# The Polynomial-IOP Vision of the Latest MPCitH Frameworks for Signature Schemes

Thibauld Feneuil

Post-Quantum Cryptography Trimester - Second Workshop

November 8, 2024, IHP Paris



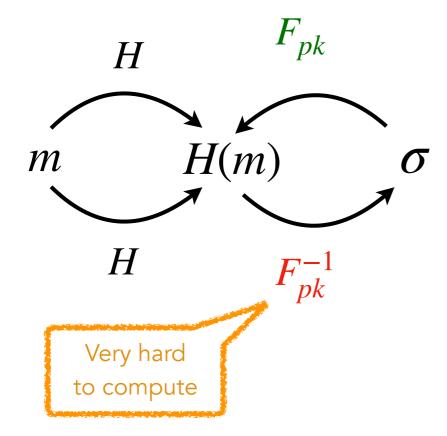
#### **Table of Contents**

- Introduction
- The TCitH and VOLEitH frameworks, in the PIOP formalism
  - Polynomial IOP
  - Committing to polynomials
- Building signatures
- Conclusion

# Introduction

#### How to build signature schemes?

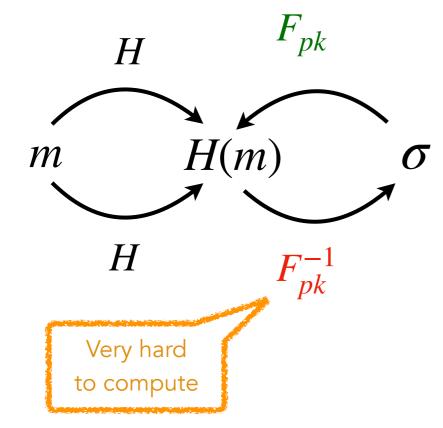
#### Hash & Sign



- Short signatures
- "Trapdoor" in the public key

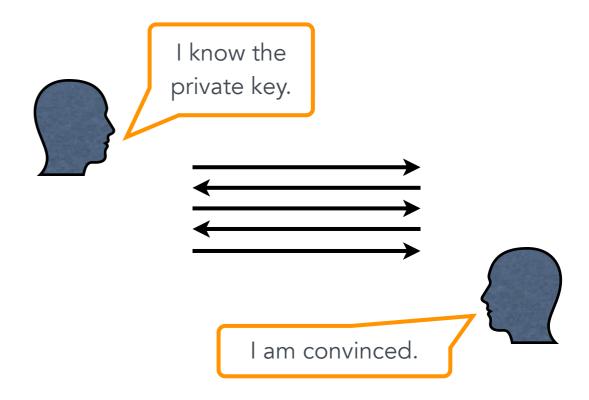
#### How to build signature schemes?

#### Hash & Sign



- Short signatures
- "Trapdoor" in the public key

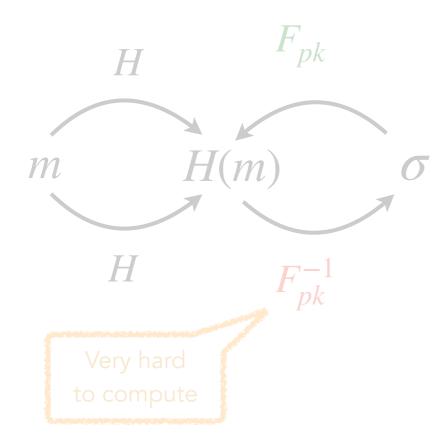
# From an identification scheme



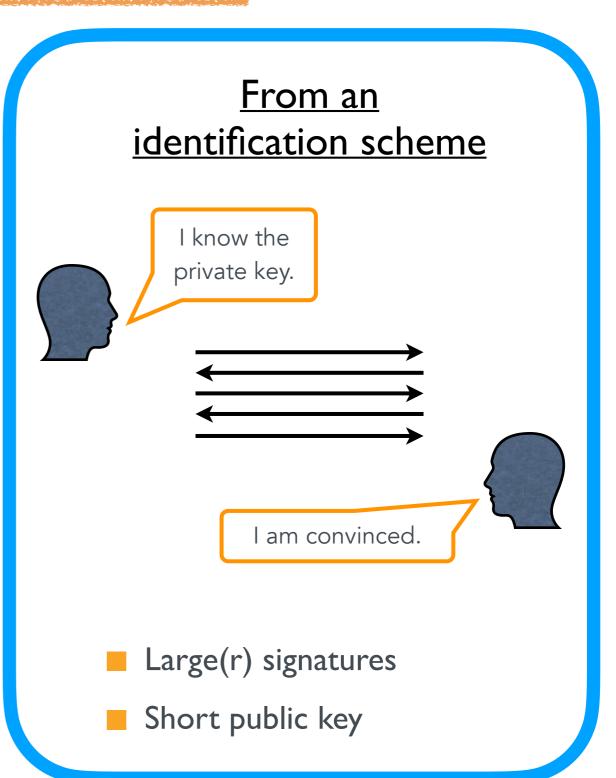
- Large(r) signatures
- Short public key

#### How to build signature schemes?

Hash & Sign



- Short signatures
- "Trapdoor" in the public key

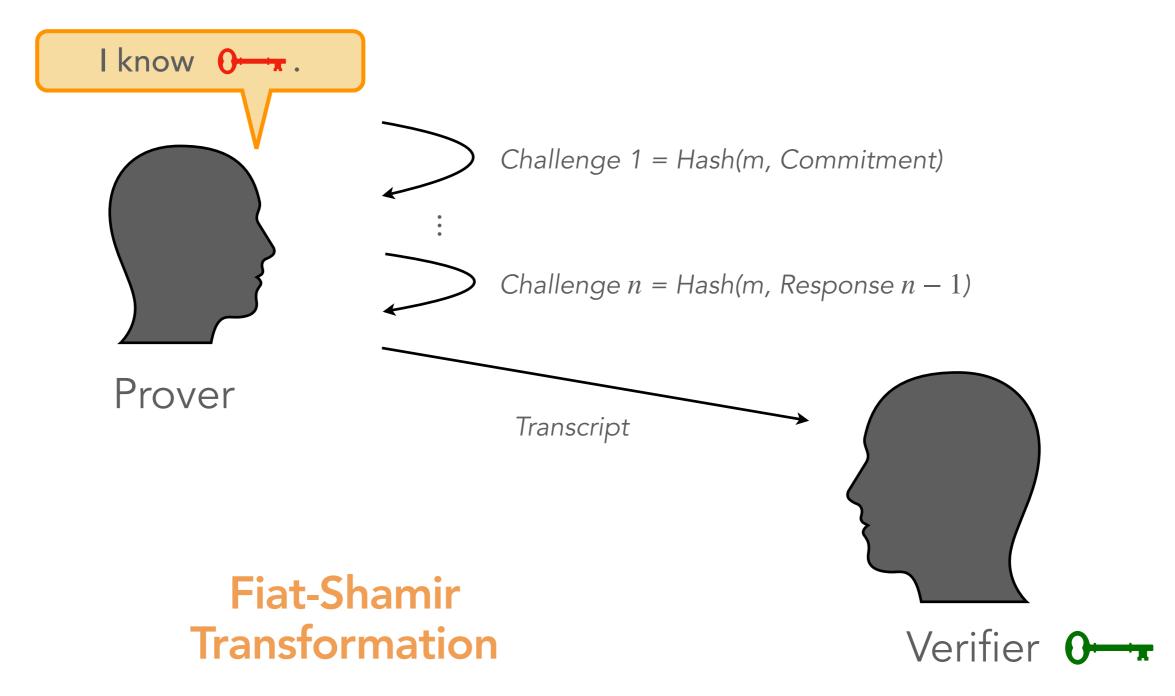


#### Identification Scheme



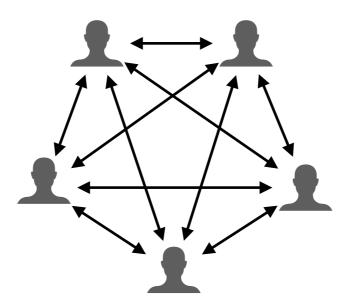
- Completeness: Pr[verif ✓ I honest prover] = 1
- Soundness: Pr[verif ✓ | malicious prover]  $\leq \varepsilon$  (e.g.  $2^{-128}$ )
- Zero-knowledge: verifier learns nothing on 0-.

#### **Identification Scheme**



m: message to sign

- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn a *multiparty computation* (MPC) into an identification scheme / zero-knowledge proof of knowledge



- **Generic**: can be applied to any cryptographic problem

- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Convenient to build (candidate) **post-quantum signature** schemes
- **Picnic**: submission to NIST (2017)

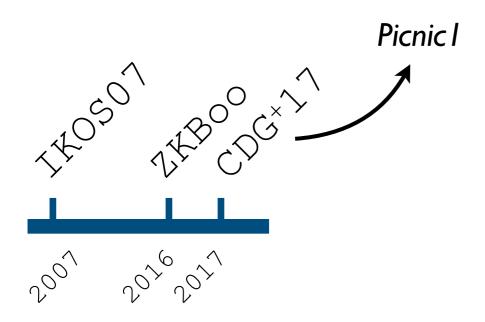
- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Convenient to build (candidate) **post-quantum signature** schemes
- **Picnic**: submission to NIST (2017)
- First round of additional NIST call: 7~9 MPCitH schemes / 40 candidates

AIMer Biscuit FAEST MIRA MIRA SDitH

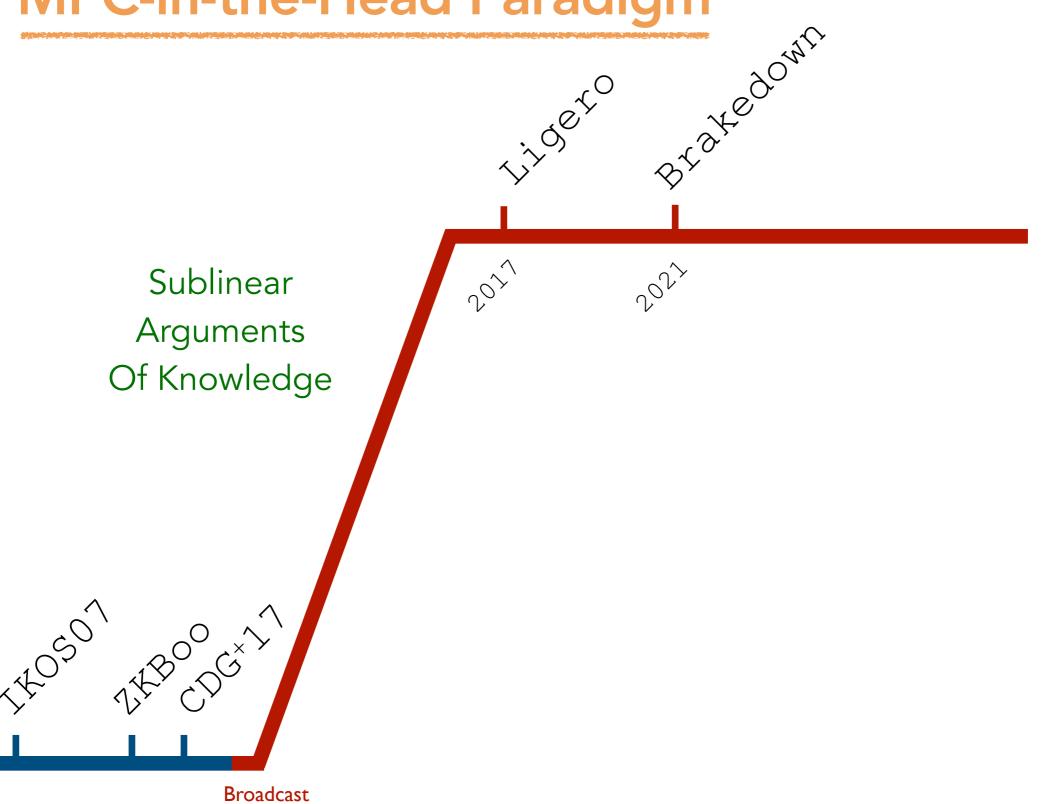
- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Convenient to build (candidate) **post-quantum signature** schemes
- **Picnic**: submission to NIST (2017)
- First round of additional NIST call: 7~9 MPCitH schemes / 40 candidates
- Second round of recent NIST call: 5~6 MPCitH schemes / 14 candidates

