MQOM: MQ on my Mind
— Version 2 —

Ryad Benadjila, Charles Bouillaguet
Thibauld Feneuil, Matthieu Rivain

Sixth PQC Standardization Conference

September 25, 2025, NIST

Jo €N
CRYPTOCXPCRTS S SORBONNE

EEEEEEEEEEEEEEEEEEEEEEEEEEEE

- Round-2 Design Updates
- Round-2 Performance Updates
e Performance on AVX-based CPU
e Performance on embedded devices

- Comparison to other MPCitH-based schemes

- Conservative security: signature scheme for which the security relies

on the hardness of solving fully random unstructured instances of the
multivariate quadratic (MQ) problem.

MQ Problem: Given a random multivariate quadratic system (&, y),

find x such that F(x) = y.

- Design Choice: Signature scheme built upon the MPC-in-the-Head

paradigm, which provides a generic way to build a secure scheme from
a hard problem.

- MQ Parameters:

e The hardest instances:

the number of variables = the number of equations

e choice of the MQ field
e MOOM v1: GF(31) and F(251)

e MOOM v2: GF(2), G(16) and GF(256)
The field GF(16) has been added in the version 2.1

4@ Motivation to choose binary fields:

Avoid rejection sampling and arithmetic-Boolean conversation.

- MPC-in-the-Head paradigm: possible existing frameworks

e MQOM v1: based on the framework using linear broadcast-based MPC

e MQOM v2: two new MPCitH frameworks since the previous NIST

deadline:

VOLE-in-the-Head and TC-in-the-Head

(summer 2023) (fall 2023)
[BBD+23] Baum, Braun, Delpech, Kloof3, [FR25] Feneuil, Rivain. Threshold
Orsini, Roy, Scholl. Publicly Verifiable Computation in the Head: Improved
Zero-Knowledge and Post-Quantum Framework for Post-Quantum Signatures
Signatures From VOLE-in-the-Head. and Zero-Knowledge Arguments. Journal

Crypto 2023. of Cryptology, 2025.

Instance Trade-off Batching TCitH VOLEitH

4
L1 - MQ over GF(2) | Short 28208 2790 B
X 2 868 B 2 966 B

v
L1 - MQ over GF(16) Short 2916b 28/8B
X 3060B 3054 B

4
L5 - MQ over GF(2) Short 11564 B 11434 B
X 11 764 B 12 170 B

4
L5 - MQ over GF(16) | Short 12014 B 11848 B
X 12 664 B 12 584 B

When targeting small signature sizes:

TCitH vs VOLEIitH, for MQ: Less than 3% of difference!

Trade-off definition:
- « Short » uses trees of 2048 leaves,
- « Fast » uses trees of 256 leaves.

Tree Optimisation: Correlated trees
See MQOM’s specifications for sizes with the
one-tree optimization (using TCitH and VOLEitH)

Instance Trade-off Batching TCitH VOLEitH

v
L1 - MQ over GF(2) Fast 3144 B 30548
X 3212 B 3294 B

v
L1-MQ over GF(16) | Fast 32808 31748
X 3484 B 3414 B

v
L5 - MQ over GF(2) Fast 13124 B 123/8 B
X 13412 B 13370 B

v
L5 - MQ over GF(16) Fast 137728 12936 B
X 14 708 B 13928 B

When targeting fast schemes:

TCitH vs VOLEIitH, for MQ: Less than 6% of difference!

Trade-off definition:
- « Short » uses trees of 2048 leaves,
- « Fast » uses trees of 256 leaves.

Tree Optimisation: Correlated trees
See MQOM’s specifications for sizes with the
one-tree optimization (using TCitH and VOLEitH)

- MPC-in-the-Head paradigm: possible existing frameworks

e MQOM v1: based on the framework using linear broadcast-based MPC

e MQOM v2: two new MPCitH frameworks since the previous NIST
deadline:

VOLE-in-the-Head and TC-in-the-Head

(summer 2023) (fall 2023)
 Exponentially large fields: e.g. GF(2'?®) for L1 e Small fields: typically GF(256), GF(256%), ...
e Only one protocol execution (over the large field) e Several parallel repetitions (over the small field)
e Based on 7-round protocol (or 5-round protocol) e Based on 5-round protocol (or 3-round
protocol)

e Rely on a consistency check

Better signature sizes: not true for MQ

- MPC-in-the-Head paradigm: possible existing frameworks
e MQOM v1: based on the framework using linear broadcast-based MPC

e MQOM v2: two new MPCitH frameworks since the previous NIST
deadline:

VOLE-in-the-Head a TC-in-the-Head
(summer 2023) (fall 2023)

Exponentially large fields: e.g. GF(2!%) for L1 e Small fields: typically GF(256), GF(256%), ...

