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Challenge 1
Response 1 >
Challenge n
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Prover A Veritier Q==

[ | am convinced. ]

® Completeness: Priverif v | honest prover] = 1
® Soundness: Prlverif v | malicious prover] < ¢ (e.g. 128

® Zero-knowledge: verifier learns nothing on Q=—=.



| know Q=—x.

> Challenge 1 = Hash(m, Commitment)

> Challenge n = Hash(m, Responsen — 1)
Prover \
-

ranscript

Fiat-Shamir
Transformation Verifier Q==

m: message to sign



MPCitH: general principle



MPC in the Head

e [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

e Turn a multiparty computation (MPC) into an identification scheme / zero-
knowledge proof of knowledge
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® Generic: can be applied to any cryptographic problem



in the Head

e [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

® Convenient to build (candidate) post-quantum signature schemes

® Picnic: submission to NIST (2017)

® First round of recent NIST call: 7~9 MPCitH schemes / 40 candidates
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MPC in the Head

e [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

® Convenient to build (candidate) post-quantum signature schemes
® Picnic: submission to NIST (2017)
® First round of recent NIST call: 7~9 MPCitH schemes / 40 candidates

® Second round of recent NIST call: 5~6 MPCitH schemes / 14 candidates
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One-way function Multiparty computation (MPC)

o Input sharing [[x]]
\ Joint evaluation of:

» Accept if F(x) =y
Reject it F(x) #y
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One-way function Multiparty computation (MPC)

o o Input sharing [[x]]

L X |
Fx Y ‘: M Joint evaluation of:
E.g. AES, MQ system, ‘. ° ; Accept it F(x) =y

:\},‘/ - 800 = {Reject it F(x) #y

MPC-in-the-Head transform

Syndrome decoding

Signature scheme f Zero-knowledge proof
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Secret x which satisfies
some public relation y = F(x)

How to build a zero-knowledge
proof of knowledge for x?
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Secret x which satisfies

some public relation y = F(x)

Sharing [[x]] of the secret x

Additive secret sharing: Shamir's secret sharing:

x = [Ixlly + [xl, + ... + [x]ly Vi, [x], = P(e),
where P is a random degree-¢

polynomial such that P(0) = x.
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Sharing [[x]] of the secret x
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Secret x which satisfies

some public relation y = F(x)

Sharing [[x]] of the secret x

Additive secret sharing:
x = [Ixlly + [xl, + ... + [x]ly

If x := 42 lives in F(,;, @ possible sharing of x is



l‘_’l Input sharing [[x]]

/‘M Joint evaluation of:
Accept if F(x) =y
) & 3 S

800 = {Reject it F(x) £y




® Secret x satisfies y = z*, with z public.

e \We want a multiparty computation that

. . computes

Accept ifz* =y
g(x) = . o
Reject ifz*#y



Secret x satisties y = z*, with z public.

We want a multiparty computation that
computes

Accept ifz* =y
g(x) = . o
Reject ifz*#y

Party i:

> Receive the ith share [[x]],
»  Compute [2']]; « 71X,
> Broadcast [z*]]..

» Receive all the broadcasted values

[[Zx]]la cees [[Zx]]N

» Recover z* and check that y.



z =3 (mod 1907)

x =575

y = 1467 = z* (mod 1907)

Secret x satisties y = z*, with z public.

We want a multiparty computation that
computes

Accept ifz* =y
g(x) = . o
Reject ifz"#y

Party i:

> Receive the ith share [[x]],
»  Compute [2']]; « ¥
> Broadcast [z*]]..

» Receive all the broadcasted values

[[Zx]]l’ cees [[Zx]]N

» Recover z* and check that y.
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z=3 (mod 1907) x=575  y=1467=2z" (mod 1907)

[x]l, = 180, [xI, =397, [xls=649, [x],=713, [x]s=542

x = [[x]l; + OxI, + [xD5 + [x]4 + [x]ls (mod 953)
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> Broadcast [z*]]..

» Receive all the broadcasted values

[z 1y, ..., 021y

» Recover z* and check that y.
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® Secret x satisfies y = z*, with z public.

1

e \We want a multiparty computation that
computes

80 ® ® 397
@68 /%603 g(x) = {Accept itz =y

Reject ifz*#y

1397 [ 1= 1467

o '\_//v 1235
542 5 I )

e Party::

> Receive the ith share [[x]],

»  Compute [2']]; « 7

713 If someone sees the computation of

z =3 (mod 1907) X =‘

[xl, = 180, [xI, =397, [xIs :. [x], =
x = [x]; + [x1, + [xT5 + [x]l, + [x]s (mod 953)

all the parties except one, it leaks no

y = 1467

information on x.




[x]1l, [x]l,

N

Public
%’ domain _Q

o a1, ~ @
[[06]]4I )

@
[[X]]4

x =[xl + [IxI, + ... + [[xIly

[[X]]3

Jointly compute

Accept if F(x) =1y
gx) = {R | |
eject if F(x) #y

(N — 1) private: the views of any N — 1
parties provide no information on x

Semi-honest model: assuming that the
parties follow the steps of the protocol



MPC model

e Jointly compute

Accept if F(x) =1y
g(x) = {R . .
eject if F(x) #y

[[x]h [[x]]z
e (N—1) private: the views of any N — 1

\Yﬂh /%[ , parties provide no information on x
allp

® Semi-honest model: assuming that the
Public parties follow the steps of the protocol

