
The Polynomial-IOP Vision of
the Latest MPCitH Frameworks

for Signature Schemes

Thibauld Feneuil

Post-Quantum Cryptography Trimester - Second Workshop

November 8, 2024, IHP Paris

Table of Contents

- Introduction

- The TCitH and VOLEitH frameworks, in the PIOP formalism

• Polynomial IOP

• Committing to polynomials

- Building signatures

- Conclusion

Introduction

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

Very hard
to compute

m

H

H

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

I know the
private key.

I am convinced.

Large(r) signatures

Short public key

Very hard
to compute

From an
identification scheme

m

H

H

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

I know the
private key.

I am convinced.

Large(r) signatures

Short public key

Very hard
to compute

From an
identification scheme

m

H

H

Identification Scheme

- Completeness: Pr[verif ✓ | honest prover] = 1

- Soundness: Pr[verif ✓ | malicious prover] (e.g.)

- Zero-knowledge: verifier learns nothing on .

≤ ε 2−128

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier

I know .

I am convinced.

Identification Scheme

Challenge 1 = Hash(m, Commitment)

Prover

Verifier

Challenge = Hash(m, Response)n n − 1

⋮

I know .

Transcript

Fiat-Shamir
Transformation

m: message to sign

MPC in the Head
- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:

“Zero-knowledge from secure multiparty computation” (STOC 2007)

- Turn a multiparty computation (MPC) into an identification scheme / zero-
knowledge proof of knowledge

- Generic: can be applied to any cryptographic problem

MPC in the Head
- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:

“Zero-knowledge from secure multiparty computation” (STOC 2007)

- Convenient to build (candidate) post-quantum signature schemes

- Picnic: submission to NIST (2017)

MPC in the Head
- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:

“Zero-knowledge from secure multiparty computation” (STOC 2007)

- Convenient to build (candidate) post-quantum signature schemes

- Picnic: submission to NIST (2017)

- First round of additional NIST call: 7~9 MPCitH schemes / 40 candidates

AIMer
Biscuit
FAEST
MIRA
MiRitH

MQOM
PERK
RYDE
SDitH

MPC in the Head
- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:

“Zero-knowledge from secure multiparty computation” (STOC 2007)

- Convenient to build (candidate) post-quantum signature schemes

- Picnic: submission to NIST (2017)

- First round of additional NIST call: 7~9 MPCitH schemes / 40 candidates

- Second round of recent NIST call: 5~6 MPCitH schemes / 14 candidates

FAEST
Mirath
MQOM

PERK
RYDE
SDitH

IK
OS
07

ZK
Bo
o

CD
G+
17

MPC-in-the-Head Paradigm

Picnic1

20
16
20
17

20
07

IK
OS
07

ZK
Bo
o

CD
G+
17

Li
ge
ro

Broadcast

MPC-in-the-Head Paradigm

Br
ak
ed
ow
n

20
17

20
21Sublinear

Arguments
Of Knowledge

IK
OS
07

ZK
Bo
o

CD
G+
17

Li
ge
ro

KK
W1
8

BN
20

Broadcast

MPC-in-the-Head Paradigm

Br
ak
ed
ow
n

BBQ
Banquet

Limbo
BN++

Helium

Sublinear
Arguments

Of Knowledge

Signature
Schemes

Im
pr
ov
ed

TC
it
H

IK
OS
07

ZK
Bo
o

CD
G+
17

Li
ge
ro

KK
W1
8

BN
20

AG
H+
22

Broadcast

MPC-in-the-Head Paradigm

Br
ak
ed
ow
n

VO
LE
it
H

Or
ig
in
al

TC
it
H

20
22

20
23

20
23

Signature
Schemes

Sublinear
Arguments

Of Knowledge

Im
pr
ov
ed

TC
it
H

IK
OS
07

ZK
Bo
o

CD
G+
17

Li
ge
ro

KK
W1
8

BN
20

AG
H+
22

Broadcast

MPC-in-the-Head Paradigm

Br
ak
ed
ow
n

VO
LE
it
H

Or
ig
in
al

TC
it
H

Sublinear
Arguments

Of Knowledge

AIMer
Biscuit
MIRA

MiRitH

MQOM
SDitH (hyp)

RYDE

SDitH (thr)

