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Identification Scheme

• Completeness: Pr[verif ✓ | honest prover] = 1 

• Soundness: Pr[verif ✓ | malicious prover]   (e.g.  ) 

• Zero-knowledge: verifier learns nothing on          .

≤ ε 2−128

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier

I know           .

I am convinced.



Identification Scheme

Challenge 1 = Hash(m, Commitment)

Prover

Verifier

Challenge  = Hash(m, Response )n n − 1

⋮

I know           .

Transcript

Fiat-Shamir 
Transformation

m: message to sign 



MPCitH: general principle



MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007) 

• Turn a multiparty computation (MPC) into an identification scheme / zero-
knowledge proof of knowledge 

• Generic: can be applied to any cryptographic problem
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• Picnic: submission to NIST (2017) 
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MPC-in-the-Head Framework

Secret  which satisfies 
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MPC-in-the-Head Framework

Additive secret sharing: 
x = [[x]]1 + [[x]]2 + … + [[x]]N

Shamir’s secret sharing: 
, 

where  is a random degree-  
polynomial such that .

∀i, [[x]]i = P(ei)
P ℓ

P(0) = x

If  lives in , a possible sharing of  is x := 42 𝔽1021 x
  over x = 429 + 19 + 583 + 231 + 822 𝔽1021

Secret  which satisfies 
some public relation  

x
y = F(x)

Sharing  of the secret [[x]] x



[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]5

Input sharing   
 
Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

MPC-in-the-Head Framework
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[[x]]1

• Jointly compute 

 

•  private: the views of any  
parties provide no information on  

• Semi-honest model: assuming that the 
parties follow the steps of the protocol 

• Broadcast model 

‣ Parties locally compute on their shares 
 

‣ Parties broadcast  and recompute 
 

‣ Parties start again (now knowing )

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

Public 
domain

[[α]]1
[[α]]2

[[α]]3

[[α]]4

[[α]]5

x = [[x]]1 + [[x]]2 + … + [[x]]N

MPC model
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Prover Verifier

I know  such that 

 

where  is a public degree-  polynomial.

w1, …, wn

f(w1, …, wn) = 0

f d
Prove it!

TCitH and VOLEitH Frameworks, in the PIOP formalism
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polynomial  such that  

Sample a random degree-  
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i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

PCom(P0, P1, …, Pn)
②  Commit to the polynomials P0, P1, …, Pn

TCitH and VOLEitH Frameworks, in the PIOP formalism
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    Reveal the polynomial  such that Q(X )
X ⋅ Q(X ) = X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)
{vj,0, vj,1, …, vj,n}j

r1, …, rℓ
     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

④

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

PCom(P0, P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



Prover Verifier

    Reveal the polynomial  such that Q(X )
X ⋅ Q(X ) = X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

④

⑥

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

PCom(P0, P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



Verifier

①  For all , choose a degree-  polynomial 
. We have 

. 

Choose a degree-  polynomial 

i ℓ
Pi(X )

f (P1(0), …, Pn(0)) ≠ 0

(d ⋅ ℓ − 1)
P0(X )

    Reveal a polynomial . We know that Q(X )
X ⋅ Q(X ) ≠ X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

Soundness Analysis

Malicious Prover 😈

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)
{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

④

⑥

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

PCom(P0, P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

Verifier

    Reveal a polynomial . We know that Q(X )
X ⋅ Q(X ) ≠ X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

Soundness Analysis

= 0 ≠ 0

Evaluation into 0

Malicious Prover 😈

①  For all , choose a degree-  polynomial 
. We have 

. 

Choose a degree-  polynomial 

i ℓ
Pi(X )

f (P1(0), …, Pn(0)) ≠ 0

(d ⋅ ℓ − 1)
P0(X )

{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

④

⑥

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

PCom(P0, P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

Verifier

    Reveal a polynomial . We know that Q(X )
X ⋅ Q(X ) ≠ X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

Soundness Analysis

Malicious Prover 😈

①  For all , choose a degree-  polynomial 
. We have 

. 

Choose a degree-  polynomial 

i ℓ
Pi(X )

f (P1(0), …, Pn(0)) ≠ 0

(d ⋅ ℓ − 1)
P0(X )

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)
     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

④

⑥

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

PCom(P0, P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

Verifier

    Reveal a polynomial . We know that Q(X )
X ⋅ Q(X ) ≠ X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

Soundness Analysis

Malicious Prover 😈

①  For all , choose a degree-  polynomial 
. We have 

. 