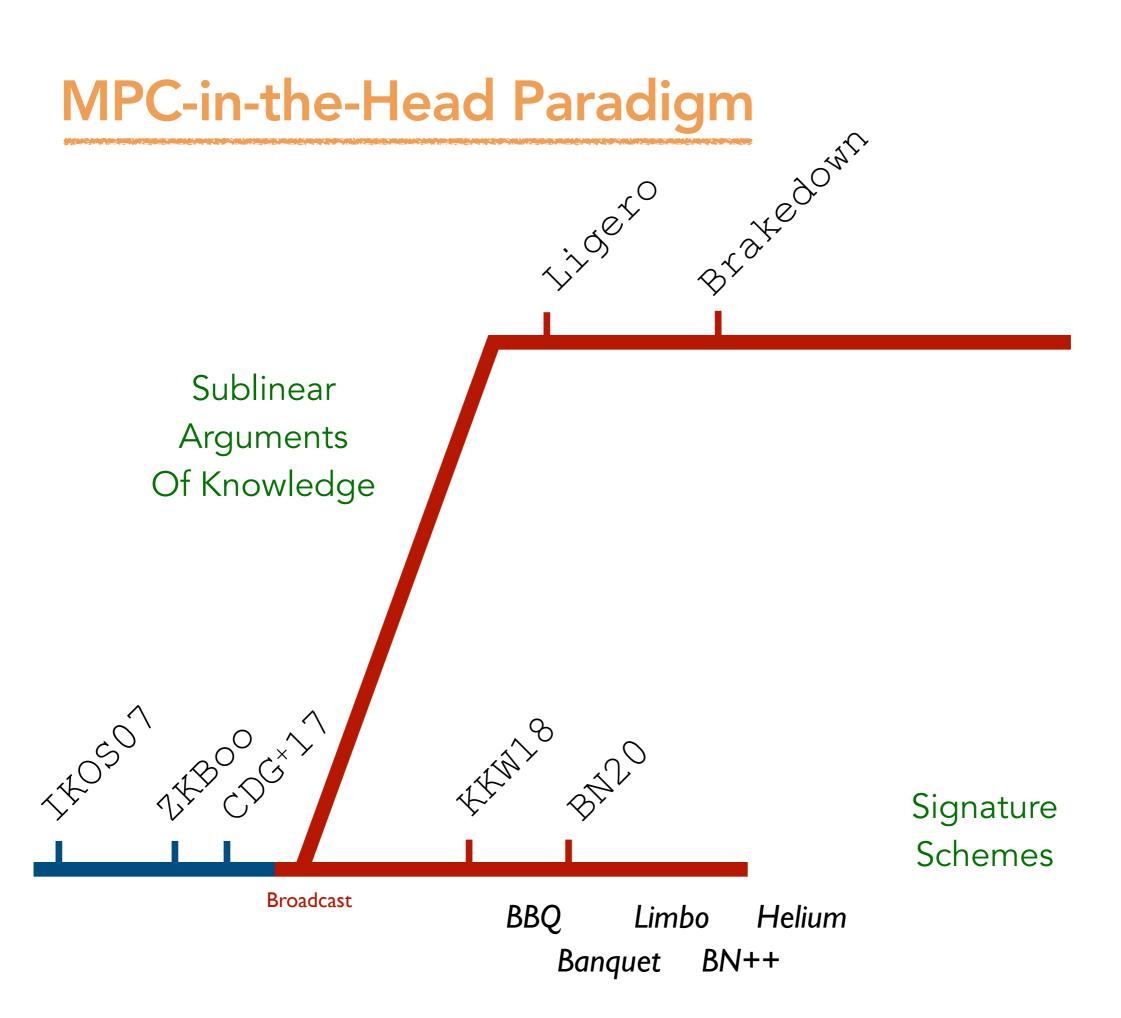
FAEST PERK
Mirath RYDE
MQOM SDitH

#### MPC-in-the-Head Paradigm

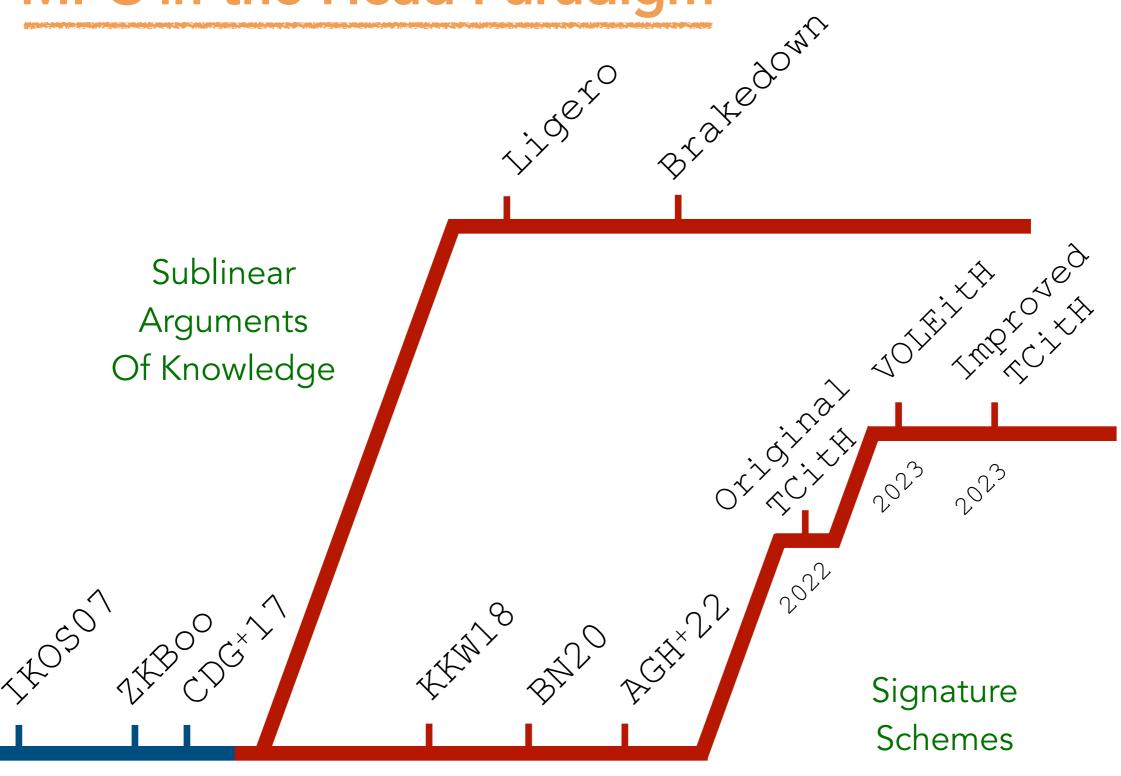


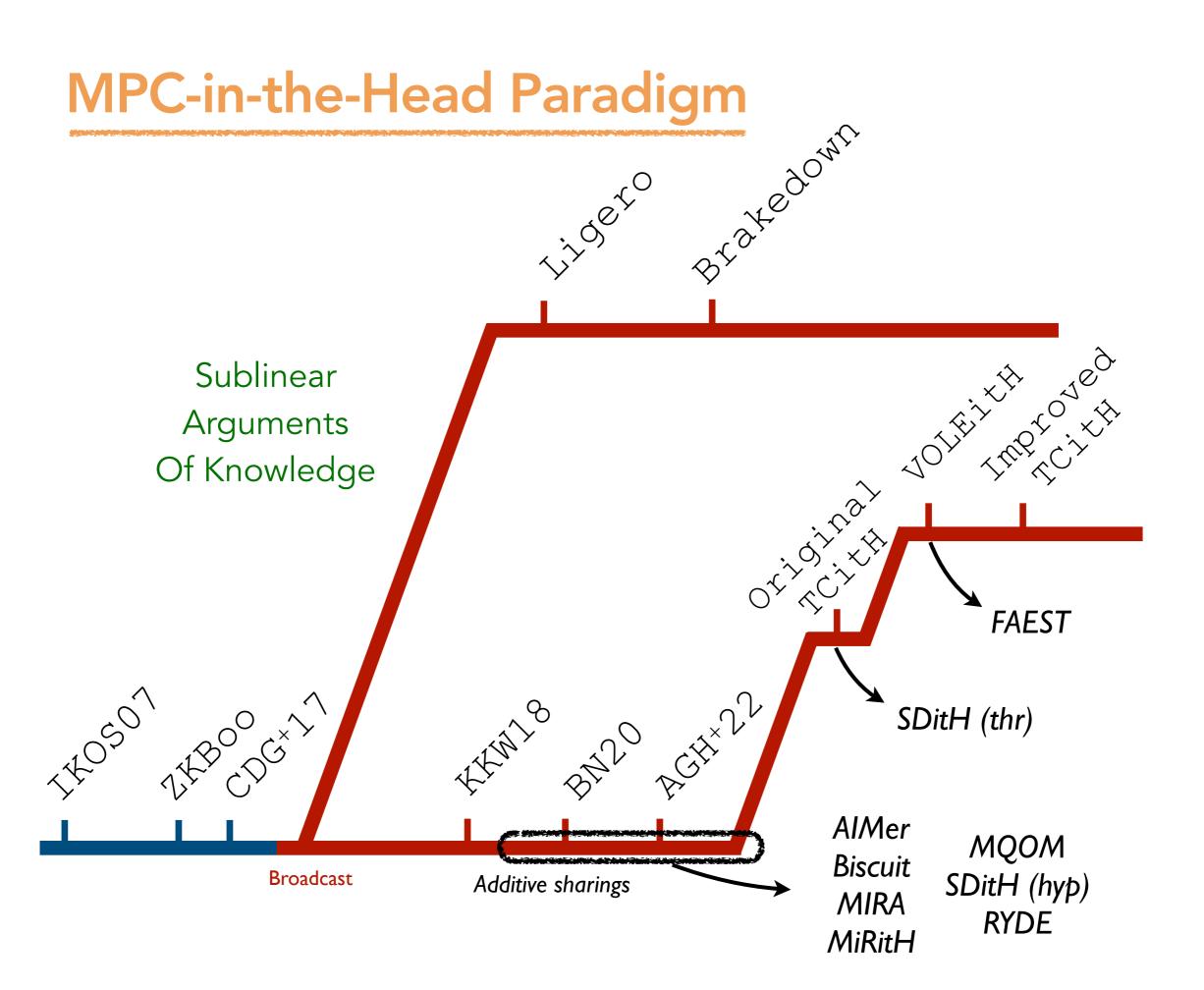
#### MPC-in-the-Head Paradigm

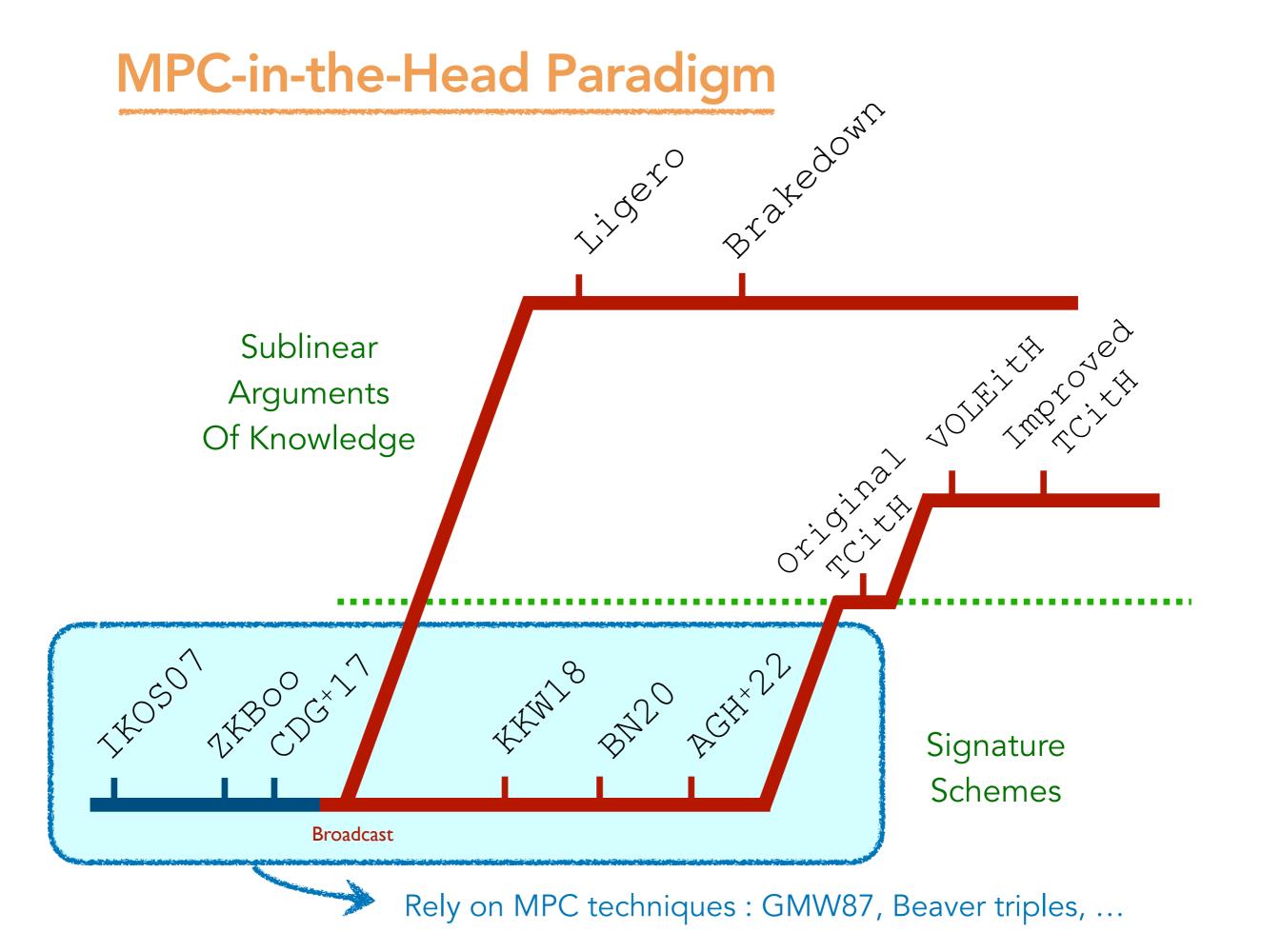


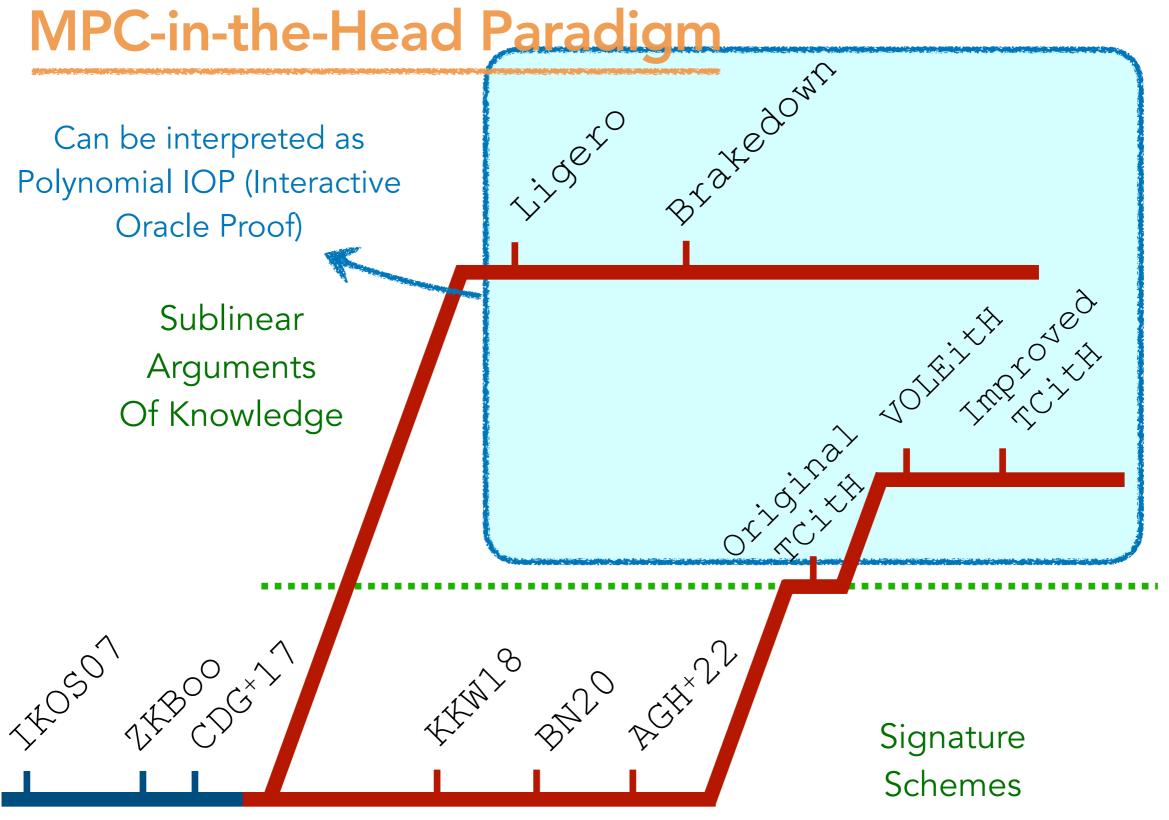


### MPC-in-the-Head Paradigm









## MPC-in-the-Head Paradigm Can be interpreted as Polynomial IOP (Interactive Oracle Proof) JOIR TRIPCT YES Sublinear Arguments Of Knowledge 140501 114B00CX11 THIS BEST POSTERS

#### The TCitH and VOLEitH Frameworks

(for signature schemes)

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments. ePrint 2023/1573. [BBD+23] Baum, Braun, Delpech, Klooß, Orsini, Roy, Scholl. Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures From VOLE-in-the-Head. Crypto 2023.

(for signature schemes)

I know  $w_1, ..., w_n$  such that

$$f(w_1, ..., w_n) = 0$$

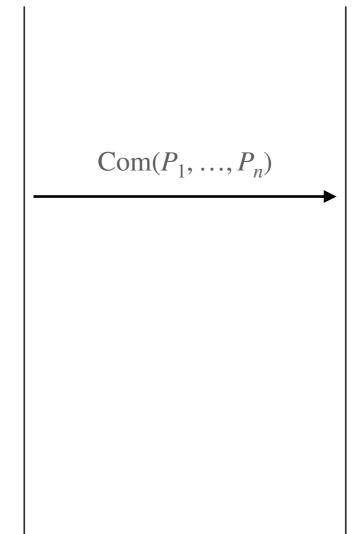
where f is a public **degree**-d **polynomial**.

**Prover** 



(for signature schemes)

- ① For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- ② Commit the polynomials  $P_1, ..., P_n$

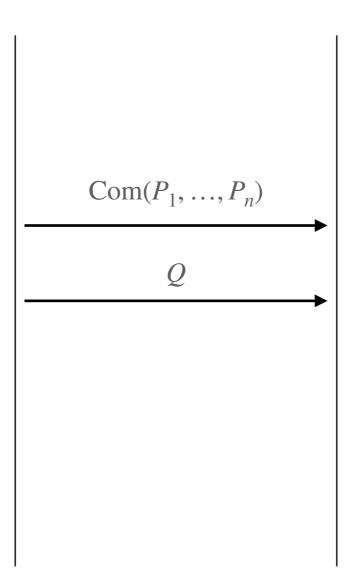


<u>Prover</u>

<u>Verifier</u>

(for signature schemes)

- ① For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- ② Commit the polynomials  $P_1, ..., P_n$
- ③ Reveal the polynomial Q(X) such that  $X \cdot Q(X) = f(P_1(X), ..., P_n(X))$



**Prover** 

(for signature schemes)

- 1 For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- 2 Commit the polynomials  $P_1, ..., P_n$
- ③ Reveal the polynomial Q(X) such that  $X \cdot Q(X) = f(P_1(X), ..., P_n(X))$

 $Com(P_1, ..., P_n)$  Q

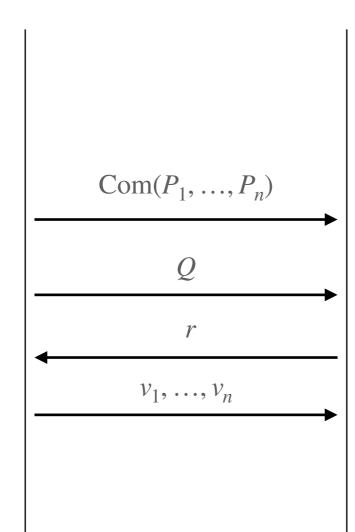
Well-defined!

$$f(P_1(0), ..., P_n(0)) = f(w_1, ..., w_n) = 0$$

Prover

(for signature schemes)

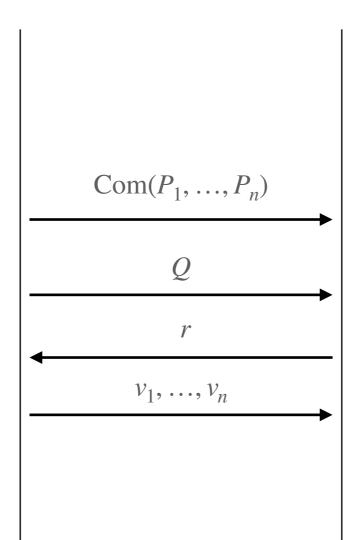
- ① For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- ② Commit the polynomials  $P_1, ..., P_n$
- ③ Reveal the polynomial Q(X) such that  $X \cdot Q(X) = f(P_1(X), ..., P_n(X))$
- $\bigcirc$  Reveal the evaluation  $v_i := P_i(r)$  for all i.



<u>Prover</u>

(for signature schemes)

- ① For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- ② Commit the polynomials  $P_1, ..., P_n$
- ③ Reveal the polynomial Q(X) such that  $X \cdot Q(X) = f(P_1(X), ..., P_n(X))$
- $\bigcirc$  Reveal the evaluation  $v_i := P_i(r)$  for all i.



- 6 Check that  $v_1, ..., v_n$  are consistent with the commitment.

Check that

$$r \cdot Q(r) = f(v_1, ..., v_n)$$

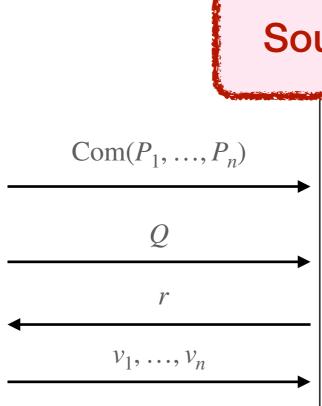
**Prover** 

(for signature schemes)

For all i, choose a degree- $\ell$  polynomial  $P_i(X)$ . We have

$$f(P_1(0), ..., P_n(0)) \neq 0.$$

- ② Commit the polynomials  $P_1, ..., P_n$