FAEST

Additive sharings

Im
pr
ov
ed

TC
it
H

IK
OS
07

ZK
Bo
o

CD
G+
17

Li
ge
ro

KK
W1
8

BN
20

AG
H+
22

Broadcast

MPC-in-the-Head Paradigm

Br
ak
ed
ow
n

VO
LE
it
H

Or
ig
in
al

TC
it
H

Sublinear
Arguments

Of Knowledge

Signature
Schemes

Rely on MPC techniques : GMW87, Beaver triples, …

Im
pr
ov
ed

TC
it
H

IK
OS
07

ZK
Bo
o

CD
G+
17

Li
ge
ro

KK
W1
8

BN
20

AG
H+
22

Broadcast

MPC-in-the-Head Paradigm

Br
ak
ed
ow
n

VO
LE
it
H

Or
ig
in
al

TC
it
H

Sublinear
Arguments

Of Knowledge

Signature
Schemes

Can be interpreted as
Polynomial IOP (Interactive

Oracle Proof)

Can be interpreted as
Polynomial IOP (Interactive

Oracle Proof)

Im
pr
ov
ed

TC
it
H

IK
OS
07

ZK
Bo
o

CD
G+
17

Li
ge
ro

KK
W1
8

BN
20

AG
H+
22

Broadcast

MPC-in-the-Head Paradigm

Br
ak
ed
ow
n

VO
LE
it
H

Or
ig
in
al

TC
it
H

Sublinear
Arguments

Of Knowledge

The TCitH and VOLEitH Frameworks

[FR23] Feneuil, Rivain. Threshold
Computation in the Head: Improved
Framework for Post-Quantum Signatures
and Zero-Knowledge Arguments. ePrint
2023/1573.

[BBD+23] Baum, Braun, Delpech, Klooß,
Orsini, Roy, Scholl. Publicly Verifiable
Zero-Knowledge and Post-Quantum
Signatures From VOLE-in-the-Head.
Crypto 2023.

(for signature schemes)

Prover Verifier

I know such that

where is a public degree- polynomial.

w1, …, wn

f(w1, …, wn) = 0

f d
Prove it!

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

Prover Verifier

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

Com(P1, …, Pn)② Commit the polynomials P1, …, Pn

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

Prover Verifier

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

② Commit the polynomials P1, …, Pn

③ Reveal the polynomial such that Q(X)
X ⋅ Q(X) = f (P1(X), …, Pn(X))

Q

Com(P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

Prover Verifier

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

② Commit the polynomials P1, …, Pn

③ Reveal the polynomial such that Q(X)
X ⋅ Q(X) = f (P1(X), …, Pn(X))

Q

Com(P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

f(P1(0), …, Pn(0)) = f(w1, …, wn) = 0

Well-defined!

Prover Verifier

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

② Commit the polynomials P1, …, Pn

Q

v1, …, vn

r

Com(P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

⑤ Reveal the evaluation for all . vi := Pi(r) i

④ Choose a random evaluation
point r ∈ S ⊂ 𝔽

③ Reveal the polynomial such that Q(X)
X ⋅ Q(X) = f (P1(X), …, Pn(X))

Prover Verifier

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

② Commit the polynomials P1, …, Pn

Q

⑤ Reveal the evaluation for all . vi := Pi(r) i v1, …, vn
⑥ Check that are
consistent with the commitment.

v1, …, vn

r

Com(P1, …, Pn)

④ Choose a random evaluation
point r ∈ S ⊂ 𝔽

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

③ Reveal the polynomial such that Q(X)
X ⋅ Q(X) = f (P1(X), …, Pn(X))

 Check that
r ⋅ Q(r) = f (v1, …, vn)

Malicious Prover 😈 Verifier

① For all , choose a degree- polynomial
. We have

.

i ℓ
Pi(X)

f (P1(0), …, Pn(0)) ≠ 0

② Commit the polynomials P1, …, Pn

③ Reveal the polynomial . We know that Q(X)
X ⋅ Q(X) ≠ f (P1(X), …, Pn(X))

Q

v1, …, vn

r

Com(P1, …, Pn)

Soundness Analysis

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

⑤ Reveal the evaluation for all . vi := Pi(r) i
⑥ Check that are
consistent with the commitment.

v1, …, vn

④ Choose a random evaluation
point r ∈ S ⊂ 𝔽

 Check that
r ⋅ Q(r) = f (v1, …, vn)

Malicious Prover 😈 Verifier

① For all , choose a degree- polynomial
. We have

.

i ℓ
Pi(X)

f (P1(0), …, Pn(0)) ≠ 0

② Commit the polynomials P1, …, Pn

③ Reveal the polynomial . We know that Q(X)
X ⋅ Q(X) ≠ f (P1(X), …, Pn(X))

Q

v1, …, vn

r

Com(P1, …, Pn)

Soundness Analysis

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

⑤ Reveal the evaluation for all . vi := Pi(r) i
⑥ Check that are
consistent with the commitment.

v1, …, vn

④ Choose a random evaluation
point r ∈ S ⊂ 𝔽

 Check that
r ⋅ Q(r) = f (v1, …, vn)

Malicious Prover 😈 Verifier

① For all , choose a degree- polynomial
. We have

.

i ℓ
Pi(X)

f (P1(0), …, Pn(0)) ≠ 0

② Commit the polynomials P1, …, Pn

③ Reveal the polynomial . We know that Q(X)
X ⋅ Q(X) ≠ f (P1(X), …, Pn(X))

Q

v1, …, vn

r

Com(P1, …, Pn)

Soundness Analysis

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

⑤ Reveal the evaluation for all . vi := Pi(r) i
Schwartz-Zippel Lemma: Let be a non-zero polynomial of degree .
We have

.