Choose a degree-  polynomial 

i ℓ
Pi(X )

f (P1(0), …, Pn(0)) ≠ 0

(d ⋅ ℓ − 1)
P0(X )

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)
     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

④

⑥

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

PCom(P0, P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism

Schwartz-Zippel Lemma: Let  be the non-zero degree-  
polynomial defined as 

 

We have 

D (d ⋅ ℓ)

D := X ⋅ Q(X ) − X ⋅ P0(X ) − f(P1(X ), …, Pn(X ))

②  Commit to the polynomials P0, P1, …, Pn



      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

Verifier

    Reveal a polynomial . We know that Q(X )
X ⋅ Q(X ) ≠ X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

Soundness Analysis

Malicious Prover 😈

①  For all , choose a degree-  polynomial 
. We have 

. 

Choose a degree-  polynomial 

i ℓ
Pi(X )

f (P1(0), …, Pn(0)) ≠ 0

(d ⋅ ℓ − 1)
P0(X )

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)
     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

④

⑥

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

PCom(P0, P1, …, Pn)
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Schwartz-Zippel Lemma: Let  be the non-zero degree-  
polynomial defined as 

 

We have 

.

D (d ⋅ ℓ)

D := X ⋅ Q(X ) − X ⋅ P0(X ) − f(P1(X ), …, Pn(X ))

Pr[verification passes] = Pr [∀j, D(rj) = 0 ∣ {rj}j ⊂$ 𝒞] ≤
(d ⋅ ℓ

ℓ )
( |𝒞 |

ℓ )

②  Commit to the polynomials P0, P1, …, Pn



Prover

    Reveal the polynomial  such that Q(X )
X ⋅ Q(X ) = X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

④

⑥

Zero-Knowledge Analysis

Verifier 👀

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

PCom(P0, P1, …, Pn)

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



②  Commit to the polynomials P0, P1, …, Pn

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

④

Prover

Sample a random degree-  
       polynomial 

(d ⋅ ℓ − 1)
P0(X )

    Reveal the polynomial  such that Q(X )
X ⋅ Q(X ) = X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

⑥

Zero-Knowledge Analysis

Verifier 👀

Revealing  evaluations of  
leaks no information about .

ℓ Pi(X)
wi

①  For all , sample a random degree-  
polynomial  such that 

i ℓ
Pi(X ) Pi(0) = wi

PCom(P0, P1, …, Pn)

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽r1, …, rℓ

{vj,0, vj,1, …, vj,n}j      Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

TCitH and VOLEitH Frameworks, in the PIOP formalism



⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

r1, …, rℓ

{vj,0, vj,1, …, vj,n}j

Prover

    Reveal the polynomial  such that Q(X )
X ⋅ Q(X ) = X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

④

⑥

Zero-Knowledge Analysis

Verifier 👀

Revealing  leaks no information 
about , thanks to .

Q(X)
wi P0(X)

Sample a random degree-  
       polynomial 

(d ⋅ ℓ − 1)
P0(X )

①  For all , sample a random degree-  
polynomial  such that 

i ℓ
Pi(X ) Pi(0) = wi

PCom(P0, P1, …, Pn)

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



Prover Verifier

Prove it!

Soundness Error = (d ⋅ ℓ
ℓ )

( |S |
ℓ )

Probability that a malicious prover 
can convince the verifier.

I know  such that 

 

where  is a public degree-  polynomial.

w1, …, wn

f(w1, …, wn) = 0

f d

TCitH and VOLEitH Frameworks, in the PIOP formalism



Prover Verifier

I know  such that 

 

where  are public degree-  polynomials.

w1, …, wn

f1(w1, …, wn) = 0
⋮

fm(w1, …, wn) = 0,

f1, …, fm d
Prove it!

