
Polynomial Commitment Strategies
in Hash-Based Proof Systems

for Small Statements

Thibauld Feneuil

Workshop « On the Mathematics of PQC »

June 5, 2025 — Zürich (Switzerland)

Table of Contents

Context / Motivation

Hash-based polynomial commitments

• Using GGM trees (a.k.a. seed trees)

• Using Merkle trees (a.k.a. hash trees)

Applications

Conclusion

Context / Motivation

(Zero-Knowledge) Proofs of Knowledge

- Completeness: Pr[verif ✓ | honest prover] = 1

- Soundness: Pr[verif ✓ | malicious prover] (e.g.)

- Zero-knowledge (optional): verifier learns nothing on .

- Succintness (optional): verifying the proof is faster than computing .

≤ ε 2−128

w

C

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier
I am convinced.

x

I know such that
.

w
C(x, w) = 0

- Commitment algorithm/procedure. A prover can commit to a
chosen value while keeping it hidden to other people (hiding
property).

- Opening algorithm/procedure. The prover can reveal the value
and prove that the revealed value is the one which has been
committed through the commitment procedure. It should be
impossible for the prover to reveal a value while convincing
the verifier that is the committed value (binding property).

v

v

v′￼≠ v
v′￼

Commitment Scheme

, vProver Verifier

v

Commitment

Opening
Check that is the value in v

, vProver Verifier

v

Commitment

Opening
Check that is the value in v

Commitment Scheme

Commitment Scheme

, vProver Verifier

v

Commitment

Opening
Check that is the value in v

, v rProver Verifier

Commitment

Opening

Check that com = Hash(v ∥ r)

Sample and compute r
com ← Commit(v; r)

:= Hash(v ∥ r) com

Hash-based Commitment Scheme:

- We want to commit a polynomial :

• Using a standard commitment scheme, the opening procedure would
consist of revealing the entire polynomial in a verifiable way.

P(X) := p0 + p1 ⋅ X + … + pd ⋅ Xd

Polynomial Commitment Scheme

- We want to commit a polynomial :

• Using a standard commitment scheme, the opening procedure would
consist of revealing the entire polynomial in a verifiable way.

• Using a polynomial commitment scheme, the opening procedure would
consist of some evaluations of the committed polynomials in a verifiable
way, while keeping the other evaluations hidden to the verifier.

P(X) := p0 + p1 ⋅ X + … + pd ⋅ Xd

Polynomial Commitment Scheme

Polynomial Commitment Scheme
- We want to commit a polynomial :

• Using a standard commitment scheme, the opening procedure would
consist of revealing the entire polynomial in a verifiable way.

• Using a polynomial commitment scheme, the opening procedure would
consist of some evaluations of the committed polynomials in a verifiable
way, while keeping the other evaluations hidden to the verifier.

P(X) := p0 + p1 ⋅ X + … + pd ⋅ Xd

, (e, v)Prover Verifier

P(X) :=
d

∑
i=0

pi ⋅ Xi

Commitment

Evaluation Opening Check that is the evaluation
 into of the polynomial in .

v
e

v ← P(e)
 e

 e
← …

Prover Verifier

I know such that

where are public degree- polynomials.

w1, …, wn

f1(w1, …, wn) = 0
⋮

fm(w1, …, wn) = 0,

f1, …, fm d
Prove it!

Basic Proof System for Polynomial Constraints

① For all , sample a random degree-
polynomial such that .

i ℓ
Pi(X) Pi(0) = wi

Prover

Verifier

Basic Proof System for Polynomial Constraints

① For all , sample a random degree-
polynomial such that .

i ℓ
Pi(X) Pi(0) = wi

Prover

Verifier

② Build the polynomials such that Q1, …, Qm

X ⋅ Q1(X) = f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = fm(P1(X), …, Pn(X))

Basic Proof System for Polynomial Constraints

① For all , sample a random degree-
polynomial such that .

i ℓ
Pi(X) Pi(0) = wi

Prover

Verifier

② Build the polynomials such that Q1, …, Qm

X ⋅ Q1(X) = f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = fm(P1(X), …, Pn(X))

∀j, fj(P1(0), …, Pn(0)) = fj(w1, …, wn) = 0

Well-defined!

Basic Proof System for Polynomial Constraints

① For all , sample a random degree-
polynomial such that .

i ℓ
Pi(X) Pi(0) = wi

③ Commit the polynomials

and .

(P1, …, Pn)
(Q1, …, Qm)

Prover

PCom(P1, …, Pn, Q1, …, Qm)

Verifier

② Build the polynomials such that Q1, …, Qm

X ⋅ Q1(X) = f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = fm(P1(X), …, Pn(X))

Basic Proof System for Polynomial Constraints

① For all , sample a random degree-
polynomial such that .

i ℓ
Pi(X) Pi(0) = wi

④
③ Commit the polynomials

and .

(P1, …, Pn)
(Q1, …, Qm)

Prover

PCom(P1, …, Pn, Q1, …, Qm) Choose a random evaluation
 point r ∈ 𝒞 ⊂ 𝔽

(vP
1 , …, vP

n), (vQ
1 , …, vQ

m)

r
⑤ Reveal the evaluations

- for all ,

- for all ,
i vP

i := Pi(r)
j vQ

j := Qj(r)

Verifier

② Build the polynomials such that Q1, …, Qm

X ⋅ Q1(X) = f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = fm(P1(X), …, Pn(X))

Basic Proof System for Polynomial Constraints

① For all , sample a random degree-
polynomial such that .

i ℓ
Pi(X) Pi(0) = wi

④

⑥

③ Commit the polynomials

and .

(P1, …, Pn)
(Q1, …, Qm)

Prover

PCom(P1, …, Pn, Q1, …, Qm) Choose a random evaluation
 point r ∈ 𝒞 ⊂ 𝔽

 Check that and
 are consistent
 with the commitment.