Since is a degree- polynomial, we
have

.

P μ

Pr [P(r) = 0 ∣ r ←$ S] ≤
μ

|S |

X ⋅ Q(X) − f(P1(X), …, Pn(X)) (d ⋅ ℓ)

Pr[verification passes] ≤
d ⋅ ℓ
|S |

⑥ Check that are
consistent with the commitment.

v1, …, vn

④ Choose a random evaluation
point r ∈ S ⊂ 𝔽

 Check that
r ⋅ Q(r) = f (v1, …, vn)

Prover Verifier

Prove it!

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

Soundness Error =
d ⋅ ℓ
|S |

Probability that a malicious prover
can convince the verifier.

I know such that

where is a public degree- polynomial.

w1, …, wn

f(w1, …, wn) = 0

f d

Prover Verifier

I know such that

where are public degree- polynomials.

w1, …, wn

f1(w1, …, wn) = 0
⋮

fm(w1, …, wn) = 0,

f1, …, fm d
Prove it!

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

Prover

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

② Commit the polynomials P1, …, Pn

Q1, …, Qm

⑤ Reveal the evaluation for all . vi := Pi(r) i
v1, …, vn ⑥ Check that are

consistent with the commitment.
v1, …, vn

r

Com(P1, …, Pn)

④ Choose a random evaluation
point r ∈ S ⊂ 𝔽

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

③ Reveal the polynomials
 such that

Q1(X), …, Qm(X)

X ⋅ Q1(X) = f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = fm(P1(X), …, Pn(X))

 Check that
r ⋅ Q1(r) = f1(v1, …, vn)…
r ⋅ Qm(r) = fm(v1, …, vn)

Prover

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

② Commit the polynomials P1, …, Pn

Q1, …, Qm

⑥ Reveal the evaluation for all . vi := Pi(r) i
v1, …, vn ⑦ Check that are

consistent with the commitment.
v1, …, vn

r

Com(P1, …, Pn)

⑤ Choose a random evaluation
point r ∈ S ⊂ 𝔽

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

④ Reveal the polynomials
 such that

Q1(X), …, Qm(X)

X ⋅ Q1(X) = f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = fm(P1(X), …, Pn(X))

 Check that
r ⋅ Q1(r) = f1(v1, …, vn)…
r ⋅ Qm(r) = fm(v1, …, vn)

Costly! 😰

Prover

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

② Commit the polynomials P1, …, Pn

Q1, …, Qm

⑥ Reveal the evaluation for all . vi := Pi(r) i
v1, …, vn ⑦ Check that are

consistent with the commitment.
v1, …, vn

r

Com(P1, …, Pn)

⑤ Choose a random evaluation
point r ∈ S ⊂ 𝔽

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

④ Reveal the polynomials
 such that

Q1(X), …, Qm(X)

X ⋅ Q1(X) = f1(P1(X), …, Pn(X))
⋮

X ⋅ Qm(X) = fm(P1(X), …, Pn(X))

 Check that
r ⋅ Q1(r) = f1(v1, …, vn)…
r ⋅ Qm(r) = fm(v1, …, vn)

Costly! 😰

Solution: batching

Prover Verifier

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

Com(P1, …, Pn)② Commit the polynomials P1, …, Pn

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

Prover Verifier

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

② Commit the polynomials P1, …, Pn

γ1, …, γm

③ Choose random coefficients
γ1, …, γm ←$ 𝔽

④ Reveal the polynomial such that Q(X)

X ⋅ Q(X) =
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))
Q

Com(P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

Prover Verifier

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

② Commit the polynomials P1, …, Pn

γ1, …, γm

③ Choose random coefficients
γ1, …, γm ←$ 𝔽

Q

Well-defined!

