Masking-Friendly Post-Quantum
Signatures in the Threshold-
Computation-in-the-Head Framework

Thibauld Feneuil, Matthieu Rivain, Auguste Warmé-Janville

CHES 2025

September 16, 2025 — Kuala Lumpur (Malaysia)

O

CRYPTOCXPCRTS

NNOVATE TO SECURE YOUR BUSINESS

D






Context

- 2022: NIST announced the selected signatures for standardisation
e ML-DSA (Dilithium): rely on structured lattices
e FN-DSA (Falcon): rely on structured lattices
e SLH-DSA (SPHINCS™): rely on hash functions

<~ Need to alternative signature schemes



Lontext

- 2022: NIST announced the selected signatures for standardisation
e ML-DSA (Dilithium): rely on structured lattices
e FN-DSA (Falcon): rely on structured lattices
e SLH-DSA (SPHINCS™): rely on hash functions

<~ Need to alternative signature schemes

- 2023: NIST Call for additional post-quantum signatures

* In Round-2 (2025), six candidates rely on the MPC-in-the-Head paradigm:
FAEST, Mirath, MQOM, PERK, RYDE, SDitH

e There are relying on the recent VOLEitH and TCitH frameworks (2023).

[BBD+23] Baum, Braun, Delpech, Kloof3, [FR25] Feneuil, Rivain. Threshold

Orsini, Roy, Scholl. Publicly Verifiable Computation in the Head: Improved
Zero-Knowledge and Post-Quantum Framework for Post-Quantum Signatures
Signatures From VOLE-in-the-Head. and Zero-Knowledge Arguments. Journal

Crypto 2023. of Cryptology, 2025.



This work

* In this work, we provide insights of how to tweak the TCitH framework to
produce masking-friendly schemes, i.e. schemes for which the masking
induces a reasonable computation cost.

[ 2 <4
<~ Equivalent in lattice-based cryptography: Raccoon '.1’



This work

* In this work, we provide insights of how to tweak the TCitH framework to
produce masking-friendly schemes, i.e. schemes for which the masking
induces a reasonable computation cost.

[ 2 <4
<~ Equivalent in lattice-based cryptography: Raccoon '&’

e QGoal:

Given a parameter d, propose a new MPCitH-based
signature scheme that can be very efficiently masked

to achieve a provable d-probing security.

e d-probing security:

A implementation is said d-probing secure

when any combination of d intermediary variables
does not leak secret information.



To achieve d-probing security, the most used technique is masking.

Instead of directly manipulating a sensitive variable x, we can use a sharing of it:

We denote [[x]] := ([x1ly, - --, [x];), where [[x]ly, ..., [x]] ; are random values such that

x = [Ixllg+ [xI, + ... + [x],

We can perform the computation over masked variables: for example
® [[x + y] from [[x]l and [[y]l: computational cost in O(d)

® [[x - y] from [[x]] and [[y]l: computational cost in O(d?

While it is easy to obtain a d-secure implementation by simply applying masking over
sensitive variables, the main issue is the computational overhead.

Question: How to tweak a MPCitH-based scheme to avoid
5

a quadratic computational overhead when masking?






TCitH-based Signing Algorithm® (Simplified)

* using the PIOP formalism

Public key: a multivariate degree-f polynomial f

such that f(w) =

Secret key: a field vector w € "



TCitH-based Signing Algorithm” (Simplified)

o u é " formalism

Public key: a multivariate degree-f polynomial f

such that f(w) =0

Secret key: a field vector w € "

@ For all i, sample a random degree-# polynomial P,(X) such that P{0) = w,.
Sample a random degree-(¢ - t — 1) polynomial M(X).

(@ Commit the polynomials (P, ..., P,) and M to obtain a commitment digest .



TCitH-based Signing Algorith ed)

o u " ‘ formalism

Public key: a multivariate degree-f polynomial f

such that f(w) =0

Secret key: a field vector w € "

@ For all i, sample a random degree-# polynomial P,(X) such that P{0) = w,.
Sample a random degree-(¢ - t — 1) polynomial M(X).

(@ Commit the polynomials (P, ..., P,) and M to obtain a commitment digest .

(3 Build the polynomial Q such that
X-QX) =X -MX) + f(P(X), ..., P (X))



o formalism

Public key: a multivariate degree-t polynomial f

such that f(w) =0

Secret key: a field vector w € "

@ For all i, sample a random degree-# polynomial P,(X) such that P{0) = w,.
Sample a random degree-(¢ - t — 1) polynomial M(X).

