Masking-Friendly Post-Quantum Signatures in the ThresholdComputation-in-the-Head Framework

<u>Thibauld Feneuil</u>, Matthieu Rivain, Auguste Warmé-Janville

CHES 2025

September 16, 2025 — Kuala Lumpur (Malaysia)

Introduction / Context

Context

- 2022: NIST announced the selected signatures for standardisation
 - ML-DSA (Dilithium): rely on structured lattices
 - FN-DSA (Falcon): rely on structured lattices
 - SLH-DSA (SPHINCS+): rely on hash functions
 - Need to alternative signature schemes

Context

- 2022: NIST announced the selected signatures for standardisation
 - ML-DSA (Dilithium): rely on structured lattices
 - FN-DSA (Falcon): rely on structured lattices
 - SLH-DSA (SPHINCS+): rely on hash functions
 - Need to alternative signature schemes
- 2023: NIST Call for additional post-quantum signatures
 - In Round-2 (2025), six candidates rely on the MPC-in-the-Head paradigm:
 FAEST, Mirath, MQOM, PERK, RYDE, SDitH
 - There are relying on the recent **VOLEitH** and **TCitH** frameworks (2023).

This work

• In this work, we provide insights of how to tweak the TCitH framework to produce masking-friendly schemes, *i.e.* schemes for which the masking induces a reasonable computation cost.

Fquivalent in lattice-based cryptography: Raccoon

This work

• In this work, we provide insights of how to tweak the TCitH framework to produce masking-friendly schemes, *i.e.* schemes for which the masking induces a reasonable computation cost.

Equivalent in lattice-based cryptography: Raccoon

Goal:

Given a parameter d, propose a new MPCitH-based signature scheme that can be **very efficiently masked** to achieve a **provable** d-**probing security**.

• *d*-probing security:

A implementation is said d-probing secure when any combination of d intermediary variables does not leak secret information.

Introduction to masking

To achieve d-probing security, the most used technique is **masking**.

Instead of directly manipulating a sensitive variable x, we can use a sharing of it:

We denote $[\![x]\!] := ([\![x]\!]_0, ..., [\![x]\!]_d)$, where $[\![x]\!]_0, ..., [\![x]\!]_d$ are **random values** such that

$$x = [x]_0 + [x]_2 + \dots + [x]_d.$$

We can perform the computation over masked variables: for example

- [x + y] from [x] and [y]: computational cost in O(d)
- $[x \cdot y]$ from [x] and [y]: computational cost in $O(d^2)$

While it is easy to obtain a d-secure implementation by simply applying masking over sensitive variables, the main issue is the **computational overhead**.

Question: How to tweak a MPCitH-based scheme to avoid a *quadratic* computational overhead when masking?

Tweaking the TCitH-based schemes

* using the PIOP formalism

Secret key: a field vector $\mathbf{w} \in \mathbb{F}^n$

* using the PIOP formalism

Secret key: a field vector $\mathbf{w} \in \mathbb{F}^n$

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$. Sample a random degree- $(\ell \cdot t 1)$ polynomial M(X).
- ② Commit the polynomials $(P_1, ..., P_n)$ and M to obtain a commitment digest h.

* using the PIOP formalism

Secret key: a field vector $\mathbf{w} \in \mathbb{F}^n$

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$. Sample a random degree- $(\ell \cdot t 1)$ polynomial M(X).
- ② Commit the polynomials $(P_1, ..., P_n)$ and M to obtain a commitment digest h.

$$X \cdot Q(X) = X \cdot M(X) + f(P_1(X), \dots, P_n(X))$$

* using the PIOP formalism

Secret key: a field vector $\mathbf{w} \in \mathbb{F}^n$

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$. Sample a random degree- $(\ell \cdot t 1)$ polynomial M(X).
- ② Commit the polynomials $(P_1, ..., P_n)$ and M to obtain a commitment digest h.

$$X \cdot Q(X) = X \cdot M(X) + f(P_1(X), \dots, P_n(X))$$

- ④ Choose evaluation points $E:=\{e_1,...e_\ell\}$ by hashing the commitment and the message $E=\mathrm{Hash}(\mathrm{msg},h,Q)\subset\mathscr{C}$
- ⑤ For all j, compute the evaluations $v_{j,i}^P := P_i(e_j)$ for all i, and $v_j^M := M(e_j)$, together with a opening proof π .

* using the PIOP formalism

Secret key: a field vector $\mathbf{w} \in \mathbb{F}^n$

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$. Sample a random degree- $(\ell \cdot t 1)$ polynomial M(X).
- ② Commit the polynomials $(P_1, ..., P_n)$ and M to obtain a commitment digest h.

$$X \cdot Q(X) = X \cdot M(X) + f(P_1(X), \dots, P_n(X))$$

- ④ Choose evaluation points $E:=\{e_1,...e_\ell\}$ by hashing the commitment and the message $E=\mathrm{Hash}(\mathrm{msg},h,Q)\subset\mathscr{C}$
- ⑤ For all j, compute the evaluations $v_{j,i}^P := P_i(e_j)$ for all i, and $v_j^M := M(e_j)$, together with a opening proof π .
- 6 Output the signature:

$$\sigma = \left(h, \pi, Q, \left\{\vec{v}_j^P, v_j^M\right\}_i\right) \quad \text{with} \quad \vec{v}_j^P := (v_{j,1}^P, \dots, v_{j,n}^P)$$

* using the PIOP formalism

Secret key: a field vector $w \in \mathbb{F}^n$

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$. Sample a random degree- $(\ell \cdot t 1)$ polynomial M(X).
- ② Commit the polynomials $(P_1, ..., P_n)$ and M to obtain a commitment digest h.

$$X \cdot Q(X) = X \cdot M(X) + f(P_1(X), \dots, P_n(X))$$

- 4 Choose evaluation points $E:=\{e_1,...e_\ell\}$ by hashing the commitment and the message $E=\mathrm{Hash}(\mathrm{msg},h,Q)\subset \mathscr{C}$
- ⑤ For all j, compute the evaluations $v_{j,i}^P := P_i(e_j)$ for all i, and $v_j^M := M(e_j)$, together with a opening proof π .
- 6 Output the signature:

$$\sigma = \left(h, \pi, Q, \left\{\vec{v}_j^P, v_j^M\right\}_j\right) \quad \text{with} \quad \vec{v}_j^P := (v_{j,1}^P, \dots, v_{j,n}^P)$$

* using the PIOP formalism

Secret key: a field vector $w \in \mathbb{F}^n$

Public key: a multivariate degree-t polynomial f such that f(w) = 0

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$. Sample a random degree- $(\ell \cdot t 1)$ polynomial M(X).
- 2 Commit the polynomials $(P_1, ..., I_n)$ and M to obtain a commitment digest h.
- 3 Build the polynomial Q such that

Sampling: computational overhead of O(d)

