unstructured MQ ...	Structured Lattice	Structured Lattice	Hash	UOV Trapdoor	New UOV-like Trapdoor	Isogeny	Code Equivalence	Restricted Syndrome Decoding

Sizes in kilobytes (KB)

FS: Fiat-Shamir transformation

H&S: Hash-and-sign scheme

Conclusion

- MPC-in-the-Head

- Very versatile and tunable
- Can be applied to any PQ hardness assumption
- A practical tool to build conservative signature schemes

Conclusion

- MPC-in-the-Head

- Very versatile and tunable
- Can be applied to any PQ hardness assumption
- A practical tool to build conservative signature schemes

- PIOP-based MPCitH Frameworks

- Lead to signatures of 2.5-5 kilobytes
- Speed up the MPCitH schemes
- Used in the latest version of all NIST candidates

Conclusion

- MPC-in-the-Head
 - Very versatile and tunable
 - Can be applied to any PQ hardness assumption
 - A practical tool to build conservative signature schemes
- PIOP-based MPCitH Frameworks
 - Lead to signatures of 2.5-5 kilobytes
 - Speed up the MPCitH schemes
 - Used in the latest version of all NIST candidates
- Next Steps
 - More optimized implementations
 - Side-channel Analysis
 - SCA & Fault countermeasures → Protected implementation

Conclusion

- MPC-in-the-Head
 - Very versatile and tunable
 - Can be applied to any PQ hardness assumption
 - A practical tool to build conservative signature schemes
- PIOP-based MPCitH Frameworks
 - Lead to signatures of 2.5-5 kilobytes
 - Speed up the MPCitH schemes
 - Used in the latest version of all NIST candidates
- Next Steps
 - More optimized implementations
 - Side-channel Analysis
 - SCA & Fault countermeasures → Protected implementation

Thank you for your attention.