Only one protocol execution (over the large field) e Several parallel repetitions (over the small field)

Based on 7-round protocol (or 5-round protocol) e Based on 5-round protocol (or 3-round

) protocol)
e Rely on a consistency check

Better signature sizes: not true for MQ

MQOM v2

- Formalism:

e TCitH: sharing-based formalism
e VOLEitH: VOLE-based formalism
e MQOM v2: PIOP-based formalism (polynomial-based formalism)

'O Motivation to choose the PIOP formalism:

Simpler description of the scheme, that does not depend on MPC
technology. Easier-to-understand scheme for those who do not already

know those two frameworks.

[Fen24] Feneuil. The Polynomial-IOP
Vision of the Latest MPCitH Framework
for Signature Schemes. PQ Algebraic
Cryptography Workshop, IHP 2024.

Public Key: (A;, b;, y;

: T T, _ .
Secret Key: x such thatx 'A;x + b, x =y for all j

)j=1..m

(D Sample n random degree-1 polynomials Py, ..., P, such that the degree-1 terms are xy, ..., X,.

Sample m random degree-1 polynomials My, ..., M,,..

@ Commit to those polynomials.

Public Key: (A;, b;, y;

: T T, _ .
Secret Key: x such thatx 'A;x + b, x =y for all j

)j=1..m

(D Sample n random degree-1 polynomials Py, ..., P, such that the degree-1 terms are xi, ..., x,,.

Sample m random degree-1 polynomials My, ..., M,,..
@ Commit to those polynomials.

3 Send the polynomials Qy, ..., Q,, (of degree at most 1) defined as

0,(X) = Mi(X)+ P(X)T- A, PX) +b] - PX) - X =y, - X°

0,(X) =M, X)+ PX) A, - PX)+b) - P(X)-X—y, X

where P = (P, ..., P).

Public Key: (A;, b;, y;

: T T, _ .
Secret Key: x such thatx 'A;x + b, x =y, for all j

)j=1..m

(D Sample n random degree-1 polynomials Py, ..., P, such that the degree-1 terms are xi, ..., x,,.

Sample m random degree-1 polynomials My, ...,M,.
@ Commit to those polynomials.

3 Send the polynomials Q, ..., Q,, (of degree at most 1) defined as
0,(X) = Mi(X)+ P(X)T- A, PX) +b] - PX) - X =y, - X°
0,(X) =M, X)+ PX)T-A,- P(X)+b] - P(X)- X -y, X>
where P = (Py,...,P).

4 Get a random evaluation point r € € from the verifier.

® Reveal the evaluations P(r), ..., P (r) and M,(7), ..., M (7).

- Miscellaneous:

Tree optimisation: correlated-tree technique

PRG: based on AES-128 and Rijndael-256, instead of SHAKE

Seed Commitment: based on AES-128 and Rijndael-256, instead of SHAKE
Folding: using Gray code (version 2.1)

Sigma variant (i.e. FS transform of a 3-round protocol), with very small

communication penalty

Computation Speed-Up using Matrix Packing (version 2.1)

;’_‘j—J See MQOM’s specifications for details.

- MQ Field:

- TCitH Field:

e GF(2) - Shortest signature
e GF(256) - Trade-off « Fast »

e GF(16) - Short signature

o 2y _ _
and efficient signing (v2.1) GF(2567) - Trade-oft « Short »

(For all security levels)

e GF(256) - Efficient signing

The main arithmetic in MQOM v2 : GF(256)

- MQ Field:

e GF(2) - Shortest signature

e GF(16) - Short signature
and efficient signing (v2.1)

- TCitH Field:

e GF(256) - Trade-off « Fast »
e GF(256?%) - Trade-off « Short »

(For all security levels)

e GF(256) - Efficient signing

The main arithmetic in MQOM v2 : GF(256)

Several possible optimized implementation strategies:

Recent AVX-based CPU: can be highly sped up with GFNI
Vectorized (e.g. with SIMD techniques)

Bitsliced (e.g. across the parallel repetitions)

Look-up Table of 65 kB

Small Look-up Tables Log/Exp

We propose three optimized implementations for AVX-based CPU (v2.1):
e Using only AVX2 and AES-NI
e Using AVX2, AES-NI and GFNI
e Using AVX-512, AES-NI and GFNI

We propose three optimized implementations for AVX-based CPU (v2.1):
e Using only AVX2 and AES-NI
e Using AVX2, AES-NI and GFNI
e Using AVX-512, AES-NI and GFNI

About GFNI and AVX-512 support across x86 platforms:

GFNI AVX512
el Laptop Most, since Q1 2022 None
Server Most, since Q1 2022 Most
AMD Laptop All, since Q2 2024 All, since Q2 2024
Server All, since Q2 2024 All, since Q2 2024

See MQOM’s specifications for details.