4 Choose ev

$$E = \operatorname{Hash}(\operatorname{msg}, h, Q) \subset \mathscr{C}$$

- 5 For all j, compute the evaluations $v_{j,i}^P := P_i(e_j)$ for all i, and $v_j^M := M(e_j)$, together with a opening proof π .
- 6 Output the signature:

$$\sigma = \left(h, \pi, Q, \left\{\vec{v}_j^P, v_j^M\right\}_i\right) \quad \text{with} \quad \vec{v}_j^P := (v_{j,1}^P, \dots, v_{j,n}^P)$$

* using the PIOP formalism

Secret key: a field vector $w \in \mathbb{F}^n$

Public key: a multivariate degree-t polynomial f such that f(w) = 0

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$. Sample a random degree- $(\ell \cdot t 1)$ polynomial M(X).
- 2 Commit the polynomials $(P_1, ..., P_n)$ and M to obtain a commitment digest h.
- 3 Build the poly

Linear operation: computational overhead of ${\cal O}(d)$

- 4 Choose evaluation points $E:=\{e_1,...e_\ell\}$ by hashing the commitment and the message $E=\operatorname{Hash}(\operatorname{msg},h,Q)\subset \mathscr{C}$
- ⑤ For all j, compute the evaluations $v_{j,i}^P := P_i(e_j)$ for all i, and $v_j^M := M(e_j)$, together with a opening proof π .
- 6 Output the signature:

$$\sigma = \left(h, \pi, Q, \left\{\vec{v}_j^P, v_j^M\right\}_i\right) \quad \text{with} \quad \vec{v}_j^P := (v_{j,1}^P, \dots, v_{j,n}^P)$$

* using the PIOP formalism

Secret key: a field vector $w \in \mathbb{F}^n$

Public key: a multivariate degree-t polynomial f

- 1) For all i, sample Sample a random
- Involve multiplications over $\mathbb F$ between sensitive variables: computational overhead of $O(d^2)$
- 2 Commit the polynomials $(P_1, ..., P_n)$ and M to obtain a commitment digest h.

$$X \cdot Q(X) = X \cdot M(X) + f(P_1(X), \dots, P_n(X))$$

- 4 Choose evaluation points $E:=\{e_1,...e_\ell\}$ by hashing the commitment and the message $E=\mathrm{Hash}(\mathrm{msg},h,Q)\subset \mathscr{C}$
- ⑤ For all j, compute the evaluations $v_{j,i}^P := P_i(e_j)$ for all i, and $v_j^M := M(e_j)$, together with a opening proof π .
- 6 Output the signature:

$$\sigma = \left(h, \pi, Q, \left\{\vec{v}_j^P, v_j^M\right\}_i\right) \quad \text{with} \quad \vec{v}_j^P := (v_{j,1}^P, \dots, v_{j,n}^P)$$

* using the PIOP formalism

Secret key: a field vector $w \in \mathbb{F}^n$

Public key: a multivariate degree-t polynomial f such that f(w) = 0

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$. Sample a random degree- $(\ell \cdot t 1)$ polynomial M(X).
- ② Commit the polynomials $(P_1, ..., P_n)$ and M to obtain a commitment digest h.

$$X \cdot Q(X) = X \cdot M(X) + f(P_1(X), \dots, P_n(X))$$

4 Choose evalu

Involve running symmetric primitives over sensitive variables: huge computational overhead of $O(d^2)$

- ⑤ For all j, compute the evaluations $v_{j,i}^P := P_i(e_j)$ for all i, and $v_j^M := M(e_j)$, together with a opening proof π .
- 6 Output the signature:

$$\sigma = \left(h, \pi, Q, \left\{\vec{v}_j^P, v_j^M\right\}_i\right) \quad \text{with} \quad \vec{v}_j^P := (v_{j,1}^P, \dots, v_{j,n}^P)$$

How much the polynomial P_i is sensitive?

- P_i is a random degree- ℓ polynomial such that $P_i(0) = w_i$.
- ℓ evaluations of P_i are disclosed in the signature transcript.

How much the polynomial P_i is sensitive?

- P_i is a random degree- ℓ polynomial such that $P_i(0) = w_i$.
- ℓ evaluations of P_i are disclosed in the signature transcript.

Leaking any other evaluation of P_i leaks w_i !

How much the polynomial P_i is sensitive?

- P_i is a random degree- ℓ polynomial such that $P_i(0) = w_i$.
- ℓ evaluations of P_i are disclosed in the signature transcript.

Leaking any other evaluation of P_i leaks w_i !

Possible tweak: introduce a slack $\sigma > 0$

- P_i is a degree- ℓ polynomial such that $P_i(0) = w_i$.
- $\ell \sigma$ evaluations of P_i are disclosed in the signature transcript.

How much the polynomial P_i is sensitive?

- P_i is a random degree- ℓ polynomial such that $P_i(0) = w_i$.
- ℓ evaluations of P_i are disclosed in the signature transcript.

Leaking any other evaluation of P_i leaks w_i !

Possible tweak: introduce a slack $\sigma > 0$

- P_i is a degree- ℓ polynomial such that $P_i(0) = w_i$.
- $\ell \sigma$ evaluations of P_i are disclosed in the signature transcript.

Leaking σ other evaluations of P_i leaks no informations about w_i !

How much the polynomial P_i is sensitive?

- P_i is a random degree- ℓ polynomial such that $P_i(0) = w_i$.
- ℓ evaluations of P_i are disclosed in the signature transcript.

Leaking any other evaluation of P_i leaks w_i !

Possible tweak: introduce a slack $\sigma > 0$

- P_i is a degree- ℓ polynomial such that $P_i(0) = w_i$.
- $\ell \sigma$ evaluations of P_i are disclosed in the signature transcript.

Leaking σ other evaluations of P_i leaks no informations about w_i !

Larger signatures

* using the PIOP formalism

Secret key: a field vector $w \in \mathbb{F}^n$

Public key: a multivariate degree-t polynomial f

- 1) For all i, sample Sample a random
- Involve multiplications over $\mathbb F$ between sensitive variables: computational overhead of $O(d^2)$
- 2 Commit the polynomials $(P_1, ..., P_n)$ and M to obtain a commitment digest h.

$$X \cdot Q(X) = X \cdot M(X) + f(P_1(X), \dots, P_n(X))$$

- 4 Choose evaluation points $E:=\{e_1,...e_\ell\}$ by hashing the commitment and the message $E=\mathrm{Hash}(\mathrm{msg},h,Q)\subset \mathscr{C}$
- ⑤ For all j, compute the evaluations $v_{j,i}^P := P_i(e_j)$ for all i, and $v_j^M := M(e_j)$, together with a opening proof π .
- 6 Output the signature:

$$\sigma = \left(h, \pi, Q, \left\{\vec{v}_j^P, v_j^M\right\}_i\right) \quad \text{with} \quad \vec{v}_j^P := (v_{j,1}^P, \dots, v_{j,n}^P)$$

* using the PIOP formalism

Secret key: a field vector $w \in \mathbb{F}^n$

Public key: a multivariate degree-t polynomial f such that f(w) = 0

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$. Sample a random degree- $(\ell \cdot t 1)$ polynomial M(X).
- ② Commit the polynomials $(P_1, ..., P_n)$ and M to obtain a commitment digest h.

