
MQOM: MQ on my Mind
— Version 2 —

Ryad Benadjila, Charles Bouillaguet
Thibauld Feneuil, Matthieu Rivain

Sixth PQC Standardization Conference

September 25, 2025, NIST

Table of Contents

- Round-2 Design Updates

- Round-2 Performance Updates

• Performance on AVX-based CPU

• Performance on embedded devices

- Comparison to other MPCitH-based schemes

Round-2 Design Updates

MQOM v2 - Design Rationale

- Conservative security: signature scheme for which the security relies
on the hardness of solving fully random unstructured instances of the
multivariate quadratic (MQ) problem.

MQ Problem: Given a random multivariate quadratic system ,

find such that .

- Design Choice: Signature scheme built upon the MPC-in-the-Head
paradigm, which provides a generic way to build a secure scheme from
a hard problem.

(ℱ, y)
x ℱ(x) = y

MQOM v2 - Design Rationale

- MQ Parameters:

• The hardest instances:

the number of variables = the number of equations

• choice of the MQ field

• MQOM v1: and

• MQOM v2: , and
 The field has been added in the version 2.1

🔎 Motivation to choose binary fields:

Avoid rejection sampling and arithmetic-Boolean conversation.

GF(31) F(251)

GF(2) G(16) GF(256)
GF(16)

MQOM v2 - Design Rationale

- MPC-in-the-Head paradigm: possible existing frameworks

• MQOM v1: based on the framework using linear broadcast-based MPC

• MQOM v2: two new MPCitH frameworks since the previous NIST
deadline:

VOLE-in-the-Head and TC-in-the-Head
(summer 2023) (fall 2023)

[FR25] Feneuil, Rivain. Threshold
Computation in the Head: Improved
Framework for Post-Quantum Signatures
and Zero-Knowledge Arguments. Journal
of Cryptology, 2025.

[BBD+23] Baum, Braun, Delpech, Klooß,
Orsini, Roy, Scholl. Publicly Verifiable
Zero-Knowledge and Post-Quantum
Signatures From VOLE-in-the-Head.
Crypto 2023.

MQOM v2 - Design Rationale

Instance Trade-off Batching TCitH VOLEitH

L1 - MQ over GF(2) Short
✔ 2 820 B 2 790 B
✘ 2 868 B 2 966 B

L1 - MQ over GF(16) Short
✔ 2 916 B 2 878 B
✘ 3 060 B 3 054 B

L5 - MQ over GF(2) Short
✔ 11 564 B 11 434 B
✘ 11 764 B 12 170 B

L5 - MQ over GF(16) Short
✔ 12 014 B 11 848 B
✘ 12 664 B 12 584 B

Trade-off definition:
 - « Short » uses trees of 2048 leaves,
 - « Fast » uses trees of 256 leaves.

Tree Optimisation: Correlated trees
See MQOM’s specifications for sizes with the
one-tree optimization (using TCitH and VOLEitH)

TCitH vs VOLEitH, for MQ: Less than 3% of difference!
When targeting small signature sizes:

MQOM v2 - Design Rationale

Instance Trade-off Batching TCitH VOLEitH

L1 - MQ over GF(2) Fast
✔ 3 144 B 3 054 B
✘ 3 212 B 3 294 B

L1 - MQ over GF(16) Fast
✔ 3 280 B 3 174 B
✘ 3 484 B 3 414 B

L5 - MQ over GF(2) Fast
✔ 13 124 B 12 378 B
✘ 13 412 B 13 370 B

L5 - MQ over GF(16) Fast
✔ 13 772 B 12 936 B
✘ 14 708 B 13 928 B

TCitH vs VOLEitH, for MQ: Less than 6% of difference!
When targeting fast schemes:

Trade-off definition:
 - « Short » uses trees of 2048 leaves,
 - « Fast » uses trees of 256 leaves.

Tree Optimisation: Correlated trees
See MQOM’s specifications for sizes with the
one-tree optimization (using TCitH and VOLEitH)

• Exponentially large fields: e.g. for L1

• Only one protocol execution (over the large field)

• Based on 7-round protocol (or 5-round protocol)

• Rely on a consistency check

• Better signature sizes: not true for MQ

GF(2128) • Small fields: typically

• Several parallel repetitions (over the small field)

• Based on 5-round protocol (or 3-round
protocol)

GF(256), GF(2562), …

MQOM v2 - Design Rationale

- MPC-in-the-Head paradigm: possible existing frameworks

• MQOM v1: based on the framework using linear broadcast-based MPC

• MQOM v2: two new MPCitH frameworks since the previous NIST
deadline:

VOLE-in-the-Head and TC-in-the-Head
(summer 2023) (fall 2023)

- MPC-in-the-Head paradigm: possible existing frameworks

• MQOM v1: based on the framework using linear broadcast-based MPC

• MQOM v2: two new MPCitH frameworks since the previous NIST
deadline:

VOLE-in-the-Head and TC-in-the-Head
(summer 2023) (fall 2023)

• Exponentially large fields: e.g. for L1

• Only one protocol execution (over the large field)

• Based on 7-round protocol (or 5-round protocol)

• Rely on a consistency check

• Better signature sizes: not true for MQ

GF(2128) • Small fields: typically

• Several parallel repetitions (over the small field)

• Based on 5-round protocol (or 3-round
protocol)

GF(256), GF(2562), …

MQOM v2 - Design Rationale

MQOM v2

MQOM v2 - Design Rationale

- Formalism:

• TCitH: sharing-based formalism

• VOLEitH: VOLE-based formalism

• MQOM v2: PIOP-based formalism (polynomial-based formalism)

🔎 Motivation to choose the PIOP formalism:

Simpler description of the scheme, that does not depend on MPC
technology. Easier-to-understand scheme for those who do not already

know those two frameworks.

[Fen24] Feneuil. The Polynomial-IOP
Vision of the Latest MPCitH Framework
for Signature Schemes. PQ Algebraic
Cryptography Workshop, IHP 2024.

MQOM v2 - Underlying 3-Round Identification Scheme

① Sample random degree-1 polynomials such that the degree-1 terms are .
Sample random degree-1 polynomials .

② Commit to those polynomials.

n P1, …, Pn x1, …, xn
m M1, …, Mm

Public Key: (Aj, bj, yj)j=1..m Secret Key: such that for all x x⊤Ajx + b⊤
j x = yj j

MQOM v2 - Underlying 3-Round Identification Scheme

① Sample random degree-1 polynomials such that the degree-1 terms are .
Sample random degree-1 polynomials .

② Commit to those polynomials.

③ Send the polynomials (of degree at most) defined as

where .

n P1, …, Pn x1, …, xn
m M1, …, Mm

Q1, …, Qm 1

Q1(X) := M1(X) + ⃗P (X)⊤ ⋅ A1 ⋅ ⃗P (X) + b⊤
1 ⋅ ⃗P (X) ⋅ X − y1 ⋅ X2

⋮
Qm(X) := Mm(X) + ⃗P (X)⊤ ⋅ Am ⋅ ⃗P (X) + b⊤

m ⋅ ⃗P (X) ⋅ X − ym ⋅ X2

⃗P = (P1, …, Pn)

Public Key: (Aj, bj, yj)j=1..m Secret Key: such that for all x x⊤Ajx + b⊤
j x = yj j

MQOM v2 - Underlying 3-Round Identification Scheme

① Sample random degree-1 polynomials such that the degree-1 terms are .
Sample random degree-1 polynomials .

② Commit to those polynomials.

③ Send the polynomials (of degree at most) defined as

where .

④ Get a random evaluation point from the verifier.

⑤ Reveal the evaluations and .

n P1, …, Pn x1, …, xn
m M1, …, Mm

Q1, …, Qm 1

Q1(X) := M1(X) + ⃗P (X)⊤ ⋅ A1 ⋅ ⃗P (X) + b⊤
1 ⋅ ⃗P (X) ⋅ X − y1 ⋅ X2

⋮
Qm(X) := Mm(X) + ⃗P (X)⊤ ⋅ Am ⋅ ⃗P (X) + b⊤

m ⋅ ⃗P (X) ⋅ X − ym ⋅ X2

⃗P = (P1, …, Pn)

r ∈ 𝒞

P1(r), …, Pn(r) M1(r), …, Mm(r)

Public Key: (Aj, bj, yj)j=1..m Secret Key: such that for all x x⊤Ajx + b⊤
j x = yj j

MQOM v2 - Design Rationale

- Miscellaneous:

• Tree optimisation: correlated-tree technique

• PRG: based on AES-128 and Rijndael-256, instead of SHAKE

• Seed Commitment: based on AES-128 and Rijndael-256, instead of SHAKE

• Folding: using Gray code (version 2.1)

• Sigma variant (i.e. FS transform of a 3-round protocol), with very small
communication penalty

• Computation Speed-Up using Matrix Packing (version 2.1)

See MQOM’s specifications for details.👉

Round-2 Performance Updates

The Field Arithmetic in MQOM
- MQ Field:

• - Shortest signature

• - Short signature
and efficient signing (v2.1)

• - Efficient signing

GF(2)

GF(16)

GF(256)

- TCitH Field:

• - Trade-off « Fast »

• - Trade-off « Short »

(For all security levels)

GF(256)

GF(2562)

The main arithmetic in MQOM v2 : GF(256)

The Field Arithmetic in MQOM
- MQ Field:

• - Shortest signature

• - Short signature
and efficient signing (v2.1)

• - Efficient signing

GF(2)