(vP
1 , …, vP

n)
(vQ

1 , …, vQ
m)

(vP
1 , …, vP

n), (vQ
1 , …, vQ

m)

r

Check that

r ⋅ vQ
1 = f1(vP

1 , …, vP
n)

⋮
r ⋅ vQ

m = fm(vP
1 , …, vP

n)

⑤ Reveal the evaluations

- for all ,

- for all ,
i vP

i := Pi(r)
j vQ

j := Qj(r)

Verifier

② Build the polynomials such that Q1, …, Qm

X ⋅ Q1(X) = f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = fm(P1(X), …, Pn(X))

Basic Proof System for Polynomial Constraints

① For all , choose a degree- polynomial
. There exist such that

.

i ℓ
Pi(X) j*

fj*(P1(0), …, Pn(0)) ≠ 0

④

⑥

③ Commit the polynomials

and .

(P1, …, Pn)
(Q1, …, Qm)

PCom(P1, …, Pn, Q1, …, Qm) Choose a random evaluation
 point r ∈ 𝒞 ⊂ 𝔽

 Check that and
 are consistent
 with the commitment.

(vP
1 , …, vP

n)
(vQ

1 , …, vQ
m)

(vP
1 , …, vP

n), (vQ
1 , …, vQ

m)

r

Check that

r ⋅ vQ
1 = f1(vP

1 , …, vP
n)

⋮
r ⋅ vQ

m = fm(vP
1 , …, vP

n)

⑤ Reveal the evaluations

- for all ,

- for all ,
i vP

i := Pi(r)
j vQ

j := Qj(r)

Verifier

② Choose some polynomials . We
know that

Q1, …, Qm

X ⋅ Qj*(X) ≠ fj*(P1(X), …, Pn(X))

Soundness Analysis

Malicious Prover 😈

Basic Proof System for Polynomial Constraints

① For all , choose a degree- polynomial
. There exist such that

.

i ℓ
Pi(X) j*

fj*(P1(0), …, Pn(0)) ≠ 0

④

⑥

③ Commit the polynomials

and .

(P1, …, Pn)
(Q1, …, Qm)

PCom(P1, …, Pn, Q1, …, Qm) Choose a random evaluation
 point r ∈ 𝒞 ⊂ 𝔽

 Check that and
 are consistent
 with the commitment.

(vP
1 , …, vP

n)
(vQ

1 , …, vQ
m)

(vP
1 , …, vP

n), (vQ
1 , …, vQ

m)

r

Check that

r ⋅ vQ
1 = f1(vP

1 , …, vP
n)

⋮
r ⋅ vQ

m = fm(vP
1 , …, vP

n)

⑤ Reveal the evaluations

- for all ,

- for all ,
i vP

i := Pi(r)
j vQ

j := Qj(r)

Verifier

② Choose some polynomials . We
know that

Q1, …, Qm

X ⋅ Qj*(X) ≠ fj*(P1(X), …, Pn(X))

Soundness Analysis

Malicious Prover 😈

= 0 ≠ 0

Evaluation into 0

Basic Proof System for Polynomial Constraints

 Check that and
 are consistent
 with the commitment.

(vP
1 , …, vP

n)
(vQ

1 , …, vQ
m)

 Choose a random evaluation
 point r ∈ 𝒞 ⊂ 𝔽

① For all , choose a degree- polynomial
. There exist such that

.

i ℓ
Pi(X) j*

fj*(P1(0), …, Pn(0)) ≠ 0

④

⑥

③ Commit the polynomials

and .

(P1, …, Pn)
(Q1, …, Qm)

PCom(P1, …, Pn, Q1, …, Qm)

(vP
1 , …, vP

n), (vQ
1 , …, vQ

m)

r

Check that

r ⋅ vQ
1 = f1(vP

1 , …, vP
n)

⋮
r ⋅ vQ

m = fm(vP
1 , …, vP

n)

⑤ Reveal the evaluations

- for all ,

- for all ,
i vP

i := Pi(r)
j vQ

j := Qj(r)

Verifier

② Choose some polynomials . We
know that

Q1, …, Qm

X ⋅ Qj*(X) ≠ fj*(P1(X), …, Pn(X))

Soundness Analysis

Malicious Prover 😈
r ⋅ vQ

j* = fj*(vP
1 , …, vP

n)

Basic Proof System for Polynomial Constraints

 Check that and
 are consistent
 with the commitment.

(vP
1 , …, vP

n)
(vQ

1 , …, vQ
m)

 Choose a random evaluation
 point r ∈ 𝒞 ⊂ 𝔽

① For all , choose a degree- polynomial
. There exist such that

.

i ℓ
Pi(X) j*

fj*(P1(0), …, Pn(0)) ≠ 0

④

⑥

③ Commit the polynomials

and .

(P1, …, Pn)
(Q1, …, Qm)

PCom(P1, …, Pn, Q1, …, Qm)

(vP
1 , …, vP

n), (vQ
1 , …, vQ

m)

r

Check that

r ⋅ vQ
1 = f1(vP

1 , …, vP
n)

⋮
r ⋅ vQ

m = fm(vP
1 , …, vP

n)

⑤ Reveal the evaluations

- for all ,

- for all ,
i vP

i := Pi(r)
j vQ

j := Qj(r)

Verifier

② Choose some polynomials . We
know that

Q1, …, Qm

X ⋅ Qj*(X) ≠ fj*(P1(X), …, Pn(X))

Soundness Analysis

Malicious Prover 😈
r ⋅ vQ

j* = fj*(vP
1 , …, vP

n)

Schwartz-Zippel Lemma: Let be the non-zero degree-
polynomial defined as

D (d ⋅ ℓ)

D := X ⋅ Qj*(X) − fj*(P1(X), …, Pn(X))

Basic Proof System for Polynomial Constraints

 Check that and
 are consistent
 with the commitment.

(vP
1 , …, vP

n)
(vQ

1 , …, vQ
m)

 Choose a random evaluation
 point r ∈ 𝒞 ⊂ 𝔽

① For all , choose a degree- polynomial
. There exist such that

.

i ℓ
Pi(X) j*

fj*(P1(0), …, Pn(0)) ≠ 0

④

⑥

③ Commit the polynomials

and .

