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Round-2 Design Updates
Choice of the Framework



SDitH v2 - Design Rationale

- Conservative security: signature scheme for which the security relies 
on the hardness of solving fully random unstructured instances of the 
syndrome decoding (SD) problem. 

SD Problem: Given a matrix  and a syndrome , find  such that 

        and         has  non-zero coordinates. 

- Design Choice: Signature scheme built upon the MPC-in-the-Head 
paradigm, which provides a generic way to build a secure scheme from 
a hard problem. 

H y x
Hx = y x w



- SD Parameters: 

• The hardest instances: 

Unique solution, close to the Gilvert-Varshamov frontier 

• choice of the SD field 

• SDitH v1:  and  

• SDitH v2:  

🔎 Motivation to choose GF(2): 

More conservative security assumption 
Hard problem easier to arithmetize

GF(251) GF(256)

GF(2)
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SDitH v2 - Design Rationale

- MPC-in-the-Head paradigm: possible existing frameworks 

• SDitH v1: rely on the framework using linear broadcast-based MPC 

• SDitH v2: two new MPCitH frameworks since the previous NIST 
deadline: 

VOLE-in-the-Head      and      TC-in-the-Head 
(summer 2023)                                            (fall 2023)

[FR25] Feneuil, Rivain. Threshold 
Computation in the Head: Improved 
Framework for Post-Quantum Signatures 
and Zero-Knowledge Arguments. Journal 
of Cryptology, 2025.

[BBD+23] Baum, Braun, Delpech, Klooß, 
Orsini, Roy, Scholl. Publicly Verifiable 
Zero-Knowledge and Post-Quantum 
Signatures From VOLE-in-the-Head. 
Crypto 2023.



Instance Trade-off VOLEitH TCitH

L1 - SD over GF(2)
Short 3 705 B 4 271 B (+15%)

Fast 4 484 B 5 509 B (+23%)

L3 - SD over  GF(2)
Short 7 964 B 8 426 B (+6%)

Fast 9 916 B 11 374 B (+15%)

L5 - SD over GF(2)
Short 14 121 B 15 618 B (+11%)

Fast 17 540 B 19 968 B (+14%)

Trade-off definition: 
  - « Short » uses trees of 2048-4096 leaves, 
  - « Fast » uses trees of 256 leaves. 

Tree Optimisation: One-tree technique

For SD: Between 5-25% of difference, in favor of VOLEitH

SDitH v2 - Design Rationale



• Exponentially large fields: e.g.  for L1 

• Only one protocol execution (over the large field) 

• Based on 7-round protocol (or 5-round protocol) 

• Rely on a consistency check 

• Better signature sizes

GF(2128) • Small fields: typically  

• Several parallel repetitions (over the small field) 

• Based on 5-round protocol (or 3-round 
protocol)

GF(256), GF(2048), …

- MPC-in-the-Head paradigm: possible existing frameworks 

• SDitH v1: rely on the framework using linear broadcast-based MPC 

• SDitH v2: two new MPCitH frameworks since the previous NIST 
deadline: 

VOLE-in-the-Head      and      TC-in-the-Head 
(summer 2023)                                            (fall 2023)
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• Exponentially large fields: e.g.  for L1 

• Only one protocol execution (over the large field) 

• Based on 7-round protocol (or 5-round protocol) 

• Rely on a consistency check 

• Better signature sizes

GF(2128) • Small fields: typically  

• Several parallel repetitions (over the small field) 

• Based on 5-round protocol (or 3-round 
protocol)

GF(256), GF(2562), …

- MPC-in-the-Head paradigm: possible existing frameworks 

• SDitH v1: rely on the framework using linear broadcast-based MPC 

• SDitH v2: two new MPCitH frameworks since the previous NIST 
deadline: 

VOLE-in-the-Head      and      TC-in-the-Head 
(summer 2023)                                            (fall 2023)

SDitH v2
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- Formalism: 

• TCitH: sharing-based formalism 

• VOLEitH: VOLE-based formalism 

• SDitH v2: PIOP-based formalism (polynomial-based formalism) 

🔎 Motivation to choose the PIOP formalism: 

Simpler description of the scheme, that does not depend on MPC 
technology. Easier-to-understand scheme for those who do not already 

know those two frameworks.