$$X \cdot Q(X) = X \cdot M(X) + f(P_1(X), \dots, P_n(X))$$

4 Choose evalu

Involve running symmetric primitives over sensitive variables: huge computational overhead of $O(d^2)$

- ⑤ For all j, compute the evaluations $v_{j,i}^P := P_i(e_j)$ for all i, and $v_j^M := M(e_j)$, together with a opening proof π .
- 6 Output the signature:

$$\sigma = \left(h, \pi, Q, \left\{\vec{v}_j^P, v_j^M\right\}_i\right) \quad \text{with} \quad \vec{v}_j^P := (v_{j,1}^P, \dots, v_{j,n}^P)$$

TCitH-based Signing Algorithm

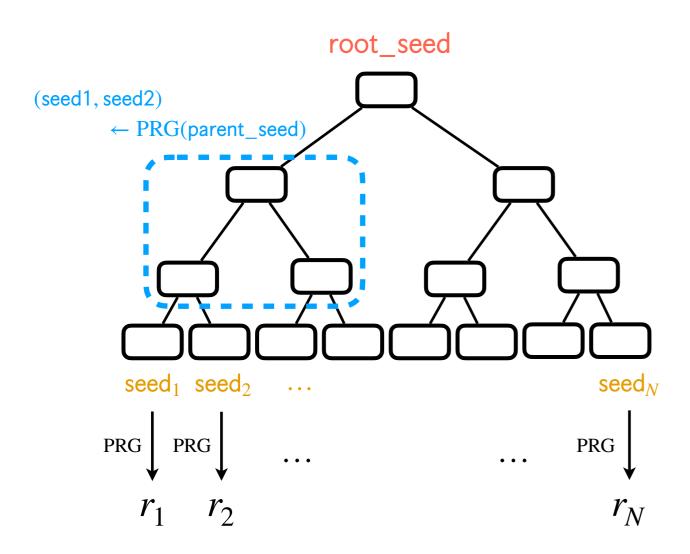
Threshold-Computation-in-the-Head

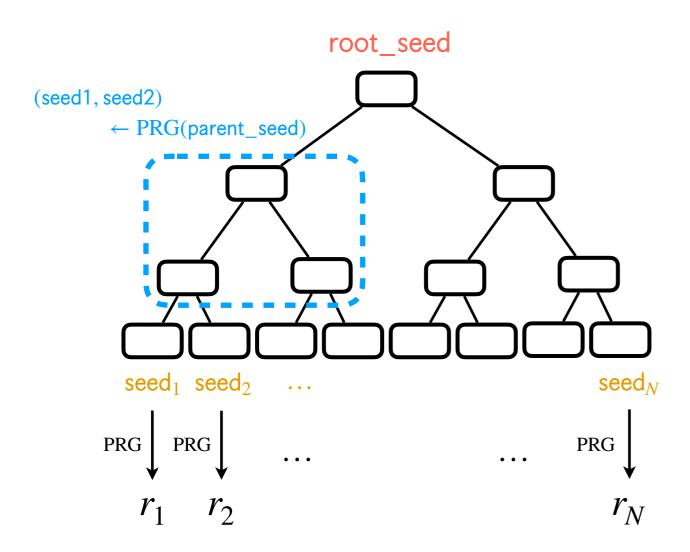
TCitH-GGM: rely on GGM trees

TCitH-MT: rely on Merkle trees

- Used in NIST candidates
- Produce to smaller signatures (around 2.5~5 KB)

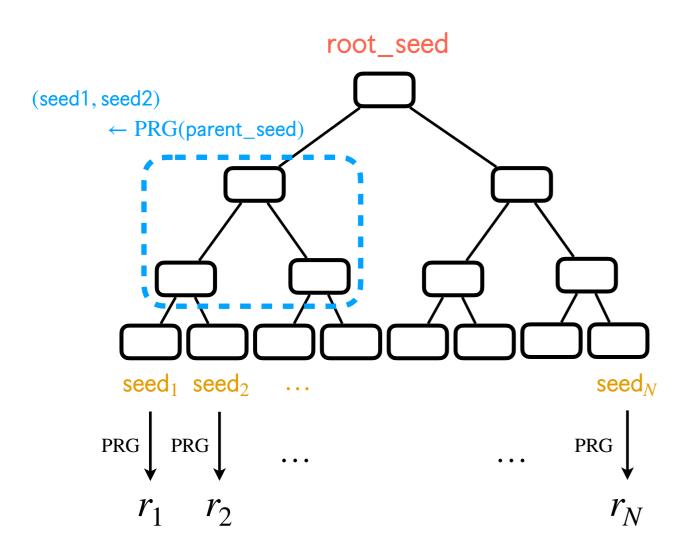
- Used in some (small) ZKPoK
- Produce to larger signatures (around 5~10 KB)



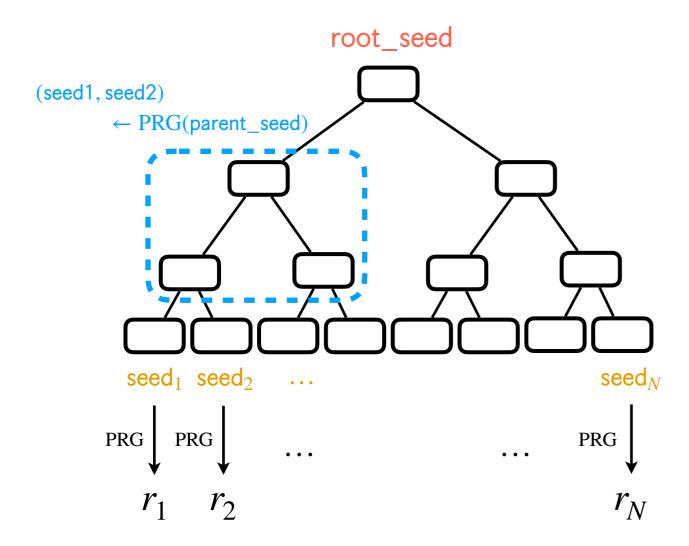


Build
$$\Delta P(X)$$
 as
$$\Delta P(X) := P(X) + \sum_{i=1}^{N} r_i \cdot (X - e_i)$$

(assuming $\deg P = 1$)



Build
$$\Delta P(X)$$
 as
$$\Delta P(X) := P(X) + \underbrace{\sum_{i=1}^{N} r_i \cdot (X - e_i)}_{Mask}$$
 (assuming $\deg P = 1$)

