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= Context / Motivation

®  Hash-based polynomial commitments
* Using GGM trees (aka seed trees)
e Using Merkle trees (ak.a. hash trees)

= Applications

=  Conclusion
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Completeness: Prlverit v | honest prover] = 1

/\ Verifier x

[ | am convinced. ]

Soundness: Priverif v | malicious prover] < e (e.g. D128

Zero-knowledge (optional): verifier learns nothing on w.

Succintness (optional): verifying the proof is faster than computing C.



- Commitment algorithm/procedure. A prover can commit to a

chosen value v while keeping it hidden to other people (hiding
property).

- Opening algorithm/procedure. The prover can reveal the value v

and prove that the revealed value is the one which has been
committed through the commitment procedure. It should be

impossible for the prover to reveal a value v’ # v while convincing
the veritier that v’ is the committed value (binding property).

>
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>

Check that v is the value in .
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Hash-based Commitment Scheme:
Sample r and compute
com < Commit(v; r)
com

:= Hash(v || r) >

Commitment

Prover Verifier

>
Opening

Check that com = Hash(v || r)



Polynomial Commitment Scheme

- We want to commit a polynomial P(X) :=py+p,;- X+ ... +p,- x4

e Using a standard commitment scheme, the opening procedure would
consist of revealing the entire polynomial in a veritiable way.
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Polynomial Commitment

- We want to commit a polynomial P(X) :=py+p,;- X+ ... +p,- x4

e Using a standard commitment scheme, the opening procedure would
consist of revealing the entire polynomial in a veritiable way.

e Using a polynomial commitment scheme, the opening procedure would
consist of some evaluations of the committed polynomials in a verifiable
way, while keeping the other evaluations hidden to the verifier.
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P(X) := Zpl- X
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into e of the polynomial in .
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: | know wy, ..., w, such that

fiw,...ow) =0

f Wy, ooow) =0,

i wheref|,..., [, are public degree-d polynomials.

Prove it!

Prover Verifier




@ For all i, sample a random degree-# Verifier
polynomial P,(X) such that P;(0) = w;,.
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@ For all i, sample a random degree-#
polynomial P,(X) such that P(0) = w;,.

@ Build the polynomials Qy, ..., @, such that

Well-defined!

Prover

Vi, f(Py(0), ..., P(0) = f(wy,...,w,) =0

Verifier




@ For all i, sample a random degree-# Veritier
polynomial P,(X) such that P(0) = w;,.

@ Build the polynomials Qy, ..., @, such that

@ Commit the polynomials (P, ..., P,) PCom(P,,...,P,,0Q,,....0,)

n ne

and (Qy, ..., 0,,)- >
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Basic Proof System for Polynomial Constraints
@ For all i, sample a random degree-#
polynomial P,(X) such that P;(0) = w;,.

@ Build the polynomials Qy, ..., @, such that

X - 01(X) = f(P(X), ..., P(X))

@ Commit the polynomials (Py, ..., P,)

and (Qy, ..., 0,,)-

(B Reveal the evaluations

- forall i, vl.P = P{(r)
_ forallj, V].Q = Qi(r)
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pointr € € C F
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@ Commit the polynomials (Py, ..., P,)
and (9, ..., 0,).

(B Reveal the evaluations
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@ For all i, choose a degree-£ polynomial
P{(X). There exist j* such that

F(P1(0), ..., P,(0)) # 0.

@ Choose some polynomials Q, ..., Q, ..
know that

X - Qu(X) # firPy(X), ..., P,(X)

We

@ Commit the polynomials (Py, ..., P,)
and (9, ..., 0,).