[l
‘ /5' domain '?"‘ ® Broadcast model
a
- ’ » Parties locally compute on their shares
[[.X]]5 [[a]]4I [[x]]3 [x]] = [l
‘ » Parties broadcast [[a]] and recompute
a
[[X]]4 » Parties start again (now knowing a)

x =[xl + [IxI, + ... + [[xIly
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Mit trafor

(D Generate and commit shares Com”1([[x])
6] = (Ix - [xTly) Com?([x]ly)

Prover Verifier




(1) Generate and commit shares

LIl = (lxly, - lxDly)

2 Run MPC in their head

[T, [x1,
\ 7/
o~ — [l

[[x]] N

[[x]]4

Prover

Com”1([[x])

Com”([xTly)

send broadcast

lally, ..., [ally

Verifier




(1) Generate and commit shares

LIl = (lxly, - lxDly)

2 Run MPC in their head

[T, [x1,
\ 7/
o~ — [l

[[x]] N

[[x]]4

Prover

Com”1([[x])

Com”([xTly)

send broadcast

lally, ..., [ally

l'>X<

3 Choose a random party
i* <% {1,...,N}

Verifier




(1) Generate and commit shares

LIl = (lxly, - lxDly)

@ Run MPC in their head

(x4 X / [x1,
o= G
-

®

@ Open parties {1,..., N}\{i*}

Prover

Com”1([[x])

Com”([xTly)

send broadcast

lally, ..., [ally

l'>l<

([[x]]l-, pi)i;&i*

@ Choose a random party
i* <% {1,...,N}

Verifier




(D Generate and commit shares Com”'([[x]],)

[0 = ([T -, [xTly) Com([[xly)

@ Run MPC in their head

send broadcast

[x1l, [x1,
[[a]]la sy [[a]]N
» | 3 Choose a random party
; $
i*

® Check Vi # i*

- Commitments Com”i([[x],)

® i
([[x]]l-, pi)i;&i*

@ Open parties {1,..., N}\{i*} > - MPC computation [[all; = ¢([[x],)
Check g(y, a) = Accept

Prover Verifier




Completeness
MPCitH transform Zero-Knowledge

(D Generate and commit shares Com”'([[x]],)

[0 = ([T -, [xTly) Com([[xly)

@ Run MPC in their head

send broadcast

[x1l, [x1,
[[a]]la seey [[a]]N
» | 3 Choose a random party

[T o—— ‘ % S (1,....N)
’ <
I) I ® Check Vi # i*
®
(X1, p)) s - Commitments Com”([[x]];)
@ Open parties {1,..., N}\{i*} > - MPC computation [a]l; = ¢([[x],)

Check g(y, a) = Accept

Prover Verifier




MitH traform

@ Generate and commit shares Com”([[x]];)
[[x]] — ([[x]]la“',[[-x]]N) o
Com”~([[x]l )
We have F(x) # y where >

x =[xl + ... + [xlly

Malicious Prover Verifier




MCitH trasfor

@ Generate and commit shares Com”([[x]];)
[[x]] — ([[x]]l,“-,[[x]]N) o
Com”~([[x]l )
We have F(x) # y where >

x =[xl + ... + [xlly

Run MPC in their head
@ Run e hes send broadcast

IxT), X // [T, Lol ..., [ally
>

Malicious Prover Verifier




MPCitH trasfor

@ Generate and commit shares Com”([[x]];)
Hxﬂ =:(Hxﬂla“°’ﬂxﬂN) o
Com”~([[x]l )
We have F(x) # y where >

x =[xl + ... + [xlly

Run MPC in their head
@ Run e hes send broadcast

[x1, [x1,
X // [ally, ... [ally g 3 Choose a random party
i* <% {1,...,N}
Q‘ i
[x1l;

Malicious Prover Verifier




MPCitH trasfor

@ Generate and commit shares Com”([[x]];)
[[x]] — ([[x]]l,-“,[[x]]N) o
Com”~([[x]l )
We have F(x) # y where >

x =[xl + ... + [xlly

Run MPC in their head
@ Run el e send broadcast

[ally, ..., [ally @ Choose a random party
i* <% {1,...,N)}

l'>l<

([x1l;, Pi)i;ei*

@ Open parties {1,..., N}\{i*}

Malicious Prover Verifier




MPCitH trasfor

1D Generate and commit shares
[[x]] — ([[x]]la sey [[x]]N)
We have F(x) # y where

Com”([[x]],)

COLI.IOPN( [xTy)

x =[xl + ... + [xlly

@ Run MPC in their head

>
send broadcast
Lo, ladly . 3 Choose a random party
i* <% {1,...,N)}
l'>l<
<
® Check Vi # i*
- ' Pi ,
(Ix1,, pi)i#* Commitments Com”i([[x]];)

> - MPC computation [[a]]; = ¢([[x],)

@ Open parties {1,..., N}\{i*}

Malicious Prover

Check g(y, @) = Accept

Verifier
Q Cheating detected!




MPCitH transfor

1D Generate and commit shares
[[x]] — ([[x]]la sey [[x]]N)
We have F(x) # y where

Com”([[x]],)

COLI.IOPN( [xTy)

x =[xl + ... + [xlly

@ Run MPC in their head

send broadcast

Lally, ..., [ally

[x X // [x1,

[[x]]N .& Q [[x]]3

l'>l<

l'>l<

®

([x1l;, Pi)i;ei*

@ Open parties {1,..., N}\{i*}

Malicious Prover

3 Choose a random party
i* <% {1,...,N)

® Check Vi # i*

- Commitments Com”([[x]],)
- MPC Computation [[Ol]],- — go([[x]],-)
Check g(y, @) = Accept

Verifier

Q Seems OK.