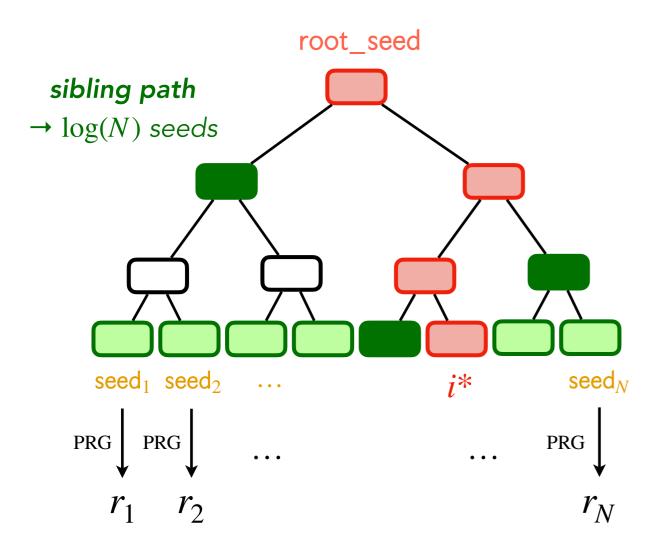


Build $\Delta P(X)$ as

$$\Delta P(X) := P(X) + \underbrace{\sum_{i=1}^{N} r_i \cdot (X - e_i)}_{\textit{Mask}}$$
 (assuming $\deg P = 1$)

Commitment:

- Commit to each seed **independently**
- Reveal the masked polynomial $\Delta P(X)$



Commitment:

- Commit to each seed **independently**
- Reveal the masked polynomial $\Delta P(X)$

Open $P(e_{i*})$:

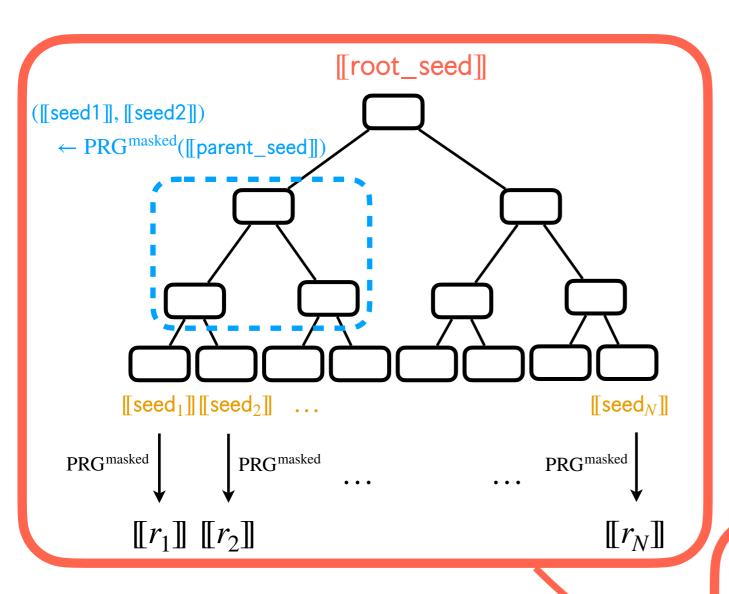
Reveal all $\{r_i\}_{i\neq i^*}$ since

$$P(e_{i^*}) = -\Delta P(e_{i^*}) + \sum_{i \neq i^*} r_i \cdot (e_{i^*} - e_i)$$

Build $\Delta P(X)$ as

$$\Delta P(X) := P(X) + \underbrace{\sum_{i=1}^{N} r_i \cdot (X - e_i)}_{Mask}$$

(assuming $\deg P = 1$)



Commitment:

- Commit to each seed **independently**
- Reveal the masked polynomial $\Delta P(X)$

Open
$$P(e_{i*})$$
:

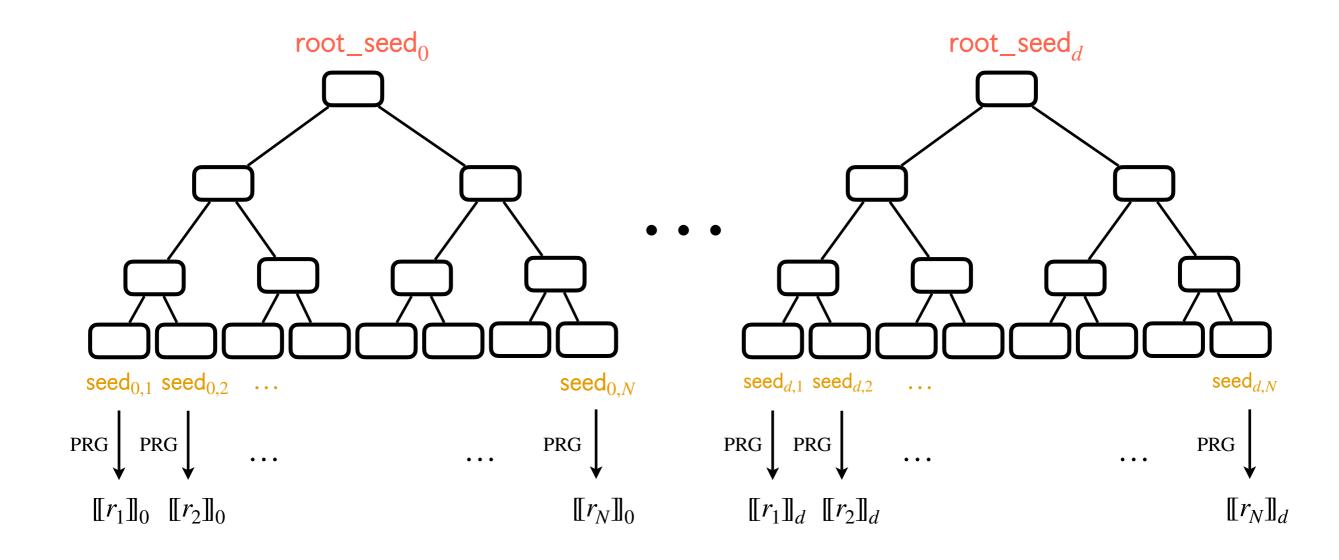
Reveal all $\{r_i\}_{i\neq i^*}$ since

$$P(e_{i^*}) = -\Delta P(e_{i^*}) + \sum_{i \neq i^*} r_i \cdot (e_{i^*} - e_i)$$