(B Reveal the evaluations

- forall i, viP = P{(r)
_ forallj, va = 0(r)
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Polynomial Constraints

@ For all i, choose a degree-£ polynomial
P{(X). There exist j* such that

J+(P1(0), ..., P,(0)) # 0.
@ Choose some polynomials Q, ..., Q,.. We
know that
X - Qu(X) # fu(Py(X), ..., P,(X))

@ Commjfthe polynomials (P, ..\P,)

for all j, .Q = 0(r)
Evaluation into 0

=0 #0
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® Check that (vf, ...,vF) and
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Check that
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Polynomial Constraints

Verifier

@ Choose some polynomials Q, ..., Q,.. We
know that

X - Qu(X) # fa(Py(X), ..., P(X))

Choose a random evaluation
pointr € € C F

Check that

r-le =fl(vf), .

Malicious Prover ©& rov@=f k...




@ Choose some polynomials Q, ..., Q,.. We

.
know that

X - Qu(X) # fa(Py(X), ..., P(X))

polynomial defined as

Polynomial Constraints

Schwartz-Zippel Lemma: Let D be the non-zero degree-(d - ©)

D =X+ Qu(X) = fu(P)(X), ..., P, (X))

Check that

Verifier
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pointr € € C F

r-lezfl(vf),...,vP)

reve=f 0.,
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X- Ql(X) =f1(P1(X), -“’Pn(X))

@ Commit the polynomials (Py, ..., P,)
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Polynomial Constraints

Verifier

@ For all i, sample a random degree-#
polynomial P,(X) such that P(0) = w;,.

Build the polyno

X - 01(X)

ials Qy, ..

J(P(X), ..., P (X))

., Q. such that

@ Commit the poknomials (P, ..., P
P Py 2 PCom(Py, ..., Py Qs -, Op) 4) Choose a random evaluation
and (Qy, ..., 0, > :
pointr € ¢ C F
r
® Reveal the evalud
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- foralli, v »| ©® Checkthat (v{,...,v;) and
_ forallj, VJ.Q : (le, ...,v2) are consistent

with the commitment.

Check that

r-le =fl(vf3, b

Revealing an evaluation of P,(X)

leaks no information about w,.

reve=f ok . f

Prover




@ For all i, sample a random degree-#
polynomial P,(X) such that P(0) = w;,.

@ Build the polynomials Qy, ..., @, such that

X - 01(X) = f(P(X), ..., P(X))

@ Commit the polynomials (Py, ..., P,) PCom(P,, ..., P,, Oy, ..., O, ) @
an 1s s Q).
d(Q Q) >
r
® Reveal the evaluations
- forall i, vl.P = P{(r) ®)

_ forallj, va = Qi(r)

The evaluation Q(r) is fully

determined by r and (vf, ...,v,f).
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pointr € € C F

Check that (vf, o v,f) and
(le, s v,%) are consistent
with the commitment.
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@ Build the polynomials Qy, ..., @, such that

X - 01(X) = f(P(X), ..., P(X))

@ Commit the polynomials (Py, ..., P,)
and (9, ..., 0,).

Polynomial Constraints

(B Reveal the evaluations <

- forall i, vl.P = P{(r)

_ forallj, VJ.Q = Qi(r)

Hiding Polynomial
Commitment Scheme

Prover
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| know wy, ..., w, such that

fiwg,...ow) =0

fm(Wl, ,Wn) — O’

| wheref, ..., f, are public degree-d polynomials.

Prove it!

Degree of the witness polynomials

Prover PiX), ..., P(X) \ Verifier

d-¢

Soundness Error = ——

| | Size of the challenge space that
Probability that a malicious prover / \ contains all the possible opened

can convince the verifier. evaluations




Prover

Verifier

Build some polynomials
P/(X),...,P(X)

satisfying some relations

F (P/(X),...,P(X)) =0
y : PCom(Py,...,P,)
» Sample a point e from €.
F,, (Pi(X),....,P(X)) =0, .
<
Build an opening proof z for (Vis s V)5 7

» Check that rr is a valid

opening proof for e.
Check that

(F,(vj,...,v,) =0

v, :=P(e),...,v, =P (e).

