
The MPC-in-the-Head Paradigm 
for Post-Quantum Signatures: 

Recent Frameworks and Applications

Thibauld Feneuil 

Seminar Crypto UCLouvain 

January 27, 2026, Louvain-la-Neuve



Table of Contents

• Introduction 

• MPC-in-the-Head: general principle 

• PIOP-based MPCitH Frameworks 

• Instantiations



Introduction



How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

Very hard 
to compute

m

H

H



How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

I know the 
private key.

I am convinced.

Large(r) signatures

Short public key

Very hard 
to compute

From an
identification scheme

m

H

H



How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

I know the 
private key.

I am convinced.

Large(r) signatures

Short public key

Very hard 
to compute

From an
identification scheme

m

H

H



Identification Scheme

• Completeness: Pr[verif ✓ | honest prover] = 1 

• Soundness: Pr[verif ✓ | malicious prover]   (e.g.  ) 

• Zero-knowledge: verifier learns nothing on          .

≤ ε 2−128

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier

I know           .

I am convinced.



Identification Scheme

Challenge 1 = Hash(m, Commitment)

Prover

Verifier

Challenge  = Hash(m, Response )n n − 1

⋮

I know           .

Transcript

Fiat-Shamir 
Transformation

m: message to sign 



MPCitH: general principle



MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007) 

• Turn a multiparty computation (MPC) into an identification scheme / zero-
knowledge proof of knowledge 

• Generic: can be applied to any cryptographic problem



MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007) 

• Convenient to build (candidate) post-quantum signature schemes 

• Picnic: submission to NIST (2017) 

• First round of recent NIST call: 7~9 MPCitH schemes / 40 candidates

AIMer 
Biscuit 
FAEST 
MIRA 
MiRitH

MQOM 
PERK 
RYDE 
SDitH



MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007) 

• Convenient to build (candidate) post-quantum signature schemes 

• Picnic: submission to NIST (2017) 

• First round of recent NIST call: 7~9 MPCitH schemes / 40 candidates 

• Second round of recent NIST call: 5~6 MPCitH schemes / 14 candidates

FAEST 
Mirath 
MQOM

PERK 
RYDE 
SDitH



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature

MPC-in-the-Head transform



MPC-in-the-Head Framework

Secret  which satisfies 
some public relation  

x
y = F(x)

How to build a zero-knowledge 
proof of knowledge for ?x🤔



MPC-in-the-Head Framework

Secret  which satisfies 
some public relation  

x
y = F(x)

Sharing  of the secret [[x]] x

Additive secret sharing: 
x = [[x]]1 + [[x]]2 + … + [[x]]N

Shamir’s secret sharing: 
, 

where  is a random degree-  
polynomial such that .

∀i, [[x]]i = P(ei)
P ℓ

P(0) = x



MPC-in-the-Head Framework

Additive secret sharing: 
x = [[x]]1 + [[x]]2 + … + [[x]]N

Shamir’s secret sharing: 
, 

where  is a random degree-  
polynomial such that .

∀i, [[x]]i = P(ei)
P ℓ

P(0) = x

Secret  which satisfies 
some public relation  

x
y = F(x)

Sharing  of the secret [[x]] x



MPC-in-the-Head Framework

Additive secret sharing: 
x = [[x]]1 + [[x]]2 + … + [[x]]N

Shamir’s secret sharing: 
, 

where  is a random degree-  
polynomial such that .

∀i, [[x]]i = P(ei)
P ℓ

P(0) = x

If  lives in , a possible sharing of  is x := 42 𝔽1021 x
  over x = 429 + 19 + 583 + 231 + 822 𝔽1021

Secret  which satisfies 
some public relation  

x
y = F(x)

Sharing  of the secret [[x]] x



[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]5

Input sharing   
 
Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

MPC-in-the-Head Framework



MPC model: discrete logarithm

• Secret  satisfies , with  public. 

• We want a multiparty computation that 
computes 

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y



• Secret  satisfies , with  public. 

• We want a multiparty computation that 
computes 

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y

• Party : 

‣ Receive the th share  

‣ Compute . 

‣ Broadcast . 

‣ Receive all the broadcasted values 
 

‣ Recover  and check that .

i

i [[x]]i

[[zx]]i ← z[[x]]i

[[zx]]i

[[zx]]1, …, [[zx]]N

zx y

MPC model: discrete logarithm



                       z = 3 (mod 1907) x = 575 y = 1467 = zx (mod 1907)

• Party : 

‣ Receive the th share  

‣ Compute . 

‣ Broadcast . 

‣ Receive all the broadcasted values 
 

‣ Recover  and check that .

i

i [[x]]i

[[zx]]i ← z[[x]]i

[[zx]]i

[[zx]]1, …, [[zx]]N

zx y

• Secret  satisfies , with  public. 

• We want a multiparty computation that 
computes 

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y

MPC model: discrete logarithm



180 397

542

713

649

                       

 

z = 3 (mod 1907) x = 575 y = 1467 = zx (mod 1907)

[[x]]1 = 180, [[x]]2 = 397, [[x]]3 = 649, [[x]]4 = 713, [[x]]5 = 542

x = [[x]]1 + [[x]]2 + [[x]]3 + [[x]]4 + [[x]]5 (mod 953)

• Party : 

‣ Receive the th share  

‣ Compute . 

‣ Broadcast . 

‣ Receive all the broadcasted values 
 

‣ Recover  and check that .

i

i [[x]]i

[[zx]]i ← z[[x]]i

[[zx]]i

[[zx]]1, …, [[zx]]N

zx y

• Secret  satisfies , with  public. 

• We want a multiparty computation that 
computes 

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y

MPC model: discrete logarithm



180 397

542

713

649

1368
1603

1235

268

1397 • Party : 

‣ Receive the th share  

‣ Compute . 

‣ Broadcast . 

‣ Receive all the broadcasted values 
 

‣ Recover  and check that .

i

i [[x]]i

[[zx]]i ← z[[x]]i

[[zx]]i

[[zx]]1, …, [[zx]]N

zx y

• Secret  satisfies , with  public. 