Homogeneous GFNI support across x86 is a reality in 2025

We propose three optimized implementations for AVX-based CPU (v2.1):
e Using only AVX2 and AES-NI

e Using AVX2, AES-NI and GFNI

e Using AVX-512, AES-NI and GFNI

MQOMv2 Instance PK Size Sizes (R3) Sizes (R5) Sig. / Verif. Running times
Short 2 868 B 2820 B ~ 6.3 Mcycles
GF(2) 52 B
NIST | Fast 32128 3144 B ~ 3.5 Mcycles
Short 3060 B 2916 B ~ 5.3 Mcycles
GF(16) 80 B
Fast 3484 B 32808 ~ 2.0 Mcycles
Short 11764 B 11564 B ~ 571 Mcycles
GF(2) 104 B
Fast 13412 B 13124 B ~ 28 Mcycles
NIST V
Short 12664B | 12014 B ~ 38 Mcycles
GF(16) 160 B
Fast 14 708 B 13772 B ~ 13 Mcycles

GF(256) has similar running times than GF(16), but leads to larger signatures.

See MQOM'’s specifications for complete benchmarks, along with the experimental setup.

Performance on embedded devices

We propose three optimized implementations for Cortex-M4 (v2.1):

e Using tables log/exp and T-table AES-Rijndael) Constant -time only when there is
| no cache system for SRAM
e Using table 65 kB and T-table AES-Rijndael

(true for many classical boards)

® Using vectorized field multiplication and bitsliced AES (only for L1)

The used memory optimizations are mainly
® On-the-fly GGM trees
® Incremental hash operations

* On-the-fly matrix expansion-multiplication

We propose three optimized implementations for Cortex-M4 (v2.1):

* Using tables log/exp and T-table AES-Rijnda;I>' Constant -time only when there is

(true for many classical boards)

no cache system for SRAM
e Using table 65 kB and T-table AES-Rijndael

® Using vectorized field multiplication and bitsliced AES (only for L1)

MQOMVv2 Instance Size R5 Sig. / Verif. Running times | Sig. / Verif. Mem. Usage
GF©) Short 2 820B ~ 312 Mcycles ~ 18 KB
NIST | Fast 3144 B ~ 150 Mcycles ~ 16 KB
GF(16) Short 2916 B ~ 221 Mcycles ~ 14 KB
Fast 3280B ~ 73 Mcycles ~ 14 KB
GFE) Short | 11564 B ~ 3550 Mcycles ~ 48 KB
Fast 13124 B ~ 2122 Mcycles ~ 42 KB
NIST V
GF(16) Short 12014 B =~ 1971 Mcycles ~ 28 KB
Fast 13772B ~ 684 Mcycles ~ 29 KB

GF(256) has similar running times than GF(16), but leads to larger signatures.
See MQOM'’s specifications for complete benchmarks, along with the experimental setup.
Benchmark performed on STM Nucleo-L4R5ZI board with a STM32 Cortex-M4 MCU

We propose three optimized implementations for Cortex-M4 (v2.1):

* Using tables log/exp and T-table AES—Rijndae} Constant -time only when there is

(true for many classical boards)

no cache system for SRAM
e Using table 65 kB and T-table AES-Rijndael

e Using vectorized field multiplication and bitsliced AES (only for L1)

MQOMv2 Instance Size R5 Sig. / Verif. Running times | Sig. / Verif. Mem. Usage
GFE) Short 2 820B ~ 860 Mcycles ~ 13 KB
NIST | Fast 3144 B ~ 318 Mcycles ~ 11 KB
Short 2916 B ~ 656 Mcycles ~ 9 KB
GF(16)
Fast 32808B ~ 168 Mcycles ~ 9 KB

See MQOM’s specifications for complete
benchmarks, along with the

experimental setup.

We propose three optimized implementations for Cortex-M4 (v2.1):

* Using tables log/exp and T-table AES—Rijndae} Constant -time only when there is

e Using table 65 kB and T-table AES-Rijndael

no cache system for SRAM

(true for many classical boards)

e Using vectorized field multiplication and bitsliced AES (only for L1)

MQOMv2 Instance Size R5 Sig. / Verif. Running times | Sig. / Verif. Mem. Usage
GFE) Short 2 820B ~ 860 Mcycles ~ 13 KB
NIST | Fast 3144 B ~ 318 Mcycles ~ 11 KB
Short 2916 B ~ 656 Mcycl ~ 9 KB
GF(16) o cycles
Fast 32808B ~ 168 Mcycles ~ 9 KB

See MQOM’s specifications for complete

Additional optimizations are still possible:

- Bitsliced field multiplication

- Refining the memory usage

benchmarks, along with the

experimental setup.

