
Masking-Friendly Post-Quantum
Signatures in the Threshold-

Computation-in-the-Head Framework

Thibauld Feneuil, Matthieu Rivain, Auguste Warmé-Janville

CHES 2025

September 16, 2025 — Kuala Lumpur (Malaysia)

Introduction / Context

- 2022: NIST announced the selected signatures for standardisation

• ML-DSA (Dilithium): rely on structured lattices

• FN-DSA (Falcon): rely on structured lattices

• SLH-DSA (SPHINCS+): rely on hash functions

👉 Need to alternative signature schemes

Context

- 2022: NIST announced the selected signatures for standardisation

• ML-DSA (Dilithium): rely on structured lattices

• FN-DSA (Falcon): rely on structured lattices

• SLH-DSA (SPHINCS+): rely on hash functions

👉 Need to alternative signature schemes

- 2023: NIST Call for additional post-quantum signatures

• In Round-2 (2025), six candidates rely on the MPC-in-the-Head paradigm:

FAEST, Mirath, MQOM, PERK, RYDE, SDitH

• There are relying on the recent VOLEitH and TCitH frameworks (2023).

Context

[FR25] Feneuil, Rivain. Threshold
Computation in the Head: Improved
Framework for Post-Quantum Signatures
and Zero-Knowledge Arguments. Journal
of Cryptology, 2025.

[BBD+23] Baum, Braun, Delpech, Klooß,
Orsini, Roy, Scholl. Publicly Verifiable
Zero-Knowledge and Post-Quantum
Signatures From VOLE-in-the-Head.
Crypto 2023.

• In this work, we provide insights of how to tweak the TCitH framework to
produce masking-friendly schemes, i.e. schemes for which the masking
induces a reasonable computation cost.

👉 Equivalent in lattice-based cryptography: Raccoon

This work

• In this work, we provide insights of how to tweak the TCitH framework to
produce masking-friendly schemes, i.e. schemes for which the masking
induces a reasonable computation cost.

👉 Equivalent in lattice-based cryptography: Raccoon

• Goal:

Given a parameter , propose a new MPCitH-based
signature scheme that can be very efficiently masked

to achieve a provable -probing security.

• -probing security:

A implementation is said -probing secure
when any combination of intermediary variables

does not leak secret information.

d

d

d

d
d

This work

To achieve -probing security, the most used technique is masking.

Instead of directly manipulating a sensitive variable , we can use a sharing of it:

We denote , where are random values such that

.

We can perform the computation over masked variables: for example

• from and : computational cost in

• from and : computational cost in

While it is easy to obtain a -secure implementation by simply applying masking over
sensitive variables, the main issue is the computational overhead.

Question: How to tweak a MPCitH-based scheme to avoid
a quadratic computational overhead when masking?

d

x

[[x]] := ([[x]]0, …, [[x]]d) [[x]]0, …, [[x]]d

x = [[x]]0 + [[x]]2 + … + [[x]]d

[[x + y]] [[x]] [[y]] O(d)

[[x ⋅ y]] [[x]] [[y]] O(d2)

d

Introduction to masking

🤔

Tweaking the TCitH-based schemes

Secret key: a field vector w ∈ 𝔽n Public key: a multivariate degree- polynomial
such that

t f
f(w) = 0

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism

② Commit the polynomials and to obtain a commitment digest .(P1, …, Pn) M h

Secret key: a field vector w ∈ 𝔽n Public key: a multivariate degree- polynomial
such that

t f
f(w) = 0

① For all , sample a random degree- polynomial such that .
Sample a random degree- polynomial .

i ℓ Pi(X) Pi(0) = wi
(ℓ ⋅ t − 1) M(X)

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism

③ Build the polynomial such that Q
X ⋅ Q(X) = X ⋅ M(X) + f(P1(X), …, Pn(X))

② Commit the polynomials and to obtain a commitment digest .(P1, …, Pn) M h

Secret key: a field vector w ∈ 𝔽n Public key: a multivariate degree- polynomial
such that

t f
f(w) = 0

① For all , sample a random degree- polynomial such that .
Sample a random degree- polynomial .

i ℓ Pi(X) Pi(0) = wi
(ℓ ⋅ t − 1) M(X)

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism

① For all , sample a random degree- polynomial such that .
Sample a random degree- polynomial .

i ℓ Pi(X) Pi(0) = wi
(ℓ ⋅ t − 1) M(X)