- 3 Reveal the polynomial Q(X). We know that  $X \cdot Q(X) \neq f(P_1(X), ..., P_n(X))$
- Reveal the evaluation  $v_i := P_i(r)$  for all i.



#### **Soundness Analysis**

- Choose a random evaluation point  $r \in S \subset \mathbb{F}$
- 6 Check that  $v_1, ..., v_n$  are consistent with the commitment.

Check that

$$r \cdot Q(r) = f(v_1, ..., v_n)$$

Malicious Prover 0



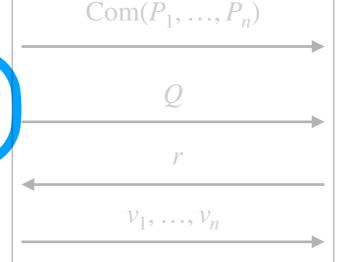
(for signature schemes)

For all i, choose a degree- $\ell$  polynomial  $P_i(X)$ . We have

$$f(P_1(0), ..., P_n(0)) \neq 0.$$

- 2 Commit the polynomials  $P_1, ..., P_n$
- ③ Reveal the polynomial Q(X). We know that  $X \cdot Q(X) \neq f(P_1(X), ..., P_n(X))$
- Reveal the evaluation  $v_i := P_i(r)$  for all i.

# **Soundness Analysis**



- 4 Choose a random evaluation point  $r \in S \subset \mathbb{F}$
- 6 Check that  $v_1, ..., v_n$  are consistent with the commitment.

Check that

$$r \cdot Q(r) = f(v_1, ..., v_n)$$

Malicious Prover 0



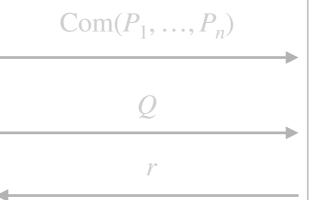
(for signature schemes)

1 For all i, choose a degree- $\ell$  polynomial  $P_i(X)$ . We have

$$f(P_1(0), ..., P_n(0)) \neq 0.$$

- 2 Commit the polynomials  $P_1, ..., P_n$
- ③ Reveal the polynomial Q(X). We know that  $X \cdot Q(X) \neq f(P_1(X), ..., P_n(X))$

#### **Soundness Analysis**



- 4 Choose a random evaluation point  $r \in S \subset \mathbb{F}$
- **Schwartz-Zippel Lemma**: Let P be a non-zero polynomial of degree  $\mu$ . We have

$$\Pr\left[P(r) = 0 \mid r \leftarrow_{\$} S\right] \le \frac{\mu}{|S|}.$$

Since  $X \cdot Q(X) - f(P_1(X), ..., P_n(X))$  is a degree- $(d \cdot \ell)$  polynomial, we have

$$\Pr[\text{verification passes}] \le \frac{d \cdot \ell}{|S|}.$$

6 Check that  $v_1, ..., v_n$  are consistent with the commitment.

Check that

$$r \cdot Q(r) = f(v_1, ..., v_n)$$

(for signature schemes)

I know  $w_1, ..., w_n$  such that

$$f(w_1, ..., w_n) = 0$$

where f is a public **degree**-d **polynomial**.

**Prover** 

Prove it!

<u>Verifier</u>

Soundness Error = 
$$\frac{d \cdot \ell}{|S|}$$

Probability that a malicious prover can convince the verifier.

(for signature schemes)

I know  $w_1, ..., w_n$  such that

$$\begin{cases} f_1(w_1, ..., w_n) &= 0 \\ \vdots \\ f_m(w_1, ..., w_n) &= 0, \end{cases}$$

where  $f_1, ..., f_m$  are public **degree**-d **polynomials**.

Prove it!

**Prover** 

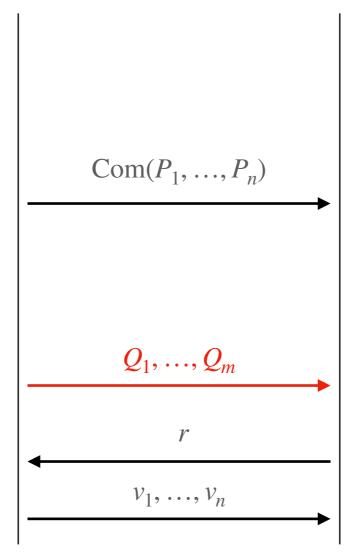
<u>Verifier</u>

(for signature schemes)

- ① For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- ② Commit the polynomials  $P_1, ..., P_n$
- 3 Reveal the polynomials  $Q_1(X), ..., Q_m(X)$  such that

$$X \cdot Q_1(X) = f_1(P_1(X), ..., P_n(X))$$
  
 $\vdots$   
 $X \cdot Q_m(X) = f_m(P_1(X), ..., P_n(X))$ 

 $\bigcirc$  Reveal the evaluation  $v_i := P_i(r)$  for all i.