GF(16)

GF(256)

- TCitH Field:

• - Trade-off « Fast »

• - Trade-off « Short »

(For all security levels)

GF(256)

GF(2562)

Several possible optimized implementation strategies:

• Recent AVX-based CPU: can be highly sped up with GFNI
• Vectorized (e.g. with SIMD techniques)

• Bitsliced (e.g. across the parallel repetitions)

• Look-up Table of 65 kB
• Small Look-up Tables Log/Exp

The main arithmetic in MQOM v2 : GF(256)

Performance on AVX-based CPU
We propose three optimized implementations for AVX-based CPU (v2.1):

• Using only AVX2 and AES-NI

• Using AVX2, AES-NI and GFNI

• Using AVX-512, AES-NI and GFNI

Performance on AVX-based CPU
We propose three optimized implementations for AVX-based CPU (v2.1):

• Using only AVX2 and AES-NI

• Using AVX2, AES-NI and GFNI

• Using AVX-512, AES-NI and GFNI

GFNI AVX512

Intel
Laptop Most, since Q1 2022 None

Server Most, since Q1 2022 Most

AMD
Laptop All, since Q2 2024 All, since Q2 2024

Server All, since Q2 2024 All, since Q2 2024

About GFNI and AVX-512 support across x86 platforms:

See MQOM’s specifications for details.

Homogeneous GFNI support across x86 is a reality in 2025

Performance on AVX-based CPU
We propose three optimized implementations for AVX-based CPU (v2.1):

• Using only AVX2 and AES-NI

• Using AVX2, AES-NI and GFNI

• Using AVX-512, AES-NI and GFNI

MQOMv2 Instance PK Size Sizes (R3) Sizes (R5) Sig. / Verif. Running times

NIST I

GF(2)
Short

52 B
2 868 B 2 820 B ≈ 6.3 Mcycles

Fast 3 212 B 3 144 B ≈ 3.5 Mcycles

GF(16)
Short

80 B
3 060 B 2 916 B ≈ 5.3 Mcycles

Fast 3 484 B 3 280 B ≈ 2.0 Mcycles

NIST V

GF(2)
Short

104 B
11 764 B 11 564 B ≈ 51 Mcycles

Fast 13 412 B 13 124 B ≈ 28 Mcycles

GF(16)
Short

160 B
12 664 B 12 014 B ≈ 38 Mcycles

Fast 14 708 B 13 772 B ≈ 13 Mcycles

GF(256) has similar running times than GF(16), but leads to larger signatures.
See MQOM’s specifications for complete benchmarks, along with the experimental setup.

Performance on embedded devices
We propose three optimized implementations for Cortex-M4 (v2.1):

• Using tables log/exp and T-table AES-Rijndael

• Using table 65 kB and T-table AES-Rijndael

• Using vectorized field multiplication and bitsliced AES (only for L1)

Constant -time only when there is
no cache system for SRAM

(true for many classical boards)

The used memory optimizations are mainly

• On-the-fly GGM trees

• Incremental hash operations

• On-the-fly matrix expansion-multiplication

Performance on embedded devices
We propose three optimized implementations for Cortex-M4 (v2.1):

• Using tables log/exp and T-table AES-Rijndael

• Using table 65 kB and T-table AES-Rijndael

• Using vectorized field multiplication and bitsliced AES (only for L1)

MQOMv2 Instance Size R5 Sig. / Verif. Running times Sig. / Verif. Mem. Usage

NIST I

GF(2)
Short 2 820 B ≈ 312 Mcycles ≈ 18 KB
Fast 3 144 B ≈ 150 Mcycles ≈ 16 KB

GF(16)
Short 2 916 B ≈ 221 Mcycles ≈ 14 KB
Fast 3 280 B ≈ 73 Mcycles ≈ 14 KB

NIST V

GF(2)
Short 11 564 B ≈ 3550 Mcycles ≈ 48 KB
Fast 13 124 B ≈ 2122 Mcycles ≈ 42 KB

GF(16)
Short 12 014 B ≈ 1971 Mcycles ≈ 28 KB
Fast 13 772 B ≈ 684 Mcycles ≈ 29 KB

GF(256) has similar running times than GF(16), but leads to larger signatures.

Constant -time only when there is
no cache system for SRAM

(true for many classical boards)

See MQOM’s specifications for complete benchmarks, along with the experimental setup.
Benchmark performed on STM Nucleo-L4R5ZI board with a STM32 Cortex-M4 MCU

Performance on embedded devices
We propose three optimized implementations for Cortex-M4 (v2.1):

• Using tables log/exp and T-table AES-Rijndael

• Using table 65 kB and T-table AES-Rijndael

• Using vectorized field multiplication and bitsliced AES (only for L1)

MQOMv2 Instance Size R5 Sig. / Verif. Running times Sig. / Verif. Mem. Usage

NIST I

GF(2)
Short 2 820 B ≈ 860 Mcycles ≈ 13 KB
Fast 3 144 B ≈ 318 Mcycles ≈ 11 KB

GF(16)
Short 2 916 B ≈ 656 Mcycles ≈ 9 KB
Fast 3 280 B ≈ 168 Mcycles ≈ 9 KB

Constant -time only when there is
no cache system for SRAM

(true for many classical boards)

See MQOM’s specifications for complete
benchmarks, along with the

experimental setup.