(P1, …, Pn)
(Q1, …, Qm)

PCom(P1, …, Pn, Q1, …, Qm)

(vP
1 , …, vP

n), (vQ
1 , …, vQ

m)

r

Check that

r ⋅ vQ
1 = f1(vP

1 , …, vP
n)

⋮
r ⋅ vQ

m = fm(vP
1 , …, vP

n)

⑤ Reveal the evaluations

- for all ,

- for all ,
i vP

i := Pi(r)
j vQ

j := Qj(r)

Verifier

② Choose some polynomials . We
know that

Q1, …, Qm

X ⋅ Qj*(X) ≠ fj*(P1(X), …, Pn(X))

Soundness Analysis

Malicious Prover 😈
r ⋅ vQ

j* = fj*(vP
1 , …, vP

n)

Basic Proof System for Polynomial Constraints

Schwartz-Zippel Lemma: Let be the non-zero degree-
polynomial defined as

We have

.

D (d ⋅ ℓ)

D := X ⋅ Qj*(X) − fj*(P1(X), …, Pn(X))

Pr[verification passes] = Pr [D(r) = 0 ∣ r ←$ 𝒞] ≤
d ⋅ ℓ
|𝒞 |

 Check that and
 are consistent
 with the commitment.

(vP
1 , …, vP

n)
(vQ

1 , …, vQ
m)

 Choose a random evaluation
 point r ∈ 𝒞 ⊂ 𝔽

① For all , choose a degree- polynomial
. There exist such that

.

i ℓ
Pi(X) j*

fj*(P1(0), …, Pn(0)) ≠ 0

④

⑥

③ Commit the polynomials

and .

(P1, …, Pn)
(Q1, …, Qm)

PCom(P1, …, Pn, Q1, …, Qm)

(vP
1 , …, vP

n), (vQ
1 , …, vQ

m)

r

Check that

r ⋅ vQ
1 = f1(vP

1 , …, vP
n)

⋮
r ⋅ vQ

m = fm(vP
1 , …, vP

n)

⑤ Reveal the evaluations

- for all ,

- for all ,
i vP

i := Pi(r)
j vQ

j := Qj(r)

Verifier

② Choose some polynomials . We
know that

Q1, …, Qm

X ⋅ Qj*(X) ≠ fj*(P1(X), …, Pn(X))

Soundness Analysis

Malicious Prover 😈
r ⋅ vQ

j* = fj*(vP
1 , …, vP

n)

Basic Proof System for Polynomial Constraints

Schwartz-Zippel Lemma: Let be the non-zero degree-
polynomial defined as

We have

.

D (d ⋅ ℓ)

D := X ⋅ Qj*(X) − fj*(P1(X), …, Pn(X))

Pr[verification passes] = Pr [D(r) = 0 ∣ r ←$ 𝒞] ≤
d ⋅ ℓ
|𝒞 |

① For all , sample a random degree-
polynomial such that .

i ℓ
Pi(X) Pi(0) = wi

④

⑥

③ Commit the polynomials

and .

(P1, …, Pn)
(Q1, …, Qm)

Prover

PCom(P1, …, Pn, Q1, …, Qm) Choose a random evaluation
 point r ∈ 𝒞 ⊂ 𝔽

 Check that and
 are consistent
 with the commitment.

(vP
1 , …, vP

n)
(vQ

1 , …, vQ
m)

(vP
1 , …, vP

n), (vQ
1 , …, vQ

m)

r

Check that

r ⋅ vQ
1 = f1(vP

1 , …, vP
n)

⋮
r ⋅ vQ

m = fm(vP
1 , …, vP

n)

⑤ Reveal the evaluations

- for all ,

- for all ,
i vP

i := Pi(r)
j vQ

j := Qj(r)

Verifier

② Build the polynomials such that Q1, …, Qm

X ⋅ Q1(X) = f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = fm(P1(X), …, Pn(X))

Zero-Knowledge Analysis

Basic Proof System for Polynomial Constraints

① For all , sample a random degree-
polynomial such that .

i ℓ
Pi(X) Pi(0) = wi

④

⑥

③ Commit the polynomials

and .

(P1, …, Pn)
(Q1, …, Qm)

Prover

PCom(P1, …, Pn, Q1, …, Qm) Choose a random evaluation
 point r ∈ 𝒞 ⊂ 𝔽

 Check that and
 are consistent
 with the commitment.

(vP
1 , …, vP

n)
(vQ

1 , …, vQ
m)

(vP
1 , …, vP

n), (vQ
1 , …, vQ

m)

r

Check that

r ⋅ vQ
1 = f1(vP

1 , …, vP
n)

⋮
r ⋅ vQ

m = fm(vP
1 , …, vP

n)

⑤ Reveal the evaluations

- for all ,

- for all ,
i vP

i := Pi(r)
j vQ

j := Qj(r)

Verifier

② Build the polynomials such that Q1, …, Qm

X ⋅ Q1(X) = f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = fm(P1(X), …, Pn(X))

Zero-Knowledge Analysis

Revealing an evaluation of
leaks no information about .

Pi(X)
wi

Basic Proof System for Polynomial Constraints

① For all , sample a random degree-
polynomial such that .

i ℓ
Pi(X) Pi(0) = wi

④

⑥

③ Commit the polynomials

and .

(P1, …, Pn)
(Q1, …, Qm)

Prover

PCom(P1, …, Pn, Q1, …, Qm) Choose a random evaluation
 point r ∈ 𝒞 ⊂ 𝔽

 Check that and
 are consistent
 with the commitment.

(vP
1 , …, vP

n)
(vQ

1 , …, vQ
m)

(vP
1 , …, vP

n), (vQ
1 , …, vQ

m)

r

Check that

r ⋅ vQ
1 = f1(vP

1 , …, vP
n)

⋮
r ⋅ vQ

m = fm(vP
1 , …, vP

n)

⑤ Reveal the evaluations

- for all ,

- for all ,
i vP

i := Pi(r)
j vQ

j := Qj(r)

Verifier

② Build the polynomials such that Q1, …, Qm

X ⋅ Q1(X) = f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = fm(P1(X), …, Pn(X))

Zero-Knowledge Analysis

The evaluation is fully
determined by and .