Com(P1, …, Pn)

m

∑
j=1

γj ⋅ fj(P1(0), …, Pn(0)) =
m

∑
j=1

γj ⋅ fj(w1, …, wn)

=
m

∑
j=1

γj ⋅ 0 = 0

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

④ Reveal the polynomial such that Q(X)

X ⋅ Q(X) =
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))

Prover Verifier

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

② Commit the polynomials P1, …, Pn

γ1, …, γm

③ Choose random coefficients
γ1, …, γm ←$ 𝔽

Q

⑤ Choose a random evaluation
point r ∈ S ⊂ 𝔽

⑥ Reveal the evaluation for all . vi := Pi(r) i v1, …, vn

r

Com(P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

④ Reveal the polynomial such that Q(X)

X ⋅ Q(X) =
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))

Prover Verifier

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

② Commit the polynomials P1, …, Pn

γ1, …, γm

③ Choose random coefficients
γ1, …, γm ←$ 𝔽

Q

⑥ Reveal the evaluation for all . vi := Pi(r) i v1, …, vn ⑦ Check that are
consistent with the commitment.
 Check that

v1, …, vn

r ⋅ Q(r) =
m

∑
j=1

γj ⋅ fj(v1, …, vn)

r

Com(P1, …, Pn)

⑤ Choose a random evaluation
point r ∈ S ⊂ 𝔽

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

④ Reveal the polynomial such that Q(X)

X ⋅ Q(X) =
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))

Malicious Prover 😈 Verifier

① For all , choose a degree- polynomial
. There exists s.t.

.

i ℓ
Pi(X) j*

fj*(P1(0), …, Pn(0)) ≠ 0

② Commit the polynomials P1, …, Pn

γ1, …, γm

③ Choose random coefficients
γ1, …, γm ←$ 𝔽

④ Reveal the polynomial . We know that Q(X)

X ⋅ Q(X) ≠
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))

⑥ Reveal the evaluation for all . vi := Pi(r) i ⑦ Check that are
consistent with the commitment.
 Check that

v1, …, vn

r ⋅ Q(r) =
m

∑
j=1

γj ⋅ fj(v1, …, vn)

Q

v1, …, vn

r

Com(P1, …, Pn)

⑤ Choose a random evaluation
point r ∈ S ⊂ 𝔽

Soundness Analysis

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

Verifier

① For all , choose a degree- polynomial
. There exists s.t.

.

i ℓ
Pi(X) j*

fj*(P1(0), …, Pn(0)) ≠ 0

② Commit the polynomials P1, …, Pn

γ1, …, γm

③ Choose random coefficients
γ1, …, γm ←$ 𝔽

④ Reveal the polynomial . We know that Q(X)

X ⋅ Q(X) ≠
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))

⑥ Reveal the evaluation for all . vi := Pi(r) i ⑦ Check that are
consistent with the commitment.
 Check that

v1, …, vn

r ⋅ Q(r) =
m

∑
j=1

γj ⋅ fj(v1, …, vn)

Q

v1, …, vn

r

Com(P1, …, Pn)

⑤ Choose a random evaluation
point r ∈ S ⊂ 𝔽

It is an inequality with high probability over the
randomness of , since we haveγ1, …, γm

m

∑
j=1

γj ⋅ fj(P1(0), …, Pn(0)) ≠ 0Malicious Prover 😈

Soundness Analysis

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

Malicious Prover 😈 Verifier

① For all , choose a degree- polynomial
. There exists s.t.

.

i ℓ
Pi(X) j*

fj*(P1(0), …, Pn(0)) ≠ 0

② Commit the polynomials P1, …, Pn

γ1, …, γm

③ Choose random coefficients
γ1, …, γm ←$ 𝔽

④ Reveal the polynomial . We know that Q(X)

X ⋅ Q(X) ≠
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))

⑥ Reveal the evaluation for all . vi := Pi(r) i ⑦ Check that are
consistent with the commitment.
 Check that

v1, …, vn

r ⋅ Q(r) =
m

∑
j=1

γj ⋅ fj(v1, …, vn)

Q

v1, …, vn

r

Com(P1, …, Pn)

⑤ Choose a random evaluation
point r ∈ S ⊂ 𝔽

Schwartz-Zippel Lemma: Since it is a degree- relation,

.

(d ⋅ ℓ)

Pr[verification passes] ≤
d ⋅ ℓ
|S |

Soundness Analysis

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

Prover Verifier

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

② Commit the polynomials P1, …, Pn

γ1, …, γm

③ Choose random coefficients
γ1, …, γm ←$ 𝔽

④ Reveal the polynomial such that Q(X)

X ⋅ Q(X) =
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))
Q

⑥ Reveal the evaluation for all . vi := Pi(r) i v1, …, vn ⑦ Check that are
consistent with the commitment.
 Check that

v1, …, vn

r ⋅ Q(r) =
m

∑
j=1

γj ⋅ fj(v1, …, vn)

r

Com(P1, …, Pn)

⑤ Choose a random evaluation
point r ∈ S ⊂ 𝔽

Zero-Knowledge Analysis

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

Q

v1, …, vn

r

Prover Verifier 👀

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

② Commit the polynomials P1, …, Pn

γ1, …, γm

③ Choose random coefficients
γ1, …, γm ←$ 𝔽

④ Reveal the polynomial such that Q(X)

X ⋅ Q(X) =
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))

⑥ Reveal the evaluation for all . vi := Pi(r) i ⑦ Check that are
consistent with the commitment.
 Check that

v1, …, vn

r ⋅ Q(r) =
m

∑
j=1

γj ⋅ fj(v1, …, vn)

Com(P1, …, Pn)

⑤ Choose a random evaluation
point r ∈ S ⊂ 𝔽

Revealing an evaluation of
leaks no information about .

