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Introduction / Context



- 2022: NIST announced the selected signatures for standardisation 

• ML-DSA (Dilithium): rely on structured lattices 

• FN-DSA (Falcon): rely on structured lattices 

• SLH-DSA (SPHINCS+): rely on hash functions 

👉  Need to alternative signature schemes
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- 2022: NIST announced the selected signatures for standardisation 

• ML-DSA (Dilithium): rely on structured lattices 

• FN-DSA (Falcon): rely on structured lattices 

• SLH-DSA (SPHINCS+): rely on hash functions 

👉  Need to alternative signature schemes 

- 2023: NIST Call for additional post-quantum signatures 

• In Round-2 (2025), six candidates rely on the MPC-in-the-Head paradigm: 

FAEST, Mirath, MQOM, PERK, RYDE, SDitH 

• There are relying on the recent VOLEitH and TCitH frameworks (2023).
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• In this work, we provide insights of how to tweak the TCitH framework to 
produce masking-friendly schemes, i.e. schemes for which the masking 
induces a reasonable computation cost. 

👉  Equivalent in lattice-based cryptography: Raccoon
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• In this work, we provide insights of how to tweak the TCitH framework to 
produce masking-friendly schemes, i.e. schemes for which the masking 
induces a reasonable computation cost. 

👉  Equivalent in lattice-based cryptography: Raccoon 

• Goal: 

Given a parameter , propose a new MPCitH-based 
signature scheme that can be very efficiently masked 

to achieve a provable -probing security. 

• -probing security: 

A implementation is said -probing secure 
when any combination of  intermediary variables 

does not leak secret information.
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To achieve -probing security, the most used technique is masking. 

Instead of directly manipulating a sensitive variable , we can use a sharing of it: 

We denote , where  are random values such that 

. 

We can perform the computation over masked variables: for example 

•  from  and : computational cost in  

•  from  and : computational cost in  

While it is easy to obtain a -secure implementation by simply applying masking over 
sensitive variables, the main issue is the computational overhead. 

Question: How to tweak a MPCitH-based scheme to avoid 
a quadratic computational overhead when masking?

d

x

[[x]] := ([[x]]0, …, [[x]]d) [[x]]0, …, [[x]]d

x = [[x]]0 + [[x]]2 + … + [[x]]d

[[x + y]] [[x]] [[y]] O(d)

[[x ⋅ y]] [[x]] [[y]] O(d2)

d

Introduction to masking

🤔



Tweaking the TCitH-based schemes



Secret key: a field vector w ∈ 𝔽n Public key: a multivariate degree-  polynomial  
such that  

t f
f(w) = 0

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism



② Commit the polynomials  and  to obtain a commitment digest .(P1, …, Pn) M h

Secret key: a field vector w ∈ 𝔽n Public key: a multivariate degree-  polynomial  
such that  

t f
f(w) = 0

① For all , sample a random degree-  polynomial  such that . 
Sample a random degree-  polynomial .

i ℓ Pi(X ) Pi(0) = wi
(ℓ ⋅ t − 1) M(X )

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism



③ Build the polynomial  such that Q
X ⋅ Q(X ) = X ⋅ M(X ) + f(P1(X ), …, Pn(X ))

② Commit the polynomials  and  to obtain a commitment digest .(P1, …, Pn) M h

Secret key: a field vector w ∈ 𝔽n Public key: a multivariate degree-  polynomial  
such that  

t f
f(w) = 0

① For all , sample a random degree-  polynomial  such that . 
Sample a random degree-  polynomial .

i ℓ Pi(X ) Pi(0) = wi
(ℓ ⋅ t − 1) M(X )
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① For all , sample a random degree-  polynomial  such that . 
Sample a random degree-  polynomial .

i ℓ Pi(X ) Pi(0) = wi
(ℓ ⋅ t − 1) M(X )