[Fen24] Feneuil. The Polynomial-IOP 
Vision of the Latest MPCitH Framework 
for Signature Schemes. PQ Algebraic 
Cryptography Workshop, IHP 2024.
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SDitH v2 - Underlying 3-Round Identification Scheme

① Sample  random degree-1 polynomials  such that . 
Sample  random degree-  polynomials . 

② Commit to those polynomials. 

n P1, …, Pn P1(0) = x1, …, Pn(0) = xn
m (d − 1) M1, …, Mm

Secret Key: w ∈ 𝔽 n
2

Public Key: some degree-  multivariate polynomials 
                    such that .

d
f1, …, fm f1(w) = … = fm(w) = 0



SDitH v2 - Underlying 3-Round Identification Scheme

① Sample  random degree-1 polynomials  such that . 
Sample  random degree-  polynomials . 

② Commit to those polynomials. 

③ Send the polynomials  of degree at most  defined such as 

 

n P1, …, Pn P1(0) = x1, …, Pn(0) = xn
m (d − 1) M1, …, Mm

Q1, …, Qm d − 1

X ⋅ Q1(X ) := X ⋅ M1(X ) + f1(P1(X ), …, Pn(X ))
⋮

X ⋅ Qm(X ) := X ⋅ Mm(X ) + fm(P1(X ), …, Pn(X )) .

Secret Key: w ∈ 𝔽 n
2

Public Key: some degree-  multivariate polynomials 
                    such that .

d
f1, …, fm f1(w) = … = fm(w) = 0



SDitH v2 - Underlying 3-Round Identification Scheme

① Sample  random degree-1 polynomials  such that . 
Sample  random degree-  polynomials . 

② Commit to those polynomials. 

③ Send the polynomials  of degree at most  defined such as 

 

④ Get a random evaluation point  from the verifier. 

⑤ Reveal the evaluations  and .

n P1, …, Pn P1(0) = x1, …, Pn(0) = xn
m (d − 1) M1, …, Mm

Q1, …, Qm d − 1

X ⋅ Q1(X ) := X ⋅ M1(X ) + f1(P1(X ), …, Pn(X ))
⋮

X ⋅ Qm(X ) := X ⋅ Mm(X ) + fm(P1(X ), …, Pn(X )) .

r ∈ 𝒞

P1(r), …, Pn(r) M1(r), …, Mm(r)

Secret Key: w ∈ 𝔽 n
2

Public Key: some degree-  multivariate polynomials 
                    such that .

d
f1, …, fm f1(w) = … = fm(w) = 0

Soundness:  from the Schwartz-Zippel Lemma
d

|𝒞 |



SDitH v2 - Underlying 5-Round Identification Scheme

① Sample  random degree-1 polynomials  such that . 
Sample a random degree-  polynomial . 

② Commit to those polynomials. 

③ Get random coefficients  from the verifier. 

④ Send the polynomial  of degree at most  defined such as 

. 

⑤ Get a random evaluation point  from the verifier. 

⑥ Reveal the evaluations  and .

n P1, …, Pn P1(0) = x1, …, Pn(0) = xn
(d − 1) M

γ1, …, γn ∈ 𝕂

Q d − 1

X ⋅ Q(X ) := X ⋅ M(X ) +
m

∑
j=1

γj ⋅ fj(P1(X ), …, Pn(X ))

r ∈ 𝒞

P1(r), …, Pn(r) M(r)

Secret Key: w ∈ 𝔽 n
2

Public Key: some degree-  multivariate polynomials 
                    such that .

d
f1, …, fm f1(w) = … = fm(w) = 0

Soundness: 
d

|𝒞 |
+

1
|𝕂 |



Round-2 Design Updates
Syndrome Decoding Arithmetization



SDitH v2 - Design Rationale

Signature scheme - SDitH

System of polynomial constraints: 
given the constraints , it is hard to 
find  such that  .

f1, …, fm
w f1(w) = … = fm(w) = 0

VOLEitH (or TCitH)
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given  and , it is hard to find  such that 

 and  has at most  non-zero coordinates.
H y x

y = Hx x wH
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SD Arithmetization