- 6 Check that  $v_1, ..., v_n$  are consistent with the commitment.

Check that
$$r \cdot Q_1(r) = f_1(v_1, ..., v_n)$$

$$...$$

$$r \cdot Q_m(r) = f_m(v_1, ..., v_n)$$

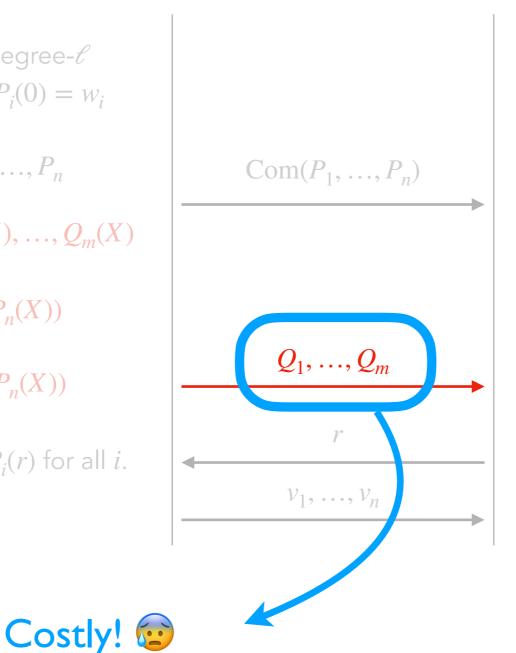
#### **Prover**

(for signature schemes)

- 1 For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- ② Commit the polynomials  $P_1, ..., P_n$
- 4 Reveal the polynomials  $Q_1(X), ..., Q_m(X)$  such that

$$X \cdot Q_1(X) = f_1(P_1(X), ..., P_n(X))$$
  
 $\vdots$   
 $X \cdot Q_m(X) = f_m(P_1(X), ..., P_n(X))$ 

6 Reveal the evaluation  $v_i := P_i(r)$  for all i.



- $\bigcirc$  Choose a random evaluation point  $r \in S \subset \mathbb{F}$
- 7 Check that  $v_1, ..., v_n$  are consistent with the commitment.

$$r \cdot Q_1(r) = f_1(v_1, \dots, v_n)$$

$$r \cdot Q_m(r) = f_m(v_1, \dots, v_n)$$

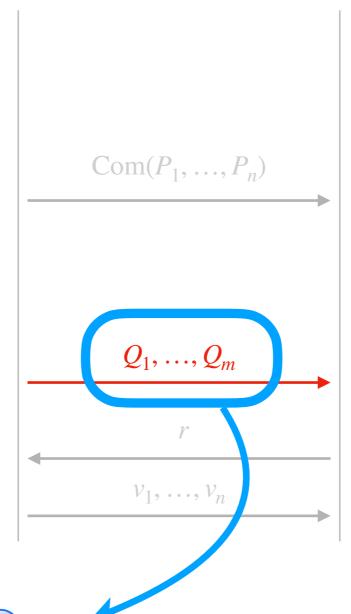
<u>Prover</u>

(for signature schemes)

- 1 For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- 2 Commit the polynomials  $P_1, ..., P_n$
- 4 Reveal the polynomials  $Q_1(X), ..., Q_m(X)$  such that

$$X \cdot Q_1(X) = f_1(P_1(X), ..., P_n(X))$$
  
 $\vdots$   
 $X \cdot Q_m(X) = f_m(P_1(X), ..., P_n(X))$ 

6 Reveal the evaluation  $v_i := P_i(r)$  for all i.



- 5 Choose a random evaluation point  $r \in S \subset \mathbb{F}$
- 7 Check that  $v_1, ..., v_n$  are consistent with the commitment.

$$r \cdot Q_1(r) = f_1(v_1, \dots, v_n)$$

$$r \cdot Q_m(r) = f_m(v_1, \dots, v_n)$$

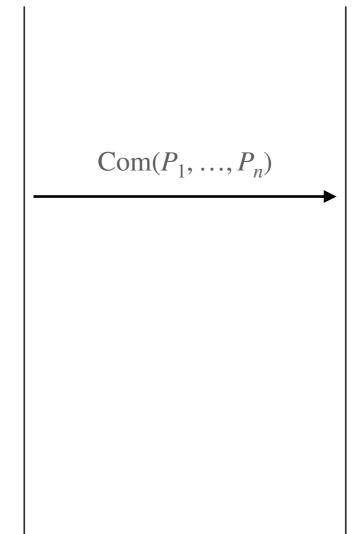
Prover

Costly!

Solution: batching

(for signature schemes)

- ① For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- ② Commit the polynomials  $P_1, ..., P_n$

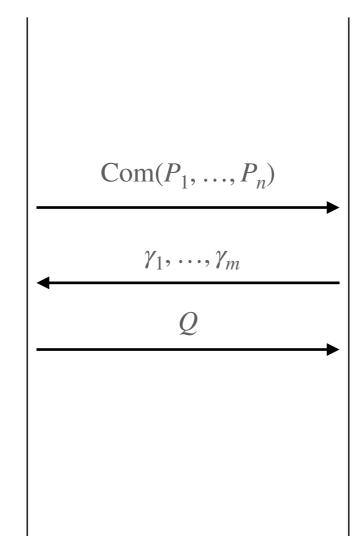


<u>Prover</u>

<u>Verifier</u>

(for signature schemes)

- ① For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- ② Commit the polynomials  $P_1, ..., P_n$
- Reveal the polynomial Q(X) such that  $X \cdot Q(X) = \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$



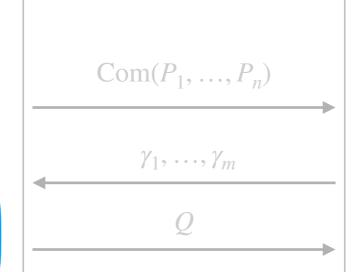
③ Choose random coefficients  $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$ 

**Prover** 

<u>Verifier</u>

(for signature schemes)

- 1 For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- 2 Commit the polynomials  $P_1, ..., P_n$
- ④ Reveal the polynomial Q(X) such that  $X \cdot Q(X) = \sum_{i=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$



3 Choose random coefficients  $\gamma_1, \ldots, \gamma_m \leftarrow^{\$} \mathbb{F}$ 

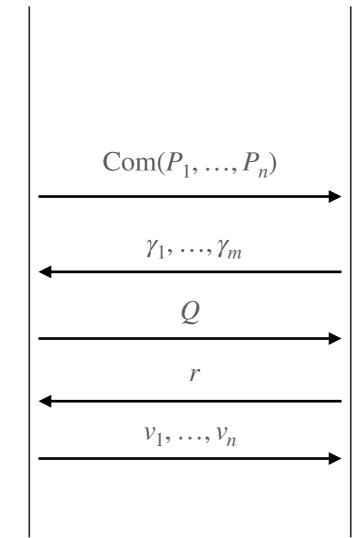
Well-defined!

Prover

$$\sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(0), \dots, P_n(0)) = \sum_{j=1}^{m} \gamma_j \cdot f_j(w_1, \dots, w_n)$$
$$= \sum_{j=1}^{m} \gamma_j \cdot 0 = 0$$

(for signature schemes)

- ① For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- ② Commit the polynomials  $P_1, ..., P_n$
- **6** Reveal the evaluation  $v_i := P_i(r)$  for all i.



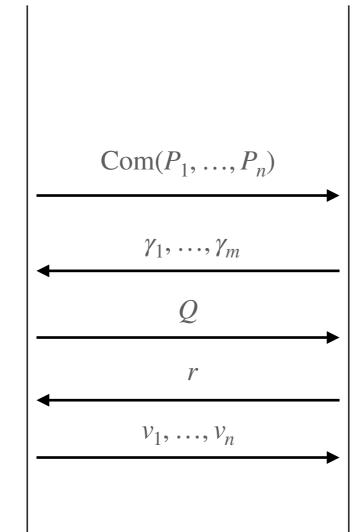
- ③ Choose random coefficients  $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$

**Prover** 

<u>Verifier</u>

(for signature schemes)

- ① For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- ② Commit the polynomials  $P_1, ..., P_n$
- 6 Reveal the evaluation  $v_i := P_i(r)$  for all i.



- ③ Choose random coefficients  $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- $\bigcirc$  Choose a random evaluation point  $r \in S \subset \mathbb{F}$

$$r \cdot Q(r) = \sum_{j=1}^{m} \gamma_j \cdot f_j(v_1, \dots, v_n)$$

Prover

**Verifier** 

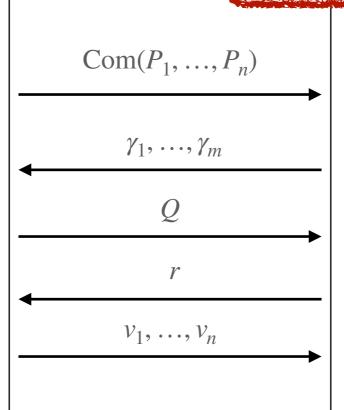
(for signature schemes)

① For all i, choose a degree- $\ell$  polynomial  $P_i(X)$ . There exists  $j^*$  s.t.

$$f_{j*}(P_1(0),...,P_n(0)) \neq 0.$$

- ② Commit the polynomials  $P_1, ..., P_n$
- 4 Reveal the polynomial Q(X). We know that  $X \cdot Q(X) \neq \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$ 
  - 6 Reveal the evaluation  $v_i := P_i(r)$  for all i.

### Soundness Analysis



- ③ Choose random coefficients  $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- $\bigcirc$  Choose a random evaluation point  $r \in S \subset \mathbb{F}$

$$r \cdot Q(r) = \sum_{j=1}^{m} \gamma_j \cdot f_j(v_1, ..., v_n)$$

<u>Verifier</u>

(for signature schemes)

① For all i, choose a degree- $\ell$  polynomial  $P_i(X)$ . There exists  $j^*$  s.t.

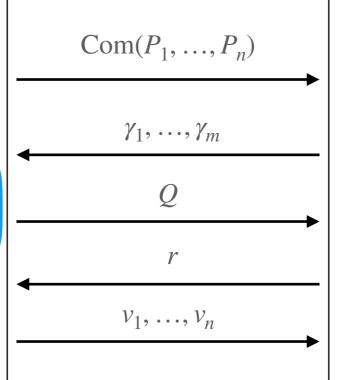
$$f_{j*}(P_1(0),...,P_n(0)) \neq 0.$$

- ② Commit the polynomials  $P_1, ..., P_n$
- ④ Reveal the polynomial Q(X). We know that

$$X \cdot Q(X) \neq \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), \dots, P_n(X))$$

6 Reveal the evaluation  $v_i := P_i(r)$  for all i.

### **Soundness Analysis**



- ③ Choose random coefficients  $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- Choose a random evaluation point  $r \in S \subset \mathbb{F}$
- 7 Check that  $v_1, ..., v_n$  are consistent with the commitment.

It is an inequality with **high probability** over the randomness of  $\gamma_1, ..., \gamma_m$ , since we have

$$\sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(0), \dots, P_n(0)) \neq 0$$

### Malicious Prover **5**

(for signature schemes)

① For all i, choose a degree- $\ell$  polynomial  $P_i(X)$ . There exists  $j^*$  s.t.

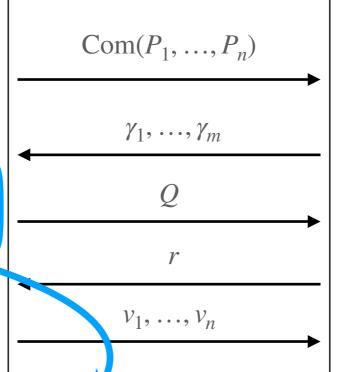
$$f_{j*}(P_1(0),...,P_n(0)) \neq 0.$$

- ② Commit the polynomials  $P_1, ..., P_n$
- ④ Reveal the polynomial Q(X). We know that

$$X \cdot Q(X) \neq \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), \dots, P_n(X))$$

6 Reveal the evaluation  $v_i := P_i(r)$  for all i.

### **Soundness Analysis**



- ③ Choose random coefficients  $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- $\bigcirc$  Choose a random evaluation point  $r \in S \subset \mathbb{F}$
- 7 Check that  $v_1, ..., v_n$  are consistent with the commitment.

Check that

$$r \cdot Q(r) = \sum_{j=1}^{m} \gamma_j \cdot f_j(v_1, ..., v_n)$$

<u>Verifier</u>

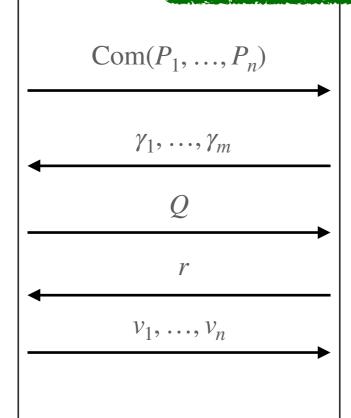
Schwartz-Zippel Lemma: Since it is a degree- $(d \cdot \ell)$  relation,

$$\Pr[\text{verification passes}] \le \frac{d \cdot \ell}{|S|}.$$

(for signature schemes)

- ① For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- ② Commit the polynomials  $P_1, ..., P_n$
- ① Reveal the polynomial Q(X) such that  $X \cdot Q(X) = \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$
- **6** Reveal the evaluation  $v_i := P_i(r)$  for all i.

