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- Round-2 Design Updates
* Choice of the Framework
e SD Arithmetization
* Optimizations

- Round-2 Performance Updates

- Advantages & Limitations



Choice of the Framework



- Conservative security: signature scheme for which the security relies

on the hardness of solving fully random unstructured instances of the
syndrome decoding (SD) problem.

SD Problem: Given a matrix H and a syndrome y, find x such that

Hx =y and X has w non-zero coordinates.

- Design Choice: Signature scheme built upon the MPC-in-the-Head

paradigm, which provides a generic way to build a secure scheme from
a hard problem.



- SD Parameters:

e The hardest instances:

Unique solution, close to the Gilvert-Varshamov frontier

e choice of the SD field
e SDitH v1: GF(251) and GF(256)
e SDitH v2: GF(2)

,O Motivation to choose GF(2):

More conservative security assumption

Hard problem easier to arithmetize



- MPC-in-the-Head paradigm: possible existing frameworks

e SDitH v1: rely on the framework using linear broadcast-based MPC

e SDitH v2: two new MPCitH frameworks since the previous NIST

deadline:

VOLE-in-the-Head
(summer 2023)

[BBD+23] Baum, Braun, Delpech, Kloof3,

Orsini, Roy, Scholl. Publicly Verifiable
Zero-Knowledge and Post-Quantum

Signatures From VOLE-in-the-Head.

Crypto 2023.

TC-in-the-Head

(fall 2023)

[FR25] Feneuil, Rivain. Threshold
Computation in the Head: Improved
Framework for Post-Quantum Signatures
and Zero-Knowledge Arguments. Journal
of Cryptology, 2025.



Instance Trade-off VOLEitH TCitH
Short 37058B 4 271 B (+15%)
L1 - SD over GF(2)
Fast 4 484 B 5509 B (+23%)
Short 7/ 964 B 8 426 B (+6%)
L3 - SD over GF(2)
Fast 92916 B 11 374 B (+15%)
Short 14 121 B 15618 B (+11%)
L5 - SD over GF(2)
Fast 17 540 B 19 968 B (+14%)

f For SD: Between 5-25% of difference, in favor of VOLEitH

Trade-off definition:

- « Short » uses trees of 2048-4096 leaves,
- « Fast » uses trees of 256 leaves.

Tree Optimisation: One-tree technique




- MPC-in-the-Head paradigm: possible existing frameworks

e SDitH v1: rely on the framework using linear broadcast-based MPC

e SDitH v2: two new MPCitH frameworks since the previous NIST
deadline:

VOLE-in-the-Head and TC-in-the-Head

(summer 2023) (fall 2023)
 Exponentially large fields: e.g. GF(2'?®) for L1 e Small fields: typically GF(256), GF(2048), ...
e Only one protocol execution (over the large field) e Several parallel repetitions (over the small field)
e Based on 7-round protocol (or 5-round protocol) e Based on 5-round protocol (or 3-round
protocol)

e Rely on a consistency check

Better signature sizes



Design Rationale

- MPC-in-the-Head paradigm: possible existing frameworks

e SDitH v1: rely on the framework using linear broadcast-based MPC

e SDitH v2: two new MPCitH frameworks since the previous NIST
deadline:

VOLE-in-the-Head d TC-in-the-Head
(summer 2023) (fall 2023)

Exponentially large fields: e.g. GF(2!%) for L1 e Small fields: typically GF(256), GF(256%), ...
Only one protocol execution (over the large field) e Several parallel repetitions (over the small field)

Based on 7-round protocol (or 5-round protocol) e Based on 5-round protocol (or 3-round
protocol)

e Rely on a consistency check

Better signature sizes

SDitH v2



- Formalism:

e TCitH: sharing-based formalism
e VOLEitH: VOLE-based formalism

e SDitH v2: PIOP-based formalism (polynomial-based formalism)

'O Motivation to choose the PIOP formalism:

Simpler description of the scheme, that does not depend on MPC
technology. Easier-to-understand scheme for those who do not already

know those two frameworks.

[Fen24] Feneuil. The Polynomial-IOP
Vision of the Latest MPCitH Framework
for Signature Schemes. PQ Algebraic
Cryptography Workshop, IHP 2024.



; Public Key: some degree-d multivariate polynomials
Secret Key: w € [/ o B
fis--s [y such that fi(w) = ... =f (w) = 0.

(@ Sample n random degree-1 polynomials Py, ..., P, such that P;(0) = x, ..., P,(0) = x,,.

Sample m random degree-(d — 1) polynomials My, ...,.M

m:

(@ Commit to those polynomials.



Public Key: some degree-d multivariate polynomials
Secret Key: w € [F] o -
fis--s [y such that fi(w) = ... =f (w) = 0.

(@ Sample n random degree-1 polynomials Py, ..., P, such that P;(0) = x, ..., P,(0) = x,,.