SDitH v2 - Design Rationale

Signature scheme - SDitH

System of polynomial constraints: 
given the constraints , it is hard to 
find  such that  .

f1, …, fm
w f1(w) = … = fm(w) = 0

Syndrome Decoding Problem: 
given  and , it is hard to find  such that 

 and  has at most  non-zero coordinates.
H y x

y = Hx x wH

VOLEitH (or TCitH)

SD Arithmetization

Parameters of the constraint system: 
• The witness size  

• The number  of constraints  

• The degree  of the constraints

|w |
m
d

Using the SDitH v1 arithmetization: 
      -  
      -  
      -  

👉  We would obtain sizes around 
5.3 KB for short L1.

|w | ≈ 2100
m ≈ 14000
d = 2



SDitH v2 - Design Rationale

Signature scheme - SDitH

System of polynomial constraints: 
given the constraints , it is hard to 
find  such that  .

f1, …, fm
w f1(w) = … = fm(w) = 0

Syndrome Decoding Problem: 
given  and , it is hard to find  such that 

 and  has at most  non-zero coordinates.
H y x

y = Hx x wH

VOLEitH (or TCitH)

SD Arithmetization

Parameters of the constraint system: 
• The witness size  

• The number  of constraints  

• The degree  of the constraints

|w |
m
d

Using [BBGK24]: 
      -  
      -  
      -  

👉  We would obtain sizes around 
4.9 KB for short L1.

|w | ≈ 550
m ≈ 4100
d = 12

[BBGK24] Bettaieb, Bidoux, Gaborit, Kulkarni. 
Modelings for generic PoK and Applications: 
Shorter SD and PKP based Signatures. ePrint 
2024.



SDitH v2 - Design Rationale

Signature scheme - SDitH

System of polynomial constraints: 
given the constraints , it is hard to 
find  such that  .

f1, …, fm
w f1(w) = … = fm(w) = 0

Syndrome Decoding Problem: 
given  and , it is hard to find  such that 

 and  has at most  non-zero coordinates.
H y x

y = Hx x wH

VOLEitH (or TCitH)

RSD Arithmetization

Regular Syndrome Decoding Problem: 
given  and , it is hard to find  

such that  and  are elementary vectors 
(have only one non-zero coordinate).

H y x := (v1 ∥ v2 ∥ … ∥ vwH
)

y = Hx {vi}i

Provable reduction: SD → RSD 
loss of bitsd ⋅ log2

n
wH

− log2 ( n
wH)
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(R)SD Arithmetization

We need to have a compact representation for an elementary vector 

  

where the th coordinate is the non-zero one. 

Let us denote  and . We have that 

 

where . 

For example: when ,

v = (0,0,…,0,1,0,…,0) ∈ 𝔽n
2

i

e0 = (1,0) e1 = (0,1)

v = eb0
⊗ eb1

⊗ … ⊗ ebℓ−1

i := b0 + 2 ⋅ b1 + … + 2ℓ−1 ⋅ bℓ−1

n = 4

[BBGK24] Bettaieb, Bidoux, Gaborit, Kulkarni. Modelings 
for generic PoK and Applications: Shorter SD and PKP 
based Signatures. ePrint 2024.

[OTX24] Ouyang, Tang, Xu. Code-Based Zero-Knowledge 
from VOLE-in-the-Head and Their Applications: Simpler, 
Faster, and Smaller. Asiacrypt 2024.

 (0,0,1,0) = e1 ⊗ e0

(0,0,0,1) = e1 ⊗ e1

 (1,0,0,0) = e0 ⊗ e0

(0,1,0,0) = e0 ⊗ e1



(R)SD Arithmetization

We need to have a compact representation for an elementary vector 

  

where the th coordinate is the non-zero one. 

Let us denote  and . We have that 

 

where .

v = (0,0,…,0,1,0,…,0) ∈ 𝔽n
2

i

e0 = (1,0) e1 = (0,1)

v = eb0
⊗ eb1

⊗ … ⊗ ebℓ−1

i := b0 + 2 ⋅ b1 + … + 2ℓ−1 ⋅ bℓ−1

RSD Arithmetization: Constraints in  for , 

when writing all  as a tensorial product of elementary vectors.

y = Hx x := (v1 ∥ … ∥ vwH
)

vi

Constraint Degree = 8

[BBGK24] Bettaieb, Bidoux, Gaborit, Kulkarni. Modelings 
for generic PoK and Applications: Shorter SD and PKP 
based Signatures. ePrint 2024.

