Polynomial Commitment Strategies in Hash-Based Proof Systems for Small Statements

Thibauld Feneuil

Workshop « On the Mathematics of PQC »

June 5, 2025 — Zürich (Switzerland)

Table of Contents

- Context / Motivation
- Hash-based polynomial commitments
 - Using GGM trees (a.k.a. seed trees)
 - Using Merkle trees (a.k.a. hash trees)
- Applications
- Conclusion

Context / Motivation

(Zero-Knowledge) Proofs of Knowledge

- Completeness: Pr[verif ✓ | honest prover] = 1
- Soundness: Pr[verif ✓ | malicious prover] $\leq \varepsilon$ (e.g. 2^{-128})
- Zero-knowledge (optional): verifier learns nothing on w.
- Succintness (optional): verifying the proof is \underline{faster} than computing C.

Commitment Scheme

- Commitment algorithm/procedure. A prover can commit to a chosen value v while keeping it hidden to other people (hiding property).
- Opening algorithm/procedure. The prover can reveal the value v and prove that the revealed value is the one which has been committed through the commitment procedure. It should be impossible for the prover to reveal a value $v' \neq v$ while convincing the verifier that v' is the committed value (binding property).

Commitment Scheme

Commitment Scheme

Hash-based Commitment Scheme:

Check that $com = Hash(v \parallel r)$

Polynomial Commitment Scheme

- We want to commit a **polynomial** $P(X) := p_0 + p_1 \cdot X + \ldots + p_d \cdot X^d$:
 - Using a standard commitment scheme, the opening procedure would consist of revealing the *entire polynomial* in a verifiable way.

Polynomial Commitment Scheme

- We want to commit a **polynomial** $P(X) := p_0 + p_1 \cdot X + \dots + p_d \cdot X^d$:
 - Using a standard commitment scheme, the opening procedure would consist of revealing the *entire polynomial* in a verifiable way.
 - Using a polynomial commitment scheme, the opening procedure would consist of some evaluations of the committed polynomials in a verifiable way, while keeping the other evaluations hidden to the verifier.

Polynomial Commitment Scheme

- We want to commit a **polynomial** $P(X) := p_0 + p_1 \cdot X + \dots + p_d \cdot X^d$:
 - Using a standard commitment scheme, the opening procedure would consist of revealing the entire polynomial in a verifiable way.
 - Using a polynomial commitment scheme, the opening procedure would consist of some evaluations of the committed polynomials in a verifiable way, while keeping the other evaluations hidden to the verifier.

I know $w_1, ..., w_n$ such that

$$\begin{cases} f_1(w_1, ..., w_n) &= 0 \\ \vdots \\ f_m(w_1, ..., w_n) &= 0, \end{cases}$$

where $f_1, ..., f_m$ are public **degree**-d **polynomials**.

Prove it!

Prover

Verifier

① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$.

Verifier

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$.
- ② Build the polynomials $Q_1, ..., Q_m$ such that

$$X \cdot Q_1(X) = f_1(P_1(X), ..., P_n(X))$$

 \vdots
 $X \cdot Q_m(X) = f_m(P_1(X), ..., P_n(X))$

<u>Verifier</u>

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$.
- ② Build the polynomials $Q_1, ..., Q_m$ such that

$$X \cdot Q_1(X) = f_1(P_1(X), ..., P_n(X))$$

 \vdots
 $X \cdot Q_m(X) = f_m(P_1(X), ..., P_n(X))$

Well-defined!

Verifier

$$\forall j, f_j(P_1(0), ..., P_n(0)) = f_j(w_1, ..., w_n) = 0$$

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$.
- ② Build the polynomials $Q_1, ..., Q_m$ such that

$$X \cdot Q_{1}(X) = f_{1}(P_{1}(X), ..., P_{n}(X))$$

$$\vdots$$

$$X \cdot Q_{m}(X) = f_{m}(P_{1}(X), ..., P_{n}(X))$$

③ Commit the polynomials $(P_1, ..., P_n)$ and $(Q_1, ..., Q_m)$.

$$PCom(P_1, ..., P_n, Q_1, ..., Q_m)$$

Verifier

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$.
- ② Build the polynomials $Q_1, ..., Q_m$ such that

$$X \cdot Q_1(X) = f_1(P_1(X), ..., P_n(X))$$

 \vdots
 $X \cdot Q_m(X) = f_m(P_1(X), ..., P_n(X))$

- ③ Commit the polynomials $(P_1, ..., P_n)$ and $(Q_1, ..., Q_m)$.
- 5 Reveal the evaluations
 - for all i, $v_i^P := P_i(r)$
 - for all j, $v_j^Q := Q_j(r)$

<u>Verifier</u>

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$.
- ② Build the polynomials $Q_1, ..., Q_m$ such that

$$X \cdot Q_1(X) = f_1(P_1(X), ..., P_n(X))$$

 \vdots
 $X \cdot Q_m(X) = f_m(P_1(X), ..., P_n(X))$

- ③ Commit the polynomials $(P_1, ..., P_n)$ and $(Q_1, ..., Q_m)$.
- 5 Reveal the evaluations
 - for all i, $v_i^P := P_i(r)$
 - for all j, $v_j^Q := Q_j(r)$

<u>Verifier</u>

- 6 Check that $(v_1^P, ..., v_n^P)$ and $(v_1^Q, ..., v_m^Q)$ are consistent with the commitment.