Qj(r)
r (vP

1 , …, vP
n)

Basic Proof System for Polynomial Constraints

① For all , sample a random degree-
polynomial such that .

i ℓ
Pi(X) Pi(0) = wi

④

⑥

③ Commit the polynomials

and .

(P1, …, Pn)
(Q1, …, Qm)

Prover

Basic Proof System for Polynomial Constraints

PCom(P1, …, Pn, Q1, …, Qm) Choose a random evaluation
 point r ∈ 𝒞 ⊂ 𝔽

 Check that and
 are consistent
 with the commitment.

(vP
1 , …, vP

n)
(vQ

1 , …, vQ
m)

(vP
1 , …, vP

n), (vQ
1 , …, vQ

m)

r

Check that

r ⋅ vQ
1 = f1(vP

1 , …, vP
n)

⋮
r ⋅ vQ

m = fm(vP
1 , …, vP

n)

⑤ Reveal the evaluations

- for all ,

- for all ,
i vP

i := Pi(r)
j vQ

j := Qj(r)

Verifier

② Build the polynomials such that Q1, …, Qm

X ⋅ Q1(X) = f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = fm(P1(X), …, Pn(X))

Zero-Knowledge Analysis

Hiding Polynomial
Commitment Scheme

Prover Verifier

I know such that

where are public degree- polynomials.

w1, …, wn

f1(w1, …, wn) = 0
⋮

fm(w1, …, wn) = 0,

f1, …, fm d
Prove it!

Basic Proof System for Polynomial Constraints

Soundness Error =
d ⋅ ℓ
|𝒞 |

Probability that a malicious prover
can convince the verifier.

Degree of the witness polynomials
P1(X), …, Pn(X)

Size of the challenge space that
contains all the possible opened

evaluations

Build some polynomials

satisfying some relations

P1(X), …, Pn(X)

F1 (P1(X), …, Pn(X)) = 0
⋮

Fm (P1(X), …, Pn(X)) = 0,

Prover

PCom(P1, …, Pn)

Verifier

e
Sample a point from .e 𝒞

(v1, …, vn), π
Check that is a valid

 opening proof for .
Check that

π
e

F1(v1, …, vn) = 0
⋮

Fm(v1, …, vn) = 0,

Build an opening proof for
.

π
v1 := P1(e), …, vn := Pn(e)

Hash-based SNARK: Ligero, Aurora, STARK, Brakedown, …

Post-quantum signatures: FAEST, MQOM v2, SDitH v2, …

Blueprint of Hash-based Proof Systems

Build some polynomials

satisfying some relations

P1(X), …, Pn(X)

F1 (P1(X), …, Pn(X)) = 0
⋮

Fm (P1(X), …, Pn(X)) = 0,

Prover

PCom(P1, …, Pn)

Verifier

e
Sample a point from .e 𝒞

(v1, …, vn), π
Check that is a valid

 opening proof for .
Check that

π
e

F1(v1, …, vn) = 0
⋮

Fm(v1, …, vn) = 0,

Build an opening proof for
.

π
v1 := P1(e), …, vn := Pn(e)

Hash-based SNARK: Ligero, Aurora, STARK, Brakedown, …

Post-quantum signatures: FAEST, MQOM v2, SDitH v2, …

Blueprint of Hash-based Proof Systems

 Without packing:
 With packing:

P(0) = w

P(1) = w1, …, P(s) = ws

Blueprint of Hash-based Proof Systems

Size of the
proved statement

Ligero Aurora

Brakedown STARK

Hash-based SNARK, verifiable computation
2017 - …

Blueprint of Hash-based Proof Systems

Size of the
proved statement

Ligero Aurora

Brakedown STARK

Hash-based SNARK, verifiable computation
2017 - …

Example:
`` is obtained by inferring

from data using AI model .’’
y

x C

Blueprint of Hash-based Proof Systems

Size of the
proved statement

Ligero Aurora

Brakedown STARK

Hash-based SNARK, verifiable computation
2017 - …

Example:
`` is obtained by inferring

from data using AI model .’’
y

x C

Properties:
- Succinctness: required
- Zero-Knowledge: optional

Blueprint of Hash-based Proof Systems

Size of the
proved statement

Ligero Aurora

Brakedown STARKFAEST

MQOM v2

Hash-based SNARK, verifiable computationPQ signatures
2023 - … 2017 - …

Blueprint of Hash-based Proof Systems

Size of the
proved statement

Ligero Aurora

Brakedown STARKFAEST

MQOM v2

Hash-based SNARK, verifiable computationPQ signatures
2023 - … 2017 - …

Examples:
- FAEST: Given , I know such that
- MQOM: Given a multivariate system , I know such that

(x, y) k y = AESk(x)
ℱ x ℱ(x) = 0

Blueprint of Hash-based Proof Systems

Size of the
proved statement

Ligero Aurora

Brakedown STARKFAEST

MQOM v2

Hash-based SNARK, verifiable computationPQ signatures
2023 - … 2017 - …

Examples:
- FAEST: Given , I know such that
- MQOM: Given a multivariate system , I know such that

(x, y) k y = AESk(x)
ℱ x ℱ(x) = 0

Properties:
- Zero-Knowledge: required
- Succinctness: optional

Blueprint of Hash-based Proof Systems

Size of the
proved statement

Ligero Aurora

Brakedown STARKFAEST

MQOM v2

Hash-based SNARK, verifiable computationPQ signatures
Advanced signature

schemes

ZKPoK for well-
formness in MPC

Verifiable secret
sharings

ZKPoK for private keys,
ciphertexts, …

2023 - … 2017 - …

Blueprint of Hash-based Proof Systems

Size of the
proved statement

Ligero Aurora

Brakedown STARKFAEST

MQOM v2

Hash-based SNARK, verifiable computationPQ signatures
Advanced signature

schemes

ZKPoK for well-
formness in MPC

Verifiable secret
sharings

ZKPoK for private keys,
ciphertexts, …

Succinctness is required
Zero-Knowledge is optional

Zero-Knowledge is required
Succinctness is optional

2023 - … 2017 - …

Small statements

Hash-based
Polynomial Commitments

, (e, v)Prover Verifier

P(X) :=
d

∑
i=0

pi ⋅ Xi

Commitment

Evaluation Opening Check that is the evaluation
 into of the polynomial in .