• We want a multiparty computation that 
computes 

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y

                       

 

z = 3 (mod 1907) x = 575 y = 1467 = zx (mod 1907)

[[x]]1 = 180, [[x]]2 = 397, [[x]]3 = 649, [[x]]4 = 713, [[x]]5 = 542

x = [[x]]1 + [[x]]2 + [[x]]3 + [[x]]4 + [[x]]5 (mod 953)

MPC model: discrete logarithm



180 397

542

713

649

1368
1603

1235

268

1397 • Party : 

‣ Receive the th share  

‣ Compute . 

‣ Broadcast . 

‣ Receive all the broadcasted values 
 

‣ Recover  and check that .

i

i [[x]]i

[[zx]]i ← z[[x]]i

[[zx]]i

[[zx]]1, …, [[zx]]N

zx y

• Secret  satisfies , with  public. 

• We want a multiparty computation that 
computes 

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y

                       

 

z = 3 (mod 1907) x = 575 y = 1467 = zx (mod 1907)

[[x]]1 = 180, [[x]]2 = 397, [[x]]3 = 649, [[x]]4 = 713, [[x]]5 = 542

x = [[x]]1 + [[x]]2 + [[x]]3 + [[x]]4 + [[x]]5 (mod 953)

MPC model: discrete logarithm



180 397

542

713

649

1368
1603

1235

268

1397 ∏ = 1467

• Party : 

‣ Receive the th share  

‣ Compute . 

‣ Broadcast . 

‣ Receive all the broadcasted values 
 

‣ Recover  and check that .

i

i [[x]]i

[[zx]]i ← z[[x]]i

[[zx]]i

[[zx]]1, …, [[zx]]N

zx y

• Secret  satisfies , with  public. 

• We want a multiparty computation that 
computes 

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y

                       

 

z = 3 (mod 1907) x = 575 y = 1467 = zx (mod 1907)

[[x]]1 = 180, [[x]]2 = 397, [[x]]3 = 649, [[x]]4 = 713, [[x]]5 = 542

x = [[x]]1 + [[x]]2 + [[x]]3 + [[x]]4 + [[x]]5 (mod 953)

MPC model: discrete logarithm



180 397

542

713

649

1368
1603

1235

268

1397 ∏ = 1467

• Party : 

‣ Receive the th share  

‣ Compute . 

‣ Broadcast . 

‣ Receive all the broadcasted values 
 

‣ Recover  and check that .

i

i [[x]]i

[[zx]]i ← z[[x]]i

[[zx]]i

[[zx]]1, …, [[zx]]N

zx y

• Secret  satisfies , with  public. 

• We want a multiparty computation that 
computes 

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y

                       

 

z = 3 (mod 1907) x = 575 y = 1467 = zx (mod 1907)

[[x]]1 = 180, [[x]]2 = 397, [[x]]3 = 649, [[x]]4 = 713, [[x]]5 = 542

x = [[x]]1 + [[x]]2 + [[x]]3 + [[x]]4 + [[x]]5 (mod 953)

🔒

If someone sees the computation of 
all the parties except one, it leaks no 

information on . 🧐x

MPC model: discrete logarithm



MPC model

[[x]]1

• Jointly compute 

 

•  private: the views of any  
parties provide no information on  

• Semi-honest model: assuming that the 
parties follow the steps of the protocol

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]]2

[[x]]5

[[x]]4

[[x]]3

Public 
domain

[[α]]1
[[α]]2

[[α]]3

[[α]]4

[[α]]5

x = [[x]]1 + [[x]]2 + … + [[x]]N



[[x]]1

• Jointly compute 

 

•  private: the views of any  
parties provide no information on  

• Semi-honest model: assuming that the 
parties follow the steps of the protocol 

• Broadcast model 

‣ Parties locally compute on their shares 
 

‣ Parties broadcast  and recompute 
 

‣ Parties start again (now knowing )

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

Public 
domain

[[α]]1
[[α]]2

[[α]]3

[[α]]4

[[α]]5

x = [[x]]1 + [[x]]2 + … + [[x]]N

MPC model



MPCitH transform

Prover Verifier



MPCitH transform

Prover Verifier

①  Generate and commit shares   

[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)



MPCitH transform

Prover Verifier

①  Generate and commit shares   

[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

②  Run MPC in their head

send broadcast 
 [[α]]1, …, [[α]]N



MPCitH transform

Prover Verifier

①  Generate and commit shares   

[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

②  Run MPC in their head

send broadcast 
 [[α]]1, …, [[α]]N ③  Choose a random party 

i* ←$ {1,…, N}i*



MPCitH transform

Prover Verifier

①  Generate and commit shares   

[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

②  Run MPC in their head

send broadcast 
 [[α]]1, …, [[α]]N ③  Choose a random party 

i* ←$ {1,…, N}i*

④  Open parties  {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

i*



MPCitH transform

Prover Verifier

①  Generate and commit shares   

[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

②  Run MPC in their head

send broadcast 
 [[α]]1, …, [[α]]N ③  Choose a random party 

i* ←$ {1,…, N}i*

④  Open parties  {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check  

      - Commitments  
      - MPC computation  
   Check 

∀i ≠ i*

Comρi([[x]]i)
[[α]]i = φ([[x]]i)

g̃(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*



MPCitH transform

Prover Verifier

①  Generate and commit shares   

[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

②  Run MPC in their head

send broadcast 
 [[α]]1, …, [[α]]N ③  Choose a random party 

i* ←$ {1,…, N}i*

④  Open parties  {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check  

      - Commitments  
      - MPC computation  
   Check 

∀i ≠ i*

Comρi([[x]]i)
[[α]]i = φ([[x]]i)

g̃(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

✅  Completeness 
✅  Zero-Knowledge



MPCitH transform

Malicious Prover Verifier

①  Generate and commit shares   
 

 

We have  where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)



MPCitH transform

Malicious Prover Verifier

①  Generate and commit shares   
 

 

We have  where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast 
 [[α]]1, …, [[α]]N

②  Run MPC in their head

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N



MPCitH transform

Malicious Prover Verifier

①  Generate and commit shares   
 

 

We have  where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast 
 [[α]]1, …, [[α]]N ③  Choose a random party 

i* ←$ {1,…, N}
i*

②  Run MPC in their head

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N



MPCitH transform

Malicious Prover Verifier

①  Generate and commit shares   
 

 

We have  where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast 
 [[α]]1, …, [[α]]N ③  Choose a random party 

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

②  Run MPC in their head

④  Open parties  {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*



MPCitH transform

Malicious Prover Verifier

①  Generate and commit shares   
 

 

We have  where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast 
 [[α]]1, …, [[α]]N ③  Choose a random party 

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

⑤ Check  

      - Commitments  
      - MPC computation  
   Check 

∀i ≠ i*

Comρi([[x]]i)
[[α]]i = φ([[x]]i)

g̃(y, α) = Accept

②  Run MPC in their head

④  Open parties  {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Cheating detected!