Check that

$$r \cdot v_1^Q = f_1(v_1^P, ..., v_n^P)$$

 \vdots
 $r \cdot v_m^Q = f_m(v_1^P, ..., v_n^P)$

- ① For all i, choose a degree- ℓ polynomial $P_i(X)$. There exist j^* such that $f_{j^*}(P_1(0),...,P_n(0)) \neq 0$.
- 2 Choose some polynomials $Q_1, ..., Q_m$. We know that

$$X \cdot Q_{j^*}(X) \neq f_{j^*}(P_1(X), ..., P_n(X))$$

- 3 Commit the polynomials $(P_1, ..., P_n)$ and $(Q_1, ..., Q_m)$.
- (5) Reveal the evaluations
 - for all i, $v_i^P := P_i(r)$
 - for all j, $v_j^Q := Q_j(r)$

<u>Verifier</u>

Soundness Analysis

- 6 Check that $(v_1^P, ..., v_n^P)$ and $(v_1^Q, ..., v_m^Q)$ are consistent with the commitment.

$$r \cdot v_1^Q = f_1(v_1^P, ..., v_n^P)$$

 \vdots
 $r \cdot v_m^Q = f_m(v_1^P, ..., v_n^P)$

- For all i, choose a degree- ℓ polynomial $P_i(X)$. There exist j^* such that $f_{i*}(P_1(0), ..., P_n(0)) \neq 0.$
- Choose some polynomials $Q_1, ..., Q_m$. We know that

$$X \cdot Q_{j*}(X) \neq f_{j*}(P_1(X), ..., P_n(X))$$

- $X \cdot Q_{j^*}(X) \neq f_{j^*}(P_1(X), ..., P_n(X))$ Commit the polynomials $(P_1, ..., P_n)$ and $(Q_1, ..., Q_m)$.
- Reveal the evaluations - for all i, $v_i^P := P_i(r)$ - for all j, $v_j^Q := Q_j(r)$ **Evaluation into 0**

Malicious Prover

 $\neq 0$

=0

- ① For all i, choose a degree- ℓ polynomial $P_i(X)$. There exist j^* such that $f_{j^*}(P_1(0),...,P_n(0)) \neq 0$.
- 2 Choose some polynomials $Q_1, ..., Q_m$. We know that

$$X \cdot Q_{j^*}(X) \neq f_{j^*}(P_1(X), ..., P_n(X))$$

- 3 Commit the polynomials $(P_1, ..., P_n)$ and $(Q_1, ..., Q_m)$.
- 5 Reveal the evaluations
 - for all i, $v_i^P := P_i(r)$
 - for all j, $v_i^Q := Q_j(r)$

<u>Verifier</u>

Soundness Analysis

- 6 Check that $(v_1^P, ..., v_n^P)$ and $(v_1^Q, ..., v_m^Q)$ are consistent with the commitment.

$$r \cdot v_1^Q = f_1(v_1^P, \dots, v_n^P)$$

$$\vdots$$

$$r \cdot v_m^Q = f_m(v_1^P, \dots, v_n^P)$$

$$r \cdot v_{j*}^Q = f_{j*}(v_1^P, ..., v_n^P)$$

- ① For all i, choose a degree- ℓ polynomial $P_i(X)$. There exist j^* such that $f_{j^*}(P_1(0),...,P_n(0)) \neq 0$.
- ② Choose some polynomials $Q_1, ..., Q_m$. We know that

$$X \cdot Q_{j^*}(X) \neq f_{j^*}(P_1(X), ..., P_n(X))$$

Schwartz-Zippel Lemma: Let D be the **non-zero** degree- $(d \cdot \ell)$

 $D := X \cdot Q_{i*}(X) - f_{i*}(P_1(X), ..., P_n(X))$

3 Commit the polynomials $(P_1, ..., P_n)$ and $(Q_1, ..., Q_m)$.

polynomial defined as

r

<u>Verifier</u>

Soundness Analysis

- $\begin{array}{c} 4 \\ \hline \text{Choose a random evaluation} \\ \\ \text{point } r \in \mathscr{C} \subset \mathbb{F} \\ \end{array}$
- 6 Check that $(v_1^P, ..., v_n^P)$ and $(v_1^Q, ..., v_m^Q)$ are consistent with the commitment.

$$r \cdot v_1^Q = f_1(v_1^P, ..., v_n^P)$$

$$\vdots$$

$$r \cdot v_m^Q = f_m(v_1^P, \dots, v_n^P)$$

$$r \cdot v_{i^*}^Q = f_{j^*}(v_1^P, ..., v_n^P)$$

- ① For all i, choose a degree- ℓ polynomial $P_i(X)$. There exist j^* such that $f_{j^*}(P_1(0),...,P_n(0)) \neq 0$.
- ② Choose some polynomials $Q_1, ..., Q_m$. We know that

$$X \cdot Q_{j^*}(X) \neq f_{j^*}(P_1(X), ..., P_n(X))$$

3 Commit the polynomials $(P_1, ..., P_n)$ and $(Q_1, ..., Q_m)$.

Soundness Analysis

Schwartz-Zippel Lemma: Let D be the **non-zero** degree- $(d \cdot \ell)$ polynomial defined as

$$D := X \cdot Q_{j*}(X) - f_{j*}(P_1(X), ..., P_n(X))$$

We have

 $\Pr[\text{verification passes}] = \Pr[D(r) = 0 \mid r \leftarrow_{\$} \mathscr{C}] \le$