Hash-based SNARK: Ligero, Aurora, STARK, Brakedown, ... ‘, F,(v,...,v) =0,
Post-quantum signatures: FAEST, MQOM v2, SDitH v2, ... |
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Build some polynomials
P/(X),...,P(X)

satisfying some relations

Wit

Wit

hout packing: P(0) = w | Verifier

n packing:

P(1) =wy, ..., P(s) = w,

Fi (P/(X),....P,X)) =0
y : PCom(Py,...,P,)
» Sample a point e from €.
F,, (Pi(X),....P,(X)) =0, .
<
B |d . 'F f (vla“'avn),ﬂ
He AT OpEiing proet & 197 » Check that r is a valid
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opening proof for e.
Check that
(F,(vj,...,v,) =0
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Post-quantum signatures: FAEST, MQOM v2, SDitH v2, ...
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Size of the
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Example:
"y is obtained by inferring

from data x using Al model C.”



Hash-based SNARK, verifiable computation
2017 - ...

Ligero Aurora

Brakedown STARK

—y

Size of the
proved statement

Example:
"y is obtained by inferring

from data x using Al model C.”

Properties:
- Succinctness: required
- Zero-Knowledge: optional
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PQ signatures Hash-based SNARK, verifiable computation
2023 - ... 2017 - ...
MQOM 2 Ligero Aurora
FAEST Brakedown STARK
Size of the

proved statement
Examples:

- FAEST: Given (x,y), | know k such that y = AES,(x)
- MQOM: Given a multivariate system &%, | know x such that #(x) =0
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PQ signatures Hash-based SNARK, verifiable computation

Advanced signature

2023 - ... schemes 2017 - ...
ZKPoK for private keys, .
MQOM 2 ciphertexts, ... Li gero Aurora
Verifiable secret
sharings
FAEST Brakedown STARK
ZKPoK for well-
I formness in MPC a
Size of the

proved statement



-------.

Small statements

.
PQ signatures , '\ Hash-based SNARK, verifiable computation
Advanced signature ;
2023 - ... schemes I 2017 - ...
i
ZKPoK for private keys, .
MQOM 2 ciphertexts, ... , Li gero Aurora
Verifiable secret :
sharings i
FAEST : Brakedown STARK
ZKPoK for well-
I formness in MPC i
'
' .
e emmmsmmsssmsssssssss=—--- --’ Size of the
proved statement
Zero-Knowledge is required Succinctness is required

Succinctness is optional Zero-Knowledge is optional






Polynomial Commitment

d
PX):= ) p;- X'

i=0
o_l.
] _ >
Commitment

V <« P(e) (ea V), %

. Veritier
O= — .. Evaluation Opening  Check that v is the evaluation
into e of the polynomial in .

Prover

>



Polynomial Commitment Scheme

\@/ ;
O'-I‘ , >
Commitment
e
v « P(e) (e,v), Q= e
. . N Verifier
0—1' — ... Evaluation Opening Check that v is the evaluation

into e of the polynomial in .

Prover

P(e;) P(ey)

el eN e
C—= C—== S

Commitment

(ei9 V), &
Evaluation Opening) e

Check that v is the value in .

Verifier

Prover v« P(e)




Polynomial Commitment Scheme

Performance issue:
t  If the number N of possible
} evaluations is large, it will be
1 impracticable.

&

P(e;) P(ey)

MRy
Commitment)

v « P(e) (€, V), Q=== >

Evaluation Opening e

Check that v is the value in .

Prover Verifier




. Security issue: {
Performance issue: ]
. The verifier has no guarantee |
If the number N of possible
. § that the committed evaluations }

t evaluations is lar e, it will be i . )
{ . '8 i § form a polynomial of the right
impracticable.
degree.

P(e;) P(ey)

81 eN

NoF Yor
‘ Hel ‘HeN ‘ ‘ )
Commitment

v « P(e) (€, V), Q== >

Evaluation Opening e

Check that v is the value in .

Prover Verifier




Polynomial Commitment Scheme

- Small-domain PCS: the prover can open only N evaluations of the

committed polynomial, where N < | F|.