⑤ For all , compute the evaluations  for all , and , together with a 

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

③ Build the polynomial  such that Q
X ⋅ Q(X ) = X ⋅ M(X ) + f(P1(X ), …, Pn(X ))

Public key: a multivariate degree-  polynomial  
such that  

t f
f(w) = 0

② Commit the polynomials  and  to obtain a commitment digest .(P1, …, Pn) M h

Secret key: a field vector w ∈ 𝔽n

④   Choose evaluation points  by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism



① For all , sample a random degree-  polynomial  such that . 
Sample a random degree-  polynomial .

i ℓ Pi(X ) Pi(0) = wi
(ℓ ⋅ t − 1) M(X )

④   Choose evaluation points  by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

⑤ For all , compute the evaluations  for all , and , together with a 

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

③ Build the polynomial  such that Q
X ⋅ Q(X ) = X ⋅ M(X ) + f(P1(X ), …, Pn(X ))

TCitH-based Signing Algorithm* (Simplified)

⑥ Output the signature: 

      with     σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

② Commit the polynomials  and  to obtain a commitment digest .(P1, …, Pn) M h

Secret key: a field vector w ∈ 𝔽n Public key: a multivariate degree-  polynomial  
such that  

t f
f(w) = 0

* using the PIOP formalism



⑤ For all , compute the evaluations  for all , and , together with a 

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

③ Build the polynomial  such that Q
X ⋅ Q(X ) = X ⋅ M(X ) + f(P1(X ), …, Pn(X ))

⑥ Output the signature: 

      with     σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

Secret key: a field vector w ∈ 𝔽n

② Commit the polynomials  and  to obtain a commitment digest .(P1, …, Pn) M h

Public key: a multivariate degree-  polynomial  
such that  

t f
f(w) = 0

① For all , sample a random degree-  polynomial  such that . 
Sample a random degree-  polynomial .

i ℓ Pi(X ) Pi(0) = wi
(ℓ ⋅ t − 1) M(X )

④   Choose evaluation points  by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism



④   Choose evaluation points  by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

⑤ For all , compute the evaluations  for all , and , together with a 

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

③ Build the polynomial  such that Q
X ⋅ Q(X ) = X ⋅ M(X ) + f(P1(X ), …, Pn(X ))

Secret key: a field vector w ∈ 𝔽n

② Commit the polynomials  and  to obtain a commitment digest .(P1, …, Pn) M h

Sampling: computational overhead of O(d)

Public key: a multivariate degree-  polynomial  
such that  

t f
f(w) = 0

① For all , sample a random degree-  polynomial  such that . 
Sample a random degree-  polynomial .

i ℓ Pi(X ) Pi(0) = wi
(ℓ ⋅ t − 1) M(X )

⑥ Output the signature: 

      with     σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism



④   Choose evaluation points  by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

① For all , sample a random degree-  polynomial  such that . 
Sample a random degree-  polynomial .

i ℓ Pi(X ) Pi(0) = wi
(ℓ ⋅ t − 1) M(X )

⑤ For all , compute the evaluations  for all , and , together with a 

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

Secret key: a field vector w ∈ 𝔽n

③ Build the polynomial  such that Q
X ⋅ Q(X ) = X ⋅ M(X ) + f(P1(X ), …, Pn(X ))

② Commit the polynomials  and  to obtain a commitment digest .(P1, …, Pn) M h

Linear operation: computational overhead of O(d)

Public key: a multivariate degree-  polynomial  
such that  

t f
f(w) = 0

⑥ Output the signature: 

      with     σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism



① For all , sample a random degree-  polynomial  such that . 
Sample a random degree-  polynomial .

i ℓ Pi(X ) Pi(0) = wi
(ℓ ⋅ t − 1) M(X )

Public key: a multivariate degree-  polynomial  
such that  

t f
f(w) = 0

③ Build the polynomial  such that Q
X ⋅ Q(X ) = X ⋅ M(X ) + f(P1(X ), …, Pn(X ))