v
e

v ← P(e)
 e

 e
← …

Polynomial Commitment Scheme

, (e, v)Prover Verifier

P(X) :=
d

∑
i=0

pi ⋅ Xi

Commitment

Evaluation Opening Check that is the evaluation
 into of the polynomial in .

v
e

v ← P(e)
 e

 e
← …

, (ei, v)Prover Verifier

P(e1)

Commitment

Evaluation Opening
v ← P(ei)

 ei

 e1

P(eN)

 eN

 e1 eN
 … e1 eN

 …

Check that is the value in v
 ei

Polynomial Commitment Scheme

, (e, v)Prover Verifier

P(X) :=
d

∑
i=0

pi ⋅ Xi

Commitment

Evaluation Opening Check that is the evaluation
 into of the polynomial in .

v
e

v ← P(e)
 e

 e
← …

, (ei, v)Prover Verifier

P(e1)

Commitment

Evaluation Opening
v ← P(ei)

 ei

 e1

P(eN)

 eN

 e1 eN
 … e1 eN

 …

Check that is the value in v
 ei

Polynomial Commitment Scheme

Performance issue:
If the number of possible

evaluations is large, it will be
impracticable.

N

, (e, v)Prover Verifier

P(X) :=
d

∑
i=0

pi ⋅ Xi

Commitment

Evaluation Opening Check that is the evaluation
 into of the polynomial in .

v
e

v ← P(e)
 e

 e
← …

, (ei, v)Prover Verifier

P(e1)

Commitment

Evaluation Opening
v ← P(ei)

 ei

 e1

P(eN)

 eN

 e1 eN
 … e1 eN

 …

Check that is the value in v
 ei

Polynomial Commitment Scheme

Performance issue:
If the number of possible

evaluations is large, it will be
impracticable.

N

Security issue:
The verifier has no guarantee
that the committed evaluations
form a polynomial of the right

degree.

Polynomial Commitment Scheme

- Small-domain PCS: the prover can open only evaluations of the
committed polynomial, where .

• For example, the prover commits to with
, but the prover can only open the evaluations

 for in .

- Full-domain PCS: the prover can open all the evaluations of the
committed polynomial, i.e. he can open for all .

• For example, the prover commits to with
 and the prover can open the evaluations for

 in .

N
N ≪ |𝔽 |

P(X) ∈ 𝔽q
q = 232 − 5
P(e) e {0,1,…,1023}

P(e) e ∈ 𝔽

P(X) ∈ 𝔽q
q = 232 − 5 P(e)
e 𝔽q = {0,1,…,232 − 6}

① VOLEitH / TCitH-GGM

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[BBD+23] Baum, Braun, Delpech, Klooß,
Orsini, Roy, Scholl. Publicly Verifiable Zero-
Knowledge and Post-Quantum Signatures
From VOLE-in-the-Head. Crypto 2023.

[FR23] Feneuil, Rivain. Threshold
Computation in the Head: Improved
Framework for Post-Quantum Signatures
and Zero-Knowledge Arguments. To
appear to Journal of Cryptology.

How to commit to polynomials?
(using symmetric primitives)

① VOLEitH / TCitH-GGM

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[FR23] Feneuil, Rivain. Threshold
Computation in the Head: Improved
Framework for Post-Quantum Signatures
and Zero-Knowledge Arguments. To
appear to Journal of Cryptology.

Degree-enforcing commitment
(TCitH-MT)

②

How to commit to polynomials?
(using symmetric primitives)

① VOLEitH / TCitH-GGM

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[AHIV17] Ames, Hazay, Ishai,
Venkitasubramaniam. Ligero: Lightweight
Sublinear Arguments Without a Trusted
Setup. CCS 2017.

[GLS+23] Golonew, Lee, Setty, Thaler,
Wahby. Brakedown: Linear-time and field
agnotic SNARKs for R1CS. Crypto 2023.

Degree-enforcing commitment
(TCitH-MT)

Merkle Trees with
Ligero-like Proximity Tests
③

②

How to commit to polynomials?
(using symmetric primitives)

① VOLEitH / TCitH-GGM

Degree-enforcing commitment
(TCitH-MT)

Merkle Trees with
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[BBHR18] Ben-Sasson, Bentov, Horesh,
Riabzev. Fast Reed-Solomon Interactive
Oracle Proofs of Proximity. ICALP 2018.

[BGKS20] Ben-Sasson, Goldberg,
Kopparty, Saraf. DEEP-FRI: Sampling
Outside the Box Improves Soundness.
ITCS 2020.

③

②

How to commit to polynomials?
(using symmetric primitives)

① VOLEitH / TCitH-GGM

Degree-enforcing commitment
(TCitH-MT)

Merkle Trees with
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000③

②

Merkle Tree

GGM Tree
Natively, those techniques

lead to small-domain
polynomial commitment scheme

How to commit to polynomials?
(using symmetric primitives)

How to commit to polynomials?

① VOLEitH / TCitH-GGM

Degree-enforcing commitment
(TCitH-MT)

Merkle Trees with
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000③

②

(using symmetric primitives)

Merkle Tree

GGM Tree

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Option 1: Using a GGM tree (ie. a seed tree)

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤)
← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Option 1: Using a GGM tree (ie. a seed tree)

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤)
← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

(assuming)deg P = 1

Build as

ΔP(X)

ΔP(X) := P(X) +
N

∑
i=1

ri ⋅ (X − ei)

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Option 1: Using a GGM tree (ie. a seed tree)

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤)
← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

(assuming)deg P = 1

Build as

ΔP(X)

ΔP(X) := P(X) +
N

∑
i=1

ri ⋅ (X − ei)

Mask

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Option 1: Using a GGM tree (ie. a seed tree)

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤)
← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

(assuming)deg P = 1

Build as

ΔP(X)

ΔP(X) := P(X) +
N

∑
i=1

ri ⋅ (X − ei)

Mask

Commitment:
 - Commit to each seed independently
 - Reveal the masked polynomial ΔP(X)