(@ Commit the polynomials (P, ..., P,) and M to obtain a commitment digest .

(3 Build the polynomial Q such that
X-QX) =X -MX) + f(P(X), ..., P (X))

@ Choose evaluation points E := {e,, ...e,} by hashing the commitment and the message

E = Hash(msg, h,Q) C €

® For all j, compute the evaluations iji = Pl-(ej) for all i, and VJM = M(ej), together with a

opening proof .



TCitH-based Signing Algorithm’ (Slmpllfled)

| gte PIOP formalism

Public key: a multivariate degree-t polynomial f

such that f(w) =

Secret key: a field vector w € "

@ For all i, sample a random degree-# polynomial P,(X) such that P(0) =
Sample a random degree-(¢ - t — 1) polynomial M(X).

(@ Commit the polynomials (P, ..., P,) and M to obtain a commitment digest .

(3 Build the polynomial Q such that
X-QX) =X -MX) + f(P(X), ..., P (X))

@ Choose evaluation points E := {e,, ...e,} by hashing the commitment and the message

E = Hash(msg, h,Q) C €

® For all j, compute the evaluations iji = Pl-(ej) for all i, and VJM = M(ej), together with a

opening proof .

® Output the signature:
—’P M : >P ._ (P P



TCitH-based Signing Algorith ed)

- u ‘the PIOP formalism

@ For all i, sample a random degree-# polynomial P,(X) such that P{0) = w,.
Sample a random degree-(¢ - t — 1) polynomial M(X).

(@ Commit the polynomials (P, ..., P,) and M to obtain a commitment digest .

(3 Build the polynomial Q such that
X-QX) =X -MX) + f(P(X), ..., P (X))

® For all j, compute the evaluations iji = Pl-(ej) for all i, and VJM = M(ej), together with a

opening proof .



o “ formalism

@ For all i, sample a random degree-# polynomial P,(X) such that P{0) = w,.
Sample a random degree-(¢ - t — 1) polynomial M(X).

Sampling: computational overhead of O(d)



o “ formalism

Linear operation: computational overhead of O(d)

® For all j, compute the evaluations iji = Pl-(ej) for all i, and VJM = M(ej), together with a

opening proof 7.



TCitH-based Signing Algorithm® (Simplified)

* using the PIOP formalism

Involve multiplications over [F between sensitive variables:
computational overhead of O(d?)

(3 Build the polynomial Q such that
X-QX) =X -MX) + f(P(X), ..., P (X))




TCitH-based Signing Algorithm® (Simplified)

o ' é PI formalism

(@ Commit the polynomials (P, ..., P,) and M to obtain a commitment digest .

Involve running symmetric primitives over sensitive variables:
huge computational overhead of O(d?)



Introducing a

How much the polynomial P; is sensitive ?
e P.is a random degree-¢ polynomial such that P;(0) = w,.

e ¢ evaluations of P, are disclosed in the signature transcript.



Introcucing a slack

How much the polynomial P; is sensitive ?
e P.is a random degree-¢ polynomial such that P;(0) = w,.

e ¢ evaluations of P, are disclosed in the signature transcript.

Leaking any other evaluation of P; leaks w; !



Introcucing a slack

How much the polynomial P; is sensitive ?
e P.is a random degree-¢ polynomial such that P;(0) = w,.

e ¢ evaluations of P, are disclosed in the signature transcript.

Leaking any other evaluation of P; leaks w; !

Possible tweak: introduce a slack 6 > 0
e P is a degree-¢ polynomial such that P,(0) = w,.

e  — ¢ evaluations of P; are disclosed in the signature transcript.



How much the polynomial P, is sensitive ?
e P.is a random degree-¢ polynomial such that P;(0) = w,.

e ¢ evaluations of P, are disclosed in the signature transcript.

: S Ry - o g Ly - A s N gt Ll = _ " gl ~ ,

Leaking any other evaluation of P; leaks w; !

Possible tweak: introduce a slack 6 > 0
e P;is a degree-¢ polynomial such that P;(0) = w;.

e  — ¢ evaluations of P; are disclosed in the signature transcript.

S = - — — = < S o ~q 52 =Sl - ¥ ~ A S ~ -

Leaking o other evaluations of P; leaks no informations about w; !