MCitH rafor

e Zero-knowledge <<= MPC protocolis (N — 1)-private



VPG transtorm

® Zero-knowledge <= MPC protocolis (N — 1)-private

® Soundness:

P(malicious prover convinces the verifier)

= P(corrupted party remains hidden)
1

N



MPitH traform

e Zero-knowledge <= MPC protocolis (N — 1)-private

® Soundness:

P(malicious prover convinces the verifier)

= P(corrupted party remains hidden)
1

N

e Parallel repetition

1 T
Protocol repeated 7 times in parallel = soundness error (N)



Polynomial Interactive
Oracle Proof

[BBD+23] Baum, Braun, Delpech, Kloof3, [FR25] Feneuil, Rivain. Threshold

Orsini, Roy, Scholl. Publicly Verifiable Computation in the Head: Improved
Zero-Knowledge and Post-Quantum Framework for Post-Quantum Signatures
Signatures From VOLE-in-the-Head. and Zero-Knowledge Arguments. Journal

Crypto 2023. of Cryptology, 2025.



TCitH and VOLEitH Frameworks, in the PIOP formalism

i | knowwy,...,w, such that

FWyyeeyw,) =0

where fis a public degree-d polynomial.

Prove it!

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

@ For all i, sample a random degree-#
polynomial P(X) such that P,(0) = w;,

Sample a random degree-(d - £ — 1)
polynomial Py(X)

PCom(Py, Py, ..., P,)
@ Commit to the polynomials Py, Py, ..., P, >

Prover Verifier
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@ For all i, sample a random degree-#
polynomial P(X) such that P,(0) = w;,

Sample a random degree-(d - £ — 1)
polynomial Py(X)
PCom(Py, Py, ..., P,)

@ Commit to the polynomials Py, Py, ..., P, >
@ Reveal the polynomial Q(X) such that 0
X-0X)=X-PyX)+f(P(X),..., P (X)) >

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

@ For all i, sample a random degree-#
polynomial P(X) such that P,(0) = w;,

Sample a random degree-(d - £ — 1)
polynomial Py(X)

@ Commit to the polynomials Py, Py, ..., P,

@ Reveal the polynomial Q(X) such that
X - Q(X) = X - Py(X) + f(P,(X), ..., P,(X))

Well-defined!

Prover

PCom(Py, Py, ..., P,)

0 - Py(0) + F(Py(0), ..., P(0)) = 0+ f(wy, ..., w,) =0

>

Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

@ For all i, sample a random degree-#
polynomial P(X) such that P,(0) = w;,

Sample a random degree-(d - £ — 1)
polynomial Py(X)
PCom(Py, Py, ..., P,)

@ Commit to the polynomials Py, Py, ..., P, >
@ Reveal the polynomial Q(X) such that 0
X-0X)=X-PyX)+f(P(X),...,P,(X)) > @4 Choose Z random evaluation
Flyeon Ty ,
< points ry,...,r, € € C F

® Forall (i, j), reveal the evaluation

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

@ For all i, sample a random degree-#
polynomial P(X) such that P,(0) = w;,

Sample a random degree-(d - £ — 1)
polynomial Py(X)
PCom(Py, Py, ..., P,)

@ Commit to the polynomials Py, Py, ..., P, >
@ Reveal the polynomial Q(X) such that 0
X-0X)=X-PyX)+f(P(X),...,P,(X)) > @4 Choose Z random evaluation
< oo points ry,...,r, € € CF

® Forall (i, j), reveal the evaluation

],I’l
are consistent with the

commitment.

; ol ® Check that {Via, Vi gy ..o s ).

Check that, for all j,
rj . Q(}/’]) = }"'] . VJ,O +f(v],1’ ceey V],n)

Prover Verifier




TCitH Frameworks, in the PIOP formalism

@ For all i, choose a degree-£ polynomial
P(X). We have

Choose a degree-(d - £ — 1) polynomial
Py(X)

@ Commit to the polynomials Py, Py, ..., P,

@ Reveal a polynomial Q(X). We know that 0

X-0X) #X-PyX) +f(P(X), ..., P,(X)) > @4 Choose Z random evaluation
< points ry,...,r, € € C F

® Forall (i, j), reveal the evaluation

® Check that {v; g, Vi, ..., Vi, }:
v, = Py(r;) > V00 Vil indj

are consistent with the
commitment.

Check that, for all j,

i Q) = 15 Vg + fW 1 e Vi)

Malicious Prover ©& Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

@ For all i, choose a degree-£ polynomial
P(X). We have

Choose a degree-(d - £ — 1) polynomial
Py(X)

@ Commit to the polynomials Py, Py, ..., P,

@ Reveal a polynomial Q(X). We know that 0
X-0X) #X-PyX) +f(P(X), ..., P,(X)) > @4 Choose Z random evaluation

Fiyoousd ,
< : . points ry,...,r, € € C F

® Fdrall (i, j), reveal the evaluayon : \
Vigs Vit -oes Vints

V.= P(r) ) M ® Check that (Vi Vits o+ s Vinki

Jsl AN . .
are consistent with the
Evaluation into 0 commitment.
0

—0 £ Check that, for all j,

i Q) = 15 Vg + fW 1 e Vi)

Malicious Prover ©& Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

We have

Soundness Analysis

@ Reveal a polynomial Q(X). We know that

X-0X) #X-PyX) +f(P(X), ..., P,(X)) Choose Z random evaluation
points ry,...,r, € € C F

