The Polynomial-IOP Vision of the Latest MPCitH Frameworks for Signature Schemes

Thibauld Feneuil

ACCESS Seminar

October 15, 2024, online

- Introduction
- The TCitH and VOLEitH frameworks, in the PIOP formalism
 - Polynomial IOP
 - Committing to polynomials
- Building signatures
- Conclusion

How to build signature schemes?

Short signatures

"'Trapdoor'' in the public key

How to build signature schemes?

How to build signature schemes?

Identification Scheme

- Completeness: Pr[verif ✓ | honest prover] = 1
- **Soundness:** $\Pr[\text{verif } I \text{ malicious prover}] \leq \varepsilon$ (e.g. 2^{-128})
- Zero-knowledge: verifier learns nothing on 0-.

Identification Scheme

m: message to sign

MPC in the Head

- **[IKOS07]** Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn a *multiparty computation* (MPC) into an identification scheme / zeroknowledge proof of knowledge

- **Generic**: can be applied to any cryptographic problem

MPC in the Head

- **[IKOS07]** Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Convenient to build (candidate) **post-quantum signature** schemes
- **Picnic**: submission to NIST (2017)
- First round of recent NIST call: 7~9 MPCitH schemes / 40 submissions

AIMer	МООМ
Biscuit	~
FAEST	PERK
MTRA	RYDE
MiRitH	SDitH

MPCitH for signature schemes

MPC-in-the-Head Paradigm Brakedowin sit det o 202 2025 Sublinear Arguments Of Knowledge 540501 14B00 C×11 Broadcast

Rely on MPC techniques : GMW87, Beaver triples, ...

- 1 For all *i*, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- (2) Commit the polynomials $P_1, ..., P_n$

 $Com(P_1, ..., P_n)$

- 1 For all *i*, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- ② Commit the polynomials $P_1, ..., P_n$
- ③ Reveal the polynomial Q(X) such that $X \cdot Q(X) = f(P_1(X), ..., P_n(X))$

(for signature schemes)

Verifier

(for signature schemes)

- 1 For all *i*, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- (2) Commit the polynomials $P_1, ..., P_n$
- ③ Reveal the polynomial Q(X) such that $X \cdot Q(X) = f(P_1(X), \dots, P_n(X))$
- (5) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

Verifier

(for signature schemes)

- 1 For all *i*, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- (2) Commit the polynomials $P_1, ..., P_n$
- ③ Reveal the polynomial Q(X) such that $X \cdot Q(X) = f(P_1(X), \dots, P_n(X))$
- (5) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

- (4) Choose a random evaluation point $r \in S \subset \mathbb{F}$
- (6) Check that $v_1, ..., v_n$ are consistent with the commitment.

Check that

 $r \cdot Q(r) = f(v_1, \dots, v_n)$

<u>Prover</u>

<u>Verifier</u>

(for signature schemes)

1 For all *i*, choose a degree- ℓ polynomial $P_i(X)$. We have

 $f(P_1(0), \dots, P_n(0)) \neq 0.$

- (2) Commit the polynomials $P_1, ..., P_n$
- ③ Reveal the polynomial Q(X). We know that $X \cdot Q(X) \neq f(P_1(X), \dots, P_n(X))$

(5) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

(for signature schemes)

Verifier

(for signature schemes)

(for signature schemes)

- 1 For all *i*, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- (2) Commit the polynomials $P_1, ..., P_n$
- (3) Reveal the polynomials $Q_1(X), \ldots, Q_m(X)$ such that

 $X \cdot Q_1(X) = f_1(P_1(X), \dots, P_n(X))$ \vdots $X \cdot Q_m(X) = f_m(P_1(X), \dots, P_n(X))$

(5) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

(4) Choose a random evaluation point $r \in S \subset \mathbb{F}$

6 Check that v_1, \ldots, v_n are consistent with the commitment.

Check that $r \cdot Q_1(r) = f_1(v_1, \dots, v_n)$ \dots $r \cdot Q_m(r) = f_m(v_1, \dots, v_n)$

- 1 For all *i*, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- (2) Commit the polynomials $P_1, ..., P_n$

 $Com(P_1, ..., P_n)$

- 1 For all *i*, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- (2) Commit the polynomials $P_1, ..., P_n$
- (4) Reveal the polynomial Q(X) such that $X \cdot Q(X) = \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), \dots, P_n(X))$

- 1 For all *i*, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- (2) Commit the polynomials $P_1, ..., P_n$
- (4) Reveal the polynomial Q(X) such that $X \cdot Q(X) = \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), \dots, P_n(X))$
- (6) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

(for signature schemes)