6 Check that $(v_1^P, ..., v_n^P)$ and $(v_1^Q, ..., v_m^Q)$ are consistent with the commitment.

$$r \cdot v_1^Q = f_1(v_1^P, \dots, v_n^P)$$

$$\vdots$$

$$r \cdot v_m^Q = f_m(v_1^P, \dots, v_n^P)$$

$$r \cdot v_{j^*}^Q = f_{j^*}(v_1^P, ..., v_n^P)$$

- ① For all i, choose a degree- ℓ polynomial $P_i(X)$. There exist j^* such that $f_{j^*}(P_1(0),...,P_n(0)) \neq 0$.
- 2 Choose some polynomials $Q_1, ..., Q_m$. We know that

$$X \cdot Q_{j^*}(X) \neq f_{j^*}(P_1(X), ..., P_n(X))$$

3 Commit the polynomials $(P_1, ..., P_n)$ and $(Q_1, ..., Q_m)$.

Soundness Analysis

Schwartz-Zippel Lemma: Let D be the **non-zero** degree- $(d \cdot \ell)$ polynomial defined as

$$D := X \cdot Q_{j*}(X) - f_{j*}(P_1(X), ..., P_n(X))$$

We have

$$\Pr[\text{verification passes}] = \Pr\left[D(r) = 0 \mid r \leftarrow_{\$} \mathscr{C}\right] \leq \frac{d \cdot \ell}{|\mathscr{C}|}.$$

6 Check that $(v_1^P, ..., v_n^P)$ and $(v_1^Q, ..., v_m^Q)$ are consistent with the commitment.

$$r \cdot v_1^Q = f_1(v_1^P, \dots, v_n^P)$$

$$\vdots$$

$$r \cdot v_m^Q = f_m(v_1^P, \dots, v_n^P)$$

$$r \cdot v_{j^*}^Q = f_{j^*}(v_1^P, ..., v_n^P)$$

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$.
- ② Build the polynomials $Q_1, ..., Q_m$ such that

$$X \cdot Q_1(X) = f_1(P_1(X), ..., P_n(X))$$

 \vdots
 $X \cdot Q_m(X) = f_m(P_1(X), ..., P_n(X))$

- ③ Commit the polynomials $(P_1, ..., P_n)$ and $(Q_1, ..., Q_m)$.
- 5 Reveal the evaluations
 - for all i, $v_i^P := P_i(r)$
 - for all j, $v_j^Q := Q_j(r)$

<u>Verifier</u>

Zero-Knowledge Analysis

PCom
$$(P_1, ..., P_n, Q_1, ..., Q_m)$$
 r
 $(v_1^P, ..., v_n^P), (v_1^Q, ..., v_m^Q)$

- 6 Check that $(v_1^P, ..., v_n^P)$ and $(v_1^Q, ..., v_m^Q)$ are consistent with the commitment.

Check that

$$r \cdot v_1^Q = f_1(v_1^P, ..., v_n^P)$$

 \vdots
 $r \cdot v_m^Q = f_m(v_1^P, ..., v_n^P)$

Prover

- The for all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$.
- ② Build the polynomials $Q_1, ..., Q_m$ such that

$$X \cdot Q_1(X) = f_1(P_1(X), ..., P_n(X))$$

$$X \cdot Q_m(X) = f_m(P_1(X), ..., P_n(X))$$

- 3 Commit the polynomials $(P_1, ..., P_n)$ and $(Q_1, ..., Q_m)$
- ⑤ Reveal the evaluations
 - for all i, $v_i^P = P_i(r)$
 - for all j, $v_i^Q := Q_j(r)$

Revealing an evaluation of $P_i(X)$ leaks no information about w_i .

<u>Verifier</u>

Zero-Knowledge Analysis

- 6 Check that $(v_1^P, ..., v_n^P)$ and $(v_1^Q, ..., v_m^Q)$ are consistent with the commitment.

Check that

$$r \cdot v_1^Q = f_1(v_1^P, ..., v_n^P)$$

 \vdots
 $r \cdot v_m^Q = f_m(v_1^P, ..., v_n^P)$

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$.
- ② Build the polynomials $Q_1, ..., Q_m$ such that

$$X \cdot Q_1(X) = f_1(P_1(X), ..., P_n(X))$$

 \vdots
 $X \cdot Q_m(X) = f_m(P_1(X), ..., P_n(X))$

- ③ Commit the polynomials $(P_1, ..., P_n)$ and $(Q_1, ..., Q_m)$.
- (5) Reveal the evaluations
 - for all i, $v_i^P := P_i(r)$
 - for all j, $v_j^Q := Q_j(r)$

The evaluation $Q_j(r)$ is fully determined by r and $(v_1^P, ..., v_n^P)$.