TCitH and VOLEitH Frameworks, in the PIOP formalism



①  For all , sample a random degree-  
polynomial  such that  

Sample  random degree-  
       polynomials 

i ℓ
Pi(X ) Pi(0) = wi

m (d ⋅ ℓ)
P0(X ) = (P0,1(X ), …, P0,m(X ))

    Reveal the polynomials  
    such that 

Q1(X ), …, Qm(X )

X ⋅ Q1(X ) = X ⋅ P0,1(X ) + f1(P1(X ), …, Pn(X ))
⋮

X ⋅ Qm(X ) = X ⋅ P0,m(X ) + fm(P1(X ), …, Pn(X ))
Q1, …, Qm

③

④

⑥

②  Commit to the polynomials P0, P1, …, Pn

Prover

PCom(P0, P1, …, Pn)

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j
{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

         Check that, for all , j
rj ⋅ Q1(rj) = rj ⋅ vj,0,1 + f1(vj,1, …, vj,n)

⋮
rj ⋅ Qm(rj) = rj ⋅ vj,0,m + fm(vj,1, …, vj,n))

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

TCitH and VOLEitH Frameworks, in the PIOP formalism



    Reveal the polynomials  
    such that 

Q1(X ), …, Qm(X )

X ⋅ Q1(X ) = X ⋅ P0,1(X ) + f1(P1(X ), …, Pn(X ))
⋮

X ⋅ Qm(X ) = X ⋅ P0,m(X ) + fm(P1(X ), …, Pn(X ))
Q1, …, Qm

③

         Check that, for all , j
rj ⋅ Q1(rj) = rj ⋅ vj,0,1 + f1(vj,1, …, vj,n)

⋮
rj ⋅ Qm(rj) = rj ⋅ vj,0,m + fm(vj,1, …, vj,n))

④

⑥

ProverSigma/3-round variant of MQOM v2

①  For all , sample a random degree-  
polynomial  such that  

Sample  random degree-  
       polynomials 

i ℓ
Pi(X ) Pi(0) = wi

m (d ⋅ ℓ)
P0(X ) = (P0,1(X ), …, P0,m(X ))

PCom(P0, P1, …, Pn)

{vj,0, vj,1, …, vj,n}j

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

r1, …, rℓ

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

    Reveal the polynomials  
    such that 

Q1(X ), …, Qm(X )

X ⋅ Q1(X ) = X ⋅ P0,1(X ) + f1(P1(X ), …, Pn(X ))
⋮

X ⋅ Qm(X ) = X ⋅ P0,m(X ) + fm(P1(X ), …, Pn(X ))
Q1, …, Qm

③

Prover

A bit costly!

①  For all , sample a random degree-  
polynomial  such that  

Sample  random degree-  
       polynomials 

i ℓ
Pi(X ) Pi(0) = wi

m (d ⋅ ℓ)
P0(X ) = (P0,1(X ), …, P0,m(X ))

PCom(P0, P1, …, Pn)

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

         Check that, for all , j
rj ⋅ Q1(rj) = rj ⋅ vj,0,1 + f1(vj,1, …, vj,n)

⋮
rj ⋅ Qm(rj) = rj ⋅ vj,0,m + fm(vj,1, …, vj,n))

④

⑥

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

    Reveal the polynomials  
    such that 

Q1(X ), …, Qm(X )

X ⋅ Q1(X ) = X ⋅ P0,1(X ) + f1(P1(X ), …, Pn(X ))
⋮

X ⋅ Qm(X ) = X ⋅ P0,m(X ) + fm(P1(X ), …, Pn(X ))
Q1, …, Qm

③

Prover

A bit costly!

①  For all , sample a random degree-  
polynomial  such that  

Sample  random degree-  
       polynomials 

i ℓ
Pi(X ) Pi(0) = wi

m (d ⋅ ℓ)
P0(X ) = (P0,1(X ), …, P0,m(X ))

PCom(P0, P1, …, Pn)

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

         Check that, for all , j
rj ⋅ Q1(rj) = rj ⋅ vj,0,1 + f1(vj,1, …, vj,n)

⋮
rj ⋅ Qm(rj) = rj ⋅ vj,0,m + fm(vj,1, …, vj,n))

④

⑥

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

TCitH and VOLEitH Frameworks, in the PIOP formalism

Solution: batching 

②  Commit to the polynomials P0, P1, …, Pn



Prover Verifier

②  Commit to the polynomials P0, P1, …, Pn

PCom(P0, P1, …, Pn)