- 1 For all *i*, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- (2) Commit the polynomials $P_1, ..., P_n$
- (4) Reveal the polynomial Q(X) such that $X \cdot Q(X) = \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), \dots, P_n(X))$
- (6) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

<u>Verifier</u>

(for signature schemes)

- 1 For all *i*, choose a degree- ℓ polynomial $P_i(X)$. There exists j^* s.t. $f_{i^*}(P_1(0), \dots, P_n(0)) \neq 0$.
- ② Commit the polynomials $P_1, ..., P_n$
- (4) Reveal the polynomial Q(X). We know that $X \cdot Q(X) \neq \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), \dots, P_n(X))$
 - (6) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

Verifier

(for signature schemes)

(for signature schemes)

(for signature schemes)

- 1 For all *i*, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- (2) Commit the polynomials $P_1, ..., P_n$
- (4) Reveal the polynomial Q(X) such that $X \cdot Q(X) = \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), \dots, P_n(X))$
- (6) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

<u>Verifier</u>

<u>Prover</u>

(for signature schemes)

① For all *i*, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree- $(d\ell - 1)$ polynomial $P_0(X)$

(2) Commit the polynomials $P_0, P_1, ..., P_n$

(4) Reveal the polynomial Q(X) such that $X \cdot Q(X) = X \cdot P_0(X) + \sum_{j=1}^m \gamma_j \cdot f_j(P_1(X), \dots, P_n(X))$

(6) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

Zero-Knowledge Analysis
$$Com(P_0, P_1, ..., P_n)$$
(3) Choose random coefficients $\gamma_1, ..., \gamma_m$ (3) Choose random coefficients $\gamma_1, ..., \gamma_m \leftarrow {}^{\$} \mathbb{F}$ (5) Choose a random evaluation
point $r \in S \subset \mathbb{F}$ $V_0, v_1, ..., v_n$ (7) Check that $v_1, ..., v_n$ are
consistent with the commitment.
Check that
 $r \cdot Q(r) = r \cdot v_0 + \sum_{j=1}^m \gamma_j \cdot f_j(v_1, ..., v_n)$

Verifier ••

<u>Prover</u>

(for signature schemes)

1 For all *i*, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$

> Sample a random degree- $(d\ell - 1)$ polynomial $P_0(X)$

(2) Commit the polynomials $P_0, P_1, ..., P_n$

(4) Reveal the polynomial Q(X) such that $X \cdot Q(X) = X \cdot P_0(X) + \sum_{j=1}^m \gamma_j \cdot f_j(P_1(X), \dots, P_n(X))$

(6) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

③ Choose random coefficients
$$\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$$

5 Choose a random evaluation point
$$r \in S \subset \mathbb{F}$$

$$(7) Check that v_1, \ldots, v_n are
consistent with the commitment.
Check that
 $r \cdot Q(r) = r \cdot v_0 + \sum_{j=1}^m \gamma_j \cdot f_j(v_1, \ldots, v_n)$
Verifier$$

(for signature schemes)

① For all *i*, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$

Sample a random degree- $(d\ell - 1)$ polynomial $P_0(X)$

(2) Commit the polynomials $P_0, P_1, ..., P_n$

(4) Reveal the polynomial Q(X) such that $X \cdot Q(X) = X \cdot P_0(X) + \sum_{j=1}^m \gamma_j \cdot f_j(P_1(X), \dots, P_n(X))$

(6) Reveal the evaluation $v_i := P_i(r)$ for all *i*.

$$Com(P_0, P_1, \dots, P_n)$$

$$\gamma_1, \dots, \gamma_m$$

$$Q$$

$$r$$

$$v_0, v_1, \dots, v_n$$

3 Choose random coefficients
$$\gamma_1, \dots, \gamma_m \leftarrow^{\$} \mathbb{F}$$

5 Choose a random evaluation point
$$r \in S \subset \mathbb{F}$$

(7) Check that
$$v_1, ..., v_n$$
 are
consistent with the commitment.
Check that
 $r \cdot Q(r) = r \cdot v_0 + \sum_{j=1}^m \gamma_j \cdot f_j(v_1, ..., v_n)$
Verifier

<u>Prover</u>

How to commit to polynomials?

How to commit to polynomials?

<u>Public data</u>: Let us

- have N distinct values e_1, \ldots, e_N , and
- define R_i such that $R_i(0) = 1$ and $R_i(e_i) = 0$, for all *i* in $\{1, ..., N\}$.

We want to build and commit a **random degree-1 polynomial** P. We sample N values r_1, \ldots, r_N and define P as

$$P := \sum_{i} r_i \cdot R_i.$$

<u>Public data</u>: Let us

- have N distinct values e_1, \ldots, e_N , and
- define R_i such that $R_i(0) = 1$ and $R_i(e_i) = 0$, for all *i* in $\{1, ..., N\}$.