<u>Verifier</u>

Zero-Knowledge Analysis

- 6 Check that $(v_1^P, ..., v_n^P)$ and $(v_1^Q, ..., v_m^Q)$ are consistent with the commitment.

Check that

$$r \cdot v_1^Q = f_1(v_1^P, ..., v_n^P)$$

 \vdots
 $r \cdot v_m^Q = f_m(v_1^P, ..., v_n^P)$

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$.
- ② Build the polynomials $Q_1, ..., Q_m$ such that

$$X \cdot Q_1(X) = f_1(P_1(X), ..., P_n(X))$$

 \vdots
 $X \cdot Q_m(X) = f_m(P_1(X), ..., P_n(X))$

- ③ Commit the polynomials $(P_1, ..., P_n)$ and $(Q_1, ..., Q_m)$.
- ⑤ Reveal the evaluations
 - for all i, $v_i^P := P_i(r)$
 - for all j, $v_j^Q := Q_j(r)$

Hiding PolynomialCommitment Scheme

<u>Verifier</u>

Zero-Knowledge Analysis

- 6 Check that $(v_1^P, ..., v_n^P)$ and $(v_1^Q, ..., v_m^Q)$ are consistent with the commitment.

Check that

$$r \cdot v_1^Q = f_1(v_1^P, ..., v_n^P)$$

 \vdots
 $r \cdot v_m^Q = f_m(v_1^P, ..., v_n^P)$

I know $w_1, ..., w_n$ such that

$$\begin{cases} f_1(w_1, ..., w_n) &= 0 \\ \vdots \\ f_m(w_1, ..., w_n) &= 0, \end{cases}$$

where $f_1, ..., f_m$ are public **degree**-d **polynomials**.

Degree of the witness polynomials

 $P_1(X), ..., P_n(X)$

Soundness Error = $\frac{d \cdot \ell}{|\mathscr{C}|}$

Probability that a malicious prover can convince the verifier.

<u>Prover</u>

Prove it!

Verifier

Size of the challenge space that contains all the possible opened evaluations

Prover

Build some polynomials

$$P_1(X), ..., P_n(X)$$

satisfying some relations

$$\begin{cases} F_1\left(P_1(X),\ldots,P_n(X)\right) &= 0\\ &\vdots\\ F_m\left(P_1(X),\ldots,P_n(X)\right) &= 0, \end{cases}$$

Build an opening proof π for $v_1 := P_1(e), ..., v_n := P_n(e).$

Verifier

Check that π is a valid opening proof for e.

Check that

$$\begin{cases} F_1(v_1, \dots, v_n) &= 0 \\ \vdots \\ F_m(v_1, \dots, v_n) &= 0, \end{cases}$$

Hash-based SNARK: Ligero, Aurora, STARK, Brakedown, ...

Post-quantum signatures: FAEST, MQOM v2, SDitH v2, ...

Prover

Build some polynomials

$$P_1(X), ..., P_n(X)$$

satisfying some relations

$$\begin{cases} F_1\left(P_1(X),...,P_n(X)\right) &= 0\\ &\vdots\\ F_m\left(P_1(X),...,P_n(X)\right) &= 0, \end{cases}$$

Build an opening proof π for $v_1 := P_1(e), ..., v_n := P_n(e).$

Without packing: P(0) = wWith packing:

$$P(1) = w_1, ..., P(s) = w_s$$

<u>Verifier</u>

$$\begin{array}{c}
PCom(P_1, ..., P_n) \\
e \\
(v_1, ..., v_n), \pi
\end{array}$$

 \rightarrow Sample a point e from \mathscr{C} .

Check that π is a valid opening proof for e.

Check that

$$\begin{cases} F_1(v_1, \dots, v_n) &= 0 \\ \vdots &\vdots \\ F_m(v_1, \dots, v_n) &= 0, \end{cases}$$

Hash-based SNARK: Ligero, Aurora, STARK, Brakedown, ...

Post-quantum signatures: FAEST, MQOM v2, SDitH v2, ...

Hash-based SNARK, verifiable computation

2017 - ...

Ligero Aurora

Brakedown STARK

Size of the proved statement

Hash-based SNARK, verifiable computation

2017 - ...

Ligero Aurora

Brakedown STARK

Size of the proved statement

Example:

"y is obtained by inferring from data x using Al model C."

Hash-based SNARK, verifiable computation

2017 - ...

Ligero Aurora

Brakedown STARK

Size of the proved statement

Example:

"y is obtained by inferring from data x using Al model C."

Properties:

- Succinctness: <u>required</u>
- Zero-Knowledge: optional

Examples:

- FAEST: Given (x, y), I know k such that $y = AES_k(x)$
- **MQOM**: Given a multivariate system \mathcal{F} , I know x such that $\mathcal{F}(x) = 0$

Size of the proved statement

proved statement

Examples:

- **FAEST**: Given (x, y), I know k such that $y = AES_k(x)$
- **MQOM**: Given a multivariate system \mathcal{F} , I know x such that $\mathcal{F}(x) = 0$

Properties:

- Zero-Knowledge: <u>required</u>
- Succinctness: optional

Blueprint of Hash-based Proof Systems

2023 - ...