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

TCitH and VOLEitH Frameworks, in the PIOP formalism



④

Prover Verifier

    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))
Q

③  Choose random coefficients 

γ1, …, γm ←$ 𝔽γ1, …, γm

PCom(P0, P1, …, Pn)

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



④

Prover Verifier

    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))
Q

③  Choose random coefficients 

γ1, …, γm ←$ 𝔽γ1, …, γm

PCom(P0, P1, …, Pn)

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

TCitH and VOLEitH Frameworks, in the PIOP formalism

Well-defined!
m

∑
k=1

γk ⋅ fk(P1(0), …, Pn(0)) =
m

∑
k=1

γk ⋅ fk(w1, …, wn)

=
m

∑
k=1

γk ⋅ 0 = 0

②  Commit to the polynomials P0, P1, …, Pn



⑤

④

Prover Verifier

    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))
Q

③  Choose random coefficients 

γ1, …, γm ←$ 𝔽γ1, …, γm

PCom(P0, P1, …, Pn)

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

⑥  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



⑤

④

Prover Verifier

    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))
Q

           Check that, for all , j

rj ⋅ Q(rj) = rj ⋅ vj,0 +
m

∑
k=1

γk ⋅ fk(vj,1, …, vj,n)

⑦

③  Choose random coefficients 

γ1, …, γm ←$ 𝔽γ1, …, γm

PCom(P0, P1, …, Pn)

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

r1, …, rℓ

⑥  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j
{vj,0, vj,1, …, vj,n}j

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



④

Prover Verifier

①  For all , choose a degree-  polynomial 
. There exists  s.t. 

. 

Sample a random degree-  
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How to commit to polynomials?

①  VOLEitH / TCitH-GGM

Merkle Trees with 
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000③

(using symmetric primitives)

Merkle Tree

GGM Tree

For signature schemes, we use 
degree-  polynomials most of the time.1

Degree-enforcing commitment②



Committing to a Polynomial using a Seed Tree

A seed tree of  leaves to commit to degree-1 polynomials 

👉 The prover can provably open  evaluations (i.e. ) 

👉 Soundness error of 

N

N N = |𝒞 |
d
N

 with 
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ℓ )
( |𝒞 |

ℓ )
ℓ := 1
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Link between MPCitH and PIOP
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vj,i := Pi(rj)
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To use the PIOP-based MPCitH frameworks, 
one just needs to write those problems using polynomial constraints.
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Matrix Subcode Equivalence

We can build highly conservative schemes! 
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Integer Factorization
Discrete Logarithm

Double Discrete Logarithm



NIST Candidates

NIST Submission

Security Assumptions Candidate Name Sig. Size PK Size

AES Block cipher FAEST v2 3.9-4.5 KB 32 B

MinRank Mirath 3.0-3.2 KB 57-73 B

Multivariate Quadratic MQOM v2 2.8-3.2 KB 52-80 B

Permuted Kernel PERK v2.1 3.5 KB 100 B

Rank Syndrome Decoding RYDE v2 3.1 KB 69 B

Syndrome Decoding SDitH v2 3.7 KB 70 B

Using seed trees of around 2048 leaves
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AES Block cipher FAEST v2 3.9-4.5 KB 32 B

MinRank Mirath 3.0-3.2 KB 57-73 B

Multivariate Quadratic MQOM v2 2.8-3.2 KB 52-80 B

Permuted Kernel PERK v2.1 3.5 KB 100 B

Rank Syndrome Decoding RYDE v2 3.1 KB 69 B

Syndrome Decoding SDitH v2 3.7 KB 70 B

What about the computational cost?🧐

Using seed trees of around 2048 leaves
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Implementation
When using seed trees to commit to polynomials, we have

Signing time  Verification time≈

Over laptop-grade CPU,

Signing time  Verification time  few milliseconds (1-10 Mc)≈ ≈

Using intensively AES instructions, 
vectorialization instructions, and large memory footprint

Over embedded microcontrollers,

[BF26] Benadjila, Feneuil. Breaking the Myth of MPCitH Inefficiency: Optimizing MQOM for 
Embedded Platforms. ePrint 2026/078.

[ADENS25] Aranha, Degn, Eilath, Nielsen, Scholl. FAEST for Memory-Constrained Devices 
with Side-Channel Protections. ePrint 2025/1261.