Open :

Reveal all since

P(ei*)
{ri}i≠i*

P(ei*) = − ΔP(ei*) + ∑
i≠i*

ri ⋅ (ei* − ei)

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Option 1: Using a GGM tree (ie. a seed tree)

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(assuming)deg P = 1

Build as

ΔP(X)

ΔP(X) := P(X) +
N

∑
i=1

ri ⋅ (X − ei)

Mask

Commitment:
 - Commit to each seed independently
 - Reveal the masked polynomial ΔP(X)

Open :

Reveal all since

P(ei*)
{ri}i≠i*

i*

P(ei*) = − ΔP(ei*) + ∑
i≠i*

ri ⋅ (ei* − ei)

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Option 1: Using a GGM tree (ie. a seed tree)

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(assuming)deg P = 1

Build as

ΔP(X)

ΔP(X) := P(X) +
N

∑
i=1

ri ⋅ (X − ei)

Mask

Commitment:
 - Commit to each seed independently
 - Reveal the masked polynomial ΔP(X)

Open :

Reveal all since

P(ei*)
{ri}i≠i*

i*

P(ei*) = − ΔP(ei*) + ∑
i≠i*

ri ⋅ (ei* − ei)

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Option 1: Using a GGM tree (ie. a seed tree)

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(assuming)deg P = 1

Build as

ΔP(X)

ΔP(X) := P(X) +
N

∑
i=1

ri ⋅ (X − ei)

Mask

Commitment:
 - Commit to each seed independently
 - Reveal the masked polynomial ΔP(X)

Open :

Reveal all since

P(ei*)
{ri}i≠i*

P(ei*) = − ΔP(ei*) + ∑
i≠i*

ri ⋅ (ei* − ei)

i*

sibling path
→ seedslog(N)

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

r2r1 rN

…PRG …

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Option 1: Using a GGM tree (ie. a seed tree)

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

PRG PRG

(assuming)deg P = 1

Build as

ΔP(X)

ΔP(X) := P(X) +
N

∑
i=1

ri ⋅ (X − ei)

Mask

Commitment:
 - Commit to each seed independently
 - Reveal the masked polynomial ΔP(X)

Open :

Reveal all since

P(ei*)
{ri}i≠i*

P(ei*) = − ΔP(ei*) + ∑
i≠i*

ri ⋅ (ei* − ei)

i*

sibling path
→ seedslog(N)

Properties:

 - Cost of sending a tree node: bits

 - Verification complexity:

 - Nodes contain sensitive information

 - Commitment cost:

 - The committed polynomial is
naturally of the right degree

λ
O(N)

Oλ(#P × deg P)
P

How to commit to polynomials?

① VOLEitH / TCitH-GGM

Degree-enforcing commitment
(TCitH-MT)

Merkle Trees with
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000③

②

(using symmetric primitives)

Merkle Tree

GGM Tree

How to commit to polynomials?

① VOLEitH / TCitH-GGM

Degree-enforcing commitment
(TCitH-MT)

Merkle Trees with
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000③

②

(using symmetric primitives)

Merkle Tree

GGM Tree

[Mer79] Merkle: “Secrecy, authentication, and public key systems“ (Ph.D. Thesis, 1979)

Option 2: Using a Merkle tree (ie. a hash tree)

𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍
𝗉𝖺𝗋𝖾𝗇𝗍_𝗁𝖺𝗌𝗁

← Hash(𝗁𝖺𝗌𝗁1, 𝗁𝖺𝗌𝗁2)

P(e1)

Hash

P(eN)

Hash

P(e2) … …

[Mer79] Merkle: “Secrecy, authentication, and public key systems“ (Ph.D. Thesis, 1979)

Option 2: Using a Merkle tree (ie. a hash tree)

𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍

P(e1)

Hash

P(eN)

Hash

P(e2) … …

Open :

Reveal the authentication path of

P(ei*)
P(ei*)

P(ei*)

Hash

[Mer79] Merkle: “Secrecy, authentication, and public key systems“ (Ph.D. Thesis, 1979)

Option 2: Using a Merkle tree (ie. a hash tree)

𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍

P(e1)

Hash

P(eN)

Hash

P(e2) … …

Open :

Reveal the authentication path of

P(ei*)
P(ei*)

P(ei*)

Hash

[Mer79] Merkle: “Secrecy, authentication, and public key systems“ (Ph.D. Thesis, 1979)

Option 2: Using a Merkle tree (ie. a hash tree)

𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍

P(e1)

Hash

P(eN)

Hash

P(e2) … …

Open :

Reveal the authentication path of

P(ei*)
P(ei*)

P(ei*)

Hash

Commitment:
 - Reveal the Merkle root
 - Use a mechanism to ensure that the
committed polynomial of the right degree

⚠ Need to ensure that the committed evaluations
correspond to a polynomial of the right degree:

Large polynomials: Proximity Test (Ligero-like or FRI)
Small polynomials: Degree-Enforcing Test (TCitH)

[Mer79] Merkle: “Secrecy, authentication, and public key systems“ (Ph.D. Thesis, 1979)

Option 2: Using a Merkle tree (ie. a hash tree)

𝖬𝖾𝗋𝗄𝗅𝖾 𝗍𝗋𝖾𝖾′￼𝗌 𝗋𝗈𝗈𝗍

P(e1)

Hash

P(eN)

Hash

P(e2) … …

Open :

Reveal the authentication path of

P(ei*)
P(ei*)

P(ei*)

Hash

⚠ Need to ensure that the committed evaluations
correspond to a polynomial of the right degree:

Large polynomials: Proximity Test (Ligero-like or FRI)
Small polynomials: Degree-Enforcing Test (TCitH)

Commitment:
 - Reveal the Merkle root
 - Use a mechanism to ensure that the
committed polynomial of the right degree

Properties:

 - Cost of sending a tree node: bits

 - Verification complexity:

 - Nodes contain non-sensitive
information

 - Commitment cost:

 - Require a mechanism that provide
some guarantee on the degree of the
committed polynomial

2λ
O(log2 N)

Oλ(#P + deg P)

① VOLEitH / TCitH-GGM

Degree-enforcing commitment
(TCitH-MT)

Merkle Trees with
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000③

②

Merkle Tree

GGM Tree

How to commit to polynomials?
(using symmetric primitives)

How to commit to polynomials?