We want to build and commit a **random degree-1 polynomial** P. We sample N values r_1, \ldots, r_N and define P as

$$P := \sum_{i} r_i \cdot R_i.$$

<u>Correctness</u>: If $N \ge 2$, P is a random degree-1 polynomial.

<u>Public data</u>: Let us

- have N distinct values e_1, \ldots, e_N , and
- define R_i such that $R_i(0) = 1$ and $R_i(e_i) = 0$, for all *i* in $\{1, ..., N\}$.

We want to build and commit a **random degree-1 polynomial** P. We sample N values r_1, \ldots, r_N and define P as

$$P := \sum_{i} r_i \cdot R_i.$$

<u>Correctness</u>: If $N \ge 2$, P is a random degree-1 polynomial.

 $\frac{Commitment}{}$ We commit to each value $r_i independently.$

<u>Public data</u>: Let us

- have N distinct values e_1, \ldots, e_N , and
- define R_i such that $R_i(0) = 1$ and $R_i(e_i) = 0$, for all *i* in $\{1, ..., N\}$.

We want to build and commit a **random degree-1 polynomial** P. We sample N values r_1, \ldots, r_N and define P as

$$P := \sum_{i} r_i \cdot R_i.$$

<u>Correctness</u>: If $N \ge 2$, P is a random degree-1 polynomial.

<u>Commitment</u>: We commit to each value r_i independently. Opening $P(e_{i^*})$: Reveal all $\{r_i\}_{i \neq i^*}$.

$$P(e_{i^*}) = \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*}) + r_{i^*} \cdot \underbrace{R_{i^*}(e_{i^*})}_{=0}$$
$$= \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*})$$

<u>Public data</u>: Let us

- have N distinct values e_1, \ldots, e_N , and
- define R_i such that $R_i(0) = 1$ and $R_i(e_i) = 0$, for all *i* in $\{1, ..., N\}$.

We want to build and commit a **random degree-1 polynomial** P. We sample N values r_1, \ldots, r_N and define P as

$$P := \sum_{i} r_i \cdot R_i.$$

<u>Correctness</u>: If $N \ge 2$, P is a random degree-1 polynomial.

The opening leaks nothing about P, except $P(e_{i^*})$.

<u>Commitment</u>: We commit to each value r_i independently. Opening $P(e_{i^*})$: Reveal all $\{r_i\}_{i \neq i^*}$.

$$P(e_{i^*}) = \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*}) + r_{i^*} \cdot \underbrace{R_{i^*}(e_{i^*})}_{=0}$$
$$= \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*})$$

<u>Public data</u>: Let us

- have N distinct values e_1, \ldots, e_N , and
- define R_i such that $R_i(0) = 1$ and $R_i(e_i) = 0$, for all *i* in $\{1, ..., N\}$.

We want to build and commit a **random degree-1 polynomial** P. We sample N values r_1, \ldots, r_N and define P as

$$P := \sum_{i} r_i \cdot R_i.$$

<u>Correctness</u>: If $N \ge 2$, P is a random degree-1 polynomial. <u>Commitment</u>: We commit to each value r_i independently. Opening $P(e_{i^*})$: Reveal all $\{r_i\}_{i \neq i^*}$.

The opening leaks nothing about P, except $P(e_{i^*})$.

X Can be adapted to any degree.

$$P(e_{i^*}) = \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*}) + r_{i^*} \cdot \underbrace{R_{i^*}(e_{i^*})}_{=0}$$
$$= \sum_{i \neq i^*} r_i \cdot R_i(e_{i^*})$$

<u>Public data</u>: Let us

- have N distinct values e_1, \ldots, e_N , and
- define R_i such that $R_i(0) = 1$ and $R_i(e_i) = 0$, for all *i* in $\{1, ..., N\}$.

We want to build and commit a **random degree-1 polynomial** P. We sample N values r_1, \ldots, r_N and define P as

[GGM84] Goldreich, Goldwasser, Micali: "How to construct random functions (extended extract)" (FOCS 1984)

$r_1 \qquad r_2 \qquad r_3 \qquad \dots \qquad r_{N-1} \qquad r_N$

We want to build and commit a random degree-1 polynomial P such that P(0) = w.

We want to build and commit a random degree-1 polynomial P such that P(0) = w.

- **1.** Sample and commit a random degree-1 polynomial \tilde{P}
- **2.** Reveal $\Delta w := w \tilde{P}(0)$
- **3.** Define P as $P(X) := \tilde{P} + \Delta w$
We want to build and commit a random degree-1 polynomial P such that P(0) = w.