⑤ For all , compute the evaluations for all , and , together with a

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

③ Build the polynomial such that Q
X ⋅ Q(X) = X ⋅ M(X) + f(P1(X), …, Pn(X))

Public key: a multivariate degree- polynomial
such that

t f
f(w) = 0

② Commit the polynomials and to obtain a commitment digest .(P1, …, Pn) M h

Secret key: a field vector w ∈ 𝔽n

④ Choose evaluation points by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism

① For all , sample a random degree- polynomial such that .
Sample a random degree- polynomial .

i ℓ Pi(X) Pi(0) = wi
(ℓ ⋅ t − 1) M(X)

④ Choose evaluation points by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

⑤ For all , compute the evaluations for all , and , together with a

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

③ Build the polynomial such that Q
X ⋅ Q(X) = X ⋅ M(X) + f(P1(X), …, Pn(X))

TCitH-based Signing Algorithm* (Simplified)

⑥ Output the signature:

 with σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

② Commit the polynomials and to obtain a commitment digest .(P1, …, Pn) M h

Secret key: a field vector w ∈ 𝔽n Public key: a multivariate degree- polynomial
such that

t f
f(w) = 0

* using the PIOP formalism

⑤ For all , compute the evaluations for all , and , together with a

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

③ Build the polynomial such that Q
X ⋅ Q(X) = X ⋅ M(X) + f(P1(X), …, Pn(X))

⑥ Output the signature:

 with σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

Secret key: a field vector w ∈ 𝔽n

② Commit the polynomials and to obtain a commitment digest .(P1, …, Pn) M h

Public key: a multivariate degree- polynomial
such that

t f
f(w) = 0

① For all , sample a random degree- polynomial such that .
Sample a random degree- polynomial .

i ℓ Pi(X) Pi(0) = wi
(ℓ ⋅ t − 1) M(X)

④ Choose evaluation points by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism

④ Choose evaluation points by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

⑤ For all , compute the evaluations for all , and , together with a

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

③ Build the polynomial such that Q
X ⋅ Q(X) = X ⋅ M(X) + f(P1(X), …, Pn(X))

Secret key: a field vector w ∈ 𝔽n

② Commit the polynomials and to obtain a commitment digest .(P1, …, Pn) M h

Sampling: computational overhead of O(d)

Public key: a multivariate degree- polynomial
such that

t f
f(w) = 0

① For all , sample a random degree- polynomial such that .
Sample a random degree- polynomial .

i ℓ Pi(X) Pi(0) = wi
(ℓ ⋅ t − 1) M(X)

⑥ Output the signature:

 with σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism

④ Choose evaluation points by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

① For all , sample a random degree- polynomial such that .
Sample a random degree- polynomial .

i ℓ Pi(X) Pi(0) = wi
(ℓ ⋅ t − 1) M(X)

⑤ For all , compute the evaluations for all , and , together with a

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

Secret key: a field vector w ∈ 𝔽n

③ Build the polynomial such that Q
X ⋅ Q(X) = X ⋅ M(X) + f(P1(X), …, Pn(X))

② Commit the polynomials and to obtain a commitment digest .(P1, …, Pn) M h

Linear operation: computational overhead of O(d)

Public key: a multivariate degree- polynomial
such that

t f
f(w) = 0

⑥ Output the signature:

 with σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism

① For all , sample a random degree- polynomial such that .
Sample a random degree- polynomial .

i ℓ Pi(X) Pi(0) = wi
(ℓ ⋅ t − 1) M(X)

Public key: a multivariate degree- polynomial
such that

t f
f(w) = 0

③ Build the polynomial such that Q
X ⋅ Q(X) = X ⋅ M(X) + f(P1(X), …, Pn(X))

Secret key: a field vector w ∈ 𝔽n

② Commit the polynomials and to obtain a commitment digest .(P1, …, Pn) M h

⑤ For all , compute the evaluations for all , and , together with a

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

Involve multiplications over between sensitive variables:
computational overhead of

𝔽
O(d2)

⑥ Output the signature:

 with σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

④ Choose evaluation points by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism

④ Choose evaluation points by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

Secret key: a field vector w ∈ 𝔽n

② Commit the polynomials and to obtain a commitment digest .(P1, …, Pn) M h

⑤ For all , compute the evaluations for all , and , together with a

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

③ Build the polynomial such that Q
X ⋅ Q(X) = X ⋅ M(X) + f(P1(X), …, Pn(X))

Involve running symmetric primitives over sensitive variables:
huge computational overhead of O(d2)

Public key: a multivariate degree- polynomial
such that

t f
f(w) = 0

① For all , sample a random degree- polynomial such that .
Sample a random degree- polynomial .

i ℓ Pi(X) Pi(0) = wi
(ℓ ⋅ t − 1) M(X)

⑥ Output the signature:

 with σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism

Introducing a slack

How much the polynomial is sensitive ?

