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How to build signature schemes?

From an
identification scheme
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Identification Scheme

| lknow O—=. |

v Commitment )

Challenge 1
Response 1 >
Challenge n
Response n S
Prover A Veritier Q==

[ | am convinced. ]

- Completeness: Prlverit v | honest prover] = 1
- Soundness: Pr{verit v | malicious prover] < e (e.g. 128

- Zero-knowledge: verifier learns nothing on Q==



Identification Scheme

| know Q=—x.

> Challenge 1 = Hash(m, Commitment)

> Challenge n = Hash(m, Responsen — 1)
Prover \
-

ranscript

Fiat-Shamir
Transformation Verifier Q==

m: message to sign



- [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

- Turn a multiparty computation (MPC) into an identification scheme / zero-
knowledge proof of knowledge
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- Generic: can be applied to any cryptographic problem



MPC in the Head

- [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

- Convenient to build (candidate) post-quantum signature schemes

- Picnic: submission to NIST (2017)



MPC in the H‘ead

[IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

Convenient to build (candidate) post-quantum signature schemes

Picnic: submission to NIST (2017)

- First round of additional NIST call: 7~9 MPCitH schemes / 40 candidates
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MPC in the Head

[IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

Convenient to build (candidate) post-quantum signature schemes

Picnic: submission to NIST (2017)

First round of additional NIST call: 7~9 MPCitH schemes / 40 candidates

Second round of recent NIST call: 5~6 MPCitH schemes / 14 candidates
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Rely on MPC techniques : GMW87, Beaver triples, ...
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TCitH and VOLEitH Frameworks

[FR23] Feneuil, Rivain. Threshold
Computation in the Head: Improved
Framework for Post-Quantum Signatures

and Zero-Knowledge Arguments. ePrint
2023/1573.

(for signature schemes)

[BBD+23] Baum, Braun, Delpech, Kloof3,
Orsini, Roy, Scholl. Publicly Verifiable
Zero-Knowledge and Post-Quantum
Signatures From VOLE-in-the-Head.
Crypto 2023.



TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

i | know wy,...,w, such that

FWyyeeyw,) =0

where fis a public degree-d polynomial.

Prove it!

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

1 Forall i, sample a random degree-¢
polynomial P(X) such that P,(0) = w;,

@ Commit the polynomials Py, ..., P, Com(P;,...,P)

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

1 Forall i, sample a random degree-¢
polynomial P(X) such that P,(0) = w;,

@ Commit the polynomials Py, ..., P, Com(P,, ...,P,)
>
@ Reveal the polynomial Q(X) such that 0

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

@ Reveal the polynomial Q(X) such that

Well-defined!

£(P,(0), ..., P,(0) = f(wy, ....w,) =0

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

1 Forall i, sample a random degree-¢
polynomial P,(X) such that P,(0) = w,

l

@ Commit the polynomials Py, ..., P, Com(P,, ...,P,)
>
@ Reveal the polynomial Q(X) such that 0
X QX)) = JPYX), o s Py(X)) ; g @ Choose a random evaluation
< pointreScl
® Reveal the evaluation v; := P(r) for all i. Vis o5 Vy R

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

1 Forall i, sample a random degree-¢
polynomial P,(X) such that P,(0) = w,

l

@ Commit the polynomials Py, ..., P, Com(P,, ...,P,)
>
@ Reveal the polynomial Q(X) such that 0
X QX)) = JPYX), o s Py(X)) ; g @ Choose a random evaluation
< pointreScl
® Reveal the evaluation v; := P(r) for all i. Vis o5 Vy

> | ® Checkthatvy,...,v, are
consistent with the commitment.
Check that
r-Qm =f(v,...,v)

Prover Verifier




@ Forall i, choose a degree-# polynomial
P(X). We have

@ Commit the polynomials Py, ..., P,

@ Reveal the polynomial Q(X). We know that 0,
X -0X P(X),....,.P (X > .
QX) # /(P (X) A(X)) ; @ Choose a random evaluation
< pointreScl
® Reveal the evaluation v; := P(r) for all i. Vis o5 Vy

> | ® Checkthatvy,...,v, are
consistent with the commitment.
Check that
r-Q) =fv,...,v,)

Malicious Prover ©& Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

Soundness Analysis

@ Reveal the polynomial Q(X). We know that
X Q) # f(P,(X), ... P,(X))

® Reveal the evaluation v; := P(r) for all i.