How much the polynomial P, is sensitive ?
e P.is a random degree-¢ polynomial such that P;(0) = w,.

e ¢ evaluations of P, are disclosed in the signature transcript.

: S Ry - o g Ly - A s N gt Ll = _ " gl ~ ,

Leaking any other evaluation of P; leaks w; !

Possible tweak: introduce a slack 6 > 0
e P;is a degree-¢ polynomial such that P;(0) = w;.

e  — ¢ evaluations of P; are disclosed in the signature transcript.

S = - — — = < S o ~q 52 =Sl - ¥ ~ A S ~ -

: Leaking o other evaluations of P; leaks no informations about w, !

Larger signatures



TCitH-based Signing Algorithm® (Simplified)

* using the PIOP formalism

Involve multiplications over [F between sensitive variables:
computational overhead of O(d?)

(3 Build the polynomial Q such that
X-QX) =X -MX) + f(P(X), ..., P (X))




TCitH-based Signing Algorithm® (Simplified)

o ' é PI formalism

(@ Commit the polynomials (P, ..., P,) and M to obtain a commitment digest .

Involve running symmetric primitives over sensitive variables:
huge computational overhead of O(d?)



Threshold-Computation-in-the-Head

TCitH-GGM: rely on GGM trees '," TCitH-MT: rely on Merkle trees
e Used in NIST candidates e Used in some (small) ZKPoK
e Produce to smaller signatures e Produce to larger signatures

(around 2.5~5 KB) (around 5~10 KB)



pr—

(seed1, seed?)
— PRG(parents—e:d/_\
' HE N N = = Il ~

.

PRG l PRG l

Fr N




root_seed

ﬁ

(seed1, seed?)
— PRG(parerjtj\e’d/_{\
' ------ Il ~

PRGl PRGl PRG l

rr n Fn

Build AP(X) as

N
AP(X) := P(X) + 2 r (X —e)
=1

(assuming deg P = 1)



root_seed

ﬁ

(seed1, seed?)
— PRG(parerjtj\e’d/_{\
' ------ Il ~

PRGl PRGl PRG l

rr n Fn

Build AP(X) as
N
APX) :=P(X)+ ) r;- (X —e)

i=1

(assuming deg P = 1) Mask



root_ seed Commitment:

ﬁ

- Commit to each seed independently

(seed1, seed?)
- PRG(parent:c;cj/ﬁ \ - Reveal the masked polynomial AP(X)
e == -

PRGl PRGl PRG l

rr n Fn

Build AP(X) as
N
APX) :=P(X)+ ) r;- (X —e)

i=1

(assuming deg P = 1) Mask



root_seed

—

sibling path
— log(N) seeds

_Z'L_Z'LJS:

EH

seed; seed, ... 7% seedy
PRGl PRGl PRGl
o n Y

Build AP(X) as

N
APX) :=P(X)+ ) r;- (X —e)
i=1

(assuming deg P = 1) Mask

Commitment:

- Commit to each seed independently
- Reveal the masked polynomial AP(X)

Open P(e;):

Reveal all {r;} .+ since

P(ey) = — AP(ex) + ) 1;- (e — €)
i




[root_seed]] Commitment:

ﬁ

([seed1]], [seed2]) - Commit to each seed independently
Open P(e;):

« PRG™ked([[pare \
p—
r—/_\_ Reveal all {r;} .+ since

_Zl P(e;x) = — AP(e;+) + Z r- (e —e;)

— e ii*

[seed;]|[[seed>]] ... [seedy]l

PRGmasked l l PRGmasked PRGmaskedl

[r, ] 71 [y

- Reveal the masked polynomial AP(X)

Need to protect around ~ 2N - 7 calls to
PRG, usually a PRG based on SHAKE or
on AES in counter mode:
Extremely computationally costly!