MQOM v2

FAEST

Advanced signature schemes

ZKPoK for private keys, ciphertexts, ...

Verifiable secret sharings

ZKPoK for wellformness in MPC Hash-based SNARK, verifiable computation

2017 - ...

Ligero Aurora

Brakedown STARK

Size of the proved statement

Blueprint of Hash-based Proof Systems

Zero-Knowledge is <u>required</u> Succinctness is <u>optional</u> Succinctness is <u>required</u>
Zero-Knowledge is <u>optional</u>

Hash-based Polynomial Commitments

Verifier

Check that v is the evaluation into e of the polynomial in

Check that v is the value in

Performance issue:

If the number N of possible evaluations is large, it will be impracticable.

Verifier

Check that v is the evaluation into e of the polynomial in

Check that v is the value in e_i

Performance issue:

If the number N of possible evaluations is large, it will be impracticable.

Security issue:

The verifier has **no guarantee** that the committed evaluations form a polynomial of the right degree.

- **Small-domain PCS**: the prover can open only N evaluations of the committed polynomial, where $N \ll |\mathbb{F}|$.
 - For example, the prover commits to $P(X) \in \mathbb{F}_q$ with $q = 2^{32} 5$, but the prover can only open the evaluations P(e) for e in $\{0,1,\ldots,1023\}$.
- **Full-domain PCS**: the prover can open all the evaluations of the committed polynomial, *i.e.* he can open P(e) for all $e \in \mathbb{F}$.
 - For example, the prover commits to $P(X) \in \mathbb{F}_q$ with $q=2^{32}-5$ and the prover can open the evaluations P(e) for e in $\mathbb{F}_q=\{0,1,\ldots,2^{32}-6\}$.

(using symmetric primitives)

1) VOLEitH / TCitH-GGM

degree 10

GGM Tree

degree 1

Natively, those techniques lead to **small-domain** polynomial commitment scheme

(using symmetric primitives)

Merkle Tree 4 FRI-based commitments degree 10 000 (3) Merkle Trees with Ligero-like Proximity Tests degree 1000 2 Degree-enforcing commitment degree 100 (TCitH-MT)

① VOLEitH / TCitH-GGM

degree 10

GGM Tree

degree 1

[GGM84] Goldreich, Goldwasser, Micali: "How to construct random functions (extended extract)" (FOCS 1984)

[GGM84] Goldreich, Goldwasser, Micali: "How to construct random functions (extended extract)" (FOCS 1984)

Build
$$\Delta P(X)$$
 as

$$\Delta P(X) := P(X) + \sum_{i=1}^{N} r_i \cdot (X - e_i)$$

(assuming $\deg P = 1$)

[GGM84] Goldreich, Goldwasser, Micali: "How to construct random functions (extended extract)" (FOCS 1984)

Build
$$\Delta P(X)$$
 as
$$\Delta P(X) := P(X) + \sum_{i=1}^{N} r_i \cdot (X - e_i)$$
 (assuming $\deg P = 1$) Mask

[GGM84] Goldreich, Goldwasser, Micali: "How to construct random functions (extended extract)" (FOCS 1984)

Commitment:

- Commit to each seed **independently**
- Reveal the masked polynomial $\Delta P(X)$

Open $P(e_{i*})$:

Reveal all $\{r_i\}_{i\neq i^*}$ since

$$P(e_{i^*}) = -\Delta P(e_{i^*}) + \sum_{i \neq i^*} r_i \cdot (e_{i^*} - e_i)$$

$$\Delta P(X) := P(X) + \underbrace{\sum_{i=1}^{N} r_i \cdot (X - e_i)}_{Mask}$$
 (assuming $\deg P = 1$)

[GGM84] Goldreich, Goldwasser, Micali: "How to construct random functions (extended extract)" (FOCS 1984)

Commitment:

- Commit to each seed **independently**
- Reveal the masked polynomial $\Delta P(X)$

Open $P(e_{i*})$:

Reveal all $\{r_i\}_{i\neq i^*}$ since

$$P(e_{i^*}) = -\Delta P(e_{i^*}) + \sum_{i \neq i^*} r_i \cdot (e_{i^*} - e_i)$$

$$\Delta P(X) := P(X) + \underbrace{\sum_{i=1}^{N} r_i \cdot (X - e_i)}_{Mask}$$
 (assuming $\deg P = 1$)

[GGM84] Goldreich, Goldwasser, Micali: "How to construct random functions (extended extract)" (FOCS 1984)

Commitment:

- Commit to each seed **independently**
- Reveal the masked polynomial $\Delta P(X)$

Open $P(e_{i*})$:

Reveal all $\{r_i\}_{i\neq i^*}$ since

$$P(e_{i^*}) = -\Delta P(e_{i^*}) + \sum_{i \neq i^*} r_i \cdot (e_{i^*} - e_i)$$

$$\Delta P(X) := P(X) + \underbrace{\sum_{i=1}^{N} r_i \cdot (X - e_i)}_{Mask}$$
 (assuming $\deg P = 1$)

[GGM84] Goldreich, Goldwasser, Micali: "How to construct random functions (extended extract)" (FOCS 1984)