* Forexample, the prover commits to P(X) € [ with

g = 2% — 5, but the prover can only open the evaluations
P(e) forein {0,1,...,1023}.

- Full-domain PCS: the prover can open all the evaluations of the

committed polynomial, i.e. he can open P(e) for all e € .

e For example, the prover commits to P(X) € [ with

g = 27> — 5 and the prover can open the evaluations P(e) for
einF,={0,1,...,2°° — 6}.



to commit to polynomials?

(using symmetric pﬁmitives)

degree 10 000

degree 1000

degree 100

p [BBD+23] Baum, Braun, Delpech, Kloof3,
Orsini, Roy, Scholl. Publicly Verifiable Zero-

(D VOLEitH / TCitH-GGM 7 deg ree 10 Knowledge and Post-Quantum Signatures

r 4 From VOLE-in-the-Head. Crypto 2023.
[FR23] Feneuil, Rivain. Threshold

deg ree 1 Computation in the Head: Improved
Framework for Post-Quantum Signatures
and Zero-Knowledge Arguments. To
appear to Journal of Cryptology.



(using symmetric pﬁmitives)

degree 10 000

degree 1000

(@ Degree-enforcing commitment

(TCitH-MT) degree 100

@® VOLEitH / TCitH-GGM “" degree 10 [FR23] Feneuil, Rivain. Threshold

Computation in the Head: Improved
Framework for Post-Quantum Signatures
and Zero-Knowledge Arguments. To

deg ree 1 appear to Journal of Cryptology.



(using symmetric primitives)

@ Merkle Trees with degree 10 000

Ligero-like Proximity Tests "
* degree 1000

(@ Degree-enforcing commitment

(TCitH-MT) degree 100
. . [AHIV17] Ames, Hazay, Ishai,
® VOLEitH / TCitH-GGM ”:/ degree 10 Venkitasubramaniam.{igero: Lightweight

Sublinear Arguments Without a Trusted
Setup. CCS 2017.

[GLS*23] Golonew, Lee, Setty, Thaler,
Wahby. Brakedown: Linear-time and field
agnotic SNARKSs for R1CS. Crypto 2023.

degree 1



(using symmetric primitives)

@ FRI-based commitments "

3 Merkle Trees with |
Ligero-like Proximity Tests "

(@ Degree-enforcing commitment

(TCitH-MT)

(D VOLEitH / TCitH-GGM "

degree 1

degree 10

degree 10 000

degree 1000

degree 100

[BBHR18] Ben-Sasson, Bentov, Horesh,
Riabzev. Fast Reed-Solomon Interactive
Oracle Proofs of Proximity. ICALP 2018.

[BGKS20] Ben-Sasson, Goldberg,
Kopparty, Saraf. DEEP-FRI: Sampling

Outside the Box Improves Soundness.
ITCS 2020.



How to commit to polynomials?

(usmg symmetric primitives)

Merkle Tree
@ FRI-based commitments "

3 Merkle Trees with degree 10 000

Ligero-like Proximity Tests
“  degree 1000

(@ Degree-enforcing commitment

(TCitH-MT) degree 100

(D VOLEitH / TCitH-GGM degree 10

GGM Tree -
Natively, those techniques
lead to small-domain
polynomial commitment scheme

degree 1



How to commit to polynomials?

(usmg symmetric primitives)

Merkle Tree
@ FRI-based commitments "

@ Merkle Trees with degree 10 000
Ligero-like Proximity Tests .~

degree 1000

(2 Degree-enforcing commitment
(TCitH-MT) degree 100

(D VOLERH /TCItH-GGM degree 10

degree 1



[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

root_seed

ﬁ

(seed1, seed?)
— PRG(parerjtj\e’d/_{\
' HE N = = Il ~

PRGl PRGl PRG l

rr n Fn
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root_seed
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' HE N = = Il ~

PRGl PRGl PRG l

rr n Fn

g

Build AP(X) as

N
AP(X) := P(X) + 2 r (X —e)
=1

(assuming deg P = 1)