Check that
r- Q) =f(v,...,v,)

Malicious Prover & Verifier




TCltH and VOLEltH Frameworks in the PIOP formalism
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(for signature schemes)

@ Reveal the polynomial Q(X). We know that
X Q) # f(P,(X), ... P,(X))

Schwartz-Zippel Lemma: Let P be a non-zero polynomial of degree p.
We have

L Check that
Pr[P(r)=0]r S| < ST r- Q) =f0vy, ..., ,)

Since X - Q(X) — f(P{(X), ..., P (X)) is a degree-(d - ) polynomial, we

have

Verifier

P d-¢
Pr[verification passes] < ——.

S|



TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

i | knowwy,...,w, such that

FWyyeeyw,) =0

where fis a public degree-d polynomial.

Prove it!

Prover Verifier

d-¢

Soundness Error = ——

Probability that a malicious prover /

can convince the verifier.



TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

: | know wy, ..., w, such that

fiw,...ow) =0

f Wy, ooow) =0,

i wheref|,..., [, are public degree-d polynomials.

Prove it!

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

1 Forall i, sample a random degree-¢
polynomial P(X) such that P,(0) = w;,

@ Commit the polynomials Py, ..., P,

@ Reveal the polynomials Q,(X), ..., Q,,(X)
such that

X 0,(X) =f,(P(X), ..., P,(X))

® Reveal the evaluation v; := P(r) for all i.

Prover

Com(Py,...,P,)

@ Choose a random evaluation
pointreSCFl

® Checkthatvy,...,v, are

consistent with the commitment.

Check that
r-Qn) =00

r- Qm(;;j =f ... ,)



TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

A For all i, sample a random degree-¢
polynomial P;(X) such that P,(0) = w;

@ Commit the polynomials Py, ..., P, Com(P,, ...,P)
>
@ Reveal the polynomials Q,(X), ..., Q,.(X)
such that
X - 01(X) = f,(P(X), ..., P (X))
X- Qm(X) :fm(P](X)a 7P/1(X)) >

B Choose a random evaluation

pointre S Cl
® Reveal the evaluation v, := P(r) foralli. |«

@ Check thatvy,...,v, are

» | consistent with the commitment.

Check that
r-O(r)=fi(v,...5v)

- Q(r) = fu1s -, v)

Costly! @
Prover




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

@ For all i, sample a random degree-¢
polynomial P;(X) such that P,(0) = w;

(2 Commit the polynomials Py, ..., P, Com(P;,...,P,)
>
@ Reveal the polynomials Q,(X), ..., Q,.(X)
such that
X - 0,(X) = [(P(X), ..., P, (X))
X-0,X)=f,PX),....,P,X)) >

B Choose a random evaluation

pointre S Cl
® Reveal the evaluation v, := P(r) foralli. |«

@ Check thatvy,...,v, are
» | consistent with the commitment.

Check that
r-Q0.(r)=f0y,...,v)

r- Qm(r) :f}‘n(vl’ R Vn)

Costly! @

Prover Solution: batching




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

1 Forall i, sample a random degree-¢
polynomial P(X) such that P,(0) = w;,

@ Commit the polynomials Py, ..., P, Com(P;,...,P)

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

1 Forall i, sample a random degree-¢
polynomial P(X) such that P,(0) = w;,

@ Commit the polynomials Py, ..., P,

@ Reveal the polynomial Q(X) such that
X-Q(X) =)y f(Py(X). ... P(X))

J=1

Prover

(for signature schemes)

Com(Py,...,P,)

Vi -5 Vm

@) Choose random coefficients
Y1 +-os Vm <SF

Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

@ Reveal the polynomial Q(X) such that
X-Q(X) =)y f(Py(X). ... P(X))

J=1

Well-defined!