Moreover, alternative trade-offs between

speed and memory usage are possible.

Bonus: when using a AES hardware accelerator

MQOMv2 Instance Size R5 Sig. / Verif. Running times | Sig. / Verif. Mem. Usage
GFE) Short 2 820B ~ 320 Mcycles ~ 12 KB
NIST | Fast 3144 B ~ 155 Mcycles ~ 10 KB
Short 2916 B ~ 180 Mcycles ~ 8 KB
GF(16)
Fast 32808 ~ 70 Mcycles ~ 8 KB

See MQOM’s specifications for complete

benchmarks, along with the

experimental setup.

Comparison with other MPCitH-based schemes
Compar:son w:th FAEST M:rath PERK RYDE and SD:tH

@ Witness size: an important metric!

magom_L1-gf2 -
mqgom_L1-gf16 -G
mgom_L1-gf256 -y
mirath_L1-gf2
mirath_L1-gf16 {—
ryde_L1 -
perk_L1 -
sdith_L1 -
faest_L1-enm - ——
faest_L 1 - ——

0 20 40 60 80 100 120 140 160

Witness size (in bytes)

Witness size: scale the signature size

mgom_L1-gf2_short —

mgom_L1-gf16_short -
mqgom_L1-gf256_short - —
mirath_L1-gf2_short i

mirath_L1-gf16_short .
ryde_L1_short - —
perk_L1_short -G —
sdith_L1_short -G ——

faest_L1-em_short -

faest_L1_short -

0 1000 2000 3000 4000

Signature size (in bytes)

Note: the above sizes are produced using the statistical batching.

Comparison with other MPCitH-based schemes
Compar:son w:th FAEST M:rath PERK RYDE and SD:tH

Witness size: scale the usage of symmetric primitives

mgom_L1-gf2_short _‘ Bl Expansion Seed Tree

I Expansion PRG
mqgom_L1-gf16 short R/ @4 Expansion PK

mqgom_L1-gf256 short {0 %
mirath_L1-gf2 short 00
mirath L1-gf16 short {0
ryde L1 short
perk_L1_short -l
sdith_L1_short -l
faest_L1-em_short -

faest_L1_short —

0 1 2 3 4 5 6 7 8
Number of pseudo-generated bytes (in millions of bytes)

Note: the above figure does not take in account the saving due to half/correlated trees.

Comparison with other MPCitH-based schemes
Compar:son w:th FAEST M:rath PERK RYDE and SD:tH

Witness size: scale the memory footprint

mgom_L1-gf2_short _

magom_L1-gf16_short -
mqgom_L1-gf256_short -
mirath_L1-gf2_short -

mirath_L1-gf16_short -
ryde L1 short {I
perk_L1_short ——
sdith_L1_short "

faest_L1-em_short "

faest_L1_short -/

0 2500 5000 7500 10000 12500 15000 17500 20000

Memory Footprint (in bytes)
of the committed polynomials Py, ...,P, and M,M,,

Comparison with other MPCitH-based schemes
Companson w:th FAEST M:rath PERK RYDE and SD:tH

- Advantages:

e Unstructured MQ is a very old problem

e MQOM is the MPCitH-based scheme with the smallest witness
e Among the smallest signature sizes
e Scheme that makes the lowest use of symmetric primitives

e Scheme that has natively the smallest memory footprint

Comparison with other MPCitH-based schemes
Companson w:th FAEST M:rath PERK RYDE and SD:tH

- Advantages:

e Unstructured MQ is a very old problem

e MQOM is the MPCitH-based scheme with the smallest witness
e Among the smallest signature sizes
e Scheme that makes the lowest use of symmetric primitives

e Scheme that has natively the smallest memory footprint

MQOM may be considered one of the most |
embedded-friendly options among MPCitH candidates.

Comparison with other MPCitH-based schemes
Companson w:th FAEST M:rath PERK RYDE and SD:tH

- Advantages:

e Unstructured MQ is a very old problem

e MQOM is the MPCitH-based scheme with the smallest witness
e Among the smallest signature sizes
e Scheme that makes the lowest use of symmetric primitives
e Scheme that has natively the smallest memory footprint

e Simplicity :
* No need to arithmetize the hard problem
e Rely on TCitH (no need to have some consistency check)

® Have a sigma variant (R3), with very small penalty in signature size

- Limitations:

e Large expanded public key - Can be mitigated by on-the-fly expansion without
much computational penalty (c.f. MQOM'’s benchmarks in embedded devices)

e Large numbers of multiplications over GF(256): can be sped up using GFNI or

generic SIMD, for example.