Build AP(X) as
N
APX) = [PICX) + ) [l - (X —e))

i=1

(assuming deg P = 1) \ Mask Typically value for 2zN: 2 X 2048 X 12 =~ 50000



-

\—

H

PRG l PRG l

[rllo [rllo

Build AP(X) as
N
APX) = [PICX) + ) [r]l - (X —e)

(assuming deg P = 1)

N

AN

7N

H

PRG l

i=1

Ly dlo

Mask




root_seed, root_seed,

N _/:\_

4 W/ N W/ W 7N 78N 78 7N

ﬁ

M

PRGl PRGl PRGl PRGl PRGl PRGl
[[7’1]10 [[”2]]0 [[”N]]() [[”1]]d [[rz]]d [[’”N]]d

Build AP(X) as
N
AP(X) = [PIX) + ) [r]l - (X — )

i=1

(assuming deg P = 1) Mask



root_seed, root_seed

sibling path sibling path
— log(N) seeds \ — log(N) seeds \
cEmm— ——
e o o

_Z'L_Z'L"S:

PRGl PRGl PRG l

[[7”1]]0 [[”2]]() [[I’N]]()

Build AP(X) as
N
APX) = [PICX) + ) [l - (X —e))

i=1

The number of revealed sibling paths
is d + 1 times larger.

(assumingdeg P = 1) Mask



No Tweak (using masking)

Parallel Trees

Nb shares Signing time Sig. Size Signing time Sig. Size
1 0,35s 4.5 KB 0,35s 4.5 KB
2 4.5 KB 0,93 s
3 4.5 KB 1,43 s
4 53s 4.5 KB 2,03 s
8 236 s 4.5 KB 4,94 s 19.7 KB
16 993 s 4.5 KB 37.1 KB
32 4519 s 4.5 KB 72.0 KB

Performance of a TCitH-GGM-based signature scheme for
which the security relies on the hardness of solving the MQ
problem. Running times estimated for a RISC-V platform
assuming the presence of a hardware accelerator for plain
Keccak and that the PRG is instantiated using SHAKE.




No masking, i.e. basic scheme

No Tweak (uging masking) Parallel Trees
Nb shares Signing time IN\_ Siqg. Size Signing time
2 14 s 4.5 KB 0,93s 6.7 KB
3 27 s 4.5 KB 1,43 s 8.9 KB
4 53s 4.5 KB 2,03s 11.0 KB
8 236's 4.5 KB 4,94 s 19.7 KB
16 993 s 4.5 KB 14,0 s 37.1 KB
32 4519 s 4.5 KB 45,0 s 72.0 KB

Performance of a TCitH-GGM-based signature scheme for
which the security relies on the hardness of solving the MQ
problem. Running times estimated for a RISC-V platform
assuming the presence of a hardware accelerator for plain
Keccak and that the PRG is instantiated using SHAKE.



No Tweak (using masking) Parallel Trees
Nb shares Signing time ’ Signing time Sig. Size
1 0,35s 0,35s 4.5 KB
2 14 s 0,93 s 6.7 KB
3 27 s 1,43 s 8.9 KB
4 53s 2,03s 11.0 KB
8 236 s 4,94 s 19.7 KB
16 993 s 14,0 s 37.1 KB
32 4519 s 45,0 s 72.0 KB

Performance of a TCitH-G@M-based signature scheme for
which the security relies oglthe hardness of solving the MQ

Signature size independent of the masking order



No Tweak (using masking) Parallel Trees

Nb shares Signing time Sig. Size Signing time Sig. Size
1 | 4.5KB 0,355 4.5 KB
2 4.5 KB 0,93s 6.7 KB
3 4.5 KB 1,43 s 8.9 KB
4 4.5 KB 2,03s 11.0 KB
8 4.5 KB 4,94 s 19.7 KB
16 4.5 KB 14,0 s 37.1 KB
32 4.5 KB 45,0 s 72.0 KB

Performance of a TCitH-GGM-based signature scheme for
ybich the oo clies on the hardness of solving the MQ

_ _ s estimated for a RISC-V platform
Big computation overhead

of a hardware accelerator for plain
G is instantiated using SHAKE.



No Tweak (using masking)

Parallel Trees

Nb shares Signing time Sig. Size Signing time Sig. Size
1 0,35s 4.5 KB 4.5 KB
2 14 s 4.5 KB 6.7 KB
3 27 s 4.5 KB 8.9 KB
4 53s 4.5 KB 11.0 KB
8 236 s 4.5 KB 19.7 KB
16 993 s 4.5 KB 37.1 KB
32 4519 s 4.5 KB 72.0 KB

Performance ¢f a TCitH-GGM-based signature scheme for
which the secudity relies on the hardness of solving the MQ

problem. RunnRg times estimated for a RISC-V platform
| Acsence o1 9 nNargdware g atorforplain



No Tweak (using masking)