Y v f(Py0), ...

j=1

P0) = D 7wy, ...
j=1

p _ N _
rover _2;3--0—0
j=1




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

1 Forall i, sample a random degree-¢
polynomial P(X) such that P,(0) = w;,

@ Commit the polynomials Py, ..., P, Com(P, ..., P)
» | B Choose random coefficients
$
Yis o2 ¥Ym Vis ooV € F
@ Reveal the polynomial Q(X) such that <
/. Q
X-0X)= ) v ;(P(X),...,P,(X)) >
].:21 A " ; ® Choose a random evaluation
< pointreSCFlF
® Reveal the evaluation v, := P(r) for all i. Visees Vy

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

1 Forall i, sample a random degree-¢
polynomial P(X) such that P,(0) = w;,

@ Commit the polynomials Py, ..., P, Com(P, ..., P)
» | B Choose random coefficients
$
Yis o2 ¥Ym Vis ooV € F
@ Reveal the polynomial Q(X) such that <
/. Q
X-0X)= ) v ;(P(X),...,P,(X)) >
].:21 A " ; ® Choose a random evaluation
< pointreSCFlF
® Reveal the evaluation v, := P(r) for all i. Visees Vy

» | @ Check thatv,,...,v, are
consistent with the commitment.

Check that
re Q) =) 1 Vv
j=1

Prover Verifier




@ Forall i, choose a degree-¢ polynomial
P{(X). There exists j* s.t.

fi(Py(0), ..., P,(0)) # 0.

@ Commit the polynomials Py, ..., P, Com(P,, ..., P,)
» | B Choose random coefficients
$
}’1,---,7,% yl,...,}/m<— [F
@ Reveal the polynomial Q(X). We know that <
. Q
X-0X)# ) vi- ;(P(X),...,P (X)) >
].:ZI A ; ® Choose a random evaluation
< pointreScFlF
® Reveal the evaluation v, := P(r) for all i. Vis ooV .| @ Checkthatvy,...,v, are
consistent with the commitment.
Check that
m
Q) = )7 [y
j=1

Malicious Prover ©& Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

@ Forall i, choose a degree-¢ polynomial
P{(X). There exists j* s.t.

Jp(P1(0), ..., P,(0)) # 0.

@ Commit the polynomials Py, ..., P, Com(P, ..., P)
» | @ Choose random coefficients
$
71,...,7m yl’...,}/me F
@ Reveal the polynomial Q(X). We know that <
. 0
X-0(X)# Y 7 [(PL(X), ..., Py(X)) .
j:zl A " ; B Choose a random evaluation
< pointreSCFlF
® Reveal the evaluation v, := P¥) for all i. Visees Vy

» | @ Check thatv,,...,v, are
consistent with the commitment.

It is an inequality with high probability over the
randomness of 7y, ..., 7,,, since we have

Y 7, f(Py(0), ... P,(0) # 0

J=1

Malicious Prover &




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

@ Forall i, choose a degree-¢ polynomial
P{(X). There exists j* s.t.

Jp(P1(0), ..., P,(0)) # 0.

@ Commit the polynomials Py, ..., P, Com(P,, ...,P)

Yoo Vm
@ Reveal the polynomial Q(X). We know that < 0
X-Q(X) # )y f(PyX), ... P(X))
J=1 r

® Reveal the evaluation v, := P,(r) for all i.

Schwartz-Zippel Lemma: Since it is a degree-(d - ) relation,

d-¢

Pr|verification passes] < W

@) Choose random coefficients
Y1 +-os Vm <SF

B Choose a random evaluation
pointreScl

@ Check that vy, ..., v, are
consistent with the commitm

Check that
re Q) =) 1 Vv
=1

Verifier




1 Forall i, sample a random degree-¢
polynomial P(X) such that P,(0) = w;,

@ Commit the polynomials Py, ..., P,

» | @ Choose random coefficients

yl,--.’}/m yl""’}/m<_$|]:
@ Reveal the polynomial Q(X) such that <
i 0
X-0X) =) v [(P(X),...,P,(X)) >
].:ZI U ; ® Choose a random evaluation
< pointreScFlF
® Reveal the evaluation v, := P(r) for all i. Vis ooV .| @ Checkthatv,, ..., v, are
consistent with the commitment.
Check that
m
Q) = )7 [y
j=1

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

@ For all i, sample a random degree-# Zero-Knowledge Analysis
polynomial P,(X) such that P,(0) = w, 1

Revealing an evaluation of P,(X)

Veritier @@

leaks no information about w..




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

Zero-Knowledge Analysis

@ Reveal the polynomial Q(X) such that
X-Q(X) =)y f(Py(X), ... P(X))

J=1

A\ Leak information about the witness wy, ...