Sample m random degree-(d — 1) polynomials M, ..., M,

(@ Commit to those polynomials.
3 Send the polynomials Q, ..., Q,, of degree at most d — 1 defined such as

X Q(X) 1= X - My(X) + f,(Py(X), ..., P,(X))

X QX)) 1= X - My(X) + fu(Py(X), .., P(X)).



Public Key: some degree-d multivariate polynomials
Secret Key: w € [F] o -
fis--s [y such that fi(w) = ... =f (w) = 0.

(@ Sample n random degree-1 polynomials Py, ..., P, such that P;(0) = x, ..., P,(0) = x,,.

Sample m random degree-(d — 1) polynomials My, ..., M,,..

(@ Commit to those polynomials.

3 Send the polynomials Q, ..., Q,, of degree at most d — 1 defined such as
X 01(X) ==X M{(X) + /(P (X), .., P,(X))
X-0,X) = XM (X)+f, (P(X),...,P(X)).

4 Get a random evaluation point r € € from the verifier.

® Reveal the evaluations P,(r), ..., P,(r) and M,(7), ..., M (7).

Soundness: from the Schwartz-Zippel Lemma



Public Key: some degree-d multivariate polynomials
Secret Key: w € [F] o -
fis--s [y such that fi(w) = ... =f (w) = 0.

(@ Sample n random degree-1 polynomials Py, ..., P, such that P;(0) = x, ..., P,(0) = x,,.

Sample a random degree-(d — 1) polynomial M.
(@ Commit to those polynomials.
3 Get random coefficients y, ..., 7, € K from the verifier.

@ Send the polynomial Q of degree at most d — 1 defined such as
X-Q(X) :=X-MX)+ ) 7, f(PX), ... P,(X).
j=1
B Get a random evaluation point r € € from the verifier.

® Reveal the evaluations P,(7), ..., P (r) and M(r).

Soundness:

-
_|_



Syndrome Decoding Arithmetization



System of polynomial constraints:

given the constraints fi, ..., f,., it is hard to
find w such that fi(w) = ... =f (w)=0.

¢ VOLEI(tH (or TCitH)

Signature scheme - SDitH




Syndrome Decoding Problem:

given H and y, it is hard to find x such that
y = Hx and x has at most wy; non-zero coordinates.

SD Arithmetization

System of polynomial constraints:

given the constraints fi, ..., f,., it is hard to

find w such that fi(w) = ... =f (w)=0.

¢ VOLEI(tH (or TCitH)
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Syndrome Decoding Problem:

Using the SDitH v1 arithmetization: }
given H andy, it is hard to find x such that { - [wl~2100 |

y = Hx and x has at most wy; non-zero coordinates. - -m~ 14000
, L a=2

< We would obtain sizes around
5.3 KB for short L1.

SD Arithmetization

System of polynomial constraints:

given the constraints fi, ..., f,., it is hard to

find w such that fi(w) = ... =f (w)=0.

Parameters of the constraint system:
e The witness size |w|

e The number m of constraints J{ VOLEitH (or TCitH)

e The degree d of the constraints
Signature scheme - SDitH




| Using [BBGK24]:

- |w] = 550
i -m =~ 4100
Syndrome Decoding Problem: t  -d=12
given H and y, it is hard to find x such that L We would obtain sizes around
y = Hx and x has at most wy; non-zero coordinates. i 4.9 KB for short L1.

[BBGK24] Bettaieb, Bidoux, Gaborit, Kulkarni.
Modelings for generic PoK and Applications:
Shorter SD and PKP based Signatures. ePrint
2024,

SD Arithmetization

System of polynomial constraints:

given the constraints fi, ..., f,., it is hard to

Parameters of the constraint system: .
find w such that fi(w) = ... =f (w)=0.

e The witness size |w|
e The number m of constraints J{ VOLEitH (or TCitH)

e The degree d of the constraints
Signature scheme - SDitH




Syndrome Decoding Problem:

given H and y, it is hard to find x such that
y = Hx and x has at most wy; non-zero coordinates.

Provable reduction: SD = RSD

loss of d - log, o log, ( " >bits
Wh Wh

Rular Syndrome Decoding Problem:

given H andy, itis hard to find x := (v | v, || ... [[ v,,,)

such thaty = Hx and {v,}, are elementary vectors
(have only one non-zero coordinate).

¢ RSD Arithmetization

System of polynomial constraints:

given the constraints fi, ..., f,., it is hard to
find w such that fi(w) = ... =f (w) =0.

VOLEI(tH (or TCitH)

Signature scheme - SDitH
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[OTX24] Ouyang, Tang, Xu. Code-Based Zero-Knowledge [BBGK24] Bettaieb, Bidoux, Gaborit, Kulkarni. Modelings
from VOLE-in-the-Head and Their Applications: Simpler, for generic PoK and Applications: Shorter SD and PKP
Faster, and Smaller. Asiacrypt 2024. based Signatures. ePrint 2024.