[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

root_seed

ﬁ

(seed1, seed?)
— PRG(parerjtj\e’d/_{\
' HE N = = Il ~

PRGl PRGl PRG l

rr n Fn

Build AP(X) as
N
APX) :=P(X)+ ) r;- (X —e)

i=1

(assuming deg P = 1) Mask



[GGMB84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

root_seed Commitment:

ﬁ

- Commit to each seed independently

(seed1, seed?)
- PRG(parent:c;j/ﬁ \ - Reveal the masked polynomial AP(X)
e == -
7 N\ Open P(e;):
Reveal all {r;} .+ since

--ﬂ;—z_S—;—Z-S— P(ei*):_Ap(ei*)+2”i'(€i*_€i)

#f

e ) \——) \— \—) \— \— \e— I£i*
PRGl PRGl PRGl
o n Y

Build AP(X) as

N
APX) :=P(X)+ ) r;- (X —e)
i=1

(assumingdeg P = 1) Mask



[GGMB84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

- Commit to each seed independently

root_seed Commitment:
- Reveal the masked polynomial AP(X)

/—/—\h—w
7\ 7 N\ Open P(e;):
Reveal all {r;} .+ since

7N 7N 7N 7\ Pley) = = AP(e) + Y 1i- (e — )

) () A ) \e——) \—r) \——) \— I£i*
seed; seed, ... 7% seedy
PRGl PRGl PRGl
n n n

Build AP(X) as

N
APX) :=P(X)+ ) r;- (X —e)
i=1

(assuming deg P = 1) Mask
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- Commit to each seed independently

root_seed Commitment:
- Reveal the masked polynomial AP(X)

f\'—
7\ /N Open P(e;):
Reveal all {r;} .+ since

7N 7N 7N 7\ Ples) = = AP(e) + 3 1y (e — )

) () ) \——) \a—) \—) \— \— I£i*
seed; seed, ... 7% seedy
PRGl PRGl PRGl
rr I Fn

Build AP(X) as

N
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[GGMB84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

root_seed

—

sibling path
— log(N) seeds

_Z'L_Z'LJS:

EH

seed; seed, ... 7% seedy
PRGl PRGl PRGl
o n Y

Build AP(X) as

N
APX) :=P(X)+ ) r;- (X —e)
i=1

(assuming deg P = 1) Mask

Commitment:

- Commit to each seed independently
- Reveal the masked polynomial AP(X)

Open P(e;):

Reveal all {r;} .+ since

P(ey) = — AP(ex) + ) 1;- (e — €)
I£i*




[GGMB84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

root_seed Commitment:
prmm—

- Commit to each seed independently

sibling path
— log(N) seeds

- Reveal the masked polynomial AP(X)

Open P(e;):

Reveal all {r;} .+ since

P(ey) = — AP(ex) + ) 1;- (e — €)
EJi

N

Hﬁ

seed; seed, ... 7% seedy
PRGl PRGl PRGl Properties:
ry F Iy - Cost of sending a tree node: 4 bits

- Verification complexity: O(N)

- Nodes contain sensitive information

Bui
uild AP(X) as - Commitment cost: O,(#P X deg P)

N
AP(X) := P(X) + Z - (X —e) - The committed polynomial P is
i=1 naturally of the right degree

(assuming deg P = 1) Mask



How to commit to polynomials?

(usmg symmetric primitives)

egree 10 000

D0

degree 10

degree 1



to commit to polynomials?

