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Context / Motivation



(Zero-Knowledge) Proofs of Knowledge

- Completeness: Pr[verif ✓ | honest prover] = 1 

- Soundness: Pr[verif ✓ | malicious prover]   (e.g.  ) 

- Zero-knowledge (optional): verifier learns nothing on . 

- Succintness (optional): verifying the proof is faster than computing .
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- Commitment algorithm/procedure. A prover can commit to a 
chosen value  while keeping it hidden to other people (hiding 
property). 

- Opening algorithm/procedure. The prover can reveal the value  
and prove that the revealed value is the one which has been 
committed through the commitment procedure. It should be 
impossible for the prover to reveal a value  while convincing 
the verifier that  is the committed value (binding property).
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Commitment Scheme

, vProver Verifier

v

Commitment

Opening
Check that  is the value in v

,  v rProver Verifier

Commitment

Opening

Check that com = Hash(v ∥ r)

Sample  and compute r
com ← Commit(v; r)

:= Hash(v ∥ r)  com

Hash-based Commitment Scheme:



- We want to commit a polynomial : 

• Using a standard commitment scheme, the opening procedure would 
consist of revealing the entire polynomial in a verifiable way.

P(X) := p0 + p1 ⋅ X + … + pd ⋅ Xd
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Polynomial Commitment Scheme
- We want to commit a polynomial : 

• Using a standard commitment scheme, the opening procedure would 
consist of revealing the entire polynomial in a verifiable way. 

• Using a polynomial commitment scheme, the opening procedure would 
consist of some evaluations of the committed polynomials in a verifiable 
way, while keeping the other evaluations hidden to the verifier.

P(X) := p0 + p1 ⋅ X + … + pd ⋅ Xd

, (e, v)Prover Verifier

P(X ) :=
d

∑
i=0

pi ⋅ Xi

Commitment

Evaluation Opening Check that  is the evaluation 
 into  of the polynomial in     .

v
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v ← P(e)
 e

 e
← …



Prover Verifier

I know  such that 

 

where  are public degree-  polynomials.

w1, …, wn

f1(w1, …, wn) = 0
⋮

fm(w1, …, wn) = 0,

f1, …, fm d
Prove it!

Basic Proof System for Polynomial Constraints



①  For all , sample a random degree-  
polynomial  such that .

i ℓ
Pi(X ) Pi(0) = wi

Prover

Verifier
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①  For all , sample a random degree-  
polynomial  such that .

i ℓ
Pi(X ) Pi(0) = wi

Prover

Verifier

②   Build the polynomials  such that Q1, …, Qm

X ⋅ Q1(X ) = f1(P1(X ), …, Pn(X ))
⋮

X ⋅ Qm(X ) = fm(P1(X ), …, Pn(X ))

∀j, fj(P1(0), …, Pn(0)) = fj(w1, …, wn) = 0

Well-defined!

Basic Proof System for Polynomial Constraints
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Soundness Error = 
d ⋅ ℓ
|𝒞 |

Probability that a malicious prover 
can convince the verifier.

Degree of the witness polynomials 
P1(X ), …, Pn(X )

Size of the challenge space that 
contains all the possible opened 

evaluations
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   Without packing:  
   With packing: 

P(0) = w

P(1) = w1, …, P(s) = ws
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Size of the 
proved statement

Ligero Aurora

Brakedown STARK

Hash-based SNARK, verifiable computation
2017 - …

Example: 
``  is obtained by inferring 

from data  using AI model .’’
y

x C

Properties: 
- Succinctness: required 
- Zero-Knowledge: optional
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Evaluation Opening
v ← P(ei)

 ei
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P(eN)
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Polynomial Commitment Scheme

Performance issue:
If the number  of possible 

evaluations is large, it will be 
impracticable.
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Security issue:
The verifier has no guarantee 
that the committed evaluations 
form a polynomial of the right 

degree.



Polynomial Commitment Scheme

- Small-domain PCS: the prover can open only  evaluations of the 
committed polynomial, where . 