- **1.** Sample and commit a random degree-1 polynomial \tilde{P}
- **2.** Reveal $\Delta w := w \tilde{P}(0)$
- **3.** Define P as $P(X) := \tilde{P} + \Delta w$

To open $P(e_{i^*})$ for $i^* \in \{1, ..., N\}$, we just need to open $\tilde{P}(e_{i^*})$ and to compute

$$P(e_{i^*}) \leftarrow \tilde{P}(e_{i^*}) + \Delta w.$$

Complexity in O(N) to have a soundness error of $\frac{d}{N}$ (degree-1 polynomials).

Complexity in O(N) to have a soundness error of $\frac{d}{N}$ (degree-1 polynomials).

1. Taking $N \ge 2^{\lambda}$. Impossible since the complexity would be in $O(2^{\lambda})$.

Complexity in O(N) to have a soundness error of $\frac{d}{N}$ (degree-1 polynomials).

How to have a negligible soundness?

- 1. Taking $N \ge 2^{\lambda}$. Impossible since the complexity would be in $O(2^{\lambda})$.
- 2. <u>TCitH-GGM Approach</u>. Taking N small (e.g. N = 256) and repeating the protocol τ times. Soundness error of $\left(\frac{d}{N}\right)^{\tau}$.

Complexity in O(N) to have a soundness error of $\frac{d}{N}$ (degree-1 polynomials).

How to have a negligible soundness?

- 1. Taking $N \ge 2^{\lambda}$. Impossible since the complexity would be in $O(2^{\lambda})$.
- 2. <u>TCitH-GGM Approach</u>. Taking N small (e.g. N = 256) and repeating the protocol τ times. Soundness error of $\left(\frac{d}{N}\right)^{\tau}$.
- 3. <u>VOLEitH Approach</u>. Embed τ polynomials over \mathbb{F}_q into a unique polynomial over $\mathbb{F}_{q^{\tau}}$, for which we will be able to open N^{τ} evaluations. Soundness error of $\frac{d}{N^{\tau}}$.

Building Signatures

The **public key** is composed of the **degree**-*d* **polynomials** $f_1, ..., f_m$. The **private key** is the **witness** $w := (w_1, ..., w_n)$ that satisfies

$$\begin{cases} f_1(w_1, \dots, w_n) &= 0, \\ \vdots \\ f_m(w_1, \dots, w_n) &= 0. \end{cases}$$

The **public key** is composed of the **degree**-*d* **polynomials** f_1, \ldots, f_m . The **private key** is the **witness** $w := (w_1, \ldots, w_n)$ that satisfies

$$\begin{cases} f_1(w_1, \dots, w_n) &= 0, \\ \vdots \\ f_m(w_1, \dots, w_n) &= 0. \end{cases}$$

When f_1, \ldots, f_n are random degree-2 polynomials,

Signature relying on the Multivariate Quadratic (MQ) problem

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments. ePrint 2023/1573.

[BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.

Proving that the private key
$$(x_1, \ldots, x_{n'}, q_0, \ldots, q_{t-1})$$
 satisfies

$$\begin{cases} y - Hx = 0, \\ x_1 \cdot Q(1) = 0 \\ \vdots \\ x_n \cdot Q(n) = 0. \end{cases}$$
Imply that $wt_H(x) \le t$.
with $x := (x_1, \ldots, x_n)$ and $Q(X) := X^t + \sum_{i=0}^{t-1} q_i \cdot X^i$, where (H, y) is the public key.

Signature relying on the Syndrome Decoding (SD) problem

[FJR23] Feneuil, Joux, Rivain. Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs. Crypto 2022.

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments. ePrint 2023/1573.

Proving that the private key $(L, R) \in \mathbb{F}^{n \times r} \times \mathbb{F}^{r \times m}$ satisfies y - Hx = 0 with $x = \text{vectorialize}(L \cdot R)$ where (H, y) is the public key.

Signature relying on the MinRank problem

[BFG+24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank. Asiacrypt 2024.

Signature Sizes with the New Frameworks

	NIST Submission		New frameworks + Opt.*
Security Assumptions	Candidate Name	Sizes	Sizes
AES Block cipher	FAEST	4.6 KB	≈ 4.1-4.5 KB
AIM Block cipher	AlMer	3.8 KB	≈ 3.0 KB
MinRank	MiRitH, MIRA	5.6 KB	≈ 2.9-3.1 KB
Multivariate Quadratic	MQOM	6.3 KB	≈ 2.5-3.0 KB
Permuted Kernel	PERK	5.8 KB	≈ 3.8 KB
Rank Syndrome Decoding	RYDE	6.0 KB	≈ 2.9 KB
Structured MQ	Biscuit	5.7 KB	≈ 3.0 KB
Syndrome Decoding	SDitH	8.3 KB	≈ 5.0 KB

Running