[BBBPP24] Bettaieb, Bidoux, Budroni, Palumbi, Perin. Enabling PERK and other MPC-in-the-
Head Signatures on Resource-Constrained Devices. TCHES 2024.



Implementation (over embedded devices)

Article NIST Candidate Memory Footprint Signing time Sig. Sizes

[BBBPP24] PERK v1 28 KB 1136 Mc ~ 6 KB

[ADENS25] FAEST (EM) v1 31 KB 158 Mc ~ 5.6 KB

[BF26] MQOM v2
10 KB 76 Mc

~ 3.3 KB
5 KB 183 Mc

Using seed trees of around 256 leaves

Article NIST Candidate Memory Footprint Signing time Sig. Sizes

[BBBPP24] PERK v1 - - -

[ADENS25] FAEST (EM) v1 31 KB 1288 Mc ~ 4.6 KB

[BF26] MQOM v2
14 KB 308 Mc

~ 2.9 KB
5.5 KB 792 Mc

Using seed trees of around 2048 leaves



Physical Security
👉 Side-Channel Leakage

👉 Fault attacks

[JD25a] Jendral, Dubrova. Side-Channel on VOLEitH Signature Schemes Breaking Masked 
FAEST. CiC 2025.

[JD25b] Jendral, Dubrova. Fault Attacks on VOLEitH Signature Schemes. TCHES 2026.

[GAGLM24] Godard, Aragon, Gaborit, Loiseau, Maillard. Single Trace Side-Channel Attack on 
the MPC-in-the-Head Framework. PQCrypto 2025.

[SD26] Sarde, Debande. Differential Fault Attacks on MQOM, Breaking the Heart of 
Multivariate Evaluation. CASCADE 2026.

[BBK25] Banda, Brinkmann, Krämer. Fault Attacks on MPCitH Signature Schemes. ePrint 
2025/1745.



Physical Security
👉 Side-Channel Leakage

👉 Fault attacks

[JD25a] Jendral, Dubrova. Side-Channel on VOLEitH Signature Schemes Breaking Masked 
FAEST. CiC 2025.

[JD25b] Jendral, Dubrova. Fault Attacks on VOLEitH Signature Schemes. TCHES 2026.

[GAGLM24] Godard, Aragon, Gaborit, Loiseau, Maillard. Single Trace Side-Channel Attack on 
the MPC-in-the-Head Framework. PQCrypto 2025.

[SD26] Sarde, Debande. Differential Fault Attacks on MQOM, Breaking the Heart of 
Multivariate Evaluation. CASCADE 2026.

[BBK25] Banda, Brinkmann, Krämer. Fault Attacks on MPCitH Signature Schemes. ePrint 
2025/1745.

👉 Protections?

No floating-point arithmetic (cf. Falcon) 
No Gaussian elimination (cf. UOV-like schemes and LESS) 
No rejection sampling (cf. ML-DSA) 
For NIST MPCitH candidates, only binary fields, i.e. no arithmetic-
Boolean conversions (cf. most lattice-based schemes, LESS and CROSS)



Comparison with the other families

MPCitH
Dilithium 
ML-DSA

Falcon 
FN-DSA

SPHINCS+ UOV Mayo SQIsign LESS CROSS

Type FS FS H&S Hash-based H&S H&S FS FS FS

|Sig| 2.5-4.5 2.4 0.7 7.8-17 0.1 0.2-0.5 0.1 1.3-2.3 9.0-18

|PK| < 0.2 1.3 0.9 < 0.1 44-67 1.4-4.9 0.1 14-97 0.1

|Sig|+|PK| 2.5-4.6 3.7 1.6 7.9-17 44-67 1.9-5.1 0.2 17-98 9.0-18

Sign. Time ~ ++ ++ -- ~ ~ - - +

Verif. Time ~ ++ ++ ~ ++ ++ ~ - +

Security

AES 
Unstructured 

SD 
Unstructured 

MQ 
…

Structured 
Lattice

Structured 
Lattice

Hash
UOV 

Trapdoor

New 
UOV-like 
Trapdoor

Isogeny
Code 

Equivalence

Restricted 
Syndrome 
Decoding

FS: Fiat-Shamir transformation 
H&S: Hash-and-sign scheme

Sizes in kilobytes (KB)

UOV-like 
schemes

Alternative 
code-based schemesLattice-based schemes
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Thank you for your attention.