MPCitH transform

Malicious Prover Verifier

①  Generate and commit shares   
 

 

We have  where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast 
 [[α]]1, …, [[α]]N ③  Choose a random party 

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

⑤ Check  

      - Commitments  
      - MPC computation  
   Check 

∀i ≠ i*

Comρi([[x]]i)
[[α]]i = φ([[x]]i)

g̃(y, α) = Accept

②  Run MPC in their head

④  Open parties  {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Seems OK.



MPCitH transform
• Zero-knowledge       MPC protocol is -private 

• Soundness: 

 

• Parallel repetition  

Protocol repeated  times in parallel → soundness error 

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

τ ( 1
N )

τ



MPCitH transform
• Zero-knowledge       MPC protocol is -private 

• Soundness: 

 

• Parallel repetition  

Protocol repeated  times in parallel → soundness error 

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

τ ( 1
N )

τ



MPCitH transform
• Zero-knowledge       MPC protocol is -private 

• Soundness: 

 

• Parallel repetition  

Protocol repeated  times in parallel → soundness error 

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

τ ( 1
N )

τ



PIOP-based MPCitH Frameworks

[FR25] Feneuil, Rivain. Threshold 
Computation in the Head: Improved 
Framework for Post-Quantum Signatures 
and Zero-Knowledge Arguments. Journal 
of Cryptology, 2025.

[BBD+23] Baum, Braun, Delpech, Klooß, 
Orsini, Roy, Scholl. Publicly Verifiable 
Zero-Knowledge and Post-Quantum 
Signatures From VOLE-in-the-Head. 
Crypto 2023.

Polynomial Interactive 
Oracle Proof



Prover Verifier

I know  such that 

 

where  is a public degree-  polynomial.

w1, …, wn

f(w1, …, wn) = 0

f d
Prove it!

TCitH and VOLEitH Frameworks, in the PIOP formalism



Prover Verifier

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

PCom(P0, P1, …, Pn)
②  Commit to the polynomials P0, P1, …, Pn

TCitH and VOLEitH Frameworks, in the PIOP formalism



Prover Verifier

    Reveal the polynomial  such that Q(X )
X ⋅ Q(X ) = X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

PCom(P0, P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



Prover Verifier

    Reveal the polynomial  such that Q(X )
X ⋅ Q(X ) = X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

0 ⋅ P0(0) + f(P1(0), …, Pn(0)) = 0 + f(w1, …, wn) = 0

Well-defined!

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

PCom(P0, P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



Prover Verifier

    Reveal the polynomial  such that Q(X )
X ⋅ Q(X ) = X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)
{vj,0, vj,1, …, vj,n}j

r1, …, rℓ
     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

④

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

PCom(P0, P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



Prover Verifier

    Reveal the polynomial  such that Q(X )
X ⋅ Q(X ) = X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

④

⑥

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

PCom(P0, P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



Verifier

①  For all , choose a degree-  polynomial 
. We have 

. 

Choose a degree-  polynomial 

i ℓ
Pi(X )

f (P1(0), …, Pn(0)) ≠ 0

(d ⋅ ℓ − 1)
P0(X )

    Reveal a polynomial . We know that Q(X )
X ⋅ Q(X ) ≠ X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

Soundness Analysis

Malicious Prover 😈

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)
{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

④

⑥

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

PCom(P0, P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

Verifier

    Reveal a polynomial . We know that Q(X )
X ⋅ Q(X ) ≠ X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

Soundness Analysis

= 0 ≠ 0

Evaluation into 0

Malicious Prover 😈

①  For all , choose a degree-  polynomial 
. We have 

. 

Choose a degree-  polynomial 

i ℓ
Pi(X )

f (P1(0), …, Pn(0)) ≠ 0

(d ⋅ ℓ − 1)
P0(X )

{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

④

⑥

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

PCom(P0, P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

Verifier

    Reveal a polynomial . We know that Q(X )
X ⋅ Q(X ) ≠ X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

Soundness Analysis

Malicious Prover 😈

①  For all , choose a degree-  polynomial 
. We have 

. 

Choose a degree-  polynomial 

i ℓ
Pi(X )

f (P1(0), …, Pn(0)) ≠ 0

(d ⋅ ℓ − 1)
P0(X )

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)
     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

④

⑥

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

PCom(P0, P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

Verifier

    Reveal a polynomial . We know that Q(X )
X ⋅ Q(X ) ≠ X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

Soundness Analysis

Malicious Prover 😈

①  For all , choose a degree-  polynomial 
. We have 

. 

Choose a degree-  polynomial 

i ℓ
Pi(X )

f (P1(0), …, Pn(0)) ≠ 0

(d ⋅ ℓ − 1)
P0(X )

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)
     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

④

⑥

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

PCom(P0, P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism

Schwartz-Zippel Lemma: Let  be the non-zero degree-  
polynomial defined as 

 

We have 

D (d ⋅ ℓ)

D := X ⋅ Q(X ) − X ⋅ P0(X ) − f(P1(X ), …, Pn(X ))

②  Commit to the polynomials P0, P1, …, Pn



      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

Verifier

    Reveal a polynomial . We know that Q(X )
X ⋅ Q(X ) ≠ X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

Soundness Analysis

Malicious Prover 😈

①  For all , choose a degree-  polynomial 
. We have 

. 

Choose a degree-  polynomial 

i ℓ
Pi(X )

f (P1(0), …, Pn(0)) ≠ 0

(d ⋅ ℓ − 1)
P0(X )

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)
     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

④

⑥

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

PCom(P0, P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism

Schwartz-Zippel Lemma: Let  be the non-zero degree-  
polynomial defined as 

 

We have 

.