### Zero-Knowledge Analysis



- ③ Choose random coefficients  $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- Choose a random evaluation point  $r \in S \subset \mathbb{F}$
- Check that  $v_1, ..., v_n$  are consistent with the commitment. Check that

$$r \cdot Q(r) = \sum_{j=1}^{m} \gamma_j \cdot f_j(v_1, ..., v_n)$$

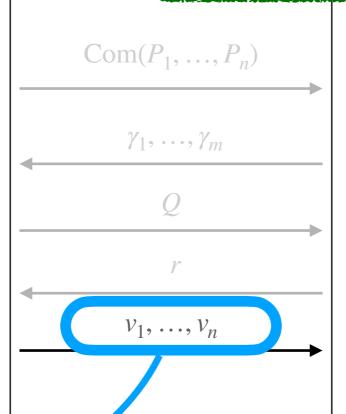
<u>Verifier</u>

<u>Prover</u>

(for signature schemes)

- ① For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- 2 Commit the polynomials  $P_1, ..., P_n$
- ④ Reveal the polynomial Q(X) such that  $X \cdot Q(X) = \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$
- 6 Reveal the evaluation  $v_i := P_i(r)$  for all i.

### Zero-Knowledge Analysis



- 3 Choose random coefficients  $\gamma_1, \ldots, \gamma_m \leftarrow^{\$} \mathbb{F}$
- 5 Choose a random evaluation point  $r \in S \subset \mathbb{F}$
- 7 Check that  $v_1, ..., v_n$  are consistent with the commitment. Check that

$$r \cdot Q(r) = \sum_{j=1}^{m} \gamma_j \cdot f_j(v_1, \dots, v_n)$$

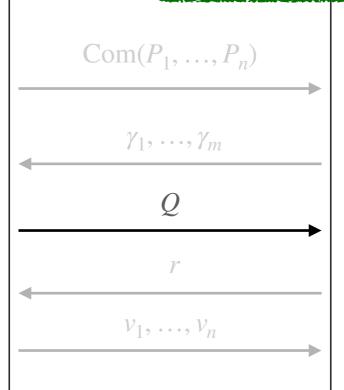
Verifier ••

Revealing an evaluation of  $P_i(X)$  leaks no information about  $w_i$ .

(for signature schemes)

- For all i, sample a random degree- $\ell$ polynomial  $P_i(X)$  such that  $P_i(0) = w_i$
- 2 Commit the polynomials  $P_1, \ldots, P_n$
- 4 Reveal the polynomial Q(X) such that  $X \cdot Q(X) = \sum_{i} \gamma_{i} \cdot f_{i}(P_{1}(X), \dots, P_{n}(X))$
- 6 Reveal the evaluation  $v_i := P_i(r)$  for all i.

### **Zero-Knowledge Analysis**



- 3 Choose random coefficients  $\gamma_1, \ldots, \gamma_m \leftarrow^{\$} \mathbb{F}$
- 5 Choose a random evaluation point  $r \in S \subset \mathbb{F}$
- $\bigcirc$  Check that  $v_1, ..., v_n$  are consistent with the commitment. Check that

$$r \cdot Q(r) = \sum_{j=1}^{m} \gamma_j \cdot f_j(v_1, \dots, v_n)$$

Verifier ••



 $\triangle$  Leak information about the witness  $w_1, ..., w_n$ 

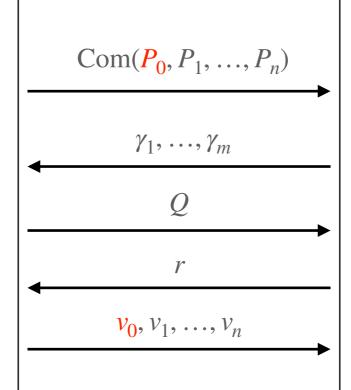
(for signature schemes)

- ① For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$  Sample a random degree- $(d\ell-1)$  polynomial  $P_0(X)$
- ② Commit the polynomials  $P_0, P_1, ..., P_n$
- 4 Reveal the polynomial Q(X) such that

$$X \cdot Q(X) = X \cdot P_0(X) + \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$$

**6** Reveal the evaluation  $v_i := P_i(r)$  for all i.

### Zero-Knowledge Analysis



- ③ Choose random coefficients  $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- $\bigcirc$  Choose a random evaluation point  $r \in S \subset \mathbb{F}$
- Check that  $v_1, ..., v_n$  are consistent with the commitment. Check that

$$r \cdot Q(r) = r \cdot v_0 + \sum_{j=1}^m \gamma_j \cdot f_j(v_1, \dots, v_n)$$

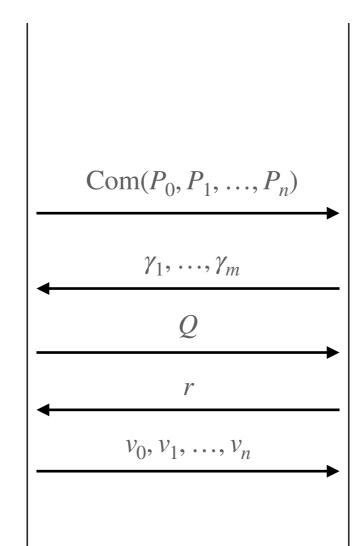
Verifier ••

### **Prover**

(for signature schemes)

- ① For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$  Sample a random degree- $(d\ell-1)$  polynomial  $P_0(X)$
- ② Commit the polynomials  $P_0, P_1, ..., P_n$
- ④ Reveal the polynomial Q(X) such that  $X \cdot Q(X) = X \cdot P_0(X) + \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$

**6** Reveal the evaluation  $v_i := P_i(r)$  for all i.



- ③ Choose random coefficients  $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- Check that  $v_1, ..., v_n$  are consistent with the commitment. Check that

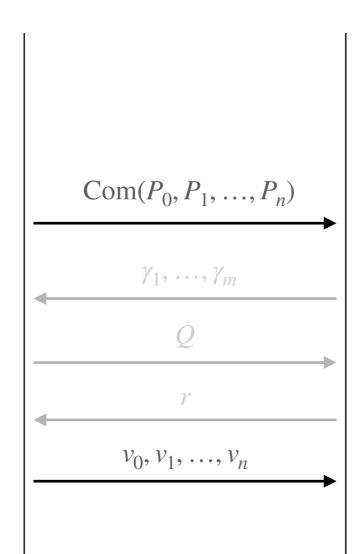
$$r \cdot Q(r) = r \cdot v_0 + \sum_{j=1}^{m} \gamma_j \cdot f_j(v_1, \dots, v_n)$$

Verifier

<u>Prover</u>

(for signature schemes)

- ① For all i, sample a random degree- $\ell$  polynomial  $P_i(X)$  such that  $P_i(0) = w_i$  Sample a random degree- $(d\ell-1)$  polynomial  $P_0(X)$
- ② Commit the polynomials  $P_0, P_1, ..., P_n$
- ④ Reveal the polynomial Q(X) such that  $X \cdot Q(X) = X \cdot P_0(X) + \sum_{j=1}^m \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$ 
  - **6** Reveal the evaluation  $v_i := P_i(r)$  for all i.



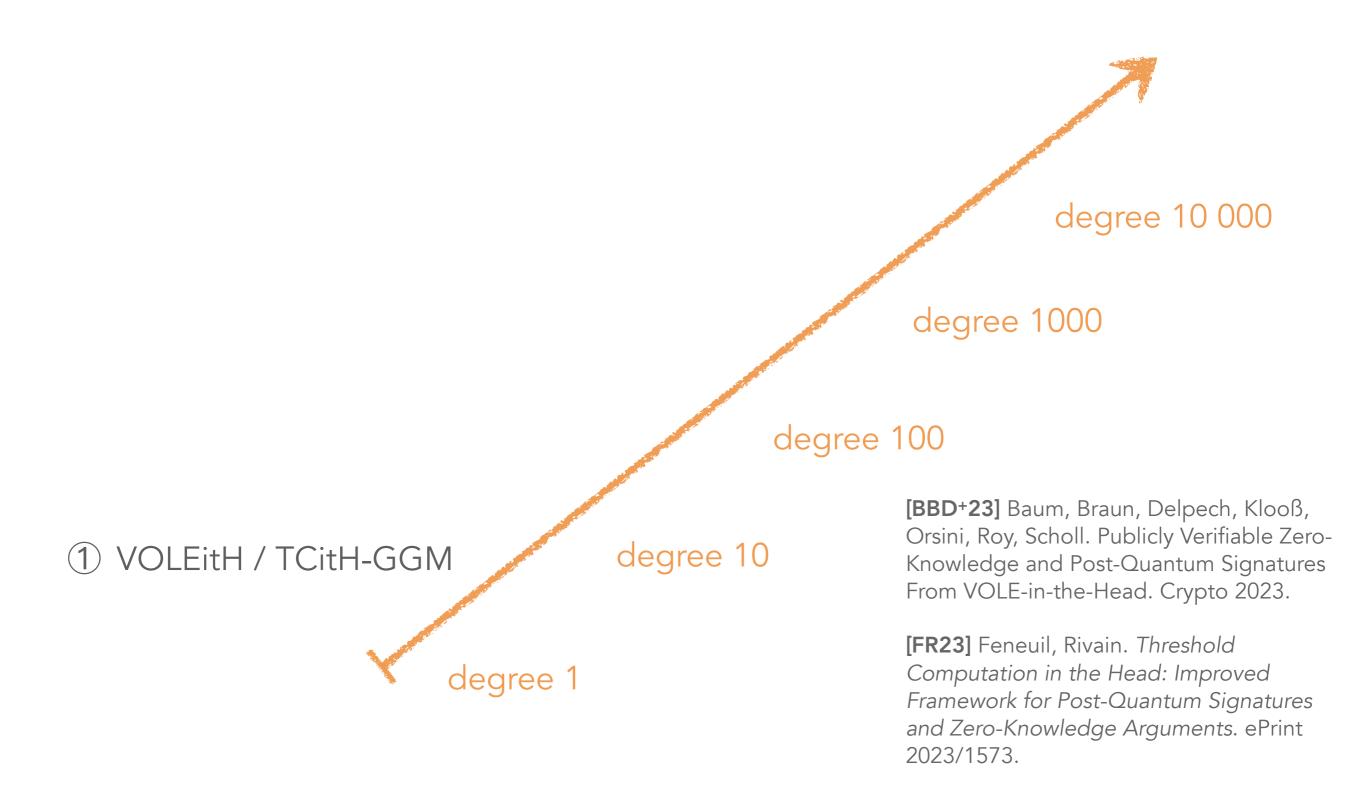
- 3 Choose random coefficients  $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- 5 Choose a random evaluation point  $r \in S \subset \mathbb{F}$
- $\bigcirc$  Check that  $v_1, ..., v_n$  are consistent with the commitment.