Malicious Prover ©& Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

@ Reveal a polynomial Q(X). We know that
X-0X) #X-PyX) +f(P(X),...,P,(X)) Choose ¢ random evaluation

points ry,...,r, € € C F

Schwartz-Zippel Lemma: Let D be the non-zero degree-(d - £)
polynomial defined as

D:=X-Q(X) =X PyX) — f(P,(X), ..., P,(X))

Check that, for all j,
1 Q) =1 Vo + (v

)

BERERT vj,n

Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

@ Reveal a polynomial Q(X). We know that
X-0X) #X-PyX) +f(P(X),...,P,(X)) Choose ¢ random evaluation

points ry,...,r, € € C F

Schwartz-Zippel Lemma: Let D be the non-zero degree-(d - £)
polynomial defined as

D:=X-Q(X) =X PyX) — f(P,(X), ..., P,(X))

Check that, for all j,
1 Q) =1 Vo + (v

We have

)

BERERT vj,n

Verifier

Pr[verification passes] = Pr | V], D(r) =0 | {ri}; Cs Cg] <




TCitH Frameworks, in the PIOP formalism

@ For all i, sample a random degree-#
polynomial P(X) such that P,(0) = w;,

Sample a random degree-(d - £ — 1)
polynomial Py(X)

@ Commit to the polynomials Py, Py, ..., P, >
@ Reveal the polynomial Q(X) such that 0
X-0X)=X-PyX)+f(P(X),...,P,(X)) > @4 Choose Z random evaluation
< ool points ry,...,r, € € CF

® Forall (i, j), reveal the evaluation

v = Pi(’}') : : > ® Check that {Vj,O’ Vilsens vj’n}j
’ are consistent with the
commitment.

Check that, for all j,
rj . Q(}/’]) = }"'] . VJ’O +f(v],1’ ceey V],n)

Prover Verifier @@




TCitH and VOLEitH Frameworks, in the PIOP formalism

A Forall i, sample a random degree-¢
polynomial P(X) such that P,(0) = w;,

Zero-Knowledge Analysis

Choose ¢ random evaluation
points ry,...,r, € € C F

®

Revealing £ evaluations of P,(X)
leaks no information about w,.

Verifier »#)




TCitH and VOLEitH Frameworks, in the PIOP formalism

Zero-Knowledge Analysis

Sample a random degree-(d - £ — 1)
polynomial Py(X)

@ Reveal the polynomial Q(X) such that n
X-0X)=X-PyX) +f(P(X),...,P,(X)) Choose ¢ random evaluation

points ry,...,r, € € C F

Revealing Q(X) leaks no information

about w;, thanks to Py(X).

Verifier »#)




TCitH and VOLEitH Framewarks, in the PIOP formalism

| know wy, ..., w,_ such that

fw,.o.ow) =0

where fis a public degree-d polynomial.

Prove it!

Prover Verifier

Soundness Error =

N
4
Probability that a malicious prover /

can convince the verifier.




TCitH and VOLEitH Frameworks, in the PIOP formalism

: | know wy, ..., w, such that

fiw,...ow) =0

f Wy, ooow) =0,

i wheref|,..., [, are public degree-d polynomials.

Prove it!

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

@ For all i, sample a random degree-#
polynomial P(X) such that P,(0) = w;,

Sample m random degree-(d - ©)
polynomials Py(X) = (PO,I(X)’ "”PO,m(X))

PCom(Py, Py, ..., P,)
@ Commit to the polynomials Py, Py, ..., P, >

@ Reveal the polynomials Q,(X), ..., Q,(X)
such that

X Q1(X) = X Py ;(X) + f,(P1(X), ... P,(X))

X+ Q0,(X) =X+ Py ,uX) + £,(P1(X), ..., P(X)) Qp, - O , | @ Choose # random evaluation
Flsoees Ty points ry,...,r, € € C [
<
® Forall (i, j), reveal the evaluation (V.o v o
SO tnd > ® Check that WioVits s Vin}
v_],l = Pl(r]) ’ ’ ’

are consistent with the
commitment.

Check that, for all j,

1 Q) =13 vio1 AW -0 Vi)

Prover i+ Q1) =152 Viom F IV 15 -5 Vi)



TCitH and VOLEiH Frameworks, in the PIOP formalism

@ For all i, sample a random degree-#
polynomial P(X) such that P,(0) = w;,

Sample m random degree-(d - ¢)
polynomials Py(X) = (PO,I(X)’ ...,Po’m(X))

PCom(Py, Py, ..., P,)
@ Commit to the polynomials Py, Py, ..., P, >

@ Reveal the polynomials Q,(X), ..., Q,(X)
such that

X Q1(X) = X Py ;(X) + f,(P1(X), ... P,(X))

X+ Q0,(X) =X+ Py ,uX) + £,(P1(X), ..., P(X)) Qp, - O , | @ Choose # random evaluation
Flsoees Ty points ry,...,r, € € C [
<
® Forall (i, j), reveal the evaluation (V.o v o
_p SO tnd > ® Check that WioVits s Vin}
Vji = Pilry) are consistent with the

commitment.