Pi(X)
wi

Zero-Knowledge Analysis

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

Q

v1, …, vn

r

Prover Verifier 👀

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

② Commit the polynomials P1, …, Pn

γ1, …, γm

③ Choose random coefficients
γ1, …, γm ←$ 𝔽

④ Reveal the polynomial such that Q(X)

X ⋅ Q(X) =
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))

⑥ Reveal the evaluation for all . vi := Pi(r) i ⑦ Check that are
consistent with the commitment.
 Check that

v1, …, vn

r ⋅ Q(r) =
m

∑
j=1

γj ⋅ fj(v1, …, vn)

Com(P1, …, Pn)

⑤ Choose a random evaluation
point r ∈ S ⊂ 𝔽

Zero-Knowledge Analysis

⚠ Leak information about the witness w1, …, wn

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

Com(P0, P1, …, Pn)② Commit the polynomials P0, P1, …, Pn

γ1, …, γm

Sample a random degree-
 polynomial

(dℓ − 1)
P0(X)

③ Choose random coefficients
γ1, …, γm ←$ 𝔽

④ Reveal the polynomial such that Q(X)

X ⋅ Q(X) = X ⋅ P0(X)+
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))
Q

⑥ Reveal the evaluation for all . vi := Pi(r) i v0, v1, …, vn

r
⑤ Choose a random evaluation

point r ∈ S ⊂ 𝔽

Verifier 👀Prover

Zero-Knowledge Analysis

⑦ Check that are
consistent with the commitment.

v1, …, vn

 Check that

r ⋅ Q(r) = r ⋅ v0+
m

∑
j=1

γj ⋅ fj(v1, …, vn)

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

Com(P0, P1, …, Pn)② Commit the polynomials P0, P1, …, Pn

γ1, …, γm

Sample a random degree-
 polynomial

(dℓ − 1)
P0(X)

③ Choose random coefficients
γ1, …, γm ←$ 𝔽

④ Reveal the polynomial such that Q(X)

X ⋅ Q(X) = X ⋅ P0(X) +
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))
Q

⑥ Reveal the evaluation for all . vi := Pi(r) i v0, v1, …, vn

r
⑤ Choose a random evaluation

point r ∈ S ⊂ 𝔽

Prover

⑦ Check that are
consistent with the commitment.

v1, …, vn

 Check that

r ⋅ Q(r) = r ⋅ v0 +
m

∑
j=1

γj ⋅ fj(v1, …, vn)

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

① For all , sample a random degree-
polynomial such that

i ℓ
Pi(X) Pi(0) = wi

Com(P0, P1, …, Pn)② Commit the polynomials P0, P1, …, Pn

γ1, …, γm

Sample a random degree-
 polynomial

(dℓ − 1)
P0(X)

③ Choose random coefficients
γ1, …, γm ←$ 𝔽

④ Reveal the polynomial such that Q(X)

X ⋅ Q(X) = X ⋅ P0(X) +
m

∑
j=1

γj ⋅ fj(P1(X), …, Pn(X))
Q

⑥ Reveal the evaluation for all . vi := Pi(r) i v0, v1, …, vn

r
⑤ Choose a random evaluation

point r ∈ S ⊂ 𝔽

Prover

⑦ Check that are
consistent with the commitment.

v1, …, vn

 Check that

r ⋅ Q(r) = r ⋅ v0 +
m

∑
j=1

γj ⋅ fj(v1, …, vn)

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)

How to commit to polynomials?

① VOLEitH / TCitH-GGM

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[BBD+23] Baum, Braun, Delpech, Klooß,
Orsini, Roy, Scholl. Publicly Verifiable Zero-
Knowledge and Post-Quantum Signatures
From VOLE-in-the-Head. Crypto 2023.

[FR23] Feneuil, Rivain. Threshold
Computation in the Head: Improved
Framework for Post-Quantum Signatures
and Zero-Knowledge Arguments. ePrint
2023/1573.

How to commit to polynomials?

① VOLEitH / TCitH-GGM

② Degree-enforcing commitment
(TCitH-MT)

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[FR23] Feneuil, Rivain. Threshold
Computation in the Head: Improved
Framework for Post-Quantum Signatures
and Zero-Knowledge Arguments. ePrint
2023/1573.