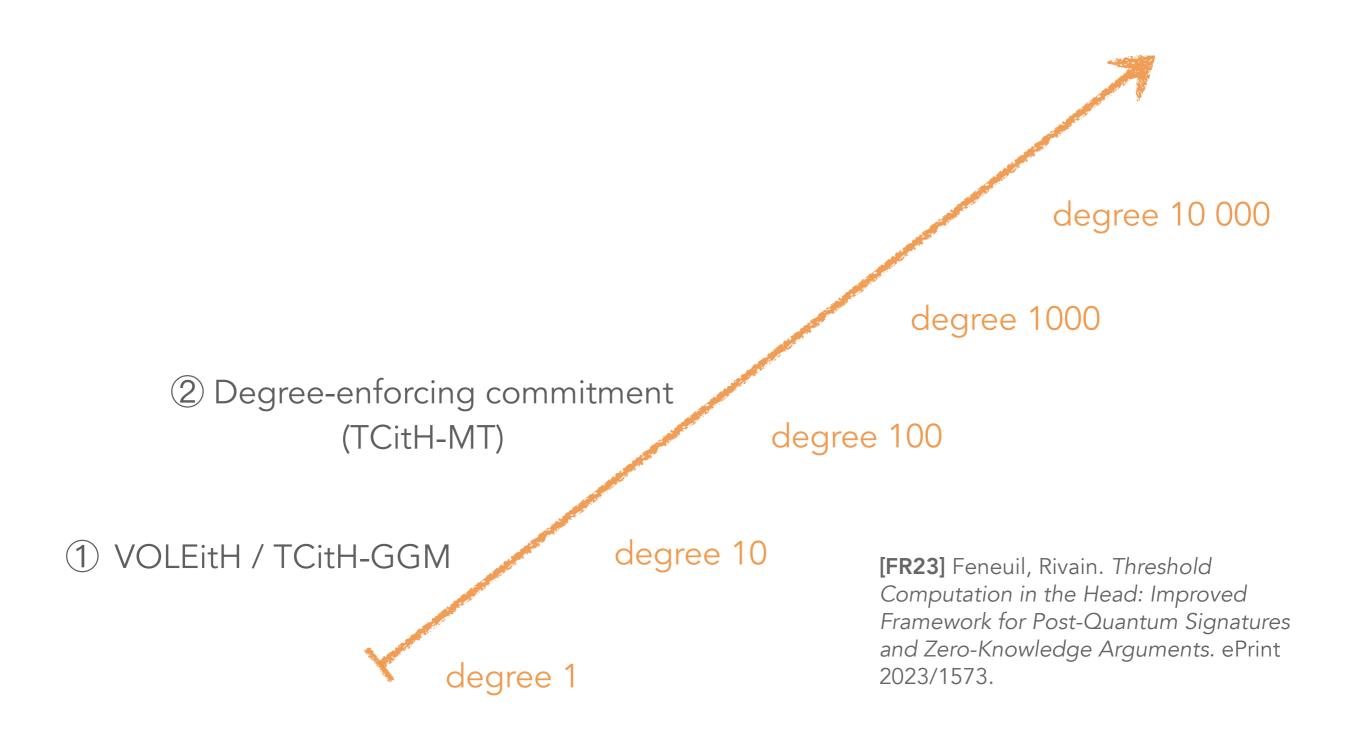
Check that

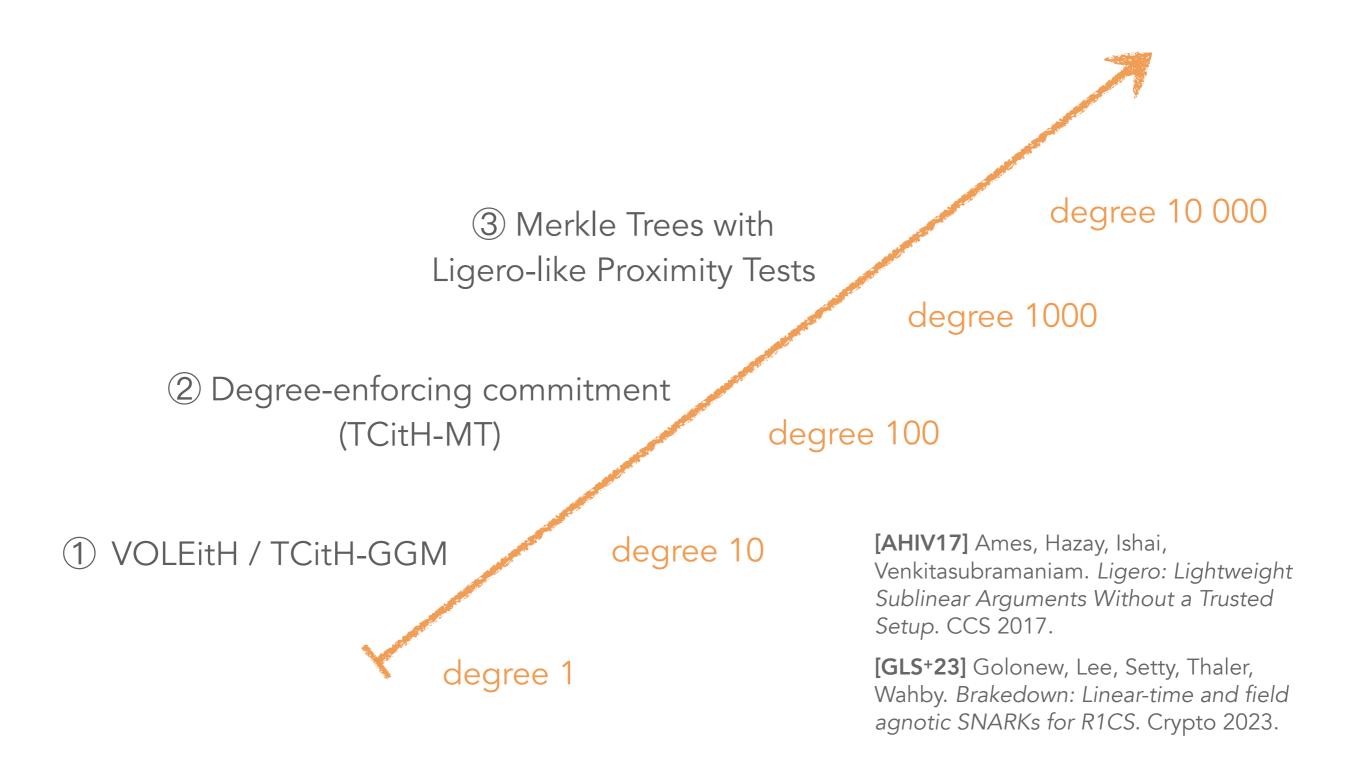
$$r \cdot Q(r) = r \cdot v_0 + \sum_{i=1}^m \gamma_j \cdot f_j(v_1, \dots, v_n)$$

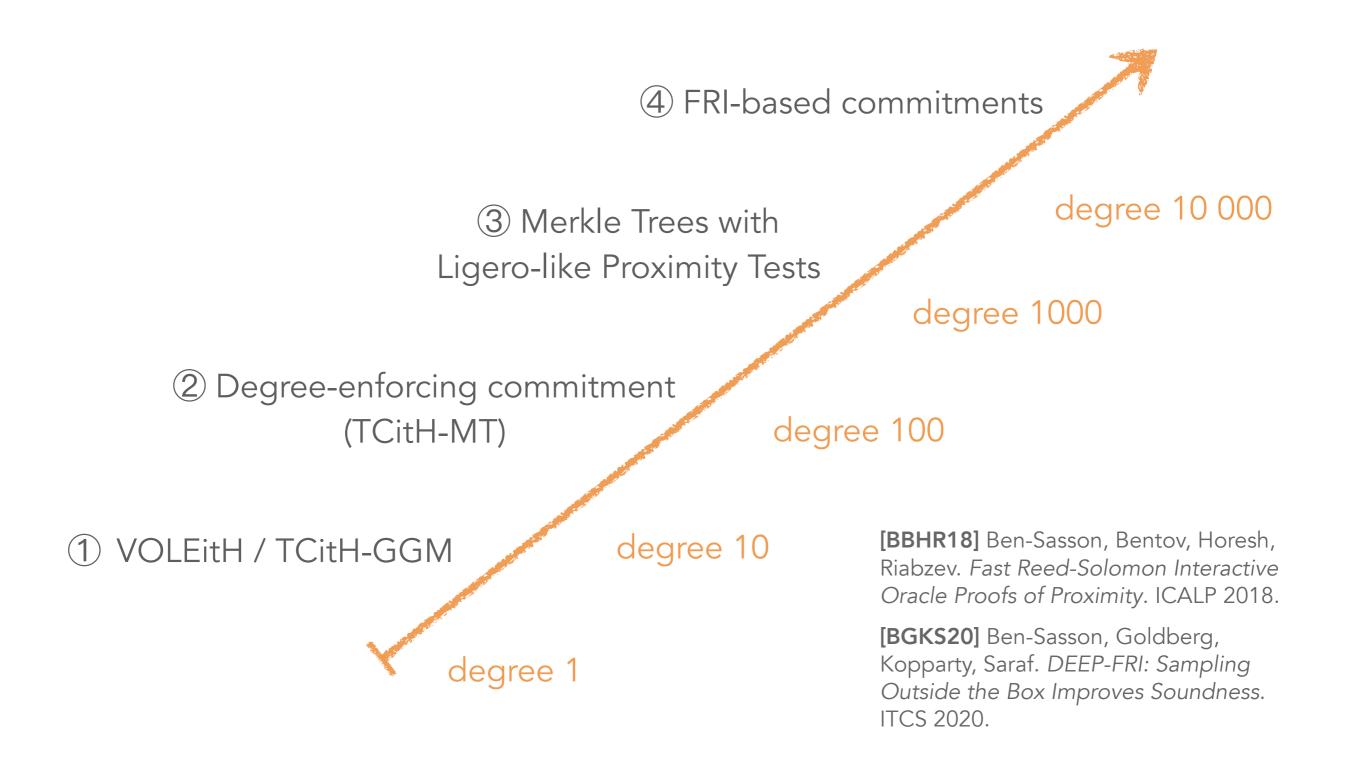
Verifier

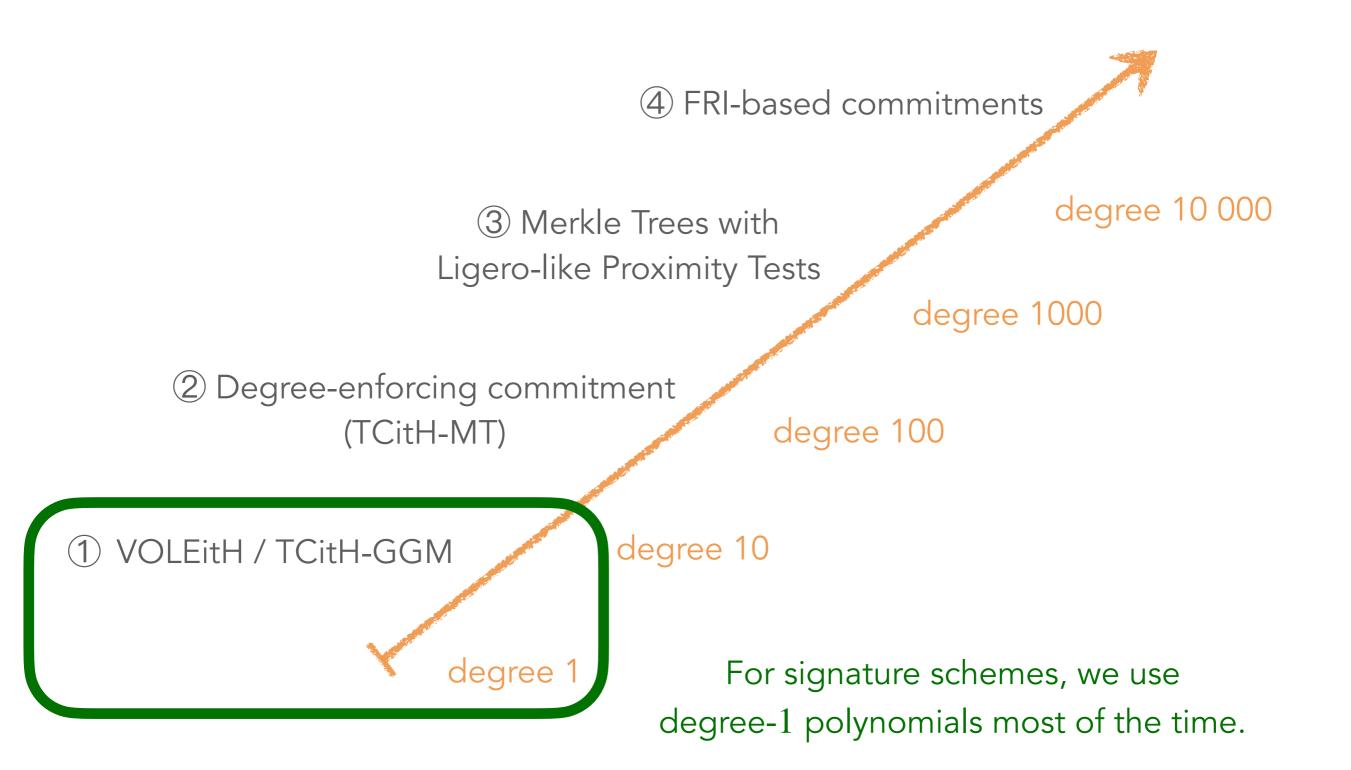
<u>Prover</u>











Public data: Let us

- have N distinct values  $e_1, ..., e_N$ , and
- define  $R_i$  such that  $R_i(0) = 1$  and  $R_i(e_i) = 0$ , for all i in  $\{1, ..., N\}$ .

We want to build and commit a random degree-1 polynomial P. We sample N values  $r_1, \ldots, r_N$  and define P as

$$P := \sum_{i} r_{i} \cdot R_{i}.$$

#### Public data: Let us

- have N distinct values  $e_1, ..., e_N$ , and
- define  $R_i$  such that  $R_i(0) = 1$  and  $R_i(e_i) = 0$ , for all i in  $\{1, ..., N\}$ .

We want to build and commit a random degree-1 polynomial P. We sample N values  $r_1, \ldots, r_N$  and define P as

$$P := \sum_{i} r_{i} \cdot R_{i}.$$

#### Correctness:

If  $N \ge 2$ , P is a random degree-1 polynomial.

Public data: Let us

- have N distinct values  $e_1, ..., e_N$ , and
- define  $R_i$  such that  $R_i(0) = 1$  and  $R_i(e_i) = 0$ , for all i in  $\{1, ..., N\}$ .

We want to build and commit a random degree-1 polynomial P. We sample N values  $r_1, ..., r_N$  and define P as

$$P := \sum_{i} r_{i} \cdot R_{i}.$$

#### Correctness:

If  $N \ge 2$ , P is a random degree-1 polynomial.

**Commitment:** 

We commit to each value  $r_i$  independently.

Public data: Let us

- have N distinct values  $e_1, ..., e_N$ , and
- define  $R_i$  such that  $R_i(0) = 1$  and  $R_i(e_i) = 0$ , for all i in  $\{1, ..., N\}$ .

We want to build and commit a random degree-1 polynomial P. We sample N values  $r_1, \ldots, r_N$  and define P as

$$P := \sum_{i} r_{i} \cdot R_{i}.$$

#### Correctness:

If  $N \ge 2$ , P is a random degree-1 polynomial.