D (d ⋅ ℓ)

D := X ⋅ Q(X ) − X ⋅ P0(X ) − f(P1(X ), …, Pn(X ))

Pr[verification passes] = Pr [∀j, D(rj) = 0 ∣ {rj}j ⊂$ 𝒞] ≤
(d ⋅ ℓ

ℓ )
( |𝒞 |

ℓ )

②  Commit to the polynomials P0, P1, …, Pn



Prover

    Reveal the polynomial  such that Q(X )
X ⋅ Q(X ) = X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

④

⑥

Zero-Knowledge Analysis

Verifier 👀

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

PCom(P0, P1, …, Pn)

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



②  Commit to the polynomials P0, P1, …, Pn

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

④

Prover

Sample a random degree-  
       polynomial 

(d ⋅ ℓ − 1)
P0(X )

    Reveal the polynomial  such that Q(X )
X ⋅ Q(X ) = X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

⑥

Zero-Knowledge Analysis

Verifier 👀

Revealing  evaluations of  
leaks no information about .

ℓ Pi(X)
wi

①  For all , sample a random degree-  
polynomial  such that 

i ℓ
Pi(X ) Pi(0) = wi

PCom(P0, P1, …, Pn)

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽r1, …, rℓ

{vj,0, vj,1, …, vj,n}j      Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

TCitH and VOLEitH Frameworks, in the PIOP formalism



⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

r1, …, rℓ

{vj,0, vj,1, …, vj,n}j

Prover

    Reveal the polynomial  such that Q(X )
X ⋅ Q(X ) = X ⋅ P0(X ) + f (P1(X ), …, Pn(X ))

Q③

④

⑥

Zero-Knowledge Analysis

Verifier 👀

Revealing  leaks no information 
about , thanks to .

Q(X)
wi P0(X)

Sample a random degree-  
       polynomial 

(d ⋅ ℓ − 1)
P0(X )

①  For all , sample a random degree-  
polynomial  such that 

i ℓ
Pi(X ) Pi(0) = wi

PCom(P0, P1, …, Pn)

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

      Check that, for all , j
rj ⋅ Q(rj) = rj ⋅ vj,0 + f (vj,1, …, vj,n)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



Prover Verifier

Prove it!

Soundness Error = (d ⋅ ℓ
ℓ )

( |S |
ℓ )

Probability that a malicious prover 
can convince the verifier.

I know  such that 

 

where  is a public degree-  polynomial.

w1, …, wn

f(w1, …, wn) = 0

f d

TCitH and VOLEitH Frameworks, in the PIOP formalism



Prover Verifier

I know  such that 

 

where  are public degree-  polynomials.

w1, …, wn

f1(w1, …, wn) = 0
⋮

fm(w1, …, wn) = 0,

f1, …, fm d
Prove it!

TCitH and VOLEitH Frameworks, in the PIOP formalism



①  For all , sample a random degree-  
polynomial  such that  

Sample  random degree-  
       polynomials 

i ℓ
Pi(X ) Pi(0) = wi

m (d ⋅ ℓ)
P0(X ) = (P0,1(X ), …, P0,m(X ))

    Reveal the polynomials  
    such that 

Q1(X ), …, Qm(X )

X ⋅ Q1(X ) = X ⋅ P0,1(X ) + f1(P1(X ), …, Pn(X ))
⋮

X ⋅ Qm(X ) = X ⋅ P0,m(X ) + fm(P1(X ), …, Pn(X ))
Q1, …, Qm

③

④

⑥

②  Commit to the polynomials P0, P1, …, Pn

Prover

PCom(P0, P1, …, Pn)

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j
{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

         Check that, for all , j
rj ⋅ Q1(rj) = rj ⋅ vj,0,1 + f1(vj,1, …, vj,n)

⋮
rj ⋅ Qm(rj) = rj ⋅ vj,0,m + fm(vj,1, …, vj,n))

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

TCitH and VOLEitH Frameworks, in the PIOP formalism



    Reveal the polynomials  
    such that 

Q1(X ), …, Qm(X )

X ⋅ Q1(X ) = X ⋅ P0,1(X ) + f1(P1(X ), …, Pn(X ))
⋮

X ⋅ Qm(X ) = X ⋅ P0,m(X ) + fm(P1(X ), …, Pn(X ))
Q1, …, Qm

③

         Check that, for all , j
rj ⋅ Q1(rj) = rj ⋅ vj,0,1 + f1(vj,1, …, vj,n)

⋮
rj ⋅ Qm(rj) = rj ⋅ vj,0,m + fm(vj,1, …, vj,n))

④

⑥

ProverSigma/3-round variant of MQOM v2

①  For all , sample a random degree-  
polynomial  such that  

Sample  random degree-  
       polynomials 

i ℓ
Pi(X ) Pi(0) = wi

m (d ⋅ ℓ)
P0(X ) = (P0,1(X ), …, P0,m(X ))

PCom(P0, P1, …, Pn)

{vj,0, vj,1, …, vj,n}j

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

r1, …, rℓ

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

    Reveal the polynomials  
    such that 

Q1(X ), …, Qm(X )

X ⋅ Q1(X ) = X ⋅ P0,1(X ) + f1(P1(X ), …, Pn(X ))
⋮

X ⋅ Qm(X ) = X ⋅ P0,m(X ) + fm(P1(X ), …, Pn(X ))
Q1, …, Qm

③

Prover

A bit costly!

①  For all , sample a random degree-  
polynomial  such that  

Sample  random degree-  
       polynomials 

i ℓ
Pi(X ) Pi(0) = wi

m (d ⋅ ℓ)
P0(X ) = (P0,1(X ), …, P0,m(X ))

PCom(P0, P1, …, Pn)

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

         Check that, for all , j
rj ⋅ Q1(rj) = rj ⋅ vj,0,1 + f1(vj,1, …, vj,n)

⋮
rj ⋅ Qm(rj) = rj ⋅ vj,0,m + fm(vj,1, …, vj,n))

④

⑥

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

    Reveal the polynomials  
    such that 

Q1(X ), …, Qm(X )

X ⋅ Q1(X ) = X ⋅ P0,1(X ) + f1(P1(X ), …, Pn(X ))
⋮

X ⋅ Qm(X ) = X ⋅ P0,m(X ) + fm(P1(X ), …, Pn(X ))
Q1, …, Qm

③

Prover

A bit costly!

