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Identification Scheme

- Completeness: Pr[verif ✓ | honest prover] = 1 

- Soundness: Pr[verif ✓ | malicious prover]   (e.g.  ) 

- Zero-knowledge: verifier learns nothing on          .

≤ ε 2−128

Commitment

Challenge 1
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⋮
Challenge n
Response n

Prover Verifier

I know           .

I am convinced.



Identification Scheme

Challenge 1 = Hash(m, Commitment)

Prover

Verifier

Challenge  = Hash(m, Response )n n − 1

⋮

I know           .

Transcript

Fiat-Shamir 
Transformation

m: message to sign 



MPC in the Head
- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007) 

- Turn a multiparty computation (MPC) into an identification scheme / zero-
knowledge proof of knowledge 

- Generic: can be applied to any cryptographic problem
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MPC in the Head
- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007) 

- Convenient to build (candidate) post-quantum signature schemes 

- Picnic: submission to NIST (2017) 

- First round of additional NIST call: 7~9 MPCitH schemes / 40 candidates 

- Second round of recent NIST call: 5~6 MPCitH schemes / 14 candidates
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The TCitH and VOLEitH Frameworks

[FR23] Feneuil, Rivain. Threshold 
Computation in the Head: Improved 
Framework for Post-Quantum Signatures 
and Zero-Knowledge Arguments. ePrint 
2023/1573.

[BBD+23] Baum, Braun, Delpech, Klooß, 
Orsini, Roy, Scholl. Publicly Verifiable 
Zero-Knowledge and Post-Quantum 
Signatures From VOLE-in-the-Head. 
Crypto 2023.

(for signature schemes)
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⑤  Reveal the evaluation  for all . vi := Pi(r) i
Schwartz-Zippel Lemma: Let  be a non-zero polynomial of degree . 
We have 

. 

Since  is a degree-  polynomial, we 
have 

.

P μ

Pr [P(r) = 0 ∣ r ←$ S] ≤
μ
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Prove it!
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Soundness Error = 
d ⋅ ℓ
|S |

Probability that a malicious prover 
can convince the verifier.
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where  are public degree-  polynomials.
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①  VOLEitH / TCitH-GGM

② Degree-enforcing commitment 
(TCitH-MT)

③ Merkle Trees with 
Ligero-like Proximity Tests

④ FRI-based commitments
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For signature schemes, we use 
degree-  polynomials most of the time.1
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We want to build and commit a random degree-  polynomial  such that 
. 

1. Sample and commit a random degree-  polynomial  

2. Reveal  

3. Define  as  

To open  for , we just need to open  and to 

compute 

.
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P(ei*) i* ∈ {1,…, N} P̃(ei*)

P(ei*) ← P̃(ei*) + Δw
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2. TCitH-GGM Approach. Taking  small (e.g. ) and repeating the 
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When  are random degree-  polynomials, 

Signature relying on the Multivariate Quadratic (MQ) problem 

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum 
Signatures and Zero-Knowledge Arguments. ePrint 2023/1573. 

[BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them 
All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.
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Building Signature Schemes

Proving that the private key  satisfies 

  with   

where  is the public key. 

Signature relying on the MinRank problem 

[BFG+24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the Head: Shorter 
Signatures from Rank SD and MinRank. Asiacrypt 2024.

(L, R) ∈ 𝔽n×r × 𝔽 r×m

y − Hx = 0 x = vectorialize(L ⋅ R)
(H, y)



Signature Sizes with the New Frameworks

NIST Submission New frameworks + Opt.*

Security Assumptions Candidate Name Sizes Sizes

AES Block cipher FAEST 4.6 KB ≈ 4.1-4.5 KB

AIM Block cipher AIMer 3.8 KB ≈ 3.0 KB

MinRank MiRitH, MIRA 5.6 KB ≈ 2.9-3.1 KB

Multivariate Quadratic MQOM 6.3 KB ≈ 2.5-3.0 KB

Permuted Kernel PERK 5.8 KB ≈ 3.6 KB

Rank Syndrome Decoding RYDE 6.0 KB ≈ 2.9 KB

Structured MQ Biscuit 5.7 KB ≈ 3.0 KB

Syndrome Decoding SDitH 8.3 KB ≈ 3.9 KB

Running times of few ten millions of cycles.

* [BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: 
Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.



Comparison with the PQC State of the Art

MPCitH Dilithium/ML-DSA Falcon/FN-DSA SPHINCS+

Signature Sizes 2.5-4.5 KB 2.4 KB 0.7 KB 7.8-17 KB

Pk Sizes < 0.2 KB 1.3 KB 0.9 KB < 0.1 KB

|Sig|+|PK| 2.5-4.6 KB 3.7 KB 1.6 KB 7.9-17 KB

Sign. Time ~ (few ms) ++ ++ -

Verif. Time ~ (few ms) ++ ++ ~

Security

AES 
Unstructured SD 
Unstructured MQ 

…

Structured 
Lattice

Structured 
Lattice

Hash
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Thank you for your attention.