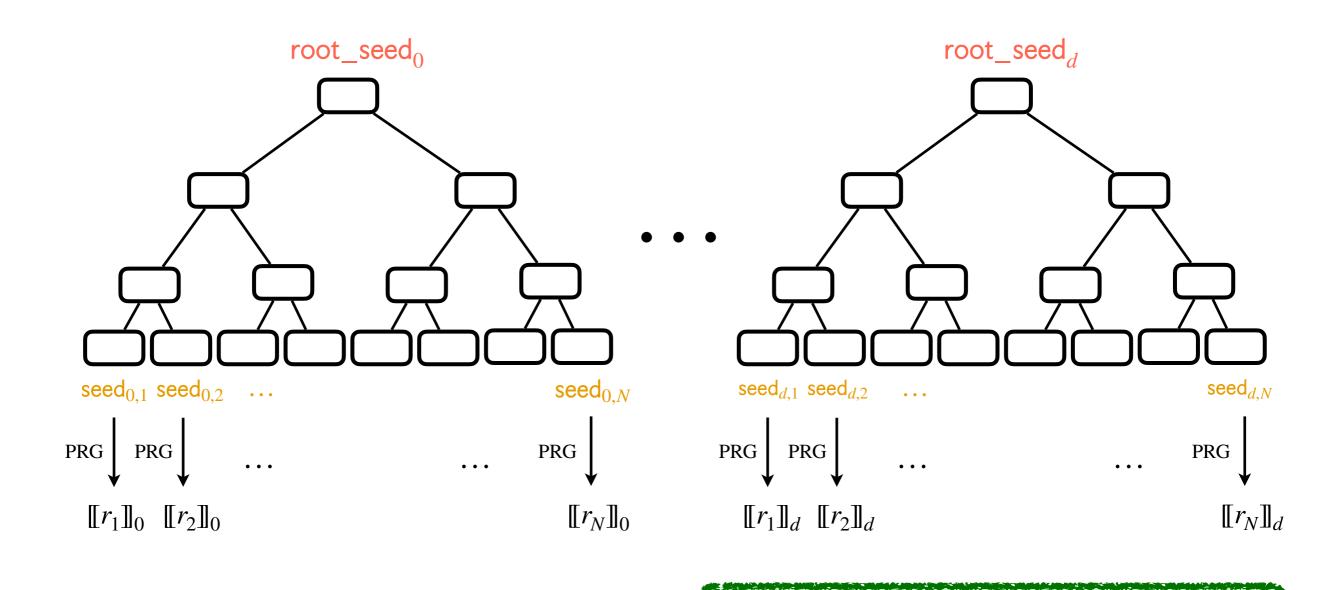
Need to protect around $\sim 2N \cdot \tau$ calls to PRG, usually a PRG based on SHAKE or on AES in counter mode: Extremely computationally costly!

Typically value for $2\tau N$: $2 \times 2048 \times 12 \approx 50000$

Build $\Delta P(X)$ as $\Delta P(X) := \llbracket P \rrbracket(X) + \sum_{i=1}^N \llbracket r_i \rrbracket \cdot (X - e_i)$ (assuming $\deg P = 1$)



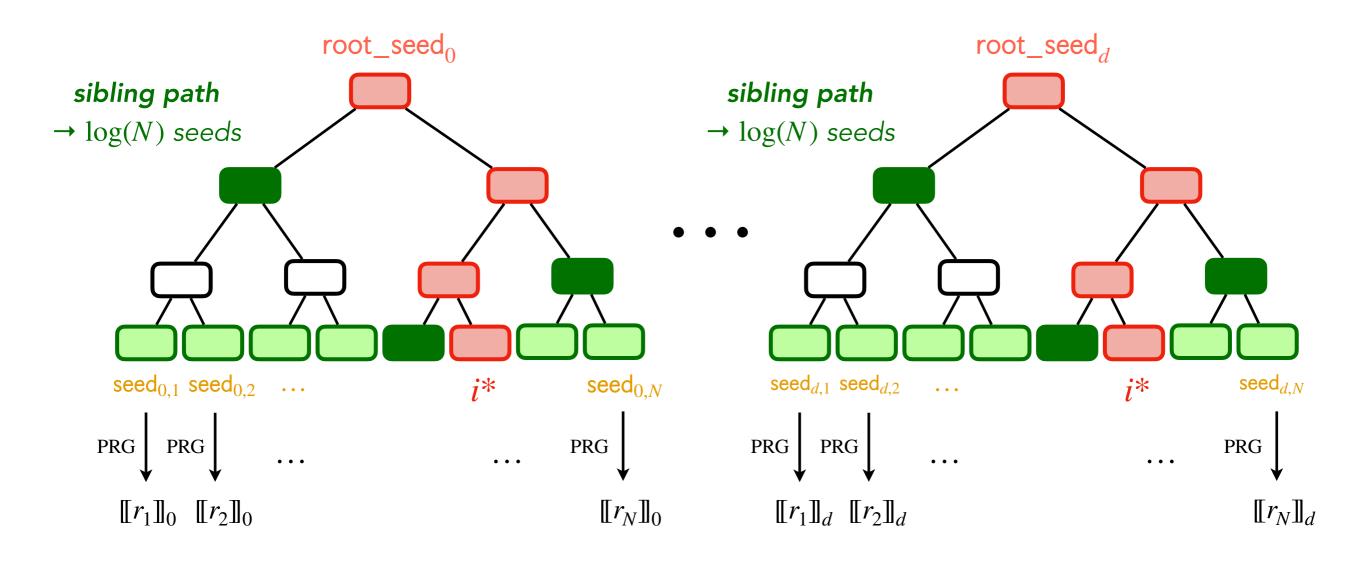
Build
$$\Delta P(X)$$
 as
$$\Delta P(X) := \llbracket P \rrbracket(X) + \sum_{i=1}^N \llbracket r_i \rrbracket \cdot (X - e_i)$$
 (assuming $\deg P = 1$) Mask



Build
$$\Delta P(X)$$
 as
$$\Delta P(X) := \llbracket P \rrbracket(X) + \sum_{i=1}^N \llbracket r_i \rrbracket \cdot (X - e_i)$$

(assuming $\deg P = 1$) Mask

Linear computation overhead, i.e. O(d)



Build
$$\Delta P(X)$$
 as
$$\Delta P(X) := \llbracket P \rrbracket(X) + \sum_{i=1}^N \llbracket r_i \rrbracket \cdot (X - e_i)$$
 (assuming $\deg P = 1$)

Linear computation overhead, i.e. O(d)

The number of revealed sibling paths is d+1 times larger.

	No Tweak (using masking)		Parallel Trees	
Nb shares	Signing time	Sig. Size	Signing time	Sig. Size
1	0,35 s	4.5 KB	0,35 s	4.5 KB
2	14 s	4.5 KB	0,93 s	6.7 KB
3	27 s	4.5 KB	1,43 s	8.9 KB
4	53 s	4.5 KB	2,03 s	11.0 KB
8	236 s	4.5 KB	4,94 s	19.7 KB
16	993 s	4.5 KB	14,0 s	37.1 KB
32	4519 s	4.5 KB	45,0 s	72.0 KB

Performance of a TCitH-GGM-based signature scheme for which the security relies on the hardness of solving the MQ problem. Running times estimated for a RISC-V platform assuming the presence of a hardware accelerator for plain Keccak and that the PRG is instantiated using SHAKE.

No masking, i.e. basic scheme

	No Tweak (using masking)		Parallel 1	rees
Nb shares	Signing time	Sig. Size	Signing time	Sig. Size
1	0,35 s	4.5 KB	0,35 s	4.5 KB
2	14 s	4.5 KB	0,93 s	6.7 KB
3	27 s	4.5 KB	1,43 s	8.9 KB
4	53 s	4.5 KB	2,03 s	11.0 KB
8	236 s	4.5 KB	4,94 s	19.7 KB
16	993 s	4.5 KB	14,0 s	37.1 KB
32	4519 s	4.5 KB	45,0 s	72.0 KB

Performance of a TCitH-GGM-based signature scheme for which the security relies on the hardness of solving the MQ problem. Running times estimated for a RISC-V platform assuming the presence of a hardware accelerator for plain Keccak and that the PRG is instantiated using SHAKE.