①  For all , sample a random degree-  
polynomial  such that  

Sample  random degree-  
       polynomials 

i ℓ
Pi(X ) Pi(0) = wi

m (d ⋅ ℓ)
P0(X ) = (P0,1(X ), …, P0,m(X ))

PCom(P0, P1, …, Pn)

⑤  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

         Check that, for all , j
rj ⋅ Q1(rj) = rj ⋅ vj,0,1 + f1(vj,1, …, vj,n)

⋮
rj ⋅ Qm(rj) = rj ⋅ vj,0,m + fm(vj,1, …, vj,n))

④

⑥

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

TCitH and VOLEitH Frameworks, in the PIOP formalism

Solution: batching 

②  Commit to the polynomials P0, P1, …, Pn



Prover Verifier

②  Commit to the polynomials P0, P1, …, Pn

PCom(P0, P1, …, Pn)

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

TCitH and VOLEitH Frameworks, in the PIOP formalism



④

Prover Verifier

    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))
Q

③  Choose random coefficients 

γ1, …, γm ←$ 𝔽γ1, …, γm

PCom(P0, P1, …, Pn)

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



④

Prover Verifier

    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))
Q

③  Choose random coefficients 

γ1, …, γm ←$ 𝔽γ1, …, γm

PCom(P0, P1, …, Pn)

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

TCitH and VOLEitH Frameworks, in the PIOP formalism

Well-defined!
m

∑
k=1

γk ⋅ fk(P1(0), …, Pn(0)) =
m

∑
k=1

γk ⋅ fk(w1, …, wn)

=
m

∑
k=1

γk ⋅ 0 = 0

②  Commit to the polynomials P0, P1, …, Pn



⑤

④

Prover Verifier

    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))
Q

③  Choose random coefficients 

γ1, …, γm ←$ 𝔽γ1, …, γm

PCom(P0, P1, …, Pn)

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

{vj,0, vj,1, …, vj,n}j

r1, …, rℓ

⑥  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



⑤

④

Prover Verifier

    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))
Q

           Check that, for all , j

rj ⋅ Q(rj) = rj ⋅ vj,0 +
m

∑
k=1

γk ⋅ fk(vj,1, …, vj,n)

⑦

③  Choose random coefficients 

γ1, …, γm ←$ 𝔽γ1, …, γm

PCom(P0, P1, …, Pn)

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

r1, …, rℓ

⑥  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

     Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j
{vj,0, vj,1, …, vj,n}j

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



④

Prover Verifier

①  For all , choose a degree-  polynomial 
. There exists  s.t. 

. 

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) j*

fj*(P1(0), …, Pn(0)) ≠ 0
(d ⋅ ℓ − 1)

P0(X )

    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) ≠ X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))
Q

③  Choose random coefficients 

γ1, …, γm ←$ 𝔽γ1, …, γm

Soundness Analysis

PCom(P0, P1, …, Pn)

r1, …, rℓ

⑥  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

⑤

           Check that, for all , j

rj ⋅ Q(rj) = rj ⋅ vj,0 +
m

∑
k=1

γk ⋅ fk(vj,1, …, vj,n)

⑦

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

{vj,0, vj,1, …, vj,n}j      Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



④

Prover Verifier

①  For all , choose a degree-  polynomial 
. There exists  s.t. 

. 

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) j*

fj*(P1(0), …, Pn(0)) ≠ 0
(d ⋅ ℓ − 1)

P0(X )

    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) ≠ X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))
Q

③  Choose random coefficients 

γ1, …, γm ←$ 𝔽γ1, …, γm

Soundness Analysis

PCom(P0, P1, …, Pn)

r1, …, rℓ

⑥  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

⑤

           Check that, for all , j

rj ⋅ Q(rj) = rj ⋅ vj,0 +
m

∑
k=1

γk ⋅ fk(vj,1, …, vj,n)

⑦

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

{vj,0, vj,1, …, vj,n}j      Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

TCitH and VOLEitH Frameworks, in the PIOP formalism

It is an inequality with high probability over the 
randomness of , since we haveγ1, …, γm

m

∑
k=1

γk ⋅ fk(P1(0), …, Pn(0)) ≠ 0

②  Commit to the polynomials P0, P1, …, Pn



④

Prover Verifier

①  For all , choose a degree-  polynomial 
. There exists  s.t. 

. 

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) j*

fj*(P1(0), …, Pn(0)) ≠ 0
(d ⋅ ℓ − 1)

P0(X )

    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) ≠ X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))
Q

③  Choose random coefficients 

γ1, …, γm ←$ 𝔽γ1, …, γm

Soundness Analysis

PCom(P0, P1, …, Pn)

r1, …, rℓ

⑥  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

⑤

           Check that, for all , j

rj ⋅ Q(rj) = rj ⋅ vj,0 +
m

∑
k=1

γk ⋅ fk(vj,1, …, vj,n)

⑦

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

{vj,0, vj,1, …, vj,n}j      Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

TCitH and VOLEitH Frameworks, in the PIOP formalism

Schwartz-Zippel Lemma: Since it is a degree-  relation,

.

(d ⋅ ℓ)

Pr[verification passes] ≤
(d ⋅ ℓ

ℓ )
( |S |

ℓ )

②  Commit to the polynomials P0, P1, …, Pn



Prover Verifier

5-round variant used in most of the 
recent MPCitH-based signature schemes

⑤

④    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))
Q

           Check that, for all , j

rj ⋅ Q(rj) = rj ⋅ vj,0 +
m

∑
k=1

γk ⋅ fk(vj,1, …, vj,n)

⑦

③  Choose random coefficients 

γ1, …, γm ←$ 𝔽γ1, …, γm

PCom(P0, P1, …, Pn)

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

r1, …, rℓ

⑥  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

{vj,0, vj,1, …, vj,n}j      Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



Prover Verifier

⑤

④    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))
Q

           Check that, for all , j

rj ⋅ Q(rj) = rj ⋅ vj,0 +
m

∑
k=1

γk ⋅ fk(vj,1, …, vj,n)

⑦

③  Choose random coefficients 

γ1, …, γm ←$ 𝔽γ1, …, γm

PCom(P0, P1, …, Pn)

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

r1, …, rℓ

⑥  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

     Choose  random evaluation 
     points 

ℓ
r1, …, rℓ ∈ 𝒞 ⊂ 𝔽

{vj,0, vj,1, …, vj,n}j      Check that  
     are consistent with the 
     commitment.