Secret key: a field vector w ∈ 𝔽n

② Commit the polynomials  and  to obtain a commitment digest .(P1, …, Pn) M h

⑤ For all , compute the evaluations  for all , and , together with a 

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

Involve multiplications over  between sensitive variables: 
computational overhead of 

𝔽
O(d2)

⑥ Output the signature: 

      with     σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

④   Choose evaluation points  by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism



④   Choose evaluation points  by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

Secret key: a field vector w ∈ 𝔽n

② Commit the polynomials  and  to obtain a commitment digest .(P1, …, Pn) M h

⑤ For all , compute the evaluations  for all , and , together with a 

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

③ Build the polynomial  such that Q
X ⋅ Q(X ) = X ⋅ M(X ) + f(P1(X ), …, Pn(X ))

Involve running symmetric primitives over sensitive variables: 
huge computational overhead of O(d2)

Public key: a multivariate degree-  polynomial  
such that  

t f
f(w) = 0

① For all , sample a random degree-  polynomial  such that . 
Sample a random degree-  polynomial .

i ℓ Pi(X ) Pi(0) = wi
(ℓ ⋅ t − 1) M(X )

⑥ Output the signature: 

      with     σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism



Introducing a slack

How much the polynomial  is sensitive ? 

•  is a random degree-  polynomial such that . 

•  evaluations of  are disclosed in the signature transcript.

Pi

Pi ℓ Pi(0) = wi

ℓ Pi



How much the polynomial  is sensitive ? 

•  is a random degree-  polynomial such that . 

•  evaluations of  are disclosed in the signature transcript.

Pi

Pi ℓ Pi(0) = wi

ℓ Pi

Introducing a slack

Leaking any other evaluation of  leaks  !Pi wi



Possible tweak: introduce a slack  

•  is a degree-  polynomial such that . 

•  evaluations of  are disclosed in the signature transcript.

σ > 0
Pi ℓ Pi(0) = wi

ℓ − σ Pi

Introducing a slack

How much the polynomial  is sensitive ? 

•  is a random degree-  polynomial such that . 

•  evaluations of  are disclosed in the signature transcript.

Pi

Pi ℓ Pi(0) = wi

ℓ Pi

Leaking any other evaluation of  leaks  !Pi wi



Introducing a slack

How much the polynomial  is sensitive ? 

•  is a random degree-  polynomial such that . 

•  evaluations of  are disclosed in the signature transcript.

Pi

Pi ℓ Pi(0) = wi

ℓ Pi

Possible tweak: introduce a slack  

•  is a degree-  polynomial such that . 

•  evaluations of  are disclosed in the signature transcript.

σ > 0
Pi ℓ Pi(0) = wi

ℓ − σ Pi

Leaking  other evaluations of  leaks no informations about  !σ Pi wi

Leaking any other evaluation of  leaks  !Pi wi



Leaking  other evaluations of  leaks no informations about  !σ Pi wi

Larger signatures

Introducing a slack

Leaking any other evaluation of  leaks  !Pi wi

How much the polynomial  is sensitive ? 

•  is a random degree-  polynomial such that . 

•  evaluations of  are disclosed in the signature transcript.

Pi

Pi ℓ Pi(0) = wi

ℓ Pi

Possible tweak: introduce a slack  

•  is a degree-  polynomial such that . 

•  evaluations of  are disclosed in the signature transcript.