How to commit to polynomials?

① VOLEitH / TCitH-GGM

② Degree-enforcing commitment
(TCitH-MT)

③ Merkle Trees with
Ligero-like Proximity Tests

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[AHIV17] Ames, Hazay, Ishai,
Venkitasubramaniam. Ligero: Lightweight
Sublinear Arguments Without a Trusted
Setup. CCS 2017.

[GLS+23] Golonew, Lee, Setty, Thaler,
Wahby. Brakedown: Linear-time and field
agnotic SNARKs for R1CS. Crypto 2023.

How to commit to polynomials?

① VOLEitH / TCitH-GGM

② Degree-enforcing commitment
(TCitH-MT)

③ Merkle Trees with
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[BBHR18] Ben-Sasson, Bentov, Horesh,
Riabzev. Fast Reed-Solomon Interactive
Oracle Proofs of Proximity. ICALP 2018.

[BGKS20] Ben-Sasson, Goldberg,
Kopparty, Saraf. DEEP-FRI: Sampling
Outside the Box Improves Soundness.
ITCS 2020.

How to commit to polynomials?

① VOLEitH / TCitH-GGM

② Degree-enforcing commitment
(TCitH-MT)

③ Merkle Trees with
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000

For signature schemes, we use
degree- polynomials most of the time.1

Committing to a Polynomial using a Seed Tree

Public data: Let us

- have distinct values , and

- define such that and , for all in .

We want to build and commit a random degree- polynomial . We sample

values and define as

.

N e1, …, eN

Ri Ri(0) = 1 Ri(ei) = 0 i {1,…, N}

1 P N
r1, …, rN P

P := ∑
i

ri ⋅ Ri

Committing to a Polynomial using a Seed Tree

Correctness:
If , is a random
degree- polynomial.
N ≥ 2 P

1

Public data: Let us

- have distinct values , and

- define such that and , for all in .

We want to build and commit a random degree- polynomial . We sample

values and define as

.

N e1, …, eN

Ri Ri(0) = 1 Ri(ei) = 0 i {1,…, N}

1 P N
r1, …, rN P

P := ∑
i

ri ⋅ Ri

Committing to a Polynomial using a Seed Tree

Correctness:
If , is a random
degree- polynomial.
N ≥ 2 P

1

Commitment:
We commit to each value

 independently.ri

Public data: Let us

- have distinct values , and

- define such that and , for all in .

We want to build and commit a random degree- polynomial . We sample

values and define as

.

N e1, …, eN

Ri Ri(0) = 1 Ri(ei) = 0 i {1,…, N}

1 P N
r1, …, rN P

P := ∑
i

ri ⋅ Ri

Committing to a Polynomial using a Seed Tree

Correctness:
If , is a random
degree- polynomial.
N ≥ 2 P

1

Commitment:
We commit to each value

 independently.ri

Opening :
Reveal all .

P(ei*)
{ri}i≠i*

P(ei*) = ∑
i≠i*

ri ⋅ Ri(ei*) + ri* ⋅ Ri*(ei*)

=0

= ∑
i≠i*

ri ⋅ Ri(ei*)

Public data: Let us

- have distinct values , and

- define such that and , for all in .

We want to build and commit a random degree- polynomial . We sample

values and define as

.

N e1, …, eN

Ri Ri(0) = 1 Ri(ei) = 0 i {1,…, N}

1 P N
r1, …, rN P

P := ∑
i

ri ⋅ Ri

Committing to a Polynomial using a Seed Tree

Correctness:
If , is a random
degree- polynomial.
N ≥ 2 P

1

Commitment:
We commit to each value

 independently.ri

Opening :
Reveal all .

P(ei*)
{ri}i≠i*

The opening leaks nothing
about , except .P P(ei*)

P(ei*) = ∑
i≠i*

ri ⋅ Ri(ei*) + ri* ⋅ Ri*(ei*)

=0

= ∑
i≠i*

ri ⋅ Ri(ei*)

Public data: Let us

- have distinct values , and

- define such that and , for all in .

We want to build and commit a random degree- polynomial . We sample

values and define as

.

N e1, …, eN

Ri Ri(0) = 1 Ri(ei) = 0 i {1,…, N}

1 P N
r1, …, rN P

P := ∑
i

ri ⋅ Ri

Committing to a Polynomial using a Seed Tree

Correctness:
If , is a random
degree- polynomial.
N ≥ 2 P

1

Commitment:
We commit to each value

 independently.ri

Opening :
Reveal all .

P(ei*)
{ri}i≠i*

🛠 Can be adapted to
any degree.