Check that, for all j,

T s Y T O ey 7 T JEmXe To v T PVoT S Pre Y rj . Ql(r]) — ’f] . vj,O,l +f1(vj,1’ e Vj,n)

Sigma/3-round variant of MQOM v2

rj : Qm(r]) — r] : vj,O,m +fm(vj,]’ seey vj,n))



TCitH and VOLEitH Frameworks, in the PIOP formalism

M For all i, sample a random degree-¢
polynomial P,(X) such that P(0) = w,

Sample m random degree-(d - ¢)
polynomials Py(X) = (PO,I(X), ""PO,m(X)>
PCom(P,, Py, ..., P,)

ey n

@ Commit to the polynomials Py, Py, ..., P, >

@ Reveal the polynomials Q,(X), ..., Q,.(X)
such that
X-01(X)=X-Py(X) + /(P (X), ..., P,(X))

X+ 0,X) =X Py, (X) + £, (P1(X), ..., Py(X)) @ Choose ¢ random evaluation

points ry, ..., 1, € € C [

® Forall (i, j), reveal the evaluation

| © Check that Vios Vids -+ Vin}

v.. = P.(r. . .
Joi i( ./) are consistent with the

commitment.

Check that, for all j,

r- Ql(l’J) =T Vo1 +][1(Vj,1, ooy Vj,n)

A bit costly! |
Prover i+ Q1) = 15 Viom FIn(Vi1s -5 Vi)




TCitH and VOLEitH Frameworks, in the PIOP formalism

Sample m random degree-(d - ¢)
polynomials Py(X) = (Po,l(X)’ ---’P(),m(X)>

@ Reveal the polynomials Q,(X), ..., Q,.(X)

such that
X- 0 (X) X Py (X) +f,(Py(X), ..., P (X))
X - Qm(X) X - POm(X) + 1, (P(X),...,P (X)) >

‘ - 0,(ry) = + [,V 1y s Vi)
A bit costly! Al Vioa THWips -0

Solution: batching 7 Onl1) = 15 V0 m SV V)




TCitH and VOLEitH Frameworks, in the PIOP formalism

@ For all i, sample a random degree-#
polynomial P(X) such that P,(0) = w,

Sample a random degree-(d - £ — 1)
polynomial Py(X)
PCom(Py, Py, ..., P,)

n

@ Commit to the polynomials Py, Py, ..., P, >

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

@ For all i, sample a random degree-#
polynomial P(X) such that P,(0) = w,

Sample a random degree-(d - £ — 1)
polynomial Py(X)
PCom(Py, Py, ..., P,)

@ Commit to the polynomials Py, Py, ..., P, »| @ Choose random coefficients
) yl""’ym }/17"'7}/m<_$|]:
@ Reveal the polynomial Q(X) such that
N 0
X-Q(X)=X-PyX)+ D) 1 fiP1(X), ..., P(X) -

k=1

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

@ Reveal the polynomial Q(X) such that

X-Q(X)=X-PyX)+ ) 7 il Py(X), ... P, (X))
k=1

Well-defined!

Y n filPi0), ...
k=1



TCitH and VOLEitH Frameworks, in the PIOP formalism

@ For all i, sample a random degree-#
polynomial P(X) such that P,(0) = w,

Sample a random degree-(d - £ — 1)
polynomial Py(X)

@ Commit to the polynomials Py, Py, ..., P,

@ Reveal the polynomial Q(X) such that

X-Q(X)=X-PyX)+ ) 7 il Py(X), ... P, (X))
k=1

® Forall (i, j), reveal the evaluation

Prover

PCom(Py, Py, ..., P,)

@ Choose random coefficients

Y1 s Vm S

(B Choose ¢ random evaluation
points r,...,r, € € C F

Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

@ For all i, sample a random degree-#
polynomial P(X) such that P,(0) = w,

Sample a random degree-(d - £ — 1)
polynomial Py(X)
PCom(Py, Py, ..., P,)

@ Commit to the polynomials Py, Py, ..., P, »| @ Choose random coefficients
) Yis -+ Vm 71’°"’7’m<_$[|:
@ Reveal the polynomial Q(X) such that
L 0,
X Q(X) =X PyX)+ Z Vi Jl(P1(X), .., P (X)) » | (B Choose ¢ random evaluation
= « Fiseees Ty points r,...,r, € € C F
® Forall (i, j), reveal the evaluation
{Vj,oa Vil ""Vj,n}j . 7 Check that {Vj,O’ Vil ...,vj,n}j
vii = Pi(r) are consistent with the

commitment.

Check that, for all j,

r Q) =17 vig+ ) Vi filVigsea Vi)
k=1

Prover Verifier




TCitH Frameworks, in the PIOP formalism

@ For all i, choose a degree-£ polynomial
P(X). There exists j* s.t.

f(P(0), ..., P,(0)) # 0.

Sample a random degree-(d - £ — 1)
olynomial Py(X)
ey 0 PCom(Py, P, ..., P,) N
@ Commit to the polynomials Py, Py, ..., P, »| @ Choose random coefficients
< A }/l’°--a}/m<_$|]:
@ Reveal the polynomial Q(X) such that
c 9,
X Q(X) #X- Py(X) + Z Vi Jl(P1(X), .., P (X)) » | (B Choose ¢ random evaluation
= « Fiseees Ty points r,...,r, € € C F
® Forall (i, j), reveal the evaluation
W00 Vil -+ Vindj . @ Check that {v;, v, .-,V ,};
Vii = Pr;) are consistent with the

commitment.

Check that, for all j,

r Q) =17 vig+ ) Vi filVigsea Vi)
k=1

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

@ For all i, choose a degree-£ polynomial
P(X). There exists j* s.t.