{vj,0, vj,1, …, vj,n}j

TCitH and VOLEitH Frameworks, in the PIOP formalism

②  Commit to the polynomials P0, P1, …, Pn



①  VOLEitH / TCitH-GGM

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[BBD+23] Baum, Braun, Delpech, Klooß, 
Orsini, Roy, Scholl. Publicly Verifiable Zero-
Knowledge and Post-Quantum Signatures 
From VOLE-in-the-Head. Crypto 2023. 

[FR23] Feneuil, Rivain. Threshold 
Computation in the Head: Improved 
Framework for Post-Quantum Signatures 
and Zero-Knowledge Arguments. Journal 
of Cryptology.

How to commit to polynomials?
(using symmetric primitives)



①  VOLEitH / TCitH-GGM

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[FR23] Feneuil, Rivain. Threshold Computation 
in the Head: Improved Framework for Post-
Quantum Signatures and Zero-Knowledge 
Arguments. Journal of Cryptology.

How to commit to polynomials?
(using symmetric primitives)

Degree-enforcing commitment②

[FR25] Feneuil, Rivain. SmallWood: Hash-
Based Polynomial Commitments and Zero-
Knowledge Arguments for Relatively Small 
Instances. ePrint 2025/1085.



①  VOLEitH / TCitH-GGM

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[AHIV17] Ames, Hazay, Ishai, 
Venkitasubramaniam. Ligero: Lightweight 
Sublinear Arguments Without a Trusted 
Setup. CCS 2017. 

[GLS+23] Golonew, Lee, Setty, Thaler, 
Wahby. Brakedown: Linear-time and field 
agnotic SNARKs for R1CS. Crypto 2023.

Merkle Trees with 
Ligero-like Proximity Tests
③

How to commit to polynomials?
(using symmetric primitives)

Degree-enforcing commitment②



①  VOLEitH / TCitH-GGM

Degree-enforcing commitment

Merkle Trees with 
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[BBHR18] Ben-Sasson, Bentov, Horesh, 
Riabzev. Fast Reed-Solomon Interactive 
Oracle Proofs of Proximity. ICALP 2018. 

[BGKS20] Ben-Sasson, Goldberg, 
Kopparty, Saraf. DEEP-FRI: Sampling 
Outside the Box Improves Soundness. 
ITCS 2020.

③

②

How to commit to polynomials?
(using symmetric primitives)



①  VOLEitH / TCitH-GGM

Merkle Trees with 
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000③

Merkle Tree

GGM Tree

How to commit to polynomials?
(using symmetric primitives)

Degree-enforcing commitment②



How to commit to polynomials?

①  VOLEitH / TCitH-GGM

Merkle Trees with 
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000③

(using symmetric primitives)

Merkle Tree

GGM Tree

For signature schemes, we use 
degree-  polynomials most of the time.1

Degree-enforcing commitment②



Committing to a Polynomial using a Seed Tree

A seed tree of  leaves to commit to degree-1 polynomials 

👉 The prover can provably open  evaluations (i.e. ) 

👉 Soundness error of 

N

N N = |𝒞 |
d
N

 with 
(d ⋅ ℓ

ℓ )
( |𝒞 |

ℓ )
ℓ := 1



Committing to a Polynomial using a Seed Tree

How to have a negligible soundness error? 🤔

A seed tree of  leaves to commit to degree-1 polynomials 

👉 The prover can provably open  evaluations (i.e. ) 

👉 Soundness error of 

N

N N = |𝒞 |
d
N



Committing to a Polynomial using a Seed Tree

1. Taking . Impossible since the complexity would be in . N ≥ 2λ O(2λ)

How to have a negligible soundness error? 🤔

A seed tree of  leaves to commit to degree-1 polynomials 

👉 The prover can provably open  evaluations (i.e. ) 

👉 Soundness error of 

N

N N = |𝒞 |
d
N



Committing to a Polynomial using a Seed Tree

1. Taking . Impossible since the complexity would be in . 

2. TCitH-GGM Approach. Taking  small (e.g. ) and repeating the 

protocol  times. Soundness error of . 

N ≥ 2λ O(2λ)

N N = 256

τ ( d
N )

τ

How to have a negligible soundness error? 🤔

A seed tree of  leaves to commit to degree-1 polynomials 

👉 The prover can provably open  evaluations (i.e. ) 

👉 Soundness error of 

N

N N = |𝒞 |
d
N



Committing to a Polynomial using a Seed Tree

1. Taking . Impossible since the complexity would be in . 

2. TCitH-GGM Approach. Taking  small (e.g. ) and repeating the 

protocol  times. Soundness error of . 

3. VOLEitH Approach. Embed  polynomials over  into a unique 

polynomial over , for which we will be able to open  evaluations. 

Soundness error of .

N ≥ 2λ O(2λ)

N N = 256

τ ( d
N )

τ

τ 𝔽q

𝔽qτ Nτ

d
Nτ

How to have a negligible soundness error? 🤔

A seed tree of  leaves to commit to degree-1 polynomials 

👉 The prover can provably open  evaluations (i.e. ) 

👉 Soundness error of 

N

N N = |𝒞 |
d
N



Link between MPCitH and PIOP

①  Generate and commit shares   

[[x]] = ([[x]]1, …, [[x]]N)

②  Run MPC in their head

④  Open parties  {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

④    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))

②  Commit the polynomials P0, P1, …, Pn

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

⑥  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)



Link between MPCitH and PIOP

①  Generate and commit shares   

[[x]] = ([[x]]1, …, [[x]]N)

②  Run MPC in their head

④  Open parties  {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

④    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))

②  Commit to the polynomials P0, P1, …, Pn

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

⑥  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

Commit to a -Shamir secret sharing(ℓ, N )



Link between MPCitH and PIOP

①  Generate and commit shares   

[[x]] = ([[x]]1, …, [[x]]N)

②  Run MPC in their head

④  Open parties  {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

④    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

⑥  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

Computation of the MPC protocol, assuming that a 
multiplication is computed share by share

②  Commit to the polynomials P0, P1, …, Pn



Link between MPCitH and PIOP

①  Generate and commit shares   

[[x]] = ([[x]]1, …, [[x]]N)

②  Run MPC in their head

④  Open parties  {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

④    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

⑥  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

Revealing the polynomial is equivalent to revealing 
the broadcast Shamir secret sharing.