σ > 0
Pi ℓ Pi(0) = wi

ℓ − σ Pi



① For all , sample a random degree-  polynomial  such that . 
Sample a random degree-  polynomial .

i ℓ Pi(X ) Pi(0) = wi
(ℓ ⋅ t − 1) M(X )

Public key: a multivariate degree-  polynomial  
such that  

t f
f(w) = 0

③ Build the polynomial  such that Q
X ⋅ Q(X ) = X ⋅ M(X ) + f(P1(X ), …, Pn(X ))

Secret key: a field vector w ∈ 𝔽n

② Commit the polynomials  and  to obtain a commitment digest .(P1, …, Pn) M h

⑤ For all , compute the evaluations  for all , and , together with a 

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

Involve multiplications over  between sensitive variables: 
computational overhead of 

𝔽
O(d2)

⑥ Output the signature: 

      with     σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

④   Choose evaluation points  by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism



④   Choose evaluation points  by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

Secret key: a field vector w ∈ 𝔽n

② Commit the polynomials  and  to obtain a commitment digest .(P1, …, Pn) M h

⑤ For all , compute the evaluations  for all , and , together with a 

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

③ Build the polynomial  such that Q
X ⋅ Q(X ) = X ⋅ M(X ) + f(P1(X ), …, Pn(X ))

Involve running symmetric primitives over sensitive variables: 
huge computational overhead of O(d2)

Public key: a multivariate degree-  polynomial  
such that  

t f
f(w) = 0

① For all , sample a random degree-  polynomial  such that . 
Sample a random degree-  polynomial .

i ℓ Pi(X ) Pi(0) = wi
(ℓ ⋅ t − 1) M(X )

⑥ Output the signature: 

      with     σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism



TCitH-based Signing Algorithm

• Used in NIST candidates 
• Produce to smaller signatures 

(around 2.5~5 KB)

Threshold-Computation-in-the-Head

TCitH-GGM: rely on GGM trees TCitH-MT: rely on Merkle trees

• Used in some (small) ZKPoK 
• Produce to larger signatures 

(around 5~10 KB)



𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

Option 1: Using a GGM tree (ie. a seed tree)

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤)
← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)



𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤)
← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

(assuming )deg P = 1

Build  as 

 

ΔP(X )

ΔP(X ) := P(X ) +
N

∑
i=1

ri ⋅ (X − ei)

Option 1: Using a GGM tree (ie. a seed tree)



𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤)
← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

(assuming )deg P = 1

Build  as 

 

ΔP(X )

ΔP(X ) := P(X ) +
N

∑
i=1

ri ⋅ (X − ei)

Mask

Option 1: Using a GGM tree (ie. a seed tree)



𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤)
← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

(assuming )deg P = 1

Build  as 

 

ΔP(X )

ΔP(X ) := P(X ) +
N

∑
i=1

ri ⋅ (X − ei)

Mask

Commitment: 
 - Commit to each seed independently 
 - Reveal the masked polynomial ΔP(X )

Option 1: Using a GGM tree (ie. a seed tree)



𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(assuming )deg P = 1

Build  as 

 

ΔP(X )

ΔP(X ) := P(X ) +
N

∑
i=1

ri ⋅ (X − ei)

Mask

Commitment: 
 - Commit to each seed independently 
 - Reveal the masked polynomial ΔP(X )

Open : 

Reveal all  since 

P(ei*)
{ri}i≠i*

P(ei*) = − ΔP(ei*) + ∑
i≠i*

ri ⋅ (ei* − ei)

i*

sibling path 
→  seedslog(N )

Option 1: Using a GGM tree (ie. a seed tree)



[[𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽]]

[[r2]][[r1]] [[rN]]

… …

[[𝗌𝖾𝖾𝖽1]][[𝗌𝖾𝖾𝖽2]] [[𝗌𝖾𝖾𝖽N]]…

PRGmasked

([[𝗌𝖾𝖾𝖽𝟣]], [[𝗌𝖾𝖾𝖽𝟤]])
← PRGmasked([[𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽]])

(assuming )deg P = 1

Build  as 

 

ΔP(X )

ΔP(X ) := [[P]](X ) +
N

∑
i=1

[[ri]] ⋅ (X − ei)

Mask

Commitment: 
 - Commit to each seed independently 
 - Reveal the masked polynomial ΔP(X )

Open : 

Reveal all  since 

P(ei*)
{ri}i≠i*

P(ei*) = − ΔP(ei*) + ∑
i≠i*

ri ⋅ (ei* − ei)

Need to protect around  calls to 
PRG, usually a PRG based on SHAKE or 

on AES in counter mode: 
Extremely computationally costly! 