• is a random degree- polynomial such that .

• evaluations of are disclosed in the signature transcript.

Pi

Pi ℓ Pi(0) = wi

ℓ Pi

How much the polynomial is sensitive ?

• is a random degree- polynomial such that .

• evaluations of are disclosed in the signature transcript.

Pi

Pi ℓ Pi(0) = wi

ℓ Pi

Introducing a slack

Leaking any other evaluation of leaks !Pi wi

Possible tweak: introduce a slack

• is a degree- polynomial such that .

• evaluations of are disclosed in the signature transcript.

σ > 0
Pi ℓ Pi(0) = wi

ℓ − σ Pi

Introducing a slack

How much the polynomial is sensitive ?

• is a random degree- polynomial such that .

• evaluations of are disclosed in the signature transcript.

Pi

Pi ℓ Pi(0) = wi

ℓ Pi

Leaking any other evaluation of leaks !Pi wi

Introducing a slack

How much the polynomial is sensitive ?

• is a random degree- polynomial such that .

• evaluations of are disclosed in the signature transcript.

Pi

Pi ℓ Pi(0) = wi

ℓ Pi

Possible tweak: introduce a slack

• is a degree- polynomial such that .

• evaluations of are disclosed in the signature transcript.

σ > 0
Pi ℓ Pi(0) = wi

ℓ − σ Pi

Leaking other evaluations of leaks no informations about !σ Pi wi

Leaking any other evaluation of leaks !Pi wi

Leaking other evaluations of leaks no informations about !σ Pi wi

Larger signatures

Introducing a slack

Leaking any other evaluation of leaks !Pi wi

How much the polynomial is sensitive ?

• is a random degree- polynomial such that .

• evaluations of are disclosed in the signature transcript.

Pi

Pi ℓ Pi(0) = wi

ℓ Pi

Possible tweak: introduce a slack

• is a degree- polynomial such that .

• evaluations of are disclosed in the signature transcript.

σ > 0
Pi ℓ Pi(0) = wi

ℓ − σ Pi

① For all , sample a random degree- polynomial such that .
Sample a random degree- polynomial .

i ℓ Pi(X) Pi(0) = wi
(ℓ ⋅ t − 1) M(X)

Public key: a multivariate degree- polynomial
such that

t f
f(w) = 0

③ Build the polynomial such that Q
X ⋅ Q(X) = X ⋅ M(X) + f(P1(X), …, Pn(X))

Secret key: a field vector w ∈ 𝔽n

② Commit the polynomials and to obtain a commitment digest .(P1, …, Pn) M h

⑤ For all , compute the evaluations for all , and , together with a

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

Involve multiplications over between sensitive variables:
computational overhead of

𝔽
O(d2)

⑥ Output the signature:

 with σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

④ Choose evaluation points by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism

④ Choose evaluation points by hashing the commitment and the message E := {e1, …eℓ}

E = Hash(msg, h, Q) ⊂ 𝒞

Secret key: a field vector w ∈ 𝔽n

② Commit the polynomials and to obtain a commitment digest .(P1, …, Pn) M h

⑤ For all , compute the evaluations for all , and , together with a

opening proof .

j vP
j,i := Pi(ej) i vM

j := M(ej)
π

③ Build the polynomial such that Q
X ⋅ Q(X) = X ⋅ M(X) + f(P1(X), …, Pn(X))

Involve running symmetric primitives over sensitive variables:
huge computational overhead of O(d2)

Public key: a multivariate degree- polynomial
such that

t f
f(w) = 0

① For all , sample a random degree- polynomial such that .
Sample a random degree- polynomial .

i ℓ Pi(X) Pi(0) = wi
(ℓ ⋅ t − 1) M(X)

⑥ Output the signature:

 with σ = (h, π, Q, { ⃗vP
j , vM

j }j) ⃗vP
j := (vP

j,1, …, vP
j,n)