Commitment:

- Commit to each seed **independently**
- Reveal the masked polynomial $\Delta P(X)$

Open $P(e_{i*})$:

Reveal all $\{r_i\}_{i\neq i^*}$ since

$$P(e_{i^*}) = -\Delta P(e_{i^*}) + \sum_{i \neq i^*} r_i \cdot (e_{i^*} - e_i)$$

$$\Delta P(X) := P(X) + \underbrace{\sum_{i=1}^{N} r_i \cdot (X - e_i)}_{Mask}$$
 (assuming $\deg P = 1$)

[GGM84] Goldreich, Goldwasser, Micali: "How to construct random functions (extended extract)" (FOCS 1984)

Build $\Delta P(X)$ as

$$\Delta P(X) := P(X) + \underbrace{\sum_{i=1}^{N} r_i \cdot (X - e_i)}_{\textit{Mask}}$$
 (assuming $\deg P = 1$)

Commitment:

- Commit to each seed **independently**
- Reveal the masked polynomial $\Delta P(X)$

Open $P(e_{i*})$:

Reveal all $\{r_i\}_{i\neq i^*}$ since

$$P(e_{i^*}) = -\Delta P(e_{i^*}) + \sum_{i \neq i^*} r_i \cdot (e_{i^*} - e_i)$$

Properties:

- Cost of sending a tree node: λ bits
- Verification complexity: O(N)
- Nodes contain <u>sensitive</u> information
- Commitment cost: $O_{\lambda}(\#P \times \deg P)$
- The committed polynomial P is naturally of the right degree

(using symmetric primitives)

① VOLEitH / TCitH-GGM

degree 10

GGM Tree

degree 1

(using symmetric primitives)

1) VOLEitH / TCitH-GGM

degree 10

GGM Tree

degree 1

[Mer79] Merkle: "Secrecy, authentication, and public key systems" (Ph.D. Thesis, 1979)

Merkle tree's root

[Mer79] Merkle: "Secrecy, authentication, and public key systems" (Ph.D. Thesis, 1979)

Merkle tree's root

Open $P(e_{i*})$:

Reveal the authentication path of $P(e_{i*})$

[Mer79] Merkle: "Secrecy, authentication, and public key systems" (Ph.D. Thesis, 1979)

Merkle tree's root

Open $P(e_{i*})$:

Reveal the authentication path of $P(e_{i*})$

[Mer79] Merkle: "Secrecy, authentication, and public key systems" (Ph.D. Thesis, 1979)

Merkle tree's root

Commitment:

- Reveal the Merkle root
- Use a mechanism to ensure that the committed polynomial of the right degree

Open $P(e_{i*})$:

Reveal the authentication path of $P(e_{i^*})$

⚠ Need to ensure that the committed evaluations correspond to a polynomial of the right degree:

<u>Large polynomials</u>: Proximity Test (Ligero-like or FRI) <u>Small polynomials</u>: Degree-Enforcing Test (TCitH)

[Mer79] Merkle: "Secrecy, authentication, and public key systems" (Ph.D. Thesis, 1979)

Merkle tree's root

⚠ Need to ensure that the committed evaluations correspond to a polynomial of the right degree:

<u>Large polynomials</u>: Proximity Test (Ligero-like or FRI)

<u>Small polynomials</u>: Degree-Enforcing Test (TCitH)

Commitment:

- Reveal the Merkle root
- Use a mechanism to ensure that the committed polynomial of the right degree

Open $P(e_{i*})$:

Reveal the authentication path of $P(e_{i^*})$

Properties:

- Cost of sending a tree node: 2λ bits
- Verification complexity: $O(\log_2 N)$
- Nodes contain <u>non-sensitive</u> information
- Commitment cost: $O_{\lambda}(\#P + \deg P)$
- Require a mechanism that provide some guarantee on the degree of the committed polynomial

(using symmetric primitives)

① VOLEitH / TCitH-GGM

degree 10

GGM Tree

degree 1

(using symmetric primitives)

1) VOLEitH / TCitH-GGM

degree 10

GGM Tree

degree 1

Natively, those techniques lead to **small-domain** polynomial commitment scheme

Basic Proof System for Polynomial Constraints

I know $w_1, ..., w_n$ such that

$$\begin{cases} f_1(w_1, ..., w_n) &= 0 \\ \vdots \\ f_m(w_1, ..., w_n) &= 0, \end{cases}$$

where $f_1, ..., f_m$ are public **degree**-d **polynomials**.

Degree of the witness polynomials

 $P_1(X), ..., P_n(X)$

Soundness Error = $\frac{d \cdot \ell}{|\mathscr{C}|}$

Probability that a malicious prover can convince the verifier.

<u>Prover</u>

Prove it!

Verifier

Size of the challenge space that contains all the possible opened evaluations

- Small-domain PCS: $|\mathscr{C}| = N$ where N is the size of the tree
- Full-domain PCS: $|\mathscr{C}| = |\mathbb{F}|$ or $|\mathscr{C}| = |\mathbb{K}|$

Out-of-sampling Technique

Rely on the equivalence:

$$P(e) = z$$
 iff there exists $Q(X)$ s.t.
 $P(X) - z = (X - e) \cdot Q(X)$

- Small-domain PCS: $|\mathscr{C}| = N$ where N is the size of the tree.
- Full-domain PCS: $|\mathscr{C}| = |\mathbb{F}|$ or $|\mathscr{C}| = |\mathbb{K}|$

[BGKS19] Ben-Sasson, Goldberg, Kopparty, Saraf. DEEP-FRI: Sampling outside the box improves soundness. ITCS 2020.