The opening leaks nothing
about , except .P P(ei*)

P(ei*) = ∑
i≠i*

ri ⋅ Ri(ei*) + ri* ⋅ Ri*(ei*)

=0

= ∑
i≠i*

ri ⋅ Ri(ei*)

Public data: Let us

- have distinct values , and

- define such that and , for all in .

We want to build and commit a random degree- polynomial . We sample

values and define as

.

N e1, …, eN

Ri Ri(0) = 1 Ri(ei) = 0 i {1,…, N}

1 P N
r1, …, rN P

P := ∑
i

ri ⋅ Ri

Committing to a Polynomial using a Seed Tree

Correctness:
If , is a random
degree- polynomial.
N ≥ 2 P

1

Commitment:
We commit to each value

 independently.ri

Opening :
Reveal all .

P(ei*)
{ri}i≠i*

🛠 Can be adapted to
any degree.

The opening leaks nothing
about , except .P P(ei*)

P(ei*) = ∑
i≠i*

ri ⋅ Ri(ei*) + ri* ⋅ Ri*(ei*)

=0

= ∑
i≠i*

ri ⋅ Ri(ei*)

Costly! 😰

Public data: Let us

- have distinct values , and

- define such that and , for all in .

We want to build and commit a random degree- polynomial . We sample

values and define as

.

N e1, …, eN

Ri Ri(0) = 1 Ri(ei) = 0 i {1,…, N}

1 P N
r1, …, rN P

P := ∑
i

ri ⋅ Ri

r2r1 r3 rN−1 rN…

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Committing to a Polynomial using a Seed Tree

seed1 seed2 seed3 seedN−1 seedN

PR
G

PR
G

PR
G

PR
G

PR
G

r2r1 r3 rN−1 rN…

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Committing to a Polynomial using a Seed Tree

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

PRG
PRG PR

G

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤) ← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

r2r1 r3 rN−1 rN…

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Committing to a Polynomial using a Seed Tree

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

PRG
PRG PR

G

to be revealedi*

r2r1 r3 rN−1 rN…

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Committing to a Polynomial using a Seed Tree

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

PRG
PRG PR

G

to be revealedi*

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

r2r1 r3 rN−1 rN…

Committing to a Polynomial using a Seed Tree

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

PRG
PRG PR

G

to be revealedi*

sibling path
→ seedslog(N)

r2r1 r3 rN−1 rN…

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Committing to a Polynomial using a Seed Tree

Committing to a Polynomial using a Seed Tree

We want to build and commit a random degree- polynomial such that
.

1 P
P(0) = w

Committing to a Polynomial using a Seed Tree

We want to build and commit a random degree- polynomial such that
.

1. Sample and commit a random degree- polynomial

2. Reveal

3. Define as

1 P
P(0) = w

1 P̃
Δw := w − P̃(0)
P P(X) := P̃ + Δw

Committing to a Polynomial using a Seed Tree

We want to build and commit a random degree- polynomial such that
.

1. Sample and commit a random degree- polynomial

2. Reveal

3. Define as

To open for , we just need to open and to

compute

.

1 P
P(0) = w

1 P̃
Δw := w − P̃(0)
P P(X) := P̃ + Δw

P(ei*) i* ∈ {1,…, N} P̃(ei*)

P(ei*) ← P̃(ei*) + Δw

Committing to a Polynomial using a Seed Tree

Complexity in to have a soundness error of (degree- polynomials).

How to have a negligible soundness error?

O(N)
d
N

1

🤔

Committing to a Polynomial using a Seed Tree

1. Taking . Impossible since the complexity would be in .N ≥ 2λ O(2λ)

Complexity in to have a soundness error of (degree- polynomials).

How to have a negligible soundness error?

O(N)
d
N

1

🤔

Committing to a Polynomial using a Seed Tree

1. Taking . Impossible since the complexity would be in .

2. TCitH-GGM Approach. Taking small (e.g.) and repeating the

protocol times. Soundness error of .

N ≥ 2λ O(2λ)

N N = 256

τ (d
N)

τ

Complexity in to have a soundness error of (degree- polynomials).

How to have a negligible soundness error?

O(N)
d
N

1

🤔

Committing to a Polynomial using a Seed Tree

1. Taking . Impossible since the complexity would be in .

2. TCitH-GGM Approach. Taking small (e.g.) and repeating the

protocol times. Soundness error of .

3. VOLEitH Approach. Embed polynomials over into a unique

polynomial over , for which we will be able to open evaluations.

Soundness error of .

N ≥ 2λ O(2λ)

N N = 256

τ (d
N)

τ

τ 𝔽q

𝔽qτ Nτ

d
Nτ

Complexity in to have a soundness error of (degree- polynomials).

How to have a negligible soundness error?