**Commitment:** 

We commit to each value  $r_i$  independently.

Opening  $P(e_{i*})$ :

Reveal all  $\{r_i\}_{i\neq i^*}$ .

$$\begin{split} P(e_{i^*}) &= \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*}) + r_{i^*} \cdot \underbrace{R_{i^*}(e_{i^*})}_{=0} \\ &= \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*}) \end{split}$$

Public data: Let us

- have N distinct values  $e_1, ..., e_N$ , and
- define  $R_i$  such that  $R_i(0) = 1$  and  $R_i(e_i) = 0$ , for all i in  $\{1, ..., N\}$ .

We want to build and commit a random degree-1 polynomial P. We sample N values  $r_1, \ldots, r_N$  and define P as

$$P := \sum_{i} r_{i} \cdot R_{i}.$$

#### **Correctness:**

If  $N \ge 2$ , P is a random degree-1 polynomial.

**Commitment:** 

We commit to each value  $r_i$  independently.

Opening  $P(e_{i*})$ :

Reveal all  $\{r_i\}_{i\neq i^*}$ .

The opening leaks nothing about P, except  $P(e_{i^*})$ .

$$\begin{split} P(e_{i^*}) &= \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*}) + r_{i^*} \cdot \underbrace{R_{i^*}(e_{i^*})}_{=0} \\ &= \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*}) \end{split}$$

Public data: Let us

- have N distinct values  $e_1, ..., e_N$ , and
- define  $R_i$  such that  $R_i(0) = 1$  and  $R_i(e_i) = 0$ , for all i in  $\{1, ..., N\}$ .

We want to build and commit a random degree-1 polynomial P. We sample N values  $r_1, \ldots, r_N$  and define P as

$$P := \sum_{i} r_{i} \cdot R_{i}.$$

#### Correctness:

If  $N \ge 2$ , P is a random degree-1 polynomial.

**Commitment:** 

We commit to each value  $r_i$  independently.

Opening  $P(e_{i*})$ :

Reveal all  $\{r_i\}_{i\neq i^*}$ .

The opening leaks *nothing* about P, except  $P(e_{i^*})$ .

Can be adapted to any degree.

$$\begin{split} P(e_{i^*}) &= \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*}) + r_{i^*} \cdot \underbrace{R_{i^*}(e_{i^*})}_{=0} \\ &= \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*}) \end{split}$$

Public data: Let us

- have N distinct values  $e_1, ..., e_N$ , and
- define  $R_i$  such that  $R_i(0) = 1$  and  $R_i(e_i) = 0$ , for all i in  $\{1, ..., N\}$ .

We want to build and commit a random degree-1 polynomial P. We sample N values  $r_1, \ldots, r_N$  and define P as

$$P := \sum_{i} r_{i} \cdot R_{i}.$$

Costly!

#### Correctness:

If  $N \ge 2$ , P is a random degree-1 polynomial.

#### **Commitment:**

We commit to each value  $r_i$  independently.

Opening  $P(e_{i^*})$ : Reveal all  $\{r_i\}_{i\neq i^*}$ .

The opening leaks *nothing* about P, except  $P(e_{i^*})$ .

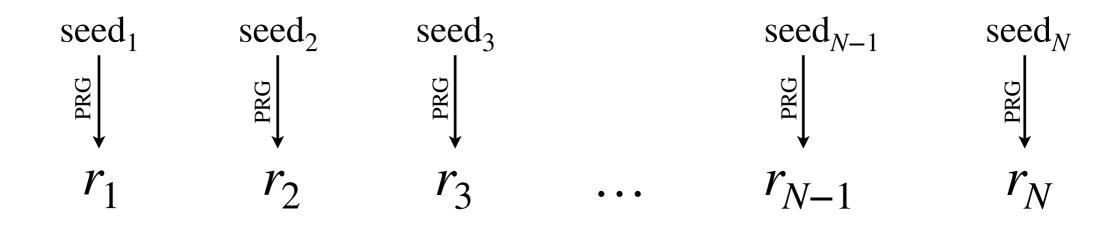
Can be adapted to any degree.

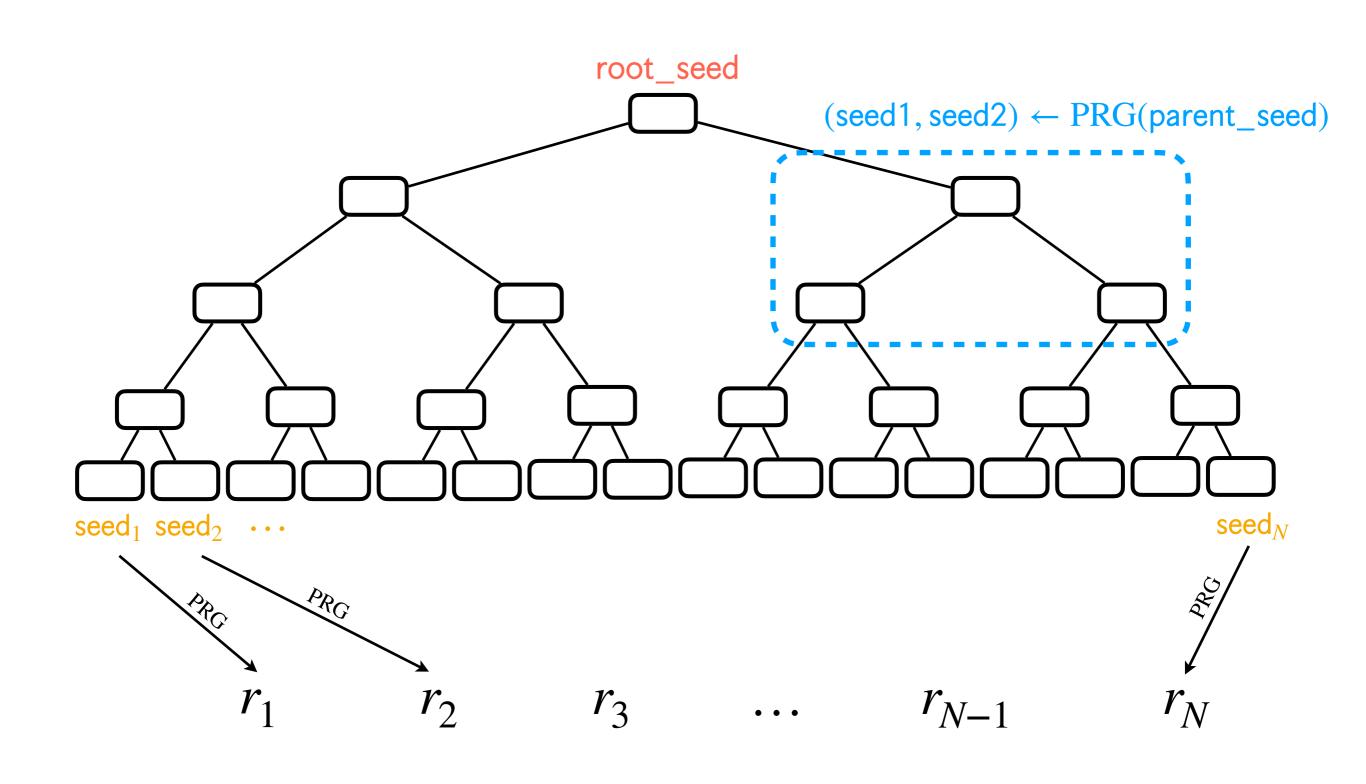
$$P(e_{i^*}) = \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*}) + r_{i^*} \cdot \underbrace{R_{i^*}(e_{i^*})}_{=0}$$

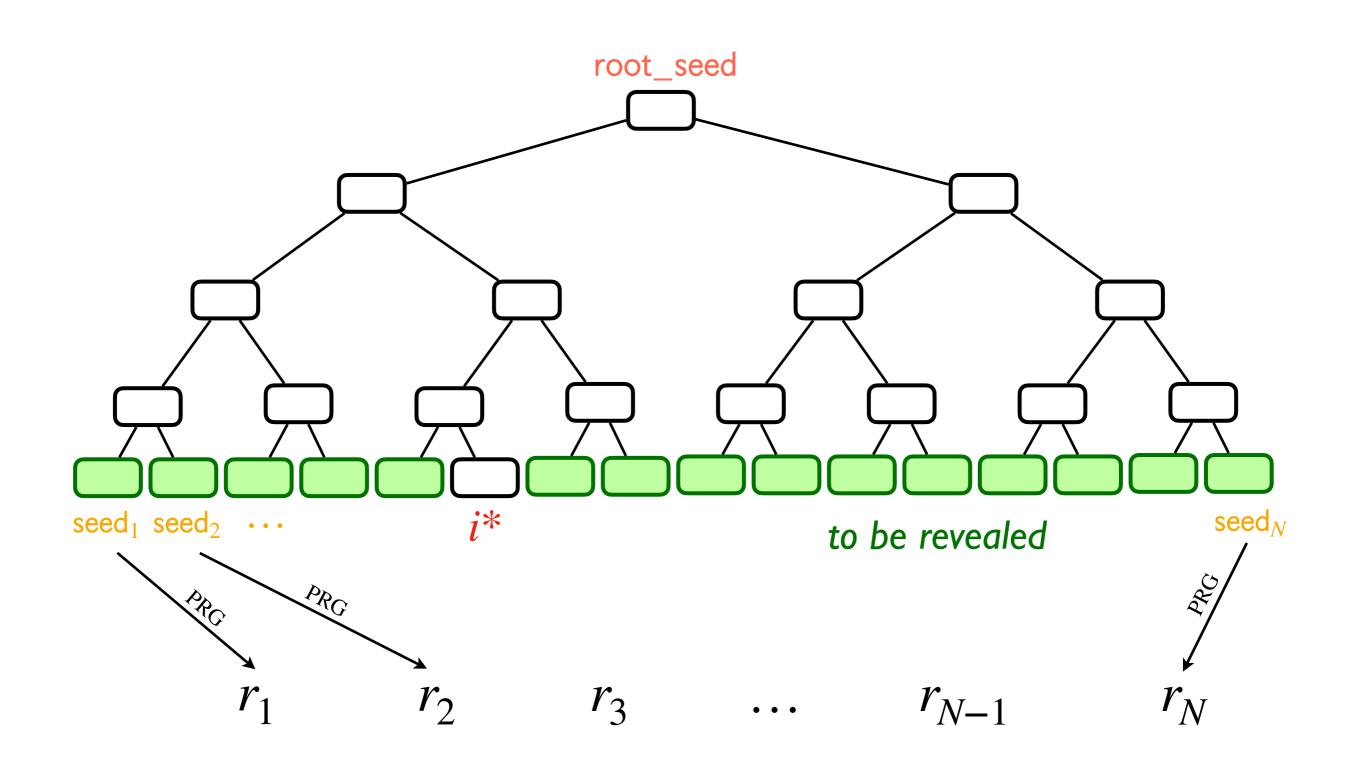
$$= \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*})$$

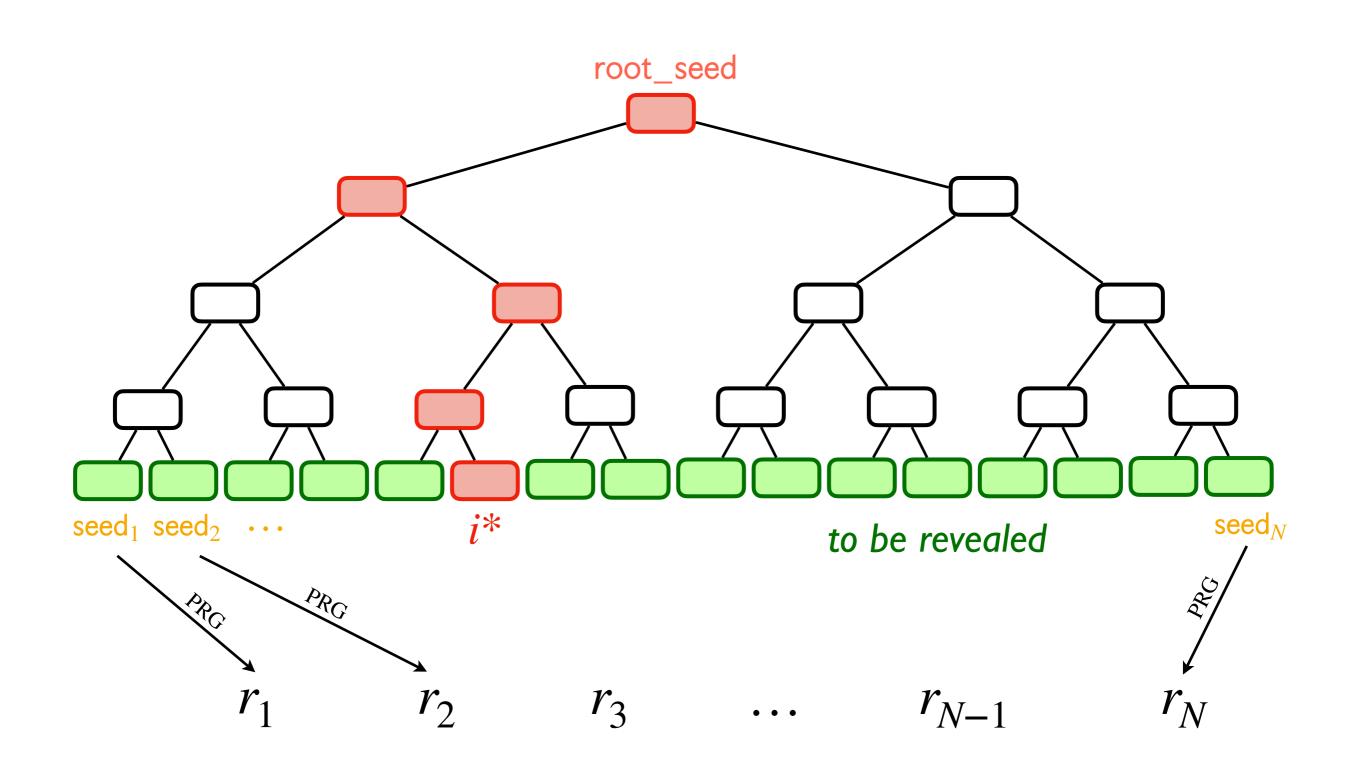
[GGM84] Goldreich, Goldwasser, Micali: "How to construct random functions (extended extract)" (FOCS 1984)