Parallel Trees

Nb shares Signing time Sig. Size Signing time

1 0,35s 4.5 KB 0,35s
2 14 s 4.5 KB 0,93 s
3 27 s 4.5 KB 1,43 s
4 53s 4.5 KB 2,03 s
8 236's 4.5 KB 4,94

16 993 s 4.5 KB 4,0 s
32 4519 s 4.5 KB 45,0 s

Performance of a TCitN-GGM-based sianature scheme for

_ _ _ the MQ
Big communication overhead form
or plain

Keccak and that the PRG is instantiated using SHAKE.




parent_hash
« Hash(hashy, hash,)

7 4

07

——— \——

b

P(e;) P(ey) ---

AN

/4 -




Merkle tree’s root

parent_hash —

com; com, comy

T THaShmasked Hashmasked T
[PEDTIP(E)] +-  wenvenrenreneeneenneneenans e [P(ey)]]

Need to protect around ~ N - 7 calls to
hash function:
Computationally costly!




ash
Hash(hashy, hash,)

7 4

parent

-

ﬁ

Merkle tree’s root

ﬁ

Se—

--~

No sensitive data
No need to mask!




Merkle tree’s root
) To commit to a value v (no tweaked):

parent_hash
- Hash(hasmM \ com, := Hash(v) from [[V]]
' HE N = = l . s
A { Tweak Idea: '

el ,—Z_S— ,—Z-S— i  One can commit directly to the shares

#f
g

..., [Vl ;- Namely,

com,, := Hash([[v]y) || ... || Hash([[v],).

[PEDTTPE)]] <+ eeerneeerneeeeiaeeennnns oo [P



Merkle tree’s root
) To commit to a value v (no tweaked):

parent_hash
- Hash(hashIM \ com, := Hash(v) from [[v]]
P R = m- N
. 1 ' )
. 1 |
: ,_/_X_ : A { Tweak Idea: '

' Z_,E H'I Z_S Z—: i  One can commit directly to the shares

..., [Vl ;- Namely,

com,, := Hash([[v]y) || ... || Hash([[v],).

[PEDTTPE)]] <+ eeerneeerneeeeiaeeennnns oo [Py e e
Issue: '

To let the verifier check the
commitment, the signature transcript

| should contain the entire [[V]]
L (and not just v), such that the verifier
can recompute the digest com,.



Merkle tree’s root

parent_hash
- Hash(hashl',hitl’z/_‘\ To commit to a value v (no tweaked):
------ l . ~
! — com, := Hash(v) from [[v]

TR FN 787X | BasicTweakldea |

One can commit directly to the shares

(v, --.. [v]l;- Namely,

Hash Hash
T T T | com,, := Hash([[v]y) || ... || Hash([[v],).
[[P(el)]] [[P(ez)]] [[P(eN)]] :

Improved Tweak Idea:
Commit to the shares [v]l,, ..., [VIl; after compressing them into pseudo-random shares:

(vg, seedy, ..., seed;) < MaskCompress([[v]])
com; < Hash(vy) || Hash(seed)) || ... || Hash(seed,)

where v =vy+ v, + ... + v, with v; := PRG(seed;) for all i > 1.



No Tweak (using masking) Com. of PR sharings
Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35s 6.5 KB 0,35s 6.5 KB
2 6.5 KB 1.1s 6.8 KB
3 6.5 KB 1.9s 7.1 KB
4 6.5 KB 2.8's 7.4 KB
8 81 s 6.5 KB 7.3s

16 339 s 6.5 KB

32 1534 s 6.5 KB

Performance of a TCitH-MT-based signature scheme for which
the security relies on the hardness of solving the MQ problem.
Running times estimated for a RISC-V platform assuming the
presence of a hardware accelerator for plain Keccak.



No masking, i.e. basic scheme

No Tweak (uging masking) Com. of PR sharings
Nb shares Signing time IN\_ Siqg. Size Signing time ]
2 52s 6.5 KB 1.1s 6.8 KB
3 9.8s 6.5 KB 1.9s 7.1 KB
4 19s 6.5 KB 2.8's 7.4 KB
8 81 s 6.5 KB 7.3s 8.6 KB
16 339 s 6.5 KB 20 s 11.1 KB
32 1534 s 6.5 KB 60 s 15.9 KB

Performance of a TCitH-MT-based signature scheme for which
the security relies on the hardness of solving the MQ problem.
Running times estimated for a RISC-V platform assuming the
presence of a hardware accelerator for plain Keccak.