TCitH-based Signing Algorithm* (Simplified)
* using the PIOP formalism

TCitH-based Signing Algorithm

• Used in NIST candidates
• Produce to smaller signatures

(around 2.5~5 KB)

Threshold-Computation-in-the-Head

TCitH-GGM: rely on GGM trees TCitH-MT: rely on Merkle trees

• Used in some (small) ZKPoK
• Produce to larger signatures

(around 5~10 KB)

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

Option 1: Using a GGM tree (ie. a seed tree)

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤)
← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤)
← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

(assuming)deg P = 1

Build as

ΔP(X)

ΔP(X) := P(X) +
N

∑
i=1

ri ⋅ (X − ei)

Option 1: Using a GGM tree (ie. a seed tree)

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤)
← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

(assuming)deg P = 1

Build as

ΔP(X)

ΔP(X) := P(X) +
N

∑
i=1

ri ⋅ (X − ei)

Mask

Option 1: Using a GGM tree (ie. a seed tree)

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤)
← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

(assuming)deg P = 1

Build as

ΔP(X)

ΔP(X) := P(X) +
N

∑
i=1

ri ⋅ (X − ei)

Mask

Commitment:
 - Commit to each seed independently
 - Reveal the masked polynomial ΔP(X)

Option 1: Using a GGM tree (ie. a seed tree)

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(assuming)deg P = 1

Build as

ΔP(X)

ΔP(X) := P(X) +
N

∑
i=1

ri ⋅ (X − ei)

Mask

Commitment:
 - Commit to each seed independently
 - Reveal the masked polynomial ΔP(X)

Open :

Reveal all since

P(ei*)
{ri}i≠i*

P(ei*) = − ΔP(ei*) + ∑
i≠i*

ri ⋅ (ei* − ei)

i*

sibling path
→ seedslog(N)

Option 1: Using a GGM tree (ie. a seed tree)

[[𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽]]

[[r2]][[r1]] [[rN]]

… …

[[𝗌𝖾𝖾𝖽1]][[𝗌𝖾𝖾𝖽2]] [[𝗌𝖾𝖾𝖽N]]…

PRGmasked

([[𝗌𝖾𝖾𝖽𝟣]], [[𝗌𝖾𝖾𝖽𝟤]])
← PRGmasked([[𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽]])

(assuming)deg P = 1

Build as

ΔP(X)

ΔP(X) := [[P]](X) +
N

∑
i=1

[[ri]] ⋅ (X − ei)

Mask

Commitment:
 - Commit to each seed independently
 - Reveal the masked polynomial ΔP(X)

Open :

Reveal all since

P(ei*)
{ri}i≠i*

P(ei*) = − ΔP(ei*) + ∑
i≠i*

ri ⋅ (ei* − ei)

Need to protect around calls to
PRG, usually a PRG based on SHAKE or

on AES in counter mode:
Extremely computationally costly!

Typically value for :

∼ 2N ⋅ τ

2τN 2 × 2048 × 12 ≈ 50000

PRGmasked PRGmasked

Option 1: Using a GGM tree (ie. a seed tree)

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽0

[[r2]]0[[r1]]0 [[rN]]0

…PRG …

𝗌𝖾𝖾𝖽0,1 𝗌𝖾𝖾𝖽0,2 𝗌𝖾𝖾𝖽0,N…

PRG PRG

(assuming)deg P = 1

Build as

ΔP(X)

ΔP(X) := [[P]](X) +
N

∑
i=1

[[ri]] ⋅ (X − ei)

Mask

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽d

[[r2]]d[[r1]]d [[rN]]d

…PRG …

𝗌𝖾𝖾𝖽d,1 𝗌𝖾𝖾𝖽d,2 𝗌𝖾𝖾𝖽d,N…

PRG PRG

…

Option 1: Using a GGM tree (ie. a seed tree)

(assuming)deg P = 1

Build as

ΔP(X)

ΔP(X) := [[P]](X) +
N

∑
i=1

[[ri]] ⋅ (X − ei)

Mask

Linear computation overhead, i.e. O(d)

Option 1: Using a GGM tree (ie. a seed tree)