Sample a random degree-(d - £ — 1)

polynomial Py(X)

@ Reveal the polynomial Q(X) such that

X-Q(X) # X - Py(X)+ ) 71 il Py(X), ... P, (X))
k=1

It is an inequality with high probability over the
randomness of 7y, ..., 7,, since we have

Y 1 flPy(0), ..., P(0)) # O
Prover =l




TCitH and VOLEitH Frameworks, in the PIOP formalism

@ Reveal the polynomial Q(X) such that

X-Q(X) # X - Py(X)+ ) 71 il Py(X), ... P, (X))
k=1

Schwartz-Zippel Lemma: Since it is a degree-(d - £) relation,
(")

IS

¢

Pr[verification passes] <

Check that, for all j,

ri- Q) =1 vig+ Zyk JVigs -
k=1

Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

@ For all i, sample a random degree-¢
polynomial P(X) such that P,(0) = w,

Sample a random degree-(d - £ — 1)
polynomial Py(X)
PCom(Py, Py, ..., P,)

@ Commit to the polynomials Py, Py, ..., P, »| @ Choose random coefficients
) Vi --5Vm yl,...,;/m<—$[|:
@ Reveal the polynomial Q(X) such that
c 0,
X-0X)=X-PyX) + Z Vi il Py(X), ..., Py(X) » | (B Choose ¢ random evaluation
k=1 « Fls--es Ty points ry,...,1, € € CF
® Forall (i, j), reveal the evaluation
{Vj,oa Vil ""Vj,n}j . 7 Check that {vj,o, Vil ...,vj,n}j
Vii = Pr) are consistent with the
commitment.
, . , s Check that, for all j,
; . . '. ri-Qr))=r;-v.g+ Vi JiVigs oos Vi)
. 5-round variant used in mostofthe § 7 =7 7 *° ,; Con

recent MPCitH-based signature schemes f

. Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

PCom(Py, Py, ..., P,)
@ Commit to the polynomials Py, Py, ..., P, >
® Forall (i, ), reveal the evaluation (V... vy
J02 V1o e Vi . @ Check that {v;, v, .-,V ,};
Vi = Pi(ry) are consistent with the

commitment.

Prover Verifier




to commit to polynomials?

(using symmetric pﬁmitives)

degree 10 000

degree 1000

degree 100

p [BBD+23] Baum, Braun, Delpech, Kloof3,
Orsini, Roy, Scholl. Publicly Verifiable Zero-

(D VOLEitH / TCitH-GGM 7 deg ree 10 Knowledge and Post-Quantum Signatures

r 4 From VOLE-in-the-Head. Crypto 2023.
[FR23] Feneuil, Rivain. Threshold

deg ree 1 Computation in the Head: Improved
Framework for Post-Quantum Signatures
and Zero-Knowledge Arguments. Journal
of Cryptology.



(using symmetric primitives)

(2 Degree-enforcing commitment

(D VOLEitH / TCitH-GGM

degree 1

degree 10

degree 10 000

degree 1000

degree 100

[FR23] Feneuil, Rivain. Threshold Computation
in the Head: Improved Framework for Post-
Quantum Signatures and Zero-Knowledge
Arguments. Journal of Cryptology.

[FR25] Feneuil, Rivain. SmallWood: Hash-
Based Polynomial Commitments and Zero-

Knowledge Arguments for Relatively Small
Instances. ePrint 2025/1085.



(using symmetric primitives)

@ Merkle Trees with degree 10 000

Ligero-like Proximity Tests
* degree 1000

(2 Degree-enforcing commitment
degree 100

[AHIV17] Ames, Hazay, Ishai,
Venkitasubramaniam. Ligero: Lightweight
Sublinear Arguments Without a Trusted
Setup. CCS 2017.

[GLS*23] Golonew, Lee, Setty, Thaler,
Wahby. Brakedown: Linear-time and field
agnotic SNARKSs for R1CS. Crypto 2023.

D VOLEitH / TCitH-GGM _#"  degree 10

degree 1



(using symmetric primitives)

@ FRI-based commitments "

3 Merkle Trees with |
Ligero-like Proximity Tests "

(2 Degree-enforcing commitment

(D VOLEitH / TCitH-GGM "

degree 1

degree 10

degree 10 000

degree 1000

degree 100

[BBHR18] Ben-Sasson, Bentov, Horesh,
Riabzev. Fast Reed-Solomon Interactive
Oracle Proofs of Proximity. ICALP 2018.

[BGKS20] Ben-Sasson, Goldberg,
Kopparty, Saraf. DEEP-FRI: Sampling

Outside the Box Improves Soundness.
ITCS 2020.



How to commit to polynomials?

(usmg symmetric primitives)

j ree 10 000

0

degree 10

degree 1



to commit to polynomials?

(using symmetric primitives)

Merkle Tree
@ FRI-based commitments "

3 Merkle Trees with degree 10 000
Ligero-like Proximity Tests /

degree 1000

(2 Degree-enforcing commitment
degree 100

() VORI TerGaN degree 10

degree 1 For signature schemes, we use
degree-1 polynomials most of the time.
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&~ The prover can provably open N evaluations (i.e. N = | €|)

d
& Soundness error of —
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<~ The prover can provably open N evaluations (i.e. N = | € |)
d

& Soundness error of —

How to have a negligible soundness error?

1. Taking N > 2*. Impossible since the complexity would be in O(2%).
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A seed tree of N leaves to commit to degree-1 polynomials

<~ The prover can provably open N evaluations (i.e. N = | € |)

d

& Soundness error of —

How to have a negligible soundness error?