① VOLEitH / TCitH-GGM

Degree-enforcing commitment
(TCitH-MT)

Merkle Trees with
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000③

②

(using symmetric primitives)

Merkle Tree

Natively, those techniques
lead to small-domain

polynomial commitment scheme

GGM Tree

Prover Verifier

I know such that

where are public degree- polynomials.

w1, …, wn

f1(w1, …, wn) = 0
⋮

fm(w1, …, wn) = 0,

f1, …, fm d
Prove it!

Basic Proof System for Polynomial Constraints

Soundness Error =
d ⋅ ℓ
|𝒞 |

Probability that a malicious prover
can convince the verifier.

Degree of the witness polynomials
P1(X), …, Pn(X)

Size of the challenge space that
contains all the possible opened

evaluations

Small-domain PCS:
where is the size of the tree

Full-domain PCS: or

|𝒞 | = N
N

|𝒞 | = |𝔽 | |𝒞 | = |𝕂 |

Building a full-domain PCS from a small-domain one

Out-of-sampling
Technique

[BGKS19] Ben-Sasson, Goldberg,
Kopparty, Saraf. DEEP-FRI: Sampling
outside the box improves soundness.
ITCS 2020.

Small-domain PCS:
where is the size of the tree

Full-domain PCS: or

|𝒞 | = N
N

|𝒞 | = |𝔽 | |𝒞 | = |𝕂 |

Building a full-domain PCS from a small-domain one

Rely on the equivalence:
 iff there exists s.t. P(e) = z Q(X)

P(X) − z = (X − e) ⋅ Q(X)

Out-of-sampling
Technique

Using
Tensor codes

[BCG20] Bootle, Chiesa, Groth. Linear-
time arguments with sublinear verification
from tensor codes. TCC 2020.

[Lee21] Lee. Dory: Efficient, transparent
arguments for generalised inner products
and polynomial commitments. TCC 2021.

[GLS+23] Golovnev, Lee, Setty, Thalers,
Wahby. Brakedown: Linear-time and field-
agnostic SNARKs for R1CS. Crypto 2023.

Small-domain PCS:
where is the size of the tree

Full-domain PCS: or

|𝒞 | = N
N

|𝒞 | = |𝔽 | |𝒞 | = |𝕂 |

Building a full-domain PCS from a small-domain one

Rely on the equivalence:
 iff there exists s.t. P(e) = z Q(X)

P(X) − z = (X − e) ⋅ Q(X)

Building a full-domain PCS from a small-domain one

Out-of-sampling
Technique

VOLE-in-the-Head
Technique

[BBD+23] Baum, Braun, Delpech, Klooß,
Orsini, Roy, Scholl. Publicly Verifiable
Zero-Knowledge and Post-Quantum
Signatures From VOLE-in-the-Head.
Crypto 2023.

Using
Tensor codes

Support only degree 1
Large-domain PCS

Rely on the equivalence:
 iff there exists s.t. P(e) = z Q(X)

P(X) − z = (X − e) ⋅ Q(X)

Small-domain PCS:
where is the size of the tree

Full-domain PCS: or

|𝒞 | = N
N

|𝒞 | = |𝔽 | |𝒞 | = |𝕂 |

Applications

Comparison of the approaches

GGM Tree Merkle Tree

- The nodes contain sensitive
information.

- The complexity of the tree
verification is in , where

 is the number of leaves.

- A node is of bits

O(N)
N

λ

- The nodes do not contain
sensitive informations.

- The complexity of the tree
verification is in ,
where is the number of
leaves.

- A node is of bits

O(log N)
N

2λ

PCS from GGM Tree PCS from Merkle Tree

- Need to add an additional
mechanism to ensure the degree
of the committed polynomials

- Commitment cost: Oλ(#P + deg P)

- The committed is naturally of the
right degrees.

- Commitment cost: Oλ(#P ⋅ deg P)

Minimizing the proof sizes

- A node is of bits

- The committed is naturally of the
right degrees.

- Commitment cost (PCS):

λ

Oλ(#P ⋅ deg P)

GGM Tree Merkle Tree

- A node is of bits

- Need to add an additional
mechanism to ensure the degree
of the committed polynomials

- Commitment cost (PCS):

2λ

Oλ(#P + deg P)

Scheme Using GGM Tree Using Merkle Tree

Signature schemes 2.5 - 6 KB 7 - 12 KB

Minimizing the proof sizes

- A node is of bits

- The committed is naturally of the
right degrees.

- Commitment cost (PCS):

λ

Oλ(#P ⋅ deg P)

GGM Tree Merkle Tree

- A node is of bits

- Need to add an additional
mechanism to ensure the degree
of the committed polynomials

- Commitment cost (PCS):

2λ

Oλ(#P + deg P)

Scheme Using GGM Tree Using Merkle Tree

Signature schemes 2.5 - 6 KB 7 - 12 KB

ZKPoK of Kyber512’s secret key ≈ 12 KB ≈ 14 KB

Using VOLEitH Using SmallWood

Minimizing the proof sizes

- A node is of bits

- The committed is naturally of the
right degrees.

- Commitment cost (PCS):

λ

Oλ(#P ⋅ deg P)

GGM Tree Merkle Tree

- A node is of bits

- Need to add an additional
mechanism to ensure the degree
of the committed polynomials

- Commitment cost (PCS):

2λ

Oλ(#P + deg P)

Scheme Using GGM Tree Using Merkle Tree

Signature schemes 2.5 - 6 KB 7 - 12 KB

ZKPoK of Kyber512’s secret key ≈ 12 KB ≈ 14 KB

ZKPoK of four Kyber512’s secret keys ≈ 36 KB ≈ 21 KB

Using VOLEitH Using SmallWood

Minimizing the proof sizes

- A node is of bits

- The committed is naturally of the
right degrees.