[OTX24] Ouyang, Tang, Xu. Code-Based Zero-Knowledge 
from VOLE-in-the-Head and Their Applications: Simpler, 
Faster, and Smaller. Asiacrypt 2024.



(R)SD Arithmetization

We need to have a compact representation for an elementary vector 

  

where the th coordinate is the non-zero one. 

Let us denote  the th elementary vector. We have that 

 

where , with .

v = (0,0,…,0,1,0,…,0) ∈ 𝔽n
2

i

e(μ)
j ∈ 𝔽μ

2 j

v = e(μ0)
c0

⊗ e(μ1)
c1

⊗ e(μ2)
c2

⊗ e(μ3)
c3

i := c0 + μ0 ⋅ c1 + (μ1μ0) ⋅ c2 + (μ3μ1μ0) ⋅ c2 cj ∈ {0,…, μj − 1}

RSD Arithmetization: Constraints in  for , 

when writing all  as a tensorial product of elementary vectors.

y = Hx x := (v1 ∥ … ∥ vwH
)

vi

Relaxed arithmetization used in SDitH v2: 
Better signature sizes, better computation performance

Constraint Degree = 4



Round-2 Design Updates
Optimizations



Used Optimizations (Arithmetic): 

• Computation Speed-Up using Selection/Mux Tree 

• Folding: using Gray code

SD Vole circuits  
Vole circuits are similar to boolean circuits (Xor gates, And gates, Mux gates, etc).
But they operate over binary field polynomials instead of bits.

Vole circuits for general purpose zero knowledge 
verification

 

Vole circuits are build in a way that:

SDitH v2 - Design Rationale

See SDitH’s specifications for details.👉



Used Optimizations (Symmetric primitives): 

• Tree optimisation: one-tree technique [BBM+24] 

• PRG: based on AES-128 and Rijndael-256, instead of SHAKE 

• Seed Commitment: based on AES-128 and Rijndael-256, 
instead of SHAKE

See SDitH’s specifications for details.👉

[BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, 
Roy, Scholl. One tree to rule them all: optimizing GGM trees and OWFs 
for post-quantum signatures. Asiacrypt 2024.

SDitH v2 - Design Rationale



Round-2 Performance Updates



Performance on AVX-based CPU

We propose an optimized implementations for AVX2-based CPU.

SDitHv2 Instance PK Size Sig. Size Sig. Running time Verif. Running time

NIST I
Short

70 B
3 705 B ≈ 31.7 Mcycles ≈ 27.2 Mcycles

Fast 4 484 B ≈ 9.3 Mcycles ≈ 8.2 Mcycles

NIST III
Short

98 B
7 964 B ≈ 189.7 Mcycles ≈ 176.6 Mcycles

Fast 9 916 B ≈ 28.9 Mcycles ≈ 25.9 Mcycles

NIST V
Short

132 B
14 121 B ≈ 271.6 Mcycles ≈ 254.4 Mcycles

Fast 17 540 B ≈ 43.4 Mcycles ≈ 39.5 Mcycles

Benchmark from PQ-Sort (https://pqsort.tii.ae)

Signature size: saving between 56% and 61%

https://pqsort.tii.ae
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Advantages & Limitations
- Advantages: 

• Conservative assumption: based on the oldest code-based hard problem 

The unstructured binary syndrome decoding problem 

• Adaptive and tunable parameters 

• Competitive code-based signatures: 3.7 KB for L1 

• Very small public keys: around 120~240 bytes 

• Competitive signature + public key size: for L1 short, 3.8 KB 

• 3.7 KB for ML-DSA, and 7.8 for SLH-DSA 

- Limitations: 

• Quadratic growth w.r.t. to the security level 

• Limited performance: slow compared to lattice-based schemes, but 
competitive with many other post-quantum signature schemes.