• For example, the prover commits to  with 
, but the prover can only open the evaluations 

 for  in . 

- Full-domain PCS: the prover can open all the evaluations of the 
committed polynomial, i.e. he can open  for all . 

• For example, the prover commits to  with 
 and the prover can open the evaluations  for 

 in .

N
N ≪ |𝔽 |

P(X) ∈ 𝔽q
q = 232 − 5
P(e) e {0,1,…,1023}

P(e) e ∈ 𝔽

P(X) ∈ 𝔽q
q = 232 − 5 P(e)
e 𝔽q = {0,1,…,232 − 6}
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[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Option 1: Using a GGM tree (ie. a seed tree)
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PRG PRG

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤)
← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)
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Reveal all  since 
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ri ⋅ (ei* − ei)

i*

sibling path 
→  seedslog(N )

Properties: 

 - Cost of sending a tree node:  bits 

 - Verification complexity:  

 - Nodes contain sensitive information 

 - Commitment cost:  

 - The committed polynomial  is 
naturally of the right degree

λ
O(N )

Oλ(#P × deg P)
P
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[Mer79] Merkle: “Secrecy, authentication, and public key systems“ (Ph.D. Thesis, 1979)

Option 2: Using a Merkle tree (ie. a hash tree)

𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍
𝗉𝖺𝗋𝖾𝗇𝗍_𝗁𝖺𝗌𝗁

← Hash(𝗁𝖺𝗌𝗁1, 𝗁𝖺𝗌𝗁2)
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Hash

P(eN)

Hash

P(e2) … …
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committed polynomial of the right degree

⚠  Need to ensure that the committed evaluations 
correspond to a polynomial of the right degree: 

 

Large polynomials: Proximity Test (Ligero-like or FRI) 
Small polynomials: Degree-Enforcing Test (TCitH)
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Open : 
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P(ei*)

Hash

⚠  Need to ensure that the committed evaluations 
correspond to a polynomial of the right degree: 

 

Large polynomials: Proximity Test (Ligero-like or FRI) 
Small polynomials: Degree-Enforcing Test (TCitH)

Commitment: 
 - Reveal the Merkle root 
 - Use a mechanism to ensure that the 
committed polynomial of the right degree

Properties: 

 - Cost of sending a tree node:  bits 

 - Verification complexity:  

 - Nodes contain non-sensitive 
information 

 - Commitment cost:  

 - Require a mechanism that provide 
some guarantee on the degree of the 
committed polynomial

2λ
O(log2 N )

Oλ(#P + deg P)



①  VOLEitH / TCitH-GGM

Degree-enforcing commitment 
(TCitH-MT)

Merkle Trees with 
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000③

②

Merkle Tree

GGM Tree

How to commit to polynomials?
(using symmetric primitives)



How to commit to polynomials?

①  VOLEitH / TCitH-GGM

Degree-enforcing commitment 
(TCitH-MT)

Merkle Trees with 
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000③

②

(using symmetric primitives)

Merkle Tree

Natively, those techniques 
lead to small-domain 

polynomial commitment scheme

GGM Tree



Prover Verifier

I know  such that 

 

where  are public degree-  polynomials.

w1, …, wn

f1(w1, …, wn) = 0
⋮

fm(w1, …, wn) = 0,

f1, …, fm d
Prove it!

Basic Proof System for Polynomial Constraints

Soundness Error = 
d ⋅ ℓ
|𝒞 |

Probability that a malicious prover 
can convince the verifier.

Degree of the witness polynomials 
P1(X ), …, Pn(X )

Size of the challenge space that 
contains all the possible opened 

evaluations



Small-domain PCS:  
where  is the size of the tree 

Full-domain PCS:  or 

|𝒞 | = N
N

|𝒞 | = |𝔽 | |𝒞 | = |𝕂 |

Building a full-domain PCS from a small-domain one



Out-of-sampling 
Technique

[BGKS19] Ben-Sasson, Goldberg, 
Kopparty, Saraf. DEEP-FRI: Sampling 
outside the box improves soundness. 
ITCS 2020.