	No Tweak (using masking)		Parallel 7	Trees
Nb shares	Signing time	Sig. Size	Signing time	Sig. Size
1	0,35 s	4.5 KB	0,35 s	4.5 KB
2	14 s	4.5 KB	0,93 s	6.7 KB
3	27 s	4.5 KB	1,43 s	8.9 KB
4	53 s	4.5 KB	2,03 s	11.0 KB
8	236 s	4.5 KB	4,94 s	19.7 KB
16	993 s	4.5 KB	14,0 s	37.1 KB
32	4519 s	4.5 KB	45,0 s	72.0 KB

Performance of a TCitH-GOM-based signature scheme for which the security relies on the hardness of solving the MQ

Signature size independent of the masking order

	No Tweak (using masking)		Parallel 1	Trees
Nb shares	Signing time	Sig. Size	Signing time	Sig. Size
1	0,35 s	4.5 KB	0,35 s	4.5 KB
2	14 s	4.5 KB	0,93 s	6.7 KB
3	27 s	4.5 KB	1,43 s	8.9 KB
4	53 s	4.5 KB	2,03 s	11.0 KB
8	236 s	4.5 KB	4,94 s	19.7 KB
16	993 s	4.5 KB	14,0 s	37.1 KB
32	4519 s	4.5 KB	45,0 s	72.0 KB

Performance of a TCitH-GGM-based signature scheme for which the security relies on the hardness of solving the MQ s estimated for a RISC-V platform of a hardware accelerator for plain

RG is instantiated using SHAKE.

	No Tweak (using masking)		Parallel 7	Trees
Nb shares	Signing time	Sig. Size	Signing time	Sig. Size
1	0,35 s	4.5 KB	0,35 s	4.5 KB
2	14 s	4.5 KB	0,93 s	6.7 KB
3	27 s	4.5 KB	1,43 s	8.9 KB
4	53 s	4.5 KB	2,03 s	11.0 KB
8	236 s	4.5 KB	4,94 s	19.7 KB
16	993 s	4.5 KB	14,0 s	37.1 KB
32	4519 s	4.5 KB	45,0 s	72.0 KB

Performance of a TCitH-GGM-based signature scheme for which the security relies on the hardness of solving the MQ problem. Running times estimated for a RISC-V platform assuming the presence of a hardware accelerator for plain HAKE.

Much faster implementation

	No Tweak (using masking)		Parallel 7	Trees
Nb shares	Signing time	Sig. Size	Signing time	Sig. Size
1	0,35 s	4.5 KB	0,35 s	4.5 KB
2	14 s	4.5 KB	0,93 s	6.7 KB
3	27 s	4.5 KB	1,43 s	8.9 KB
4	53 s	4.5 KB	2,03 s	11.0 KB
8	236 s	4.5 KB	4,94 s	19.7 KB
16	993 s	4.5 KB	14 ,0 s	37.1 KB
32	4519 s	4.5 KB	45,0 s	72.0 KB

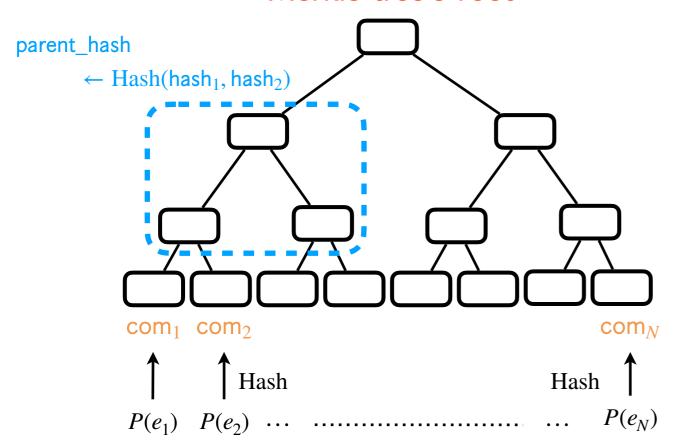
Performance of a TCitN-GGM-based signature scheme for the MQ

tform

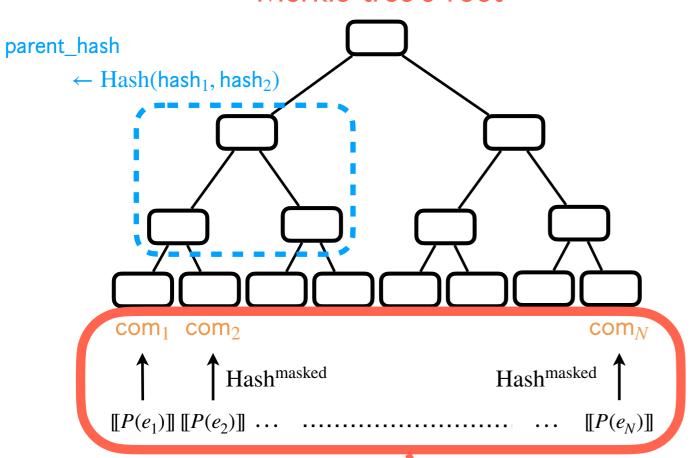
Big communication overhead

or plain Keccak and that the PRG is instantiated using SHAKE.