1. Taking N > 2*. Impossible since the complexity would be in O(2%).

2. ICitH-GGM Approach. Taking N small (e.g. N = 256) and repeating the

d T
protocol 7 times. Soundness error of <N> :

3. VOLEitH Approach. Embed 7 polynomials over [ into a unique

polynomial over [ ., for which we will be able to open N* evaluations.

d

Soundness error of —.

NT



(D Generate and commit shares

Lx1l = Clxly, -

@ Run MPC in their head

X [[-x]]N)

[x]l N

®

[x1, \4
o

/f [x1,

.

(x4

l’*

@ Open parties {1,..., N}\{i*}

@ For all i, sample a random degree-#
polynomial P(X) such that P,(0) = w,

Sample a random degree-(d - £ — 1)
polynomial Py(X)

@ Commit the polynomials Py, Py, ..., P,

@ Reveal the polynomial Q(X) such that

X-Q(X)=X-PyX)+ ) 7 - il Py(X), ... P, (X))
k=1

® Forall (i, j), reveal the evaluation



(D Generate and commit shares

[xI = (MxDy, -, [xTiy)

@ Run MPC in thef head

® o

@ Open parties {1,..., N}\{i*}

Commit to a (£, N)-Shamir secret sharing

@ For all i, sample a random degree-#
polynomial P(X) such that P,(0) = w,

Sample a random degree-(d - £ — 1)
polynomial Py(X)

@ Commit to the polynomials Py, Py, ..., P,

@ Reveal the polynomial Q(X) such that

k=1

® Foralf(i, j), reveal the evaluation

X-PyX)+ ) v il Py (X), ..., P(X)



(D Generate and commit shares

[xI = (MxDy, -, [xTiy)

@ Run MPC in their head
[[x]]1 X

Ll o——

® o

@ Open parties {1,..., N}\ {i*

Computation of the MPC protocol, assuming that a
multiplication is computed share by share

@ For all i, sample a random degree-#
polynomial P(X) such that P,(0) = w,

Sample a random degree-(d - £ — 1)
polynomial Py(X)

@ Commit to the polynomials Py, Py, ..., P,

@4 Reveal the polynomial O(X) such that

X-Q(X)=X-Py(X)+ ) 7 il Py(X), ... P, (X))
k=1

® For all

. J), reveal the evaluation



@ For all i, sample a random degree-#

@ Generate and commit shares colynomial P(X) such that P.(0) = w,

el = el - lxlly) Sample a random degree-(d - £ — 1)

@ Run MPC in their head polynomial Py(X)
[l X // [x]l, @ Commit to the polynomials Py, Py, ..., P,
Reveal the polynomial Q(X) Juch that
h ——
X PyX) + D 7 P, s P (X))
®

@ Open parties {1,...,

Revealing the polynomial is equivalent to revealing
the broadcast Shamir secret sharing.



@ For all i, sample a random degree-#

@ Generate and commit shares colynomial P(X) such that P.(0) = w,

el = el - lxlly) Sample a random degree-(d - £ — 1)

@ Run MPC in their head polynomial Py(X)
[l X // [x]l, @ Commit to the polynomials Py, Py, ..., P,
@ Reveal the polynomial Q(X) such that
S :
I) o X-0(X) = X- P+ 3 1 filPiX), ..., P,(O)
Y [T, E !

® Forall (i, j), reveal the evaluation

@ Open parties {1,..., N}\{i*}

It is equivalent to revealing some party computations.
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LWE Syndrome Decoding |
SIS Regular Syndrome Decoding
AES Key Recovery Subset Sum Permuted Kernel

Linear Code Equivalence

AIM Key R
ey rRecovery Restricted Syndrome Decoding

LowMC Key Recovery
Rain Key Recovery MinRank

Rank Syndrome Decoding

Anemoi Hash Preimage Subfield Collision Problem

Posgiqlon Hash Preimage Matrix Subcode Equivalence
Griffin Hash Preimage

RescuePrime Hash Preimage o .
J Multivariate Quadratic

Legendre PRF Discrete Logarithm R

BHHG's PRF Integer Factorization
Double Discrete Logarithm

To use the PIOP-based MPCitH frameworks,
one just needs to write those problems using polynomial constraints. §
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LWE Syndrome Decoding |
SIS Regular Syndrome Decoding
AES Key Recovery Subset Sum Permuted Kernel

Linear Code Equivalence

AIM Key R
ey recovery Restricted Syndrome Decoding

LowMC Key Recovery
Rain Key Recovery MinRank

Rank Syndrome Decoding

Anemoi Hash Preimage Subfield Collision Problem

Poseidon Hash Preimage Matrix Subcode Equivalence
Griffin Hash Preimage

RescuePrime Hash Preimage o .
J Multivariate Quadratic

Legendre PRF Discrete Logarithm R

BHHG's PRF Integer Factorization
Double Discrete Logarithm
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We can build highly conservative schemes!
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|\WE Syndrome Decoding |
SIS Regular Syndrome Decoding
Permuted Kernel
Linear Code Equivalence
Restricted Syndrome Decoding