Veritier @@




1) For all i, sample a random degree-#
P g
polynomial P,(X) such that P,(0) = w;

Sample a random degree-(d¢ — 1)
polynomial Py(X)

Com(Py, Py, ..., P,
@ Commit the polynomials Py, Py, ..., P, (Po, Py )

» | @ Choose random coefficients

yl,’..,}/m yl,-..,ym <—$[F
<
@ Reveal the polynomial Q(X) such that 0
X-0X)=X-PyX)+ Z i [(P{X), ..., Py(X)) »| ® Choose a random evaluation
i r pointreScl
<
® Reveal the evaluation v; := P(r) for all i. Vo Vio « o5 Vi

@ Check that vy, ...,v, are
consistent with the commitment.

Check that
r-Q(r) = r-vo-l—Z}/j-]j-(vl, ces V)

j=1

Prover Verifier @@




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

@ For all i, sample a random degree-#
polynomial P,(X) such that P,(0) = w;

Sample a random degree-(d¢ — 1)
polynomial Py(X)

Com(P,, P,,...,P
@ Commit the polynomials Py, Py, ..., P, (Po, Py n)

» | @ Choose random coefficients

yl""’ym yl,...,}/m<—$|]:
>
@ Reveal the polynomial Q(X) such that 0
X-0X)=X-PyX)+ Z v FPL(X), ..oy Py(X) » | B Choose a random evaluation
= r pointreScl
>
® Reveal the evaluation v; := P(r) for all i. Y0 Vi -e o0 Vi | @ Checkthatv,,...,v, are
consistent with the commitment.
Check that
r-Qr)=r-vy+ Z}{]--]?(vl, e V)

J=1

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

@ Commit the polynomials Py, Py, ..., P,

® Reveal the evaluation v; := P(r) for all i.

Prover

Com(Py, Py, ..., P,)

Vos V15 -9 Vy

@ Check that vy, ..., v, are
consistent with the commitment.

Verifier




(1) VOLEitH / TCitH-GGM

degree 1

degree 10

to commit to polynomials?

degree 10 000

degree 1000

degree 100

[BBD+23] Baum, Braun, Delpech, Kloof3,
Orsini, Roy, Scholl. Publicly Verifiable Zero-

Knowledge and Post-Quantum Signatures
From VOLE-in-the-Head. Crypto 2023.

[FR23] Feneuil, Rivain. Threshold
Computation in the Head: Improved
Framework for Post-Quantum Signatures

and Zero-Knowledge Arguments. ePrint
2023/1573.



to commit to polynomials?

degree 10 000

degree 1000

(2 Degree-enforcing commitment  _»

(TCitH-MT) degree 100

@ VOLEitH / TCitH-GGM “" degree 10 [FR23] Feneuil, Rivain. Threshold

Computation in the Head: Improved
Framework for Post-Quantum Signatures
and Zero-Knowledge Arguments. ePrint

degree 1 2023/1573.



to commit to polynomials?

@ Merkle Trees with degree 10 000

Ligero-like Proximity Tests )
* degree 1000

(2 Degree-enforcing commitment  _»

(TCitH-MT) degree 100
. . [AHIV17] Ames, Hazay, Ishai,
@ VOLEitH / TCitH-GGM /' degree 10 Venkitasubramaniam.{igero: Lightweight

Sublinear Arguments Without a Trusted
Setup. CCS 2017.

[GLS*23] Golonew, Lee, Setty, Thaler,
Wahby. Brakedown: Linear-time and field
agnotic SNARKs for R1CS. Crypto 2023.

degree 1



@) Merkle Trees with

to commit to polynomials?

@ FRI-based commitments

degree 10 000

Ligero-like Proximity Tests /I

degree 1000

(2 Degree-enforcing commitment  _»

(TCitH-MT)

(D VOLEitH / TCitH-GGM "

degree 1

degree 10

degree 100

[BBHR18] Ben-Sasson, Bentov, Horesh,
Riabzev. Fast Reed-Solomon Interactive
Oracle Proofs of Proximity. ICALP 2018.

[BGKS20] Ben-Sasson, Goldberg,
Kopparty, Saraf. DEEP-FRI: Sampling

Outside the Box Improves Soundness.
ITCS 2020.



polynomials?