We need to have a compact representation for an elementary vector
v =(0,0,...,0,1,0,...,0) € [}
where the ith coordinate is the non-zero one.

Let us denote ¢, = (1,0) and e; = (0,1). We have that

V= ebo®eb1® ®ebf_1

wherei:=by+2-b;+...+27 b, ,.

For example: when n = 4,

(1,0,0,0) = eO ® 60 (0,0,1,0) — 61 ® eo
(0,1,0,0) = ¢, ® e; 0,00,1) = ¢, ® e,



[OTX24] Ouyang, Tang, Xu. Code-Based Zero-Knowledge [BBGK24] Bettaieb, Bidoux, Gaborit, Kulkarni. Modelings
from VOLE-in-the-Head and Their Applications: Simpler, for generic PoK and Applications: Shorter SD and PKP
Faster, and Smaller. Asiacrypt 2024. based Signatures. ePrint 2024.

We need to have a compact representation for an elementary vector
v =(0,0,...,0,1,0,...,0) € [}
where the ith coordinate is the non-zero one.

Let us denote ¢, = (1,0) and e; = (0,1). We have that
Y = eb0® e, X ... €y,
wherei:=by+2-b;+...+27 b, ,.

RSD Arithmetization: Constraints iny = Hx forx :== (v, || ... || v

WH) i

when writing all v; as a tensorial product of elementary vectors.

Constraint Degree = 8



- )
Relaxed arithmetization used in SDitH v2:

Better signature sizes, better computation performance
\ »

We need to have a compact representation for an elementary vector
— n
v =(0,0,...,0,1,0,...,0) € [}
where the ith coordinate is the non-zero one.

Let us denote ej(”) € [ the jth elementary vector. We have that
y = ec(élo) 0% ec('lul) 0% ec(fz) 0% ec(;“s)

where i 1= ¢+ py - ¢ + () - ¢ + (papyfg) - ¢, with ¢; € {0,..., 4, — 1}

RSD Arithmetization: Constraints in y = Hx forx := (v; || ... || Vyp, )i

when writing all v; as a tensorial product of elementary vectors.

Constraint Degree = 4



Optimizations



SDitH v2 - Design Rationale

Used Optimizations (Arithmetic):

¢ Computation Speed-Up using Selection/Mux Tree

A\
x\”\\’

S

Hy.y € Fax

Hl.’}/ € FzA

Hy.y € o

Hs.y € Fax

Hy.y € Fox

H5."}/ S ]F2A

Hg.y € Fax

'MUX'

(MUX ]—( MUX )—( MUX ]—( MUX )7
MUX

Hy.y € Fox

MUX

(effective weights)

MUX \

Y
m
=

e Folding: using Gray code

::f See SDitH's specifications for details.



Used Optimizations (Symmetric primitives):

* Tree optimisation: one-tree technique [BBM+24]

[BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger,
Roy, Scholl. One tree to rule them all: optimizing GGM trees and OWFs
for post-quantum signatures. Asiacrypt 2024,

e PRG: based on AES-128 and Rijndael-256, instead of SHAKE

e Seed Commitment: based on AES-128 and Rijndael-256,
instead of SHAKE

;’_‘j—J See SDitH’s specifications for details.






We propose an optimized implementations for AVX2-based CPU.

SDitHv2 Instance PK Size Sig. Size Sig. Running time Verif. Running time
Short 3705B ~ 31.7 Mcycles ~ 27.2 Mcycles
NIST | /0B
Fast 4484 B ~ 9.3 Mcycles ~ 8.2 Mcycles
Short 7 964 B ~ 189.7 Mcycles ~ 176.6 Mcycles
NIST 1l 98 B
Fast 9916 B ~ 28.9 Mcycles ~ 25.9 Mcycles
Short 14121 B ~ 271.6 Mcycles ~ 254.4 Mcycles
NIST V 132 B
Fast 17 540 B ~ 43.4 Mcycles ~ 39.5 Mcycles

Benchmark from PQ-Sort (https://pgsort.tii.ae)

Signature size: saving between 56% and 61%


https://pqsort.tii.ae




- Advantages:

e Conservative assumption: based on the oldest code-based hard problem

The unstructured binary syndrome decoding problem
e Adaptive and tunable parameters
e Competitive code-based signatures: 3.7 KB for L1
e Very small public keys: around 120~240 bytes

e Competitive signature + public key size: for L1 short, 3.8 KB
e 3.7 KB for ML-DSA, and 7.8 for SLH-DSA

- Limitations:

e Quadratic growth w.r.t. to the security level

e Limited performance: slow compared to lattice-based schemes, but
competitive with many other post-quantum signature schemes.