No Tweak (using masking) Com. of PR sharings
Nb shares Signing time ig. Si Signing time Sig. Size
1 0,35s 0,35s 6.5 KB
2 52s 1.1s 6.8 KB
3 9.8s 1.9s 7.1 KB
4 19s 2.8's 7.4 KB
3 31s 7.3s 8.6 KB
16 339 s 20 s 11.1 KB
32 1534 s 60 s 15.9 KB

Performance of a TCitH-MJHbased signature scheme for which
the security relies on the Hgrdness of solving the MQ problem.

Signature size independent of the masking order




No Tweak (using masking) Com. of PR sharings
Nb shares Signing time Sig. Size Signing time Sig. Size
1 6.5 KB 0,35s 6.5 KB
2 6.5 KB 1.1s 6.8 KB
3 6.5 KB 1.9s 7.1 KB
4 6.5 KB 2.8's 7.4 KB
8 6.5 KB 7.3s 8.6 KB
16 6.5 KB 20 s 11.1 KB
32 6.5 KB 60 s 15.9 KB

Big computation overhead

Performance of a TCitH-MT-based signature scheme for which
aliassain the hardness of solving the MQ problem.
ed for a RISC-V platform assuming the

accelerator for plain Keccak.




No Tweak (using masking) Com. of PR sharings
Nb shares Signing time Sig. Size Signing time Sig. Size
1 0,35s 6.5 KB 6.5 KB
2 52s 6.5 KB 6.8 KB
3 9.8s 6.5 KB 7.1 KB
4 19s 6.5 KB 7.4 KB
8 81s 6.5 KB 8.6 KB
16 339 s 6.5 KB 11.1 KB
32 1534 s 6.5 KB 15.9 KB

Much faster implementation

Performance d¢f a TCitH-MT-based signature scheme for which
the security refes on the hardness of solving the MQ problem.




GGM with
parallel trees

No Tweak (using masking)

Com. of PR sharings

Nb shares Signing time Sig. Size Signing time
1 0,35s 6.5 KB 0,35s 4.5 KB
2 5.2s 6.5 KB 1.1s 6.7 KB
3 9.8s 6.5 KB 1.9s 8.9 KB
4 19 s 6.5 KB 2.8s 11.0 KB
3 81s 6.5 KB 19.7 KB
16 339 s 6.5 KB 37.1 KB
32 1534 s 6.5 KB 72.0 KB







Conclusion

m Masking TCitH-based schemes (without tweak) is computational expensive.

m This issue can be mitigated by tweaking those schemes:

e one can introduce a slack between the polynomial degree and the
number of opened evaluations

e when using GGM trees, one can use parallel trees.

e when using Merkle trees, one can commit to pseudo-random sharings
instead of committing to clear values.

m All those tweaks drastically reduce the running times, but introduce some
variability in the signature size: the signature size depends on the masking

order.



One can combine slack with the other masking-friendly tweaks.

TCitH-MT masked signature, N from 32 to 256, d = 3

(<] ® No tweak
® v PR shares
@ Slack (full)
1071 ¢ Slack (half) + PR shares
@
 J
o
= [
@
§ o
%
= v
= AR
= YW v
<
4
100 ]
I A
A A
10000 15000 20000 25000 30000

Signature size (in bytes)



One can combine slack with the other masking-friendly tweaks.

TCitH-MT masked signature, N from 32 to 256, d = 3

(0] ® No tweak
® v PR shares
@ Slack (full)
1071 ¢ Slack (half) + PR shares
(<)
o
o
) [}
]
§ o
3
§= v
£ W Yvy
= W v
<
d4q
100 .
1 A
A A
10000 15000 20000 25000 30000

Signature size (in bytes)

Using Merkle trees leads to better trade-oftfs than using GGM trees, because the
Merkle trees do not contain sensitive data.



Conclusion

m One can combine slack with the other masking-friendly tweaks.

TCitH-MT masked signature, N from 32 to 256, d = 3

m Using Merkle trees leads to better trade-offs than using GGM trees, because the

(*) ® No tweak
® v PR shares
@ A Slack (full)
1071 ¢ Slack (half) + PR shares
e
o
o
) 0
@
i v
g W vy
= V' v
“ A
<<
100 q B A A A
A A A 4,
A A A
10000 15000 20000 25000 30000

Signature size (in bytes)

Merkle trees do not contain sensitive data.

Thank you for your attention.