Small-domain PCS:  
where  is the size of the tree 

Full-domain PCS:  or 

|𝒞 | = N
N

|𝒞 | = |𝔽 | |𝒞 | = |𝕂 |

Building a full-domain PCS from a small-domain one

Rely on the equivalence: 
   iff   there exists  s.t. P(e) = z Q(X )

P(X ) − z = (X − e) ⋅ Q(X )



Out-of-sampling 
Technique

Using 
Tensor codes

[BCG20] Bootle, Chiesa, Groth. Linear-
time arguments with sublinear verification 
from tensor codes. TCC 2020. 

[Lee21] Lee. Dory: Efficient, transparent 
arguments for generalised inner products 
and polynomial commitments. TCC 2021. 

[GLS+23] Golovnev, Lee, Setty, Thalers, 
Wahby. Brakedown: Linear-time and field-
agnostic SNARKs for R1CS. Crypto 2023.

Small-domain PCS:  
where  is the size of the tree 

Full-domain PCS:  or 

|𝒞 | = N
N

|𝒞 | = |𝔽 | |𝒞 | = |𝕂 |

Building a full-domain PCS from a small-domain one
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Building a full-domain PCS from a small-domain one

Out-of-sampling 
Technique

VOLE-in-the-Head 
Technique

[BBD+23] Baum, Braun, Delpech, Klooß, 
Orsini, Roy, Scholl. Publicly Verifiable 
Zero-Knowledge and Post-Quantum 
Signatures From VOLE-in-the-Head. 
Crypto 2023.

Using 
Tensor codes

Support only degree 1
Large-domain PCS

Rely on the equivalence: 
   iff   there exists  s.t. P(e) = z Q(X )

P(X ) − z = (X − e) ⋅ Q(X )

Small-domain PCS:  
where  is the size of the tree 

Full-domain PCS:  or 

|𝒞 | = N
N

|𝒞 | = |𝔽 | |𝒞 | = |𝕂 |



Applications



Comparison of the approaches

GGM Tree Merkle Tree

- The nodes contain sensitive 
information. 

- The complexity of the tree 
verification is in , where 

 is the number of leaves. 

- A node is of  bits

O(N )
N

λ

- The nodes do not contain 
sensitive informations. 

- The complexity of the tree 
verification is in , 
where  is the number of 
leaves. 

- A node is of  bits

O(log N )
N

2λ

PCS from GGM Tree PCS from Merkle Tree
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ZKPoK of LWE  
(binary secret, q≈261, n=4096, m=1024)
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- The complexity of the tree 
verification is in , where  is 
the number of leaves.

O(N ) N

GGM Tree Merkle Tree
- The complexity of the tree 

verification is in , where  
is the number of leaves.

O(log N ) N

Efficient Verification Algorithm

Fast verification algorithm (for example, SDitH1-thr) 

The verification algorithm can be efficiently represented as an 
arithmetic circuit, i.e. leading to SNARK-friendly signatures. 
For example, 

[FR25] Feneuil, Rivain. CAPSS: A Framework for SNARK-Friendly Post-
Quantum Signatures. ePrint 2025/061.

Signature Scheme Signature size Nb R1CS Constraints

VOLEitH-based signatures 2.5 - 5 KB ≥ 10 000 000

CAPSS-Anemoi (2256) ≈ 11 KB ≈ 19 000

CAPSS-RescuePrime (2256) ≈ 12 KB ≈ 36 000
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Masking-Friendly Scheme

Since the nodes does not contain secret information, one 
does not need to mask Merkle trees, in a context where the 
secret values are shared. 

  For example, in the context of side-channel attacks: 
[FRW25] Feneuil, Rivain, Warmé-Janville. Masking-Friendly Post-
Quantum Signatures in the Threshold-Computation-in-the-Head 
Framework. ePrint 2025/520.

GGM Tree Merkle Tree
- The nodes do not contain 

sensitive informations.
- The nodes contain sensitive 

information.
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