(using symmetric primitives)

Merkle Tree o
. @ FRI-based commitments L+

3 Merkle Trees with degree 10 000

Ligero-like Proximity Tests " §
90

' (@ Degree-enforcing commitment
(TCitH-MT)

degree 100
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[Mer79] Merkle: “Secrecy, authentication, and public key systems” (Ph.D. Thesis, 1979)

Commitment:

Merkle tree’s root

— - Reveal the Merkle root
—y

- Use a mechanism to ensure that the
committed polynomial of the right degree

Open P(e;):
Reveal the authentication path of P(e;«)

4 4

" T

P(e) P(ey) -

Properties:

- Cost of sending a tree node: 21 bits

- Verification complexity: O(log, N)

- Nodes contain non-sensitive
information

I Need to ensure that the committed evaluations |

correspond to a polynomial of the right degree: - Commitment cost: O,(#P + deg P)

- Require a mechanism that provide

Large polynomials: Proximity Test (Ligero-like or FRI)
some guarantee on the degree of the

Small polynomials: Degree-Enforcing Test (TCitH)

committed polynomial
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Merkle Tree
@ FRI-based commitments "

3 Merkle Trees with degree 10 000

Ligero-like Proximity Tests
“  degree 1000

(@ Degree-enforcing commitment

(TCitH-MT) degree 100

(D VOLEitH / TCitH-GGM degree 10

GGM Tree -
Natively, those techniques
lead to small-domain
polynomial commitment scheme

degree 1
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Prove it!

Degree of the witness polynomials

Prover PiX), ..., P(X) \ Verifier
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Soundness Error = ——

| | Size of the challenge space that
Probability that a malicious prover / \ contains all the possible opened

can convince the verifier. evaluations




® Small-domain PCS: |€| =N

where N is the size of the tree

® Fulll-domain PCS: |€| = |F| or |€| = | K|




Out-of-sampling
Technique

Rely on the equivalence:
P(e) =z iff there exists OQ(X) s.t.
PX)—z=(X~-e) - 0X)

® Small-domain PCS: |€| =N

where N is the size of the tree

[BGKS19] Ben-Sasson, Goldberg,
Kopparty, Saraf. DEEP-FRI: Sampling
outside the box improves soundness.

® Full-domain PCS: |€¢| = |F| or |E| = | K| ITCS 2020.




Out-of-sampling
Technique

Rely on the equivalence:
P(e) =z iff there exists OQ(X) s.t.
PX)—z=(X~-e) - 0X)

® Small-domain PCS: |€| =N

where N is the size of the tree

® Full-domain PCS: |€| = |F| or |E| = | K|

Using
Tensor codes

[BCG20] Bootle, Chiesa, Groth. Linear-
time arguments with sublinear verification
from tensor codes. TCC 2020.

[Lee21] Lee. Dory: Efficient, transparent
arguments for generalised inner products
and polynomial commitments. TCC 2021.

[GLS*23] Golovney, Lee, Setty, Thalers,
Wahby. Brakedown: Linear-time and field-
agnostic SNARKSs for R1CS. Crypto 2023.



Using
Tensor codes

Out-of-sampling
Technique

Rely on the equivalence:
P(e) =z iff there exists OQ(X) s.t.
PX)—z=(X~-e) - 0X)

' VOLE-in-the-Head
Technique

4 Support only degree 1
Large-domain PCS

®m Small-domain PCS: | Cgl =N [BBD+23] Baum, Braun, Delpech, Kloof3,
, , Orsini, Roy, Scholl. Publicly Verifiable
where N is the size of the tree Zero-Knowledge and Post-Quantum

Signatures From VOLE-in-the-Head.
m Full-domain PCS: |€| = |F| or |€| = |K| Crypto 2023.
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GGM Tree Merkle Tree

- The nodes contain sensitive - The nodes do not contain
information. sensitive informations.

- The complexity of the tree - The complexity of the tree
verification is in O(N), where verification is in O(log N),
N is the number of leaves. where N is the number of

leaves.

- A node is of 4 bits
- A node is of 21 bits

PCS from GGM Tree PCS from Merkle Tree

- Need to add an additional
mechanism to ensure the degree
of the committed polynomials

- The committed is naturally of the
right degrees.

- Commitment cost: O,(#P - deg P) ,
- Commitment cost: O,(#P + deg P)
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GGM Tree

A node is of 1 bits

The committed is naturally of the
right degrees.

Commitment cost (PCS):
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Merkle Tree

- A node is of 21 bits
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Minimizing the proof sizes

GGM Tree

- A node is of 4 bits

- The committed is naturally of the
right degrees.