②  Commit to the polynomials P0, P1, …, Pn



Link between MPCitH and PIOP

①  Generate and commit shares   

[[x]] = ([[x]]1, …, [[x]]N)

②  Run MPC in their head

④  Open parties  {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

④    Reveal the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
k=1

γk ⋅ fk(P1(X ), …, Pn(X ))

①  For all , sample a random degree-  
polynomial  such that  

Sample a random degree-  
       polynomial 

i ℓ
Pi(X ) Pi(0) = wi

(d ⋅ ℓ − 1)
P0(X )

⑥  For all , reveal the evaluation (i, j)

vj,i := Pi(rj)

It is equivalent to revealing some party computations.

②  Commit to the polynomials P0, P1, …, Pn



Instantiations



For the sake of diversity…

LWE Syndrome Decoding
Regular Syndrome Decoding

Multivariate Quadratic

Rank Syndrome Decoding

SIS

Subfield Collision Problem

Subset Sum

MinRank

Permuted KernelAES Key Recovery

Rain Key Recovery

AIM Key Recovery

PowAff2Legendre PRF
BHHG’s PRF

Anemoi Hash Preimage
Poseidon Hash Preimage

LowMC Key Recovery

Griffin Hash Preimage
RescuePrime Hash Preimage

Matrix Subcode Equivalence

Linear Code Equivalence
Restricted Syndrome Decoding

Integer Factorization
Discrete Logarithm

Double Discrete Logarithm



For the sake of diversity…

Multivariate Quadratic

Rank Syndrome Decoding
Subfield Collision Problem

MinRank

AES Key Recovery

Rain Key Recovery

AIM Key Recovery

PowAff2Legendre PRF
BHHG’s PRF

Anemoi Hash Preimage
Poseidon Hash Preimage

LowMC Key Recovery

Griffin Hash Preimage
RescuePrime Hash Preimage

Matrix Subcode Equivalence

To use the PIOP-based MPCitH frameworks, 
one just needs to write those problems using polynomial constraints.

Syndrome Decoding
Regular Syndrome Decoding

Permuted Kernel
Linear Code Equivalence

Restricted Syndrome Decoding

LWE
SIS

Subset Sum

Integer Factorization
Discrete Logarithm

Double Discrete Logarithm



For the sake of diversity…

Multivariate Quadratic

Rank Syndrome Decoding
Subfield Collision Problem

MinRank

AES Key Recovery

Rain Key Recovery

AIM Key Recovery

PowAff2Legendre PRF
BHHG’s PRF

Anemoi Hash Preimage
Poseidon Hash Preimage

LowMC Key Recovery

Griffin Hash Preimage
RescuePrime Hash Preimage

Matrix Subcode Equivalence

We can build highly conservative schemes! 

Syndrome Decoding
Regular Syndrome Decoding

Permuted Kernel
Linear Code Equivalence

Restricted Syndrome Decoding

LWE
SIS

Subset Sum

Integer Factorization
Discrete Logarithm

Double Discrete Logarithm



For the sake of diversity…

Multivariate Quadratic

Rank Syndrome Decoding
Subfield Collision Problem

MinRankRain Key Recovery

PowAff2Legendre PRF
BHHG’s PRF

Anemoi Hash Preimage
Poseidon Hash Preimage

LowMC Key Recovery

Griffin Hash Preimage
RescuePrime Hash Preimage

Matrix Subcode Equivalence

We can build highly conservative schemes! 

AES Key Recovery
AIM Key Recovery

Syndrome Decoding
Regular Syndrome Decoding

Permuted Kernel
Linear Code Equivalence

Restricted Syndrome Decoding

LWE
SIS

Subset Sum

Integer Factorization
Discrete Logarithm

Double Discrete Logarithm



NIST Candidates

NIST Submission

Security Assumptions Candidate Name Sig. Size PK Size

AES Block cipher FAEST v2 3.9-4.5 KB 32 B

MinRank Mirath 3.0-3.2 KB 57-73 B

Multivariate Quadratic MQOM v2 2.8-3.2 KB 52-80 B

Permuted Kernel PERK v2.1 3.5 KB 100 B

Rank Syndrome Decoding RYDE v2 3.1 KB 69 B

Syndrome Decoding SDitH v2 3.7 KB 70 B

Using seed trees of around 2048 leaves



NIST Candidates

NIST Submission

Security Assumptions Candidate Name Sig. Size PK Size

AES Block cipher FAEST v2 3.9-4.5 KB 32 B

MinRank Mirath 3.0-3.2 KB 57-73 B

Multivariate Quadratic MQOM v2 2.8-3.2 KB 52-80 B

Permuted Kernel PERK v2.1 3.5 KB 100 B

Rank Syndrome Decoding RYDE v2 3.1 KB 69 B

Syndrome Decoding SDitH v2 3.7 KB 70 B

What about the computational cost?🧐

Using seed trees of around 2048 leaves



Implementation
When using seed trees to commit to polynomials, we have

Signing time  Verification time≈



Implementation
When using seed trees to commit to polynomials, we have

Signing time  Verification time≈

Over laptop-grade CPU,

Signing time  Verification time  few milliseconds (1-10 Mc)≈ ≈

Using intensively AES instructions, 
vectorialization instructions, and large memory footprint



Implementation
When using seed trees to commit to polynomials, we have

Signing time  Verification time≈

Over laptop-grade CPU,

Signing time  Verification time  few milliseconds (1-10 Mc)≈ ≈

Using intensively AES instructions, 
vectorialization instructions, and large memory footprint

Over embedded microcontrollers,

[BF26] Benadjila, Feneuil. Breaking the Myth of MPCitH Inefficiency: Optimizing MQOM for 
Embedded Platforms. ePrint 2026/078.