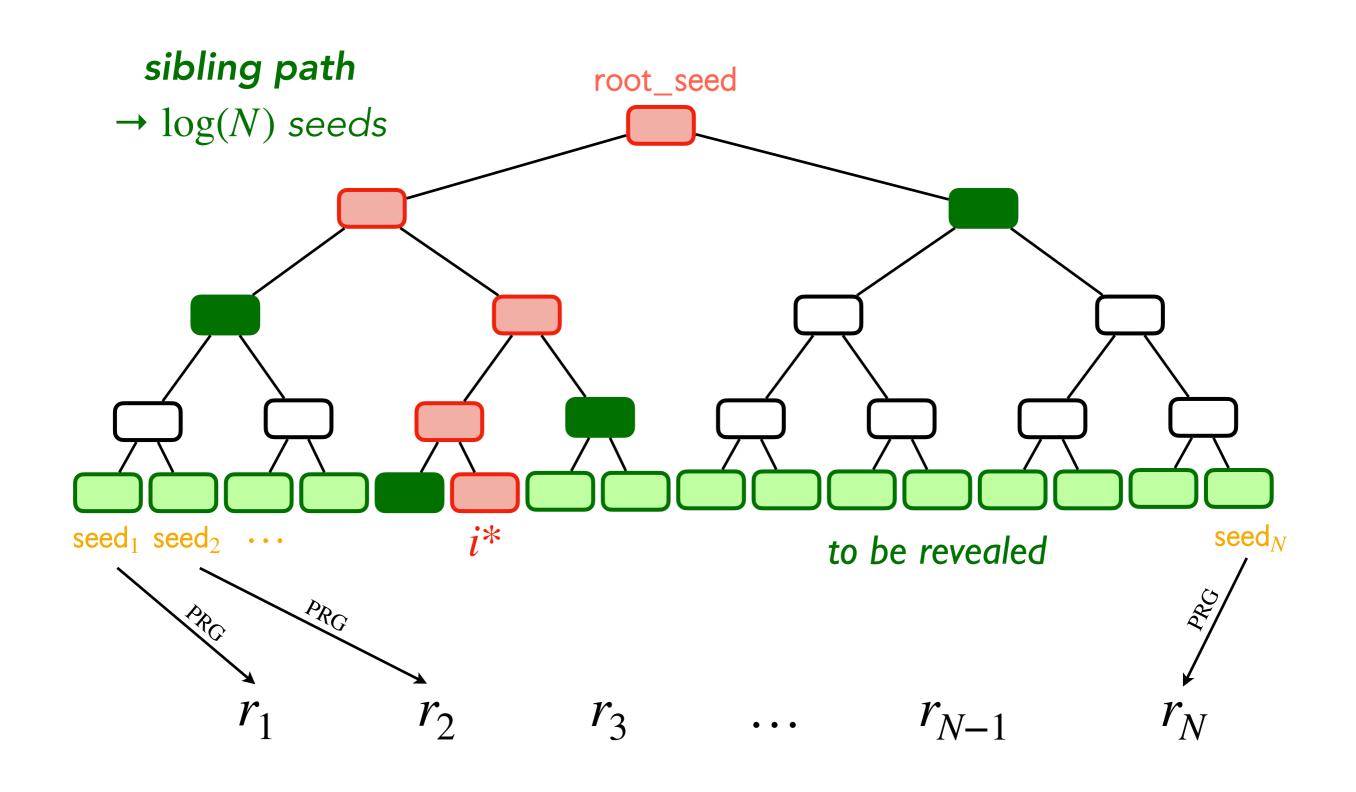
 $r_1 \qquad r_2 \qquad r_3 \qquad \dots \qquad r_{N-1} \qquad r_N$ 











We want to build and commit a random degree-1 polynomial P such that P(0) = w.

We want to build and commit a random degree-1 polynomial P such that P(0) = w.

- 1. Sample and commit a random degree-1 polynomial  $ilde{P}$
- **2.** Reveal  $\Delta w := w \tilde{P}(0)$
- **3.** Define P as  $P(X) := \tilde{P} + \Delta w$

We want to build and commit a random degree-1 polynomial P such that P(0) = w.

- 1. Sample and commit a random degree-1 polynomial  $ilde{P}$
- **2.** Reveal  $\Delta w := w \tilde{P}(0)$
- 3. Define P as  $P(X) := \tilde{P} + \Delta w$

To open  $P(e_{i^*})$  for  $i^* \in \{1,\dots,N\}$ , we just need to open  $\tilde{P}(e_{i^*})$  and to compute

$$P(e_{i^*}) \leftarrow \tilde{P}(e_{i^*}) + \Delta w.$$

Complexity in O(N) to have a soundness error of  $\frac{d}{N}$  (degree-1 polynomials).

How to have a negligible soundness error?



Complexity in O(N) to have a soundness error of  $\frac{d}{N}$  (degree-1 polynomials).

### How to have a negligible soundness error?



1. Taking  $N \ge 2^{\lambda}$ . Impossible since the complexity would be in  $O(2^{\lambda})$ .

### Committing to a Polynomial using a Seed Tree

Complexity in O(N) to have a soundness error of  $\frac{d}{N}$  (degree-1 polynomials).

#### How to have a negligible soundness error?



- 1. Taking  $N \ge 2^{\lambda}$ . Impossible since the complexity would be in  $O(2^{\lambda})$ .
- 2. <u>TCitH-GGM Approach</u>. Taking N small (e.g. N=256) and repeating the protocol  $\tau$  times. Soundness error of  $\left(\frac{d}{N}\right)^{\tau}$ .

### Committing to a Polynomial using a Seed Tree

Complexity in O(N) to have a soundness error of  $\frac{d}{N}$  (degree-1 polynomials).

#### How to have a negligible soundness error?



- 1. Taking  $N \geq 2^{\lambda}$ . Impossible since the complexity would be in  $O(2^{\lambda})$ .
- 2. <u>TCitH-GGM Approach</u>. Taking N small (e.g. N=256) and repeating the protocol  $\tau$  times. Soundness error of  $\left(\frac{d}{N}\right)^{\tau}$ .
- 3. <u>VOLEitH Approach</u>. Embed  $\tau$  polynomials over  $\mathbb{F}_q$  into a unique polynomial over  $\mathbb{F}_{q^\tau}$ , for which we will be able to open  $N^\tau$  evaluations. Soundness error of  $\frac{d}{N^\tau}$ .

# **Building Signatures**

# **Building Signatures**

I know  $w_1, ..., w_n$  such that

$$\begin{cases} f_1(w_1, \dots, w_n) &= 0 \\ \vdots \\ f_m(w_1, \dots, w_n) &= 0, \end{cases}$$

where  $f_1, ..., f_m$  are public **degree**-d **polynomials**.

Prove it!

**Prover** 

<u>Verifier</u>

# **Building Signatures**

I know  $w_1, ..., w_n$  such that

$$\begin{cases} f_1(w_1, ..., w_n) &= 0 \\ \vdots \\ f_m(w_1, ..., w_n) &= 0, \end{cases}$$

where  $f_1, ..., f_m$  are public **degree**-d **polynomials**.

Fiat-Shamir Transformation



Prove it!

**Verifier** 

### **Building Signature Schemes**

The **public key** is composed of the **degree**-d **polynomials**  $f_1, ..., f_m$ .

The **private key** is the **witness**  $w := (w_1, ..., w_n)$  that satisfies

$$\begin{cases} f_1(w_1, ..., w_n) &= 0, \\ \vdots \\ f_m(w_1, ..., w_n) &= 0. \end{cases}$$

### **Building Signature Schemes**

The **public key** is composed of the **degree**-d **polynomials**  $f_1, ..., f_m$ .

The **private key** is the **witness**  $w := (w_1, ..., w_n)$  that satisfies

$$\begin{cases} f_1(w_1, ..., w_n) &= 0, \\ \vdots \\ f_m(w_1, ..., w_n) &= 0. \end{cases}$$

When  $f_1, ..., f_n$  are random degree-2 polynomials,

#### Signature relying on the Multivariate Quadratic (MQ) problem

**[FR23]** Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments. ePrint 2023/1573.

[BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.

### **Building Signature Schemes**

Proving that the private key  $(L,R) \in \mathbb{F}^{n \times r} \times \mathbb{F}^{r \times m}$  satisfies

$$y - Hx = 0$$
 with  $x = \text{vectorialize}(L \cdot R)$ 

where (H, y) is the public key.

#### Signature relying on the MinRank problem

[BFG+24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank. Asiacrypt 2024.

### Signature Sizes with the New Frameworks

|                        | NIST Submission |        | New frameworks + Opt.* |  |
|------------------------|-----------------|--------|------------------------|--|
| Security Assumptions   | Candidate Name  | Sizes  | Sizes                  |  |
| AES Block cipher       | FAEST           | 4.6 KB | ≈ 4.1-4.5 KB           |  |
| AIM Block cipher       | AlMer           | 3.8 KB | ≈ 3.0 KB               |  |
| MinRank                | MiRitH, MIRA    | 5.6 KB | ≈ 2.9-3.1 KB           |  |
| Multivariate Quadratic | MQOM            | 6.3 KB | ≈ 2.5-3.0 KB           |  |
| Permuted Kernel        | PERK            | 5.8 KB | ≈ 3.6 KB               |  |
| Rank Syndrome Decoding | RYDE            | 6.0 KB | ≈ 2.9 KB               |  |
| Structured MQ          | Biscuit         | 5.7 KB | ≈ 3.0 KB               |  |
| Syndrome Decoding      | SDitH           | 8.3 KB | ≈ 3.9 KB               |  |

Running times of few ten millions of cycles.

<sup>\* [</sup>BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.

### Comparison with the PQC State of the Art

|                 | MPCitH                              | Dilithium/ML-DSA      | Falcon/FN-DSA         | SPHINCS+  |
|-----------------|-------------------------------------|-----------------------|-----------------------|-----------|
| Signature Sizes | 2.5-4.5 KB                          | 2.4 KB                | 0.7 KB                | 7.8-17 KB |
| Pk Sizes        | < 0.2 KB                            | 1.3 KB                | 0.9 KB                | < 0.1 KB  |
| lSigl+lPKl      | 2.5-4.6 KB                          | 3.7 KB                | 1.6 KB                | 7.9-17 KB |
| Sign. Time      | ~ (few ms)                          | ++                    | ++                    | -         |
| Verif. Time     | ~ (few ms)                          | ++                    | ++                    | ~         |
| Security        | AES Unstructured SD Unstructured MQ | Structured<br>Lattice | Structured<br>Lattice | Hash      |

- MPC-in-the-Head
  - A practical tool to build *conservative* signature schemes
  - Second round of the additional NIST call:
    - 6 MPCitH-based schemes among 14 candidates
  - Latest frameworks: VOLEitH and TCitH
    - Can be interpreted as Polynomial IOP (Interactive Oracle Proof)

- MPC-in-the-Head
  - A practical tool to build *conservative* signature schemes
  - Second round of the additional NIST call:

6 MPCitH-based schemes among 14 candidates

- Latest frameworks: VOLEitH and TCitH
  - Can be interpreted as Polynomial IOP (Interactive Oracle Proof)
- Perspectives:
  - Second-round submission packages (short-term)

#### MPC-in-the-Head

- A practical tool to build *conservative* signature schemes
- Second round of the additional NIST call:

6 MPCitH-based schemes among 14 candidates

- Latest frameworks: VOLEitH and TCitH
  - Can be interpreted as Polynomial IOP (Interactive Oracle Proof)

#### Perspectives:

- Second-round submission packages (short-term)
- Signatures with advanced functionalities (middle-term)

ring signatures, threshold signatures, blind signatures, multi-signatures, ...

#### MPC-in-the-Head

- A practical tool to build *conservative* signature schemes
- Second round of the additional NIST call:

6 MPCitH-based schemes among 14 candidates

- Latest frameworks: VOLEitH and TCitH
  - Can be interpreted as Polynomial IOP (Interactive Oracle Proof)

#### Perspectives:

- Second-round submission packages (short-term)
- Signatures with advanced functionalities (middle-term)

ring signatures, threshold signatures, blind signatures, multi-signatures, ...

Thank you for your attention.