- Commitment cost (PCS):

λ

Oλ(#P ⋅ deg P)

GGM Tree Merkle Tree

- A node is of bits

- Need to add an additional
mechanism to ensure the degree
of the committed polynomials

- Commitment cost (PCS):

2λ

Oλ(#P + deg P)

- A node is of bits

- The committed is naturally of the
right degrees.

- Commitment cost (PCS):

λ

Oλ(#P ⋅ deg P)

GGM Tree Merkle Tree

- A node is of bits

- Need to add an additional
mechanism to ensure the degree
of the committed polynomials

- Commitment cost (PCS):

2λ

Oλ(#P + deg P)

Scheme Using GGM Tree Using Merkle Tree

Signature schemes 2.5 - 6 KB 7 - 12 KB

ZKPoK of Kyber512’s secret key ≈ 12 KB ≈ 14 KB

ZKPoK of four Kyber512’s secret keys ≈ 36 KB ≈ 21 KB

ZKPoK of LWE
(binary secret, q≈261, n=4096, m=1024)

≈ 102 KB ≈ 21 KB

Minimizing the proof sizes

Using VOLEitH Using SmallWood

- The complexity of the tree
verification is in , where is
the number of leaves.

O(N) N

GGM Tree Merkle Tree
- The complexity of the tree

verification is in , where
is the number of leaves.

O(log N) N

Efficient Verification Algorithm

- The complexity of the tree
verification is in , where is
the number of leaves.

O(N) N

GGM Tree Merkle Tree
- The complexity of the tree

verification is in , where
is the number of leaves.

O(log N) N

Round-1
code-based
signature
schemes

Hash/MPCitH-based schemes

SDitH1-thr
(only scheme using Merkle tree)

Efficient Verification Algorithm

- The complexity of the tree
verification is in , where is
the number of leaves.

O(N) N

GGM Tree Merkle Tree
- The complexity of the tree

verification is in , where
is the number of leaves.

O(log N) N

Fast verification algorithm (for example, SDitH1-thr)

Efficient Verification Algorithm

- The complexity of the tree
verification is in , where is
the number of leaves.

O(N) N

GGM Tree Merkle Tree
- The complexity of the tree

verification is in , where
is the number of leaves.

O(log N) N

Efficient Verification Algorithm

Fast verification algorithm (for example, SDitH1-thr)

The verification algorithm can be efficiently represented as an
arithmetic circuit, i.e. leading to SNARK-friendly signatures.
For example,

[FR25] Feneuil, Rivain. CAPSS: A Framework for SNARK-Friendly Post-
Quantum Signatures. ePrint 2025/061.

Signature Scheme Signature size Nb R1CS Constraints

VOLEitH-based signatures 2.5 - 5 KB ≥ 10 000 000

CAPSS-Anemoi (2256) ≈ 11 KB ≈ 19 000

CAPSS-RescuePrime (2256) ≈ 12 KB ≈ 36 000

- The nodes contain sensitive
information.

GGM Tree Merkle Tree
- The nodes do not contain

sensitive informations.

Masking-Friendly Scheme

Masking-Friendly Scheme

Since the nodes does not contain secret information, one
does not need to mask Merkle trees, in a context where the
secret values are shared.

 For example, in the context of side-channel attacks:
[FRW25] Feneuil, Rivain, Warmé-Janville. Masking-Friendly Post-
Quantum Signatures in the Threshold-Computation-in-the-Head
Framework. ePrint 2025/520.

GGM Tree Merkle Tree
- The nodes do not contain

sensitive informations.
- The nodes contain sensitive

information.

Conclusion

Polynomial commitment schemes (PCS) is the cornerstone of all the
recent hash-based proof systems, including the MPCitH ones.

Conclusion

Polynomial commitment schemes (PCS) is the cornerstone of all the
recent hash-based proof systems, including the MPCitH ones.

There are two main approches to commit to polynomials using only
symmetric cryptography, each of them has its own advantage:

• Using GGM trees (a.k.a seed trees)

• Smaller internal nodes (bits)

• The committed polynomial is ensured to have the right degree

• Using Merkle trees (a.k.a hash trees)

• Internal nodes are not sensitive information

• Sublinear verification verification

• Asymptotically-better communication cost

λ

Conclusion

Polynomial commitment schemes (PCS) is the cornerstone of all the
recent hash-based proof systems, including the MPCitH ones.

There are two main approches to commit to polynomials using only
symmetric cryptography, each of them has its own advantage:

• Using GGM trees (a.k.a seed trees)

• Smaller internal nodes (bits)

• The committed polynomial is ensured to have the right degree

• Using Merkle trees (a.k.a hash trees)

• Internal nodes are not sensitive information

• Sublinear verification verification

• Asymptotically-better communication cost

• We can enhance the soundness/performance by converting the small-
domain PCS into a full-domain PCS.

λ

Conclusion

Polynomial commitment schemes (PCS) is the cornerstone of all the
recent hash-based proof systems, including the MPCitH ones.

There are two main approches to commit to polynomials using only
symmetric cryptography, each of them has its own advantage:

• Using GGM trees (a.k.a seed trees)

• Smaller internal nodes (bits)

• The committed polynomial is ensured to have the right degree

• Using Merkle trees (a.k.a hash trees)

• Internal nodes are not sensitive information

• Sublinear verification verification

• Asymptotically-better communication cost

• We can enhance the soundness/performance by converting the small-
domain PCS into a full-domain PCS.

Depending on the context, one approach could be better than the other
one.

λ

Conclusion

Conclusion

Thank you for your attention.

Polynomial commitment schemes (PCS) is the cornerstone of all the
recent hash-based proof systems, including the MPCitH ones.

There are two main approches to commit to polynomials using only
symmetric cryptography, each of them has its own advantage:

• Using GGM trees (a.k.a seed trees)

• Smaller internal nodes (bits)

• The committed polynomial is ensured to have the right degree

• Using Merkle trees (a.k.a hash trees)

• Internal nodes are not sensitive information

• Sublinear verification verification

• Asymptotically-better communication cost

• We can enhance the soundness/performance by converting the small-
domain PCS into a full-domain PCS.

Depending on the context, one approach could be better than the other
one.

λ