[ADENS25] Aranha, Degn, Eilath, Nielsen, Scholl. FAEST for Memory-Constrained Devices 
with Side-Channel Protections. ePrint 2025/1261.

[BBBPP24] Bettaieb, Bidoux, Budroni, Palumbi, Perin. Enabling PERK and other MPC-in-the-
Head Signatures on Resource-Constrained Devices. TCHES 2024.



Implementation (over embedded devices)

Article NIST Candidate Memory Footprint Signing time Sig. Sizes

[BBBPP24] PERK v1 28 KB 1136 Mc ~ 6 KB

[ADENS25] FAEST (EM) v1 31 KB 158 Mc ~ 5.6 KB

[BF26] MQOM v2
10 KB 76 Mc

~ 3.3 KB
5 KB 183 Mc

Using seed trees of around 256 leaves

Article NIST Candidate Memory Footprint Signing time Sig. Sizes

[BBBPP24] PERK v1 - - -

[ADENS25] FAEST (EM) v1 31 KB 1288 Mc ~ 4.6 KB

[BF26] MQOM v2
14 KB 308 Mc

~ 2.9 KB
5.5 KB 792 Mc

Using seed trees of around 2048 leaves



Physical Security
👉 Side-Channel Leakage

👉 Fault attacks

[JD25a] Jendral, Dubrova. Side-Channel on VOLEitH Signature Schemes Breaking Masked 
FAEST. CiC 2025.

[JD25b] Jendral, Dubrova. Fault Attacks on VOLEitH Signature Schemes. TCHES 2026.

[GAGLM24] Godard, Aragon, Gaborit, Loiseau, Maillard. Single Trace Side-Channel Attack on 
the MPC-in-the-Head Framework. PQCrypto 2025.

[SD26] Sarde, Debande. Differential Fault Attacks on MQOM, Breaking the Heart of 
Multivariate Evaluation. CASCADE 2026.

[BBK25] Banda, Brinkmann, Krämer. Fault Attacks on MPCitH Signature Schemes. ePrint 
2025/1745.



Physical Security
👉 Side-Channel Leakage

👉 Fault attacks

[JD25a] Jendral, Dubrova. Side-Channel on VOLEitH Signature Schemes Breaking Masked 
FAEST. CiC 2025.

[JD25b] Jendral, Dubrova. Fault Attacks on VOLEitH Signature Schemes. TCHES 2026.

[GAGLM24] Godard, Aragon, Gaborit, Loiseau, Maillard. Single Trace Side-Channel Attack on 
the MPC-in-the-Head Framework. PQCrypto 2025.

[SD26] Sarde, Debande. Differential Fault Attacks on MQOM, Breaking the Heart of 
Multivariate Evaluation. CASCADE 2026.

[BBK25] Banda, Brinkmann, Krämer. Fault Attacks on MPCitH Signature Schemes. ePrint 
2025/1745.

👉 Protections?

No floating-point arithmetic (cf. Falcon) 
No Gaussian elimination (cf. UOV-like schemes and LESS) 
No rejection sampling (cf. ML-DSA) 
For NIST MPCitH candidates, only binary fields, i.e. no arithmetic-
Boolean conversions (cf. most lattice-based schemes, LESS and CROSS)



Comparison with the other families

MPCitH
Dilithium 
ML-DSA

Falcon 
FN-DSA

SPHINCS+ UOV Mayo SQIsign LESS CROSS

Type FS FS H&S Hash-based H&S H&S FS FS FS

|Sig| 2.5-4.5 2.4 0.7 7.8-17 0.1 0.2-0.5 0.1 1.3-2.3 9.0-18

|PK| < 0.2 1.3 0.9 < 0.1 44-67 1.4-4.9 0.1 14-97 0.1

|Sig|+|PK| 2.5-4.6 3.7 1.6 7.9-17 44-67 1.9-5.1 0.2 17-98 9.0-18

Sign. Time ~ ++ ++ -- ~ ~ - - +

Verif. Time ~ ++ ++ ~ ++ ++ ~ - +

Security

AES 
Unstructured 

SD 
Unstructured 

MQ 
…

Structured 
Lattice

Structured 
Lattice

Hash
UOV 

Trapdoor

New 
UOV-like 
Trapdoor

Isogeny
Code 

Equivalence

Restricted 
Syndrome 
Decoding

FS: Fiat-Shamir transformation 
H&S: Hash-and-sign scheme

Sizes in kilobytes (KB)

UOV-like 
schemes

Alternative 
code-based schemesLattice-based schemes



Conclusion
MPC-in-the-Head 

Very versatile and tunable 

Can be applied to any PQ hardness assumption 

A practical tool to build conservative signature schemes



Conclusion
MPC-in-the-Head 

Very versatile and tunable 

Can be applied to any PQ hardness assumption 

A practical tool to build conservative signature schemes 

PIOP-based MPCitH Frameworks 

Lead to signatures of 2.5-5 kilobytes 

Speed up the MPCitH schemes 

Used in the lastest version of all NIST candidates



Conclusion
MPC-in-the-Head 

Very versatile and tunable 

Can be applied to any PQ hardness assumption 

A practical tool to build conservative signature schemes 

PIOP-based MPCitH Frameworks 

Lead to signatures of 2.5-5 kilobytes 

Speed up the MPCitH schemes 

Used in the lastest version of all NIST candidates 

Next Steps 

More optimized implementations 

Side-channel Analysis 

SCA & Fault countermeasures → Protected implementation



Conclusion
MPC-in-the-Head 

Very versatile and tunable 

Can be applied to any PQ hardness assumption 

A practical tool to build conservative signature schemes 

PIOP-based MPCitH Frameworks 

Lead to signatures of 2.5-5 kilobytes 

Speed up the MPCitH schemes 

Used in the lastest version of all NIST candidates 

Next Steps 

More optimized implementations 

Side-channel Analysis 

SCA & Fault countermeasures → Protected implementation

Thank you for your attention.