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽0

[[r2]]0[[r1]]0 [[rN]]0

…PRG …

𝗌𝖾𝖾𝖽0,1 𝗌𝖾𝖾𝖽0,2 𝗌𝖾𝖾𝖽0,N…

PRG PRG

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽d

[[r2]]d[[r1]]d [[rN]]d

…PRG …

𝗌𝖾𝖾𝖽d,2 𝗌𝖾𝖾𝖽d,N…

PRG PRG

…
𝗌𝖾𝖾𝖽d,1

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽0

…PRG …

𝗌𝖾𝖾𝖽0,1 𝗌𝖾𝖾𝖽0,2 𝗌𝖾𝖾𝖽0,N…

PRG PRG

(assuming)deg P = 1

Build as

ΔP(X)

ΔP(X) := [[P]](X) +
N

∑
i=1

[[ri]] ⋅ (X − ei)

Mask

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽d

…PRG …

𝗌𝖾𝖾𝖽d,2 𝗌𝖾𝖾𝖽d,N…

PRG PRG

sibling path
→ seedslog(N)

sibling path
→ seedslog(N)

i* i*

…

Linear computation overhead, i.e. O(d)

The number of revealed sibling paths
is times larger. d + 1

Option 1: Using a GGM tree (ie. a seed tree)

[[r2]]0[[r1]]0 [[rN]]0 [[r2]]d[[r1]]d [[rN]]d

𝗌𝖾𝖾𝖽d,1

No Tweak (using masking) Parallel Trees

Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35 s 4.5 KB 0,35 s 4.5 KB

2 14 s 4.5 KB 0,93 s 6.7 KB

3 27 s 4.5 KB 1,43 s 8.9 KB

4 53 s 4.5 KB 2,03 s 11.0 KB

8 236 s 4.5 KB 4,94 s 19.7 KB

16 993 s 4.5 KB 14,0 s 37.1 KB

32 4519 s 4.5 KB 45,0 s 72.0 KB

Performance of a TCitH-GGM-based signature scheme for
which the security relies on the hardness of solving the MQ
problem. Running times estimated for a RISC-V platform
assuming the presence of a hardware accelerator for plain
Keccak and that the PRG is instantiated using SHAKE.

Option 1: Using a GGM tree (ie. a seed tree)

No Tweak (using masking) Parallel Trees

Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35 s 4.5 KB 0,35 s 4.5 KB

2 14 s 4.5 KB 0,93 s 6.7 KB

3 27 s 4.5 KB 1,43 s 8.9 KB

4 53 s 4.5 KB 2,03 s 11.0 KB

8 236 s 4.5 KB 4,94 s 19.7 KB

16 993 s 4.5 KB 14,0 s 37.1 KB

32 4519 s 4.5 KB 45,0 s 72.0 KB

No masking, i.e. basic scheme

Option 1: Using a GGM tree (ie. a seed tree)

Performance of a TCitH-GGM-based signature scheme for
which the security relies on the hardness of solving the MQ
problem. Running times estimated for a RISC-V platform
assuming the presence of a hardware accelerator for plain
Keccak and that the PRG is instantiated using SHAKE.

Performance of a TCitH-GGM-based signature scheme for
which the security relies on the hardness of solving the MQ
problem. Running times estimated for a RISC-V platform
assuming the presence of a hardware accelerator for plain
Keccak and that the PRG is instantiated using SHAKE.

No Tweak (using masking) Parallel Trees

Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35 s 4.5 KB 0,35 s 4.5 KB

2 14 s 4.5 KB 0,93 s 6.7 KB

3 27 s 4.5 KB 1,43 s 8.9 KB

4 53 s 4.5 KB 2,03 s 11.0 KB

8 236 s 4.5 KB 4,94 s 19.7 KB

16 993 s 4.5 KB 14,0 s 37.1 KB

32 4519 s 4.5 KB 45,0 s 72.0 KB

Signature size independent of the masking order

Option 1: Using a GGM tree (ie. a seed tree)

Performance of a TCitH-GGM-based signature scheme for
which the security relies on the hardness of solving the MQ
problem. Running times estimated for a RISC-V platform
assuming the presence of a hardware accelerator for plain
Keccak and that the PRG is instantiated using SHAKE.