- Commitment cost (PCS):
O,#P - deg P)

Merkle Tree

- A node is of 21 bits

- Need to add an additional
mechanism to ensure the degree
of the committed polynomials

- Commitment cost (PCS):

O,(#P + deg P)
Scheme Using GGM Tree Using Merkle Tree
Signature schemes 2.5-6KB 7 -12 KB
ZKPoK of Kyber512’s secret key ~ 12 KB ~ 14 KB
ZKPoK of four Kyber512’s secret keys ~ 36 KB ~ 21 KB
 ZKPoKof LWE ~ 102 KB ~ 21 KB
(binary secret, q=2¢1, n=4096, m=1024)

Using VOLEItH Using SmallWood



GGM Tree Merkle Tree

- The complexity of the tree

verification is in O(log N), where N
is the number of leaves.

- The complexity of the tree

verification is in O(N), where N is
the number of leaves.




Efficient Verification Algorithm

GGM Tree

The complexity of the tree

verification is in O(N), where N is
the number of leaves.

Merkle Tree

- The complexity of the tree

verification is in O(log N), where N
is the number of leaves.

/. SPHINCS+ n
A Dilithium
A Falcon +*
+  SDitH
10 ; roReE Hash/MPCitH-based schemes Round-1
TR R N code-based
2 + MEDS signature
£ 101 4 + FulLeeca
I schemes
g A
E 10° 4 o
SDitH1-thr
10-1- AA (only scheme using Merkle tree)
10 a0 12 10

Signing time (in Mcycles)
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Efficient Venification Algorithm

GGM Tree

The complexity of the tree

verification is in O(N), where N is
the number of leaves.

Merkle Tree

- The complexity of the tree

verification is in O(log N), where N
is the number of leaves.

m Fast verification algorithm (for example, SDitH1-thr)

m The verification algorithm can be efficiently represented as an
arithmetic circuit, i.e. leading to SNARK-friendly signatures.

For example,

[FR25] Feneuil, Rivain. CAPSS: A Framework for SNARK-Friendly Post-
Quantum Signatures. ePrint 2025/061.

Signature Scheme Signature size Nb R1CS Constraints
VOLEitH-based signatures 2.5-5KB > 10 000 000
CAPSS-Anemoi (2256) ~ 11 KB ~ 19 000
CAPSS-RescuePrime (2259) ~ 12 KB ~ 36 000
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GGM Tree Merkle Tree
- The nodes contain sensitive - The nodes do not contain
information. sensitive informations.

m Since the nodes does not contain secret information, one
does not need to mask Merkle trees, in a context where the
secret values are shared.

For example, in the context of side-channel attacks:

[FRW25] Feneuil, Rivain, Warmé-Janville. Masking-Friendly Post-
Quantum Signatures in the Threshold-Computation-in-the-Head
Framework. ePrint 2025/520.
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symmetric cryptography, each of them has its own advantage:

e Using GGM trees (a.k.a seed trees)

e Smaller internal nodes (1 bits)

® The committed polynomial is ensured to have the right degree

e Using Merkle trees (a.k.a hash trees)
e |Internal nodes are not sensitive information
e Sublinear verification verification

e Asymptotically-better communication cost
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Conclusion

W Polynomial commitment schemes (PCS) is the cornerstone of all the
recent hash-based proof systems, including the MPCitH ones.

B There are two main approches to commit to polynomials using only
symmetric cryptography, each of them has its own advantage:

e Using GGM trees (a.k.a seed trees)

e Smaller internal nodes (1 bits)

® The committed polynomial is ensured to have the right degree

e Using Merkle trees (a.k.a hash trees)
e |Internal nodes are not sensitive information
e Sublinear verification verification

e Asymptotically-better communication cost

e We can enhance the soundness/performance by converting the small-
domain PCS into a full-domain PCS.

B Depending on the context, one approach could be better than the other
one.

Thank you for your attention.