O(N)
d
N

1

🤔

Building Signatures

Building Signatures

Prover Verifier

I know such that

where are public degree- polynomials.

w1, …, wn

f1(w1, …, wn) = 0
⋮

fm(w1, …, wn) = 0,

f1, …, fm d Prove it!

Building Signatures

Prover Verifier

I know such that

where are public degree- polynomials.

w1, …, wn

f1(w1, …, wn) = 0
⋮

fm(w1, …, wn) = 0,

f1, …, fm d Prove it!

Signature Scheme

Fiat-Shamir
Transformation

Building Signature Schemes
The public key is composed of the degree- polynomials .

The private key is the witness that satisfies

d f1, …, fm
w := (w1, …, wn)

f1(w1, …, wn) = 0,
⋮

fm(w1, …, wn) = 0.

Building Signature Schemes
The public key is composed of the degree- polynomials .

The private key is the witness that satisfies

d f1, …, fm
w := (w1, …, wn)

f1(w1, …, wn) = 0,
⋮

fm(w1, …, wn) = 0.

When are random degree- polynomials,

Signature relying on the Multivariate Quadratic (MQ) problem

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum
Signatures and Zero-Knowledge Arguments. ePrint 2023/1573.

[BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them
All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.

f1, …, fn 2

Building Signature Schemes

Proving that the private key satisfies

 with

where is the public key.

Signature relying on the MinRank problem

[BFG+24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the Head: Shorter
Signatures from Rank SD and MinRank. Asiacrypt 2024.

(L, R) ∈ 𝔽n×r × 𝔽 r×m

y − Hx = 0 x = vectorialize(L ⋅ R)
(H, y)

Signature Sizes with the New Frameworks

NIST Submission New frameworks + Opt.*

Security Assumptions Candidate Name Sizes Sizes

AES Block cipher FAEST 4.6 KB ≈ 4.1-4.5 KB

AIM Block cipher AIMer 3.8 KB ≈ 3.0 KB

MinRank MiRitH, MIRA 5.6 KB ≈ 2.9-3.1 KB

Multivariate Quadratic MQOM 6.3 KB ≈ 2.5-3.0 KB

Permuted Kernel PERK 5.8 KB ≈ 3.6 KB

Rank Syndrome Decoding RYDE 6.0 KB ≈ 2.9 KB

Structured MQ Biscuit 5.7 KB ≈ 3.0 KB

Syndrome Decoding SDitH 8.3 KB ≈ 3.9 KB

Running times of few ten millions of cycles.

* [BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All:
Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.

Comparison with the PQC State of the Art

MPCitH Dilithium/ML-DSA Falcon/FN-DSA SPHINCS+

Signature Sizes 2.5-4.5 KB 2.4 KB 0.7 KB 7.8-17 KB

Pk Sizes < 0.2 KB 1.3 KB 0.9 KB < 0.1 KB

|Sig|+|PK| 2.5-4.6 KB 3.7 KB 1.6 KB 7.9-17 KB

Sign. Time ~ (few ms) ++ ++ -

Verif. Time ~ (few ms) ++ ++ ~

Security

AES
Unstructured SD
Unstructured MQ

…

Structured
Lattice

Structured
Lattice

Hash

Conclusion

MPC-in-the-Head

A practical tool to build conservative signature schemes

Second round of the additional NIST call:

6 MPCitH-based schemes among 14 candidates

Latest frameworks: VOLEitH and TCitH

Can be interpreted as Polynomial IOP (Interactive Oracle Proof)

Conclusion

MPC-in-the-Head

A practical tool to build conservative signature schemes

Second round of the additional NIST call:

6 MPCitH-based schemes among 14 candidates

Latest frameworks: VOLEitH and TCitH

Can be interpreted as Polynomial IOP (Interactive Oracle Proof)

Perspectives:

Second-round submission packages (short-term)

Conclusion

MPC-in-the-Head

A practical tool to build conservative signature schemes

Second round of the additional NIST call:

6 MPCitH-based schemes among 14 candidates

Latest frameworks: VOLEitH and TCitH

Can be interpreted as Polynomial IOP (Interactive Oracle Proof)

Perspectives:

Second-round submission packages (short-term)

Signatures with advanced functionalities (middle-term)

ring signatures, threshold signatures,

blind signatures, multi-signatures, …

Conclusion

MPC-in-the-Head

A practical tool to build conservative signature schemes

Second round of the additional NIST call:

6 MPCitH-based schemes among 14 candidates

Latest frameworks: VOLEitH and TCitH

Can be interpreted as Polynomial IOP (Interactive Oracle Proof)

Perspectives:

Second-round submission packages (short-term)

Signatures with advanced functionalities (middle-term)

ring signatures, threshold signatures,

blind signatures, multi-signatures, …

Conclusion

Thank you for your attention.