No Tweak (using masking) Parallel Trees

Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35 s 4.5 KB 0,35 s 4.5 KB

2 14 s 4.5 KB 0,93 s 6.7 KB

3 27 s 4.5 KB 1,43 s 8.9 KB

4 53 s 4.5 KB 2,03 s 11.0 KB

8 236 s 4.5 KB 4,94 s 19.7 KB

16 993 s 4.5 KB 14,0 s 37.1 KB

32 4519 s 4.5 KB 45,0 s 72.0 KB

Big computation overhead

Option 1: Using a GGM tree (ie. a seed tree)

Performance of a TCitH-GGM-based signature scheme for
which the security relies on the hardness of solving the MQ
problem. Running times estimated for a RISC-V platform
assuming the presence of a hardware accelerator for plain
Keccak and that the PRG is instantiated using SHAKE.

No Tweak (using masking) Parallel Trees

Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35 s 4.5 KB 0,35 s 4.5 KB

2 14 s 4.5 KB 0,93 s 6.7 KB

3 27 s 4.5 KB 1,43 s 8.9 KB

4 53 s 4.5 KB 2,03 s 11.0 KB

8 236 s 4.5 KB 4,94 s 19.7 KB

16 993 s 4.5 KB 14,0 s 37.1 KB

32 4519 s 4.5 KB 45,0 s 72.0 KB

Much faster implementation

Option 1: Using a GGM tree (ie. a seed tree)

Performance of a TCitH-GGM-based signature scheme for
which the security relies on the hardness of solving the MQ
problem. Running times estimated for a RISC-V platform
assuming the presence of a hardware accelerator for plain
Keccak and that the PRG is instantiated using SHAKE.

No Tweak (using masking) Parallel Trees

Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35 s 4.5 KB 0,35 s 4.5 KB

2 14 s 4.5 KB 0,93 s 6.7 KB

3 27 s 4.5 KB 1,43 s 8.9 KB

4 53 s 4.5 KB 2,03 s 11.0 KB

8 236 s 4.5 KB 4,94 s 19.7 KB

16 993 s 4.5 KB 14,0 s 37.1 KB

32 4519 s 4.5 KB 45,0 s 72.0 KB

Big communication overhead

Option 1: Using a GGM tree (ie. a seed tree)

Option 2: Using a Merkle tree (ie. a hash tree)

𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍
𝗉𝖺𝗋𝖾𝗇𝗍_𝗁𝖺𝗌𝗁

← Hash(𝗁𝖺𝗌𝗁1, 𝗁𝖺𝗌𝗁2)

P(e1)

Hash
P(eN)

Hash

P(e2) … …

𝖼𝗈𝗆1 𝖼𝗈𝗆2 𝖼𝗈𝗆N

𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍
𝗉𝖺𝗋𝖾𝗇𝗍_𝗁𝖺𝗌𝗁

← Hash(𝗁𝖺𝗌𝗁1, 𝗁𝖺𝗌𝗁2)

[[P(e1)]]

Hashmasked

[[P(eN)]]

Hashmasked

[[P(e2)]] … …

𝖼𝗈𝗆1 𝖼𝗈𝗆2 𝖼𝗈𝗆N

Need to protect around calls to
hash function:

Computationally costly!

∼ N ⋅ τ

Option 2: Using a Merkle tree (ie. a hash tree)

𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍
𝗉𝖺𝗋𝖾𝗇𝗍_𝗁𝖺𝗌𝗁

← Hash(𝗁𝖺𝗌𝗁1, 𝗁𝖺𝗌𝗁2)

No sensitive data
No need to mask!

[[P(e1)]]

Hashmasked

[[P(eN)]]

Hashmasked

[[P(e2)]] … …

𝖼𝗈𝗆1 𝖼𝗈𝗆2 𝖼𝗈𝗆N

Option 2: Using a Merkle tree (ie. a hash tree)

𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍
𝗉𝖺𝗋𝖾𝗇𝗍_𝗁𝖺𝗌𝗁

← Hash(𝗁𝖺𝗌𝗁1, 𝗁𝖺𝗌𝗁2)

[[P(e1)]]

Hash

[[P(eN)]]

Hash

[[P(e2)]] … …

𝖼𝗈𝗆1 𝖼𝗈𝗆2 𝖼𝗈𝗆N

Option 2: Using a Merkle tree (ie. a hash tree)

Tweak Idea:
One can commit directly to the shares

, …, . Namely,

.