@ FRI-based commitments

@ Merkle Trees with degree 10 000

Ligero-like Proximity Tests
* degree 1000

(2 Degree-enforcing commitment s

(TCitH-MT) degree 100

@ VOLEitH / TCitH-GGM _#" | degree 10

degree 1 For signature schemes, we use

degree-1 polynomials most of the time.



Public data: Let us

- have N distinct values ey, ..., ey, and
- define R; such that R(0) = 1 and Ri(¢;) = 0, forall i in {1,...,N}.

We want to build and commit a random degree-1 polynomial P. We sample N

values rq, ..., ryand define P as

P:=)r-R,

l



Public data: Let us

- have N distinct values ey, ..., ey, and
- define R; such that R(0) = 1 and Ri(¢;) = 0, forall i in {1,...,N}.

We want to build and commit a random degree-1 polynomial P. We sample N
values rq, ..., ryand define P as

P:=)r-R,

l

Correctness:
It N > 2, Pisarandom
degree-1 polynomial.




Public data: Let us

- have N distinct values ey, ..., ey, and
- define R; such that R(0) = 1 and Ri(¢;) = 0, forall i in {1,...,N}.

We want to build and commit a random degree-1 polynomial P. We sample N
values ry, ..., ryand define P as

P:=)r-R,

l

Correctness: Commitment:
It N > 2, Pisarandom We commit to each value

degree-1 polynomial. r; independently.




Public data: Let us

- have N distinct values ey, ..., ey, and
- define R; such that R(0) = 1 and Ri(¢;) = 0, forall i in {1,...,N}.

We want to build and commit a random degree-1 polynomial P. We sample N

values ry, ..., ryand define P as

P:=)r-R,

l

Correctness: Commitment: Opening P(e;):
It N > 2, Pisarandom We commit to each value Reveal all {r;} ;.
degree-1 polynomial. r; independently.

P(e;:) = Z i Ri(ep) + 1 - Rix(e;)
i#i*

= Z r; - R(ex)

£

=0



Public data: Let us

- have N distinct values ey, ..., ey, and
- define R; such that R(0) = 1 and Ri(¢;) = 0, forall i in {1,...,N}.

We want to build and commit a random degree-1 polynomial P. We sample N

values ry, ..., ryand define P as

P:=)r-R,

l

Correctness: Commitment: Opening P(e;):
It N > 2, Pisarandom We commit to each value Reveal all {r;} ;.
degree-1 polynomial. r; independently.

P(e;x) = Z i Rie) + T - Ris(eg)
I£i*

=0

The opening leaks nothing

about P, except P(e;+). = Z ;- Ri(ex)
i




Committing to a Polynomial using a Seed Tree

Public data: Let us

- have N distinct values ey, ..., ey, and
- define R; such that R(0) = 1 and Ri(¢;) = 0, forall i in {1,...,N}.

We want to build and commit a random degree-1 polynomial P. We sample N

values ry, ..., ryand define P as

P:=)r-R,

l

Correctness: Commitment: Opening P(e;):
It N > 2, Pisarandom We commit to each value Reveal all {r;} ;.
degree-1 polynomial. r; independently.

i£i
X Can be adapted to =0
any degree. - Z r; - R(e;)
ii*

The opening leaks nothing

about P, except P(e;+).




Public data: Let us

- have N distinct values ey, ..., ey, and
- define R; such that R(0) = 1 and R((¢;) = 0O, forall iin {1,...,N}.

We want to build and commit a random degree-1 polynomial P. We sample N

values ry, ..., ryand define P as

P:=) 1R,

l

Costly! @

Correctness: Commitment: Opening P(e;:):
It N > 2, Pisarandom We commit to each value Reveal all {r;} ;..
degree-1 polynomial. r; independently.

¢ i£i* ~

X Can be adapted to =0
any degree. = Z r; - R(e;)

i#i

The opening leaks nothing

about P, except P(e;+).




[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)




[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

seed, seed, seed, seedy_; seedy
@) ©) @) @) O)
X X & % X

I ) I3 . IN—1 'y



[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

e
D A

/4 /4 N Y/ S

ﬁ
E

(seed1, seed?2) < PRG(parent_seed)

.