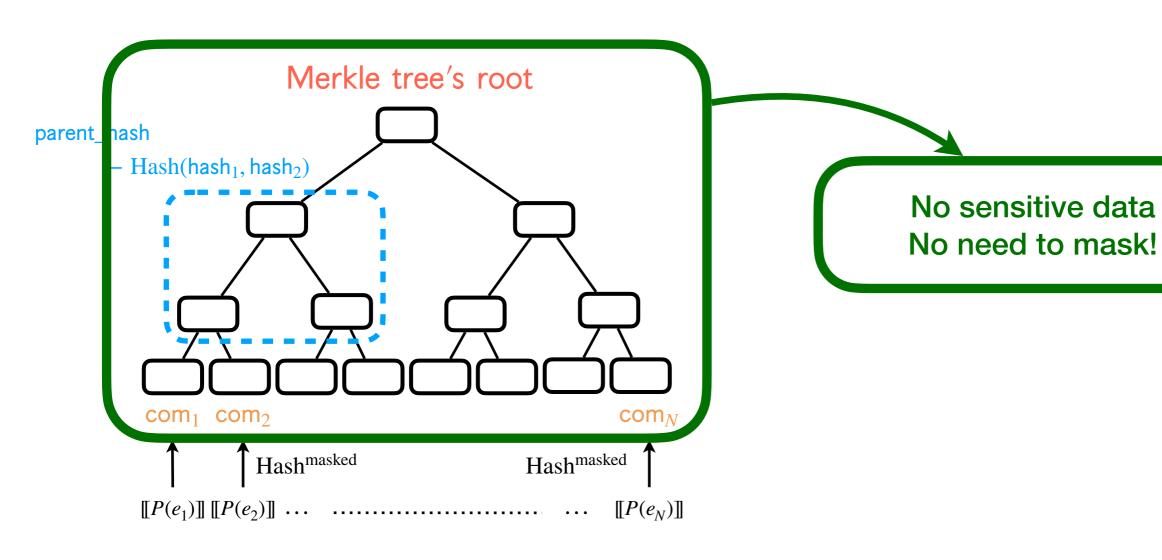
Merkle tree's root



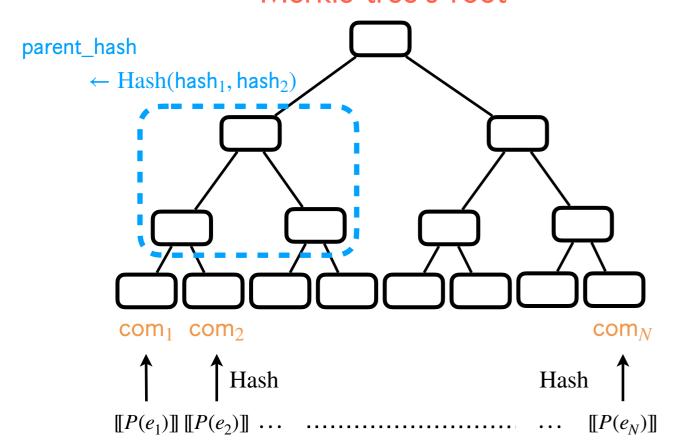
Merkle tree's root



Need to protect around $\sim N \cdot \tau$ calls to hash function: Computationally costly!



Merkle tree's root



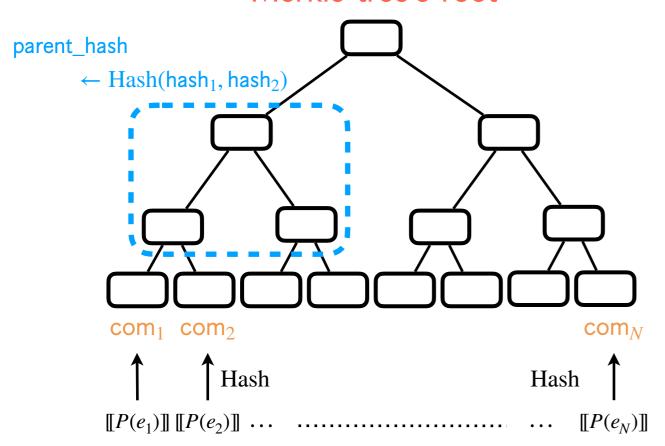
To commit to a value v (no tweaked): $com_v := Hash(v)$ from [v]

Tweak Idea:

One can commit directly to the shares $[v]_0, ..., [v]_d$. Namely,

 $com_v := Hash([[v]]_0) \| ... \| Hash([[v]]_d).$

Merkle tree's root



To commit to a value v (no tweaked): $com_v := Hash(v)$ from [v]

Tweak Idea:

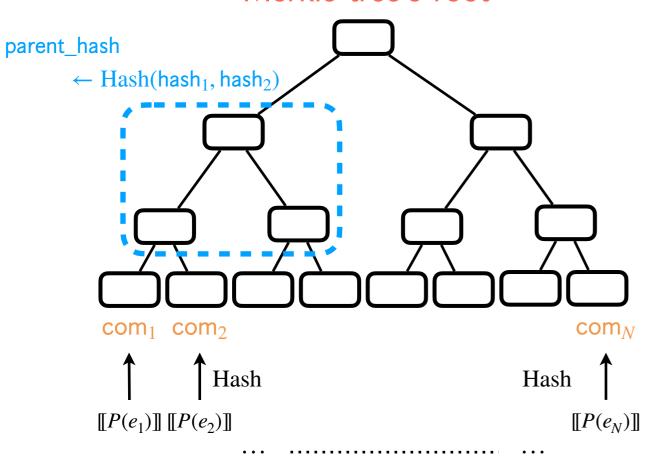
One can commit directly to the shares $[v]_0, ..., [v]_d$. Namely,

 $com_v := Hash([[v]]_0) \| ... \| Hash([[v]]_d).$

Issue:

To let the verifier check the commitment, the signature transcript should contain the entire [v] (and not just v), such that the verifier can recompute the digest com $_v$.

Merkle tree's root



To commit to a value v (no tweaked): $com_v := Hash(v)$ from [v]

Basic Tweak Idea:

One can commit directly to the shares $[v]_0, ..., [v]_d$. Namely,

 $com_v := Hash([[v]]_0) \| ... \| Hash([[v]]_d).$

Improved Tweak Idea:

Commit to the shares $[v]_0, ..., [v]_d$ after compressing them into pseudo-random shares:

 $(v_0, \text{seed}_1, ..., \text{seed}_d) \leftarrow \text{MaskCompress}(\llbracket v \rrbracket)$ $\text{com}_i \leftarrow \text{Hash}(v_0) \parallel \text{Hash}(\text{seed}_1) \parallel ... \parallel \text{Hash}(\text{seed}_d)$

where $v = v_0 + v_1 + \dots + v_d$, with $v_i := PRG(seed_i)$ for all $i \ge 1$.

	No Tweak (using masking)		Com. of PR	sharings
Nb shares	Signing time	Sig. Size	Signing time	Sig. Size
1	0,35 s	6.5 KB	0,35 s	6.5 KB
2	5.2 s	6.5 KB	1.1 s	6.8 KB
3	9.8 s	6.5 KB	1.9 s	7.1 KB
4	19 s	6.5 KB	2.8 s	7.4 KB
8	81 s	6.5 KB	7.3 s	8.6 KB
16	339 s	6.5 KB	20 s	11.1 KB
32	1534 s	6.5 KB	60 s	15.9 KB

Performance of a TCitH-MT-based signature scheme for which the security relies on the hardness of solving the MQ problem. Running times estimated for a RISC-V platform assuming the presence of a hardware accelerator for plain Keccak.

No masking, i.e. basic scheme

	No Tweak (using masking)		Com. of PR	sharings
Nb shares	Signing time	Sig. Size	Signing time	Sig. Size
1	0,35 s	6.5 KB	0,35 s	6.5 KB
2	5.2 s	6.5 KB	1.1 s	6.8 KB
3	9.8 s	6.5 KB	1.9 s	7.1 KB
4	19 s	6.5 KB	2.8 s	7.4 KB
8	81 s	6.5 KB	7.3 s	8.6 KB
16	339 s	6.5 KB	20 s	11.1 KB
32	1534 s	6.5 KB	60 s	15.9 KB

Performance of a TCitH-MT-based signature scheme for which the security relies on the hardness of solving the MQ problem. Running times estimated for a RISC-V platform assuming the presence of a hardware accelerator for plain Keccak.

	No Tweak (using masking)		Com. of PR	sharings
Nb shares	Signing time	Sig. Size	Signing time	Sig. Size
1	0,35 s	6.5 KB	0,35 s	6.5 KB
2	5.2 s	6.5 KB	1.1 s	6.8 KB
3	9.8 s	6.5 KB	1.9 s	7.1 KB
4	19 s	6.5 KB	2.8 s	7.4 KB
8	81 s	6.5 KB	7.3 s	8.6 KB
16	339 s	6.5 KB	20 s	11.1 KB
32	1534 s	6.5 KB	60 s	15.9 KB

Performance of a TCitH-MT-based signature scheme for which the security relies on the hardness of solving the MQ problem.