[[v]]0 [[v]]d

comv := Hash([[v]]0) ∥ … ∥ Hash([[v]]d)

To commit to a value (no tweaked):
 from

v
𝖼𝗈𝗆v := Hash(v) [[v]]

𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍
𝗉𝖺𝗋𝖾𝗇𝗍_𝗁𝖺𝗌𝗁

← Hash(𝗁𝖺𝗌𝗁1, 𝗁𝖺𝗌𝗁2)

[[P(e1)]] [[P(eN)]][[P(e2)]] … …

𝖼𝗈𝗆1 𝖼𝗈𝗆2 𝖼𝗈𝗆N

Option 2: Using a Merkle tree (ie. a hash tree)

Tweak Idea:
One can commit directly to the shares

, …, . Namely,

.

[[v]]0 [[v]]d

comv := Hash([[v]]0) ∥ … ∥ Hash([[v]]d)

Issue:
To let the verifier check the
commitment, the signature transcript
should contain the entire
(and not just), such that the verifier
can recompute the digest .

[[v]]
v

comv

To commit to a value (no tweaked):
 from

v
𝖼𝗈𝗆v := Hash(v) [[v]]

Hash Hash

𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍
𝗉𝖺𝗋𝖾𝗇𝗍_𝗁𝖺𝗌𝗁

← Hash(𝗁𝖺𝗌𝗁1, 𝗁𝖺𝗌𝗁2)

[[P(e1)]]

Hash

[[P(eN)]]

Hash

[[P(e2)]]
… …

𝖼𝗈𝗆1 𝖼𝗈𝗆2 𝖼𝗈𝗆N

To commit to a value (no tweaked):
 from

v
𝖼𝗈𝗆v := Hash(v) [[v]]

Option 2: Using a Merkle tree (ie. a hash tree)

Basic Tweak Idea:
One can commit directly to the shares

, …, . Namely,

.

[[v]]0 [[v]]d

comv := Hash([[v]]0) ∥ … ∥ Hash([[v]]d)

Improved Tweak Idea:
Commit to the shares , …, after compressing them into pseudo-random shares:

where , with for all .

[[v]]0 [[v]]d

(v0, seed1, …, seedd) ← MaskCompress([[v]])
comi ← Hash(v0) ∥ Hash(seed1) ∥ … ∥ Hash(seedd)

v = v0 + v1 + … + vd vi := PRG(seedi) i ≥ 1

Option 2: Using a Merkle tree (ie. a hash tree)

No Tweak (using masking) Com. of PR sharings

Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35 s 6.5 KB 0,35 s 6.5 KB

2 5.2 s 6.5 KB 1.1 s 6.8 KB

3 9.8 s 6.5 KB 1.9 s 7.1 KB

4 19 s 6.5 KB 2.8 s 7.4 KB

8 81 s 6.5 KB 7.3 s 8.6 KB

16 339 s 6.5 KB 20 s 11.1 KB

32 1534 s 6.5 KB 60 s 15.9 KB

Performance of a TCitH-MT-based signature scheme for which
the security relies on the hardness of solving the MQ problem.
Running times estimated for a RISC-V platform assuming the
presence of a hardware accelerator for plain Keccak.

Option 2: Using a Merkle tree (ie. a hash tree)

No Tweak (using masking) Com. of PR sharings

Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35 s 6.5 KB 0,35 s 6.5 KB

2 5.2 s 6.5 KB 1.1 s 6.8 KB

3 9.8 s 6.5 KB 1.9 s 7.1 KB

4 19 s 6.5 KB 2.8 s 7.4 KB

8 81 s 6.5 KB 7.3 s 8.6 KB

16 339 s 6.5 KB 20 s 11.1 KB

32 1534 s 6.5 KB 60 s 15.9 KB

No masking, i.e. basic scheme

Performance of a TCitH-MT-based signature scheme for which
the security relies on the hardness of solving the MQ problem.
Running times estimated for a RISC-V platform assuming the
presence of a hardware accelerator for plain Keccak.

Performance of a TCitH-MT-based signature scheme for which
the security relies on the hardness of solving the MQ problem.
Running times estimated for a RISC-V platform assuming the
presence of a hardware accelerator for plain Keccak.

Option 2: Using a Merkle tree (ie. a hash tree)

No Tweak (using masking) Com. of PR sharings

Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35 s 6.5 KB 0,35 s 6.5 KB

2 5.2 s 6.5 KB 1.1 s 6.8 KB

3 9.8 s 6.5 KB 1.9 s 7.1 KB

4 19 s 6.5 KB 2.8 s 7.4 KB

8 81 s 6.5 KB 7.3 s 8.6 KB

16 339 s 6.5 KB 20 s 11.1 KB

32 1534 s 6.5 KB 60 s 15.9 KB

Signature size independent of the masking order

Performance of a TCitH-MT-based signature scheme for which
the security relies on the hardness of solving the MQ problem.
Running times estimated for a RISC-V platform assuming the
presence of a hardware accelerator for plain Keccak.