[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

root_seed

ﬁ

"
N
J\_

_/

-
Das

to be revealed

I ) I3 . IN—1 'y
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We want to build and commit a random degree-1 polynomial P such that
PO) =w.

1. Sample and commit a random degree-1 polynomial P

2. Reveal Aw :=w — P(0)

3. Define Pas P(X) := P+ Aw

To open P(e;:) fori* € {1,..., N}, we just need to open P(e;) and to
compute
P(e;s) < P(e;s) + Aw.
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Complexity in O(N) to have a soundness error Ofﬁ (degree-1 polynomials).

How to have a negligible soundness error?

1. Taking N > 2*. Impossible since the complexity would be in O(2%).

2. ICitH-GGM Approach. Taking N small (e.g. N = 256) and repeating the
d

(3
protocol 7 times. Soundness error of <—> :
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Complexity in O(N) to have a soundness error Ofﬁ (degree-1 polynomials).

How to have a negligible soundness error?

1. Taking N > 24, Impossible since the complexity would be in 024).

2. ICitH-GGM Approach. Taking N small (e.g. N = 256) and repeating the

d T
protocol 7 times. Soundness error of <N :

3. VOLEitH Approach. Embed 7 polynomials over [ into a unique

polynomial over ., for which we will be able to open N* evaluations.

d

Soundness error of —.
NT
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Fiat-Shamir
e ot et Transformation

| know wy, ..., w, such that

., fiwy,.w,) =0 ' ’ -
| ) : f Signature Scheme
' Lfm(wl’ ceey Wn) = O, 1

{ where f, ..., f,, are public degree-d polynomials. ‘ Prove it!

Prover ¥ Verifier
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The public key is composed of the degree-d polynomials f;, ..., f...

The private key is the withess w := (wy, ..., w,) that satisfies

fiwg,...ow) =0,

f Wi, oooow) =0,

When f, ..., f, are random degree-2 polynomials,

Signature relying on the Multivariate Quadratic (MQ) problem

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum
Signatures and Zero-Knowledge Arguments. ePrint 2023/1573.

[BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them
All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.



Proving that the private key (L, R) € F™" x F"*" satisfies
y — Hx = 0 with x = vectorialize(L - R)
where (H,y) is the public key.

Signature relying on the MinRank problem

[BFG+24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the Head: Shorter
Signatures from Rank SD and MinRank. Asiacrypt 2024.



NIST Submission New frameworks + Opt.”
Security Assumptions Candidate Name Sizes Sizes
AES Block cipher FAEST 4.6 KB ~ 4.1-4.5 KB
AIM Block cipher AlMer 3.8 KB ~ 3.0 KB
MinRank MiRitH, MIRA 5.6 KB ~ 2.9-3.1 KB
Multivariate Quadratic MQOM 6.3 KB ~ 2.5-3.0 KB
Permuted Kernel PERK 5.8 KB ~ 3.6 KB
Rank Syndrome Decoding RYDE 6.0 KB ~ 2.9 KB
Structured MQ Biscuit 5.7 KB ~ 3.0 KB
Syndrome Decoding SDitH 8.3 KB ~ 3.9 KB

Running times of few ten millions of cycles.

* [BBM+*24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All:
Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.



MPCitH Dilithium/ML-DSA | Falcon/FN-DSA SPHINCS+
Signature Sizes 2.5-4.5 KB 2.4 KB 0.7 KB 7.8-17 KB
Pk Sizes <0.2KB 1.3 KB 0.9 KB < 0.1 KB
ISigl+IPKI 2.5-4.6 KB 3.7 KB 1.6 KB 7.9-17 KB
Sign. Time ~ (few ms) ++ - -
Verif. Time ~ (few ms) ot - ~
AES
Security Unstructured SD Struct.ured Struct.ured Hash
Unstructured MQ Lattice Lattice
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Conclusion

m MPC-in-the-Head

m A practical tool to build conservative signature schemes

m Second round of the additional NIST call:

6 MPCitH-based schemes among 14 candidates

m | atest frameworks: VOLEitH and TCitH

= Can be interpreted as Polynomial IOP (Interactive Oracle Proof)

W Perspectives:

m Second-round submission packages (short-term)

m Signatures with advanced functionalities (middle-term)

ring signatures, threshold signatures,

blind signatures, multi-signatures, ...

Thank you for your attention.