Out-of-sampling Technique

Using Tensor codes

Rely on the equivalence:

$$P(e) = z$$
 iff there exists $Q(X)$ s.t.
 $P(X) - z = (X - e) \cdot Q(X)$

- Small-domain PCS: $|\mathscr{C}| = N$ where N is the size of the tree
- Full-domain PCS: $|\mathscr{C}| = |\mathbb{F}|$ or $|\mathscr{C}| = |\mathbb{K}|$

[BCG20] Bootle, Chiesa, Groth. Linear-time arguments with sublinear verification from tensor codes. TCC 2020.

[Lee21] Lee. Dory: Efficient, transparent arguments for generalised inner products and polynomial commitments. TCC 2021.

[GLS+23] Golovnev, Lee, Setty, Thalers, Wahby. Brakedown: Linear-time and field-agnostic SNARKs for R1CS. Crypto 2023.

Out-of-sampling Technique Using Tensor codes

Rely on the equivalence:

$$P(e) = z$$
 iff there exists $Q(X)$ s.t.
 $P(X) - z = (X - e) \cdot Q(X)$

VOLE-in-the-Head Technique

Support only degree 1 Large-domain PCS

- Small-domain PCS: $|\mathscr{C}| = N$ where N is the size of the tree
- Full-domain PCS: $|\mathscr{C}| = |F|$ or $|\mathscr{C}| = |K|$

[BBD+23] Baum, Braun, Delpech, Klooß, Orsini, Roy, Scholl. Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures From VOLE-in-the-Head. Crypto 2023.

Applications

Comparison of the approaches

GGM Tree

- The nodes contain sensitive information.
- The complexity of the tree verification is in O(N), where N is the number of leaves.
- A node is of λ bits

PCS from GGM Tree

- The committed is naturally of the right degrees.
- Commitment cost: $O_{\lambda}(\#P \cdot \deg P)$

Merkle Tree

- The nodes do not contain sensitive informations.
- The complexity of the tree verification is in $O(\log N)$, where N is the number of leaves.
- A node is of 2λ bits

PCS from Merkle Tree

- Need to add an additional mechanism to ensure the degree of the committed polynomials
- Commitment cost: $O_{\lambda}(\#P + \deg P)$

GGM Tree

- A node is of λ bits
- The committed is naturally of the right degrees.
- Commitment cost (PCS): $O_{\lambda}(\#P \cdot \deg P)$

- A node is of 2λ bits
- Need to add an additional mechanism to ensure the degree of the committed polynomials
- Commitment cost (PCS):

$$O_{\lambda}(\#P + \deg P)$$

GGM Tree

- A node is of λ bits
- The committed is naturally of the right degrees.
- Commitment cost (PCS): $O_{\lambda}(\#P \cdot \deg P)$

- A node is of 2λ bits
- Need to add an additional mechanism to ensure the degree of the committed polynomials
- Commitment cost (PCS): $O_{\lambda}(\#P + \deg P)$

Scheme	Using GGM Tree	Using Merkle Tree
Signature schemes	2.5 - 6 KB	7 - 12 KB

GGM Tree

- A node is of λ bits
- The committed is naturally of the right degrees.
- Commitment cost (PCS): $O_{\lambda}(\#P \cdot \deg P)$

- A node is of 2λ bits
- Need to add an additional mechanism to ensure the degree of the committed polynomials
- Commitment cost (PCS): $O_{\lambda}(\#P + \deg P)$

Scheme	Using GGM Tree	Using Merkle Tree
Signature schemes	2.5 - 6 KB	7 - 12 KB
ZKPoK of Kyber512's secret key	≈ 12 KB	≈ 14 KB

GGM Tree

- A node is of λ bits
- The committed is naturally of the right degrees.
- Commitment cost (PCS): $O_{\lambda}(\#P \cdot \deg P)$

- A node is of 2λ bits
- Need to add an additional mechanism to ensure the degree of the committed polynomials
- Commitment cost (PCS): $O_{\lambda}(\#P + \deg P)$

Using GGM Tree	Using Merkle Tree
2.5 - 6 KB	7 - 12 KB
≈ 12 KB	≈ 14 KB
≈ 36 KB	≈ 21 KB
	2.5 - 6 KB ≈ 12 KB

GGM Tree

- A node is of λ bits
- The committed is naturally of the right degrees.
- Commitment cost (PCS): $O_{\lambda}(\#P \cdot \deg P)$

- A node is of 2λ bits
- Need to add an additional mechanism to ensure the degree of the committed polynomials
- Commitment cost (PCS): $O_{\lambda}(\#P + \deg P)$

Scheme	Using GGM Tree	Using Merkle Tree
Signature schemes	2.5 - 6 KB	7 - 12 KB
ZKPoK of Kyber512's secret key	≈ 12 KB	≈ 14 KB
ZKPoK of four Kyber512's secret keys	≈ 36 KB	≈ 21 KB
ZKPoK of LWE (binary secret, q≈2 ⁶¹ , n=4096, m=1024)	≈ 102 KB	≈ 21 KB

GGM Tree

- The complexity of the tree verification is in O(N), where N is the number of leaves.