Option 2: Using a Merkle tree (ie. a hash tree)

No Tweak (using masking) Com. of PR sharings

Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35 s 6.5 KB 0,35 s 6.5 KB

2 5.2 s 6.5 KB 1.1 s 6.8 KB

3 9.8 s 6.5 KB 1.9 s 7.1 KB

4 19 s 6.5 KB 2.8 s 7.4 KB

8 81 s 6.5 KB 7.3 s 8.6 KB

16 339 s 6.5 KB 20 s 11.1 KB

32 1534 s 6.5 KB 60 s 15.9 KB

Big computation overhead

Performance of a TCitH-MT-based signature scheme for which
the security relies on the hardness of solving the MQ problem.
Running times estimated for a RISC-V platform assuming the
presence of a hardware accelerator for plain Keccak.

Option 2: Using a Merkle tree (ie. a hash tree)

No Tweak (using masking) Com. of PR sharings

Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35 s 6.5 KB 0,35 s 6.5 KB

2 5.2 s 6.5 KB 1.1 s 6.8 KB

3 9.8 s 6.5 KB 1.9 s 7.1 KB

4 19 s 6.5 KB 2.8 s 7.4 KB

8 81 s 6.5 KB 7.3 s 8.6 KB

16 339 s 6.5 KB 20 s 11.1 KB

32 1534 s 6.5 KB 60 s 15.9 KB

Much faster implementation

Performance of a TCitH-MT-based signature scheme for which
the security relies on the hardness of solving the MQ problem.
Running times estimated for a RISC-V platform assuming the
presence of a hardware accelerator for plain Keccak.

Option 2: Using a Merkle tree (ie. a hash tree)

No Tweak (using masking) Com. of PR sharings

Nb shares Signing time Sig. Size Signing time Sig. Size

1 0,35 s 6.5 KB 0,35 s 6.5 KB

2 5.2 s 6.5 KB 1.1 s 6.8 KB

3 9.8 s 6.5 KB 1.9 s 7.1 KB

4 19 s 6.5 KB 2.8 s 7.4 KB

8 81 s 6.5 KB 7.3 s 8.6 KB

16 339 s 6.5 KB 20 s 11.1 KB

32 1534 s 6.5 KB 60 s 15.9 KB

Small communication overhead

4.5 KB

6.7 KB

8.9 KB

11.0 KB

19.7 KB

37.1 KB

72.0 KB

GGM with
parallel trees

Conclusion

Masking TCitH-based schemes (without tweak) is computational expensive.

This issue can be mitigated by tweaking those schemes:

• one can introduce a slack between the polynomial degree and the
number of opened evaluations

• when using GGM trees, one can use parallel trees.

• when using Merkle trees, one can commit to pseudo-random sharings
instead of committing to clear values.

All those tweaks drastically reduce the running times, but introduce some
variability in the signature size: the signature size depends on the masking
order.

Conclusion

10000 15000 20000 25000 30000

Signature size (in bytes)

100

101

T
im

e
(i
n

se
co

n
d
s)

TCitH-MT masked signature, N from 32 to 256, d = 3

No tweak

PR shares

Slack (full)

Slack (half) + PR shares

One can combine slack with the other masking-friendly tweaks.

Conclusion

10000 15000 20000 25000 30000

Signature size (in bytes)

100

101

T
im

e
(i
n

se
co

n
d
s)

TCitH-MT masked signature, N from 32 to 256, d = 3

No tweak

PR shares

Slack (full)

Slack (half) + PR shares

Conclusion

Using Merkle trees leads to better trade-offs than using GGM trees, because the
Merkle trees do not contain sensitive data.

One can combine slack with the other masking-friendly tweaks.

10000 15000 20000 25000 30000

Signature size (in bytes)

100

101

T
im

e
(i
n

se
co

n
d
s)

TCitH-MT masked signature, N from 32 to 256, d = 3

No tweak

PR shares

Slack (full)

Slack (half) + PR shares

Conclusion

Thank you for your attention.

Using Merkle trees leads to better trade-offs than using GGM trees, because the
Merkle trees do not contain sensitive data.

One can combine slack with the other masking-friendly tweaks.