Performance on embedded devices
We propose three optimized implementations for Cortex-M4 (v2.1):

• Using tables log/exp and T-table AES-Rijndael

• Using table 65 kB and T-table AES-Rijndael

• Using vectorized field multiplication and bitsliced AES (only for L1)

MQOMv2 Instance Size R5 Sig. / Verif. Running times Sig. / Verif. Mem. Usage

NIST I

GF(2)
Short 2 820 B ≈ 860 Mcycles ≈ 13 KB
Fast 3 144 B ≈ 318 Mcycles ≈ 11 KB

GF(16)
Short 2 916 B ≈ 656 Mcycles ≈ 9 KB
Fast 3 280 B ≈ 168 Mcycles ≈ 9 KB

Constant -time only when there is
no cache system for SRAM

(true for many classical boards)

Additional optimizations are still possible:
- Bitsliced field multiplication

- Refining the memory usage

- …

See MQOM’s specifications for complete
benchmarks, along with the

experimental setup.

Moreover, alternative trade-offs between
speed and memory usage are possible.

Performance on embedded devices

Bonus: when using a AES hardware accelerator

MQOMv2 Instance Size R5 Sig. / Verif. Running times Sig. / Verif. Mem. Usage

NIST I

GF(2)
Short 2 820 B ≈ 320 Mcycles ≈ 12 KB

Fast 3 144 B ≈ 155 Mcycles ≈ 10 KB

GF(16)
Short 2 916 B ≈ 180 Mcycles ≈ 8 KB

Fast 3 280 B ≈ 70 Mcycles ≈ 8 KB

See MQOM’s specifications for complete
benchmarks, along with the

experimental setup.

Comparison to other
MPCitH-based schemes

Comparison with other MPCitH-based schemes
Comparison with FAEST, Mirath, PERK, RYDE and SDitH

Witness size: an important metric!🧐

Witness size (in bytes)

Comparison with other MPCitH-based schemes
Comparison with FAEST, Mirath, PERK, RYDE and SDitH

Note: the above sizes are produced using the statistical batching.

Witness size: scale the signature size

Signature size (in bytes)

Comparison with other MPCitH-based schemes
Comparison with FAEST, Mirath, PERK, RYDE and SDitH

Note: the above figure does not take in account the saving due to half/correlated trees.

Witness size: scale the usage of symmetric primitives

Number of pseudo-generated bytes (in millions of bytes)

Comparison with other MPCitH-based schemes
Comparison with FAEST, Mirath, PERK, RYDE and SDitH

Memory Footprint (in bytes)

of the committed polynomials and P1, …, Pn M1, …, Mm

Witness size: scale the memory footprint

Comparison with other MPCitH-based schemes
Comparison with FAEST, Mirath, PERK, RYDE and SDitH

- Advantages:

• Unstructured MQ is a very old problem

• MQOM is the MPCitH-based scheme with the smallest witness

• Among the smallest signature sizes

• Scheme that makes the lowest use of symmetric primitives

• Scheme that has natively the smallest memory footprint

Comparison with other MPCitH-based schemes
Comparison with FAEST, Mirath, PERK, RYDE and SDitH

- Advantages:

• Unstructured MQ is a very old problem

• MQOM is the MPCitH-based scheme with the smallest witness

• Among the smallest signature sizes

• Scheme that makes the lowest use of symmetric primitives

• Scheme that has natively the smallest memory footprint

MQOM may be considered one of the most
embedded-friendly options among MPCitH candidates.

Comparison with other MPCitH-based schemes
Comparison with FAEST, Mirath, PERK, RYDE and SDitH

- Advantages:

• Unstructured MQ is a very old problem

• MQOM is the MPCitH-based scheme with the smallest witness

• Among the smallest signature sizes

• Scheme that makes the lowest use of symmetric primitives

• Scheme that has natively the smallest memory footprint

• Simplicity :

• No need to arithmetize the hard problem

• Rely on TCitH (no need to have some consistency check)

• Have a sigma variant (R3), with very small penalty in signature size

- Limitations:

• Large expanded public key - Can be mitigated by on-the-fly expansion without
much computational penalty (c.f. MQOM’s benchmarks in embedded devices)

• Large numbers of multiplications over : can be sped up using GFNI or
generic SIMD, for example.

GF(256)