Merkle Tree

- The complexity of the tree verification is in $O(\log N)$, where N is the number of leaves.

GGM Tree

- The complexity of the tree verification is in O(N), where N is the number of leaves.

Merkle Tree

- The complexity of the tree verification is in $O(\log N)$, where N is the number of leaves.

Round-I code-based signature schemes

GGM Tree

- The complexity of the tree verification is in O(N), where N is the number of leaves.

Merkle Tree

The complexity of the tree verification is in $O(\log N)$, where N is the number of leaves.

Fast verification algorithm (for example, SDitH1-thr)

GGM Tree

- The complexity of the tree verification is in O(N), where N is the number of leaves.

Merkle Tree

- The complexity of the tree verification is in $O(\log N)$, where N is the number of leaves.

- Fast verification algorithm (for example, SDitH1-thr)
- The verification algorithm can be efficiently represented as an arithmetic circuit, *i.e.* leading to SNARK-friendly signatures.

For example,

[FR25] Feneuil, Rivain. CAPSS: A Framework for SNARK-Friendly Post-Quantum Signatures. ePrint 2025/061.

Signature Scheme	Signature size	Nb R1CS Constraints
VOLEitH-based signatures	2.5 - 5 KB	≥ 10 000 000
CAPSS-Anemoi (2 ²⁵⁶)	≈ 11 KB	≈ 19 000
CAPSS-RescuePrime (2 ²⁵⁶)	≈ 12 KB	≈ 36 000

Masking-Friendly Scheme

GGM Tree

- The nodes contain sensitive information.

Merkle Tree

- The nodes do not contain sensitive informations.

Masking-Friendly Scheme

GGM Tree

The nodes contain sensitive information.

Merkle Tree

- The nodes do not contain sensitive informations.

Since the nodes does not contain secret information, one does not need to mask Merkle trees, in a context where the secret values are shared.

For example, in the context of <u>side-channel attacks</u>:

[FRW25] Feneuil, Rivain, Warmé-Janville. Masking-Friendly Post-Quantum Signatures in the Threshold-Computation-in-the-Head Framework. ePrint 2025/520.

Polynomial commitment schemes (PCS) is the cornerstone of all the recent hash-based proof systems, including the MPCitH ones.

- **Polynomial commitment schemes** (PCS) is the cornerstone of all the recent hash-based proof systems, including the MPCitH ones.
- There are **two main approches** to commit to polynomials using only symmetric cryptography, each of them has its own advantage:
 - Using **GGM trees** (a.k.a seed trees)
 - Smaller internal nodes (λ bits)
 - The committed polynomial is ensured to have the right degree
 - Using Merkle trees (a.k.a hash trees)
 - Internal nodes are not sensitive information
 - Sublinear verification verification
 - Asymptotically-better communication cost

- Polynomial commitment schemes (PCS) is the cornerstone of all the recent hash-based proof systems, including the MPCitH ones.
- There are **two main approches** to commit to polynomials using only symmetric cryptography, each of them has its own advantage:
 - Using **GGM trees** (a.k.a seed trees)
 - Smaller internal nodes (λ bits)
 - The committed polynomial is ensured to have the right degree
 - Using *Merkle trees* (a.k.a hash trees)
 - Internal nodes are not sensitive information
 - Sublinear verification verification
 - Asymptotically-better communication cost
 - We can enhance the soundness/performance by converting the small-domain PCS into a full-domain PCS.

- Polynomial commitment schemes (PCS) is the cornerstone of all the recent hash-based proof systems, including the MPCitH ones.
- There are **two main approches** to commit to polynomials using only symmetric cryptography, each of them has its own advantage:
 - Using **GGM trees** (a.k.a seed trees)
 - Smaller internal nodes (λ bits)
 - The committed polynomial is ensured to have the right degree
 - Using *Merkle trees* (a.k.a hash trees)
 - Internal nodes are not sensitive information
 - Sublinear verification verification
 - Asymptotically-better communication cost
 - We can enhance the soundness/performance by converting the small-domain PCS into a full-domain PCS.
- **Depending on the context**, one approach could be better than the other one.

- **Polynomial commitment schemes** (PCS) is the cornerstone of all the recent hash-based proof systems, including the MPCitH ones.
- There are **two main approches** to commit to polynomials using only symmetric cryptography, each of them has its own advantage:
 - Using **GGM trees** (a.k.a seed trees)
 - Smaller internal nodes (λ bits)
 - The committed polynomial is ensured to have the right degree
 - Using Merkle trees (a.k.a hash trees)
 - Internal nodes are not sensitive information
 - Sublinear verification verification
 - Asymptotically-better communication cost
 - We can enhance the soundness/performance by converting the smalldomain PCS into a full-domain PCS.
- **Depending on the context**, one approach could be better than the other one.

Thank you for your attention.