AES Key Recovery Subset Sum
AIM Key Recovery
LowMC Key Recovery

Rain Key Recovery MinRank

Rank Syndrome Decoding

Anemoi Hash Preimage Subfield Collision Problem

Poseidon Hash Preimage Matrix Subcode Equivalence
Griffin Hash Preimage

RescuePrime Hash Preimage .. .
J Multivariate Quadratic

Legendre PRF Discrete Logarithm POWAT2

BHHG's PRF Integer Factorization
Double Discrete Logarithm
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We can build highly conservative schemes!
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NIST Submission
Security Assumptions Candidate Name Sig. Size PK Size
AES Block cipher FAEST v2 3.9-4.5 KB 32 B
MinRank Mirath 3.0-3.2 KB 57-73 B
Multivariate Quadratic MQOM v2 2.8-3.2 KB 52-80 B
Permuted Kernel PERK v2.1 3.5KB 100 B
Rank Syndrome Decoding RYDE v2 3.1 KB 69 B
Syndrome Decoding SDitH v2 3.7 KB /0B

Using seed trees of around 2048 leaves
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Implementation

When using seed trees to commit to polynomials, we have

Signing time & Verification time

Over laptop-grade CPU,

Signing time = Verification time = few milliseconds (1-10 Mc)

/

Using intensively AES instructions,

vectorialization instructions, and large memory footprint

Over embedded microcontrollers,

[BBBPP24] Bettaieb, Bidoux, Budroni, Palumbi, Perin. Enabling PERK and other MPC-in-the-
Head Signatures on Resource-Constrained Devices. TCHES 2024.

[ADENS25] Aranha, Degn, Eilath, Nielsen, Scholl. FAEST for Memory-Constrained Devices
with Side-Channel Protections. ePrint 2025/1261.

[BF26] Benadijila, Feneuil. Breaking the Myth of MPCitH Inefficiency: Optimizing MQOM for
Embedded Platforms. ePrint 2026/078.



Article NIST Candidate Memory Footprint | Signing time Sig. Sizes
[BBBPP24] PERK v1 28 KB 1136 Mc ~ 6 KB
[ADENS25] FAEST (EM) v1 31 KB 158 Mc ~ 5.6 KB

10 KB /6 M
[BF26] MQOM v2 - - 3.3KB
5 KB 183 Mc
Using seed trees of around 256 leaves

Article NIST Candidate Memory Footprint | Signing time Sig. Sizes
[BBBPP24] PERK v1 : : -
[ADENS25] FAEST (EM) v1 31 KB 1288 Mc ~ 4.6 KB

14 KB 308 M
[BF26] MQOM v2 - -~ 2.9KB
5.5 KB 792 Mc

Using seed trees of around 2048 leaves




& Side-Channel Leakage

[GAGLM24] Godard, Aragon, Gaborit, Loiseau, Maillard. Single Trace Side-Channel Attack on
the MPC-in-the-Head Framework. PQCrypto 2025.

[JD25a] Jendral, Dubrova. Side-Channel on VOLEitH Signature Schemes Breaking Masked
FAEST. CiC 2025.

& Fault attacks

[JD25b] Jendral, Dubrova. Fault Attacks on VOLEitH Signature Schemes. TCHES 2026.

[SD26] Sarde, Debande. Differential Fault Attacks on MQOM, Breaking the Heart of
Multivariate Evaluation. CASCADE 2026.

[BBK25] Banda, Brinkmann, Kramer. Fault Attacks on MPCitH Signature Schemes. ePrint
2025/1745.



& Side-Channel Leakage

[GAGLM24] Godard, Aragon, Gaborit, Loiseau, Maillard. Single Trace Side-Channel Attack on
the MPC-in-the-Head Framework. PQCrypto 2025.

[JD25a] Jendral, Dubrova. Side-Channel on VOLEitH Signature Schemes Breaking Masked
FAEST. CiC 2025.

& Fault attacks

[JD25b] Jendral, Dubrova. Fault Attacks on VOLEitH Signature Schemes. TCHES 2026.

[SD26] Sarde, Debande. Differential Fault Attacks on MQOM, Breaking the Heart of
Multivariate Evaluation. CASCADE 2026.

[BBK25] Banda, Brinkmann, Kramer. Fault Attacks on MPCitH Signature Schemes. ePrint
2025/1745.

& Protections?

No floating-point arithmetic (cf. Falcon)

No Gaussian elimination (cf. UOV-like schemes and LESS)

No rejection sampling (cf. ML-DSA)

For NIST MPCitH candidates, only binary fields, i.e. no arithmetic-
Boolean conversions (cf. most lattice-based schemes, LESS and CROSS)



UOV-like Alternative
Lattice-based schemes schemes code-based schemes
2z \ Z
. Dilithium| Falcon s .
MPCitH ML-DSA | EN-DSA SPHINCS uov Mayo SQlsign LESS CROSS
Type FS FS H&S Hash-based H&S H&S FS FS FS
ISigl 0.7 /.8-17 0.1 0.2-0.5 0.1 2.0-18
IPKI <0.2 < 0.1 44-67 0.1 14-97 0.1
ISigl+IPKI 7.9-17 44-67 0.2 17-98 | 9.0-18
Sign. Time ++ ++ - - _ +
Verif. Time + — ++ ++ - +
AES
Unstructured
S + SD Hash uov Code
SCUMLY 1 Unstructured o Trapdoor Equivalence
MQ

Sizes in kilobytes (KB)

FS: Fiat-Shamir transformation
H&S: Hash-and-sign scheme
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» MPC-in-the-Head

= Very versatile and tunable

» Can be applied to any PQ hardness assumption

= A practical tool to build conservative signature schemes

m PIOP-based MPCitH Frameworks
= Lead to signatures of 2.5-5 kilobytes

» Speed up the MPCitH schemes

s Used in the lastest version of all NIST candidates

»  Next Steps
= More optimized implementations
= Side-channel Analysis

s SCA & Fault countermeasures = Protected implementation

Thank you for your attention.