Signature size independent of the masking order

	No Tweak (using masking)		Com. of PR	sharings
Nb shares	Signing time	Sig. Size	Signing time	Sig. Size
1	0,35 s	6.5 KB	0,35 s	6.5 KB
2	5.2 s	6.5 KB	1.1 s	6.8 KB
3	9.8 s	6.5 KB	1.9 s	7.1 KB
4	19 s	6.5 KB	2.8 s	7.4 KB
8	81 s	6.5 KB	7.3 s	8.6 KB
16	339 s	6.5 KB	20 s	11.1 KB
32	1534 s	6.5 KB	60 s	15.9 KB

Performance of a TCitH-MT-based signature scheme for which the security relies on the hardness of solving the MQ problem. accelerator for plain Keccak.

Big computation overhead

	No Tweak (using masking)		Com. of PR	sharings
Nb shares	Signing time	Sig. Size	Signing time	Sig. Size
1	0,35 s	6.5 KB	0,35 s	6.5 KB
2	5.2 s	6.5 KB	1.1 s	6.8 KB
3	9.8 s	6.5 KB	1.9 s	7.1 KB
4	19 s	6.5 KB	2.8 s	7.4 KB
8	81 s	6.5 KB	7.3 s	8.6 KB
16	339 s	6.5 KB	20 s	11.1 KB
32	1534 s	6.5 KB	60 s	15.9 KB

Performance of a TCitH-MT-based signature scheme for which the security relies on the hardness of solving the MQ problem. Running times estimated for a RISC-V platform assuming the presence of a hardware accelerator for plain Keccak.

Much faster implementation

GGM with parallel trees

	No Tweak (using masking)		Com. of PR	sharings
Nb shares	Signing time	Sig. Size	Signing time	Sig. Size
1	0,35 s	6.5 KB	0,35 s	6.5 KB
2	5.2 s	6.5 KB	1.1 s	6.8 KB
3	9.8 s	6.5 KB	1.9 s	7.1 KB
4	19 s	6.5 KB	2.8 s	7.4 KB
8	81 s	6.5 KB	7.3 3	8.6 KB
16	339 s	6.5 KB	20 s	11.1 KB
32	1534 s	6.5 KB	60 s	15.9 KB

4.5 KB

6.7 KB

8.9 KB

11.0 KB

19.7 KB

37.1 KB

72.0 KB

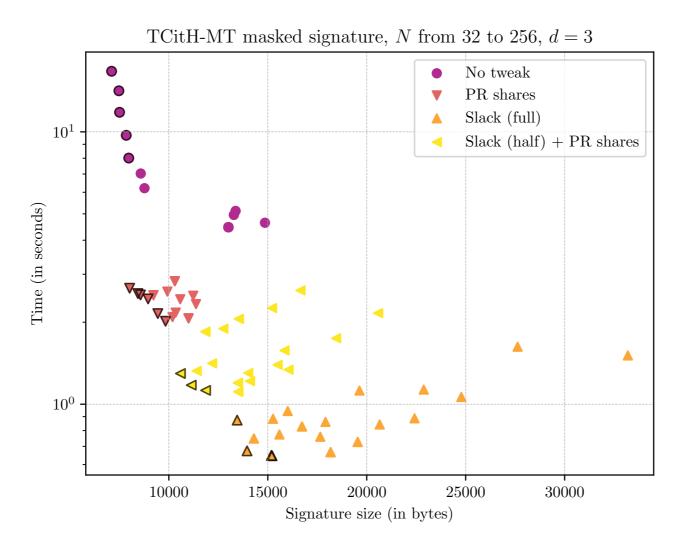
Performance of a TCith-MT-based signature scheme for which Q problem.

Small communication overhead mir

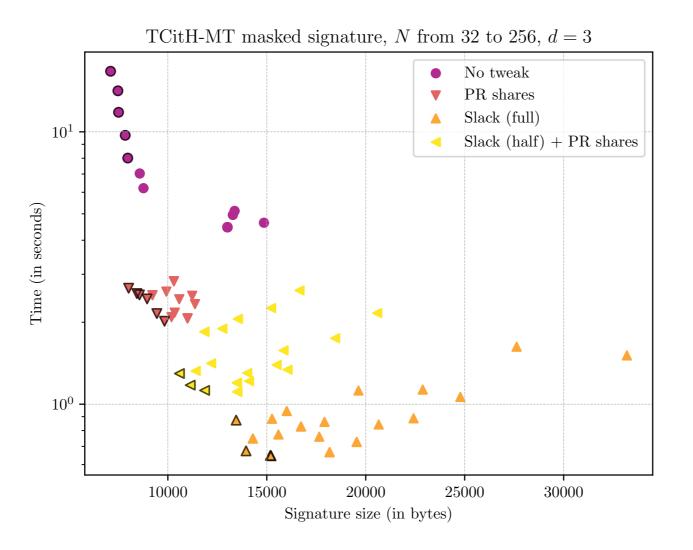
ming the

- Masking TCitH-based schemes (without tweak) is computational expensive.
- This issue can be mitigated by tweaking those schemes:
 - one can introduce a slack between the polynomial degree and the number of opened evaluations
 - when using GGM trees, one can use parallel trees.
 - when using Merkle trees, one can commit to pseudo-random sharings instead of committing to clear values.
- All those tweaks drastically reduce the running times, but introduce some variability in the signature size: the signature size depends on the masking order.

One can combine slack with the other masking-friendly tweaks.

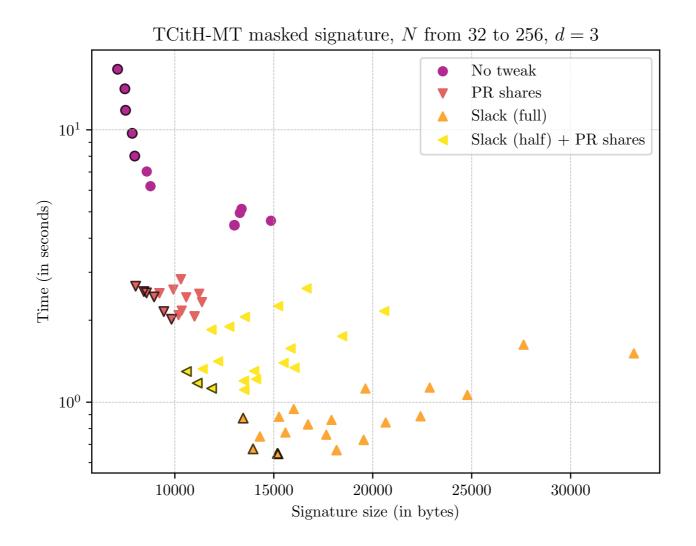


One can combine slack with the other masking-friendly tweaks.



 Using Merkle trees leads to better trade-offs than using GGM trees, because the Merkle trees do not contain sensitive data.

One can combine slack with the other masking-friendly tweaks.



 Using Merkle trees leads to better trade-offs than using GGM trees, because the Merkle trees do not contain sensitive data.

Thank you for your attention.