Typically value for : 

∼ 2N ⋅ τ

2τN 2 × 2048 × 12 ≈ 50000

PRGmasked PRGmasked

Option 1: Using a GGM tree (ie. a seed tree)



𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽0

[[r2]]0[[r1]]0 [[rN]]0

…PRG …

𝗌𝖾𝖾𝖽0,1 𝗌𝖾𝖾𝖽0,2 𝗌𝖾𝖾𝖽0,N…

PRG PRG

(assuming )deg P = 1

Build  as 

 

ΔP(X )

ΔP(X ) := [[P]](X ) +
N

∑
i=1

[[ri]] ⋅ (X − ei)

Mask

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽d

[[r2]]d[[r1]]d [[rN]]d

…PRG …

𝗌𝖾𝖾𝖽d,1 𝗌𝖾𝖾𝖽d,2 𝗌𝖾𝖾𝖽d,N…

PRG PRG

…

Option 1: Using a GGM tree (ie. a seed tree)



(assuming )deg P = 1

Build  as 

 

ΔP(X )

ΔP(X ) := [[P]](X ) +
N

∑
i=1

[[ri]] ⋅ (X − ei)

Mask

Linear computation overhead, i.e. O(d)

Option 1: Using a GGM tree (ie. a seed tree)

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽0

[[r2]]0[[r1]]0 [[rN]]0

…PRG …

𝗌𝖾𝖾𝖽0,1 𝗌𝖾𝖾𝖽0,2 𝗌𝖾𝖾𝖽0,N…

PRG PRG

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽d

[[r2]]d[[r1]]d [[rN]]d

…PRG …

𝗌𝖾𝖾𝖽d,2 𝗌𝖾𝖾𝖽d,N…

PRG PRG

…
𝗌𝖾𝖾𝖽d,1



𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽0

…PRG …

𝗌𝖾𝖾𝖽0,1 𝗌𝖾𝖾𝖽0,2 𝗌𝖾𝖾𝖽0,N…

PRG PRG

(assuming )deg P = 1

Build  as 

 

ΔP(X )

ΔP(X ) := [[P]](X ) +
N

∑
i=1

[[ri]] ⋅ (X − ei)

Mask

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽d

…PRG …

𝗌𝖾𝖾𝖽d,2 𝗌𝖾𝖾𝖽d,N…

PRG PRG

sibling path 
→  seedslog(N )

sibling path 
→  seedslog(N )

i* i*

…

Linear computation overhead, i.e. O(d)

The number of revealed sibling paths 
is  times larger. d + 1

Option 1: Using a GGM tree (ie. a seed tree)

[[r2]]0[[r1]]0 [[rN]]0 [[r2]]d[[r1]]d [[rN]]d

𝗌𝖾𝖾𝖽d,1



No Tweak (using masking) Parallel Trees

Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35 s 4.5 KB 0,35 s 4.5 KB

2 14 s 4.5 KB 0,93 s 6.7 KB

3 27 s 4.5 KB 1,43 s 8.9 KB

4 53 s 4.5 KB 2,03 s 11.0 KB

8 236 s 4.5 KB 4,94 s 19.7 KB

16 993 s 4.5 KB 14,0 s 37.1 KB

32 4519 s 4.5 KB 45,0 s 72.0 KB

Performance of a TCitH-GGM-based signature scheme for 
which the security relies on the hardness of solving the MQ 
problem. Running times estimated for a RISC-V platform 
assuming the presence of a hardware accelerator for plain 
Keccak and that the PRG is instantiated using SHAKE.

Option 1: Using a GGM tree (ie. a seed tree)
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Option 1: Using a GGM tree (ie. a seed tree)
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Signature size independent of the masking order

Option 1: Using a GGM tree (ie. a seed tree)
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Option 1: Using a GGM tree (ie. a seed tree)
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Option 1: Using a GGM tree (ie. a seed tree)



Performance of a TCitH-GGM-based signature scheme for 
which the security relies on the hardness of solving the MQ 
problem. Running times estimated for a RISC-V platform 
assuming the presence of a hardware accelerator for plain 
Keccak and that the PRG is instantiated using SHAKE.

No Tweak (using masking) Parallel Trees

Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35 s 4.5 KB 0,35 s 4.5 KB

2 14 s 4.5 KB 0,93 s 6.7 KB

3 27 s 4.5 KB 1,43 s 8.9 KB

4 53 s 4.5 KB 2,03 s 11.0 KB

8 236 s 4.5 KB 4,94 s 19.7 KB

16 993 s 4.5 KB 14,0 s 37.1 KB

32 4519 s 4.5 KB 45,0 s 72.0 KB
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Option 1: Using a GGM tree (ie. a seed tree)



Option 2: Using a Merkle tree (ie. a hash tree)

𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍
𝗉𝖺𝗋𝖾𝗇𝗍_𝗁𝖺𝗌𝗁

← Hash(𝗁𝖺𝗌𝗁1, 𝗁𝖺𝗌𝗁2)

P(e1)

Hash
P(eN)

Hash

P(e2) … …

𝖼𝗈𝗆1 𝖼𝗈𝗆2 𝖼𝗈𝗆N



𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍
𝗉𝖺𝗋𝖾𝗇𝗍_𝗁𝖺𝗌𝗁

← Hash(𝗁𝖺𝗌𝗁1, 𝗁𝖺𝗌𝗁2)

[[P(e1)]]

Hashmasked

[[P(eN)]]

Hashmasked

[[P(e2)]] … …

𝖼𝗈𝗆1 𝖼𝗈𝗆2 𝖼𝗈𝗆N

Need to protect around  calls to 
hash function: 

Computationally costly!

∼ N ⋅ τ

Option 2: Using a Merkle tree (ie. a hash tree)



𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍
𝗉𝖺𝗋𝖾𝗇𝗍_𝗁𝖺𝗌𝗁

← Hash(𝗁𝖺𝗌𝗁1, 𝗁𝖺𝗌𝗁2)

No sensitive data 
No need to mask!

[[P(e1)]]

Hashmasked

[[P(eN)]]

Hashmasked

[[P(e2)]] … …

𝖼𝗈𝗆1 𝖼𝗈𝗆2 𝖼𝗈𝗆N

Option 2: Using a Merkle tree (ie. a hash tree)
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← Hash(𝗁𝖺𝗌𝗁1, 𝗁𝖺𝗌𝗁2)

[[P(e1)]]

Hash

[[P(eN)]]

Hash

[[P(e2)]] … …

𝖼𝗈𝗆1 𝖼𝗈𝗆2 𝖼𝗈𝗆N

Option 2: Using a Merkle tree (ie. a hash tree)

Tweak Idea: 
One can commit directly to the shares 

, …, . Namely, 

.

[[v]]0 [[v]]d

comv := Hash([[v]]0) ∥ … ∥ Hash([[v]]d)

To commit to a value  (no tweaked): 
 from 

v
𝖼𝗈𝗆v := Hash(v) [[v]]



𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍
𝗉𝖺𝗋𝖾𝗇𝗍_𝗁𝖺𝗌𝗁

← Hash(𝗁𝖺𝗌𝗁1, 𝗁𝖺𝗌𝗁2)

[[P(e1)]] [[P(eN)]][[P(e2)]] … …

𝖼𝗈𝗆1 𝖼𝗈𝗆2 𝖼𝗈𝗆N

Option 2: Using a Merkle tree (ie. a hash tree)

Tweak Idea: 
One can commit directly to the shares 

, …, . Namely, 

.

[[v]]0 [[v]]d

comv := Hash([[v]]0) ∥ … ∥ Hash([[v]]d)

Issue: 
To let the verifier check the 
commitment, the signature transcript 
should contain the entire  
(and not just ), such that the verifier 
can recompute the digest .

[[v]]
v

comv

To commit to a value  (no tweaked): 
 from 

v
𝖼𝗈𝗆v := Hash(v) [[v]]

Hash Hash



𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍
𝗉𝖺𝗋𝖾𝗇𝗍_𝗁𝖺𝗌𝗁

← Hash(𝗁𝖺𝗌𝗁1, 𝗁𝖺𝗌𝗁2)

[[P(e1)]]

Hash

[[P(eN)]]

Hash

[[P(e2)]]
… …

𝖼𝗈𝗆1 𝖼𝗈𝗆2 𝖼𝗈𝗆N

To commit to a value  (no tweaked): 
 from 

v
𝖼𝗈𝗆v := Hash(v) [[v]]

Option 2: Using a Merkle tree (ie. a hash tree)

Basic Tweak Idea: 
One can commit directly to the shares 

, …, . Namely, 

.

[[v]]0 [[v]]d

comv := Hash([[v]]0) ∥ … ∥ Hash([[v]]d)

Improved Tweak Idea: 
Commit to the shares , …,  after compressing them into pseudo-random shares: 

 
 

where , with  for all .

[[v]]0 [[v]]d

(v0, seed1, …, seedd) ← MaskCompress([[v]])
comi ← Hash(v0) ∥ Hash(seed1) ∥ … ∥ Hash(seedd)

v = v0 + v1 + … + vd vi := PRG(seedi) i ≥ 1



Option 2: Using a Merkle tree (ie. a hash tree)

No Tweak (using masking) Com. of PR sharings 

Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35 s 6.5 KB 0,35 s 6.5 KB

2 5.2 s 6.5 KB 1.1 s 6.8 KB

3 9.8 s 6.5 KB 1.9 s 7.1 KB

4 19 s 6.5 KB 2.8 s 7.4 KB

8 81 s 6.5 KB 7.3 s 8.6 KB

16 339 s 6.5 KB 20 s 11.1 KB

32 1534 s 6.5 KB 60 s 15.9 KB

Performance of a TCitH-MT-based signature scheme for which 
the security relies on the hardness of solving the MQ problem. 
Running times estimated for a RISC-V platform assuming the 
presence of a hardware accelerator for plain Keccak.
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the security relies on the hardness of solving the MQ problem. 
Running times estimated for a RISC-V platform assuming the 
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Option 2: Using a Merkle tree (ie. a hash tree)

No Tweak (using masking) Com. of PR sharings
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1 0,35 s 6.5 KB 0,35 s 6.5 KB
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Small communication overhead 

4.5 KB

6.7 KB

8.9 KB

11.0 KB

19.7 KB

37.1 KB

72.0 KB

GGM with 
parallel trees



Conclusion



Masking TCitH-based schemes (without tweak) is computational expensive. 

This issue can be mitigated by tweaking those schemes: 

• one can introduce a slack between the polynomial degree and the 
number of opened evaluations 

• when using GGM trees, one can use parallel trees. 

• when using Merkle trees, one can commit to pseudo-random sharings 
instead of committing to clear values. 

All those tweaks drastically reduce the running times, but introduce some 
variability in the signature size: the signature size depends on the masking 
order. 

Conclusion
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One can combine slack with the other masking-friendly tweaks.
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Conclusion

Using Merkle trees leads to better trade-offs than using GGM trees, because the 
Merkle trees do not contain sensitive data.

One can combine slack with the other masking-friendly tweaks.
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Conclusion

Thank you for your attention.

Using Merkle trees leads to better trade-offs than using GGM trees, because the 
Merkle trees do not contain sensitive data.

One can combine slack with the other masking-friendly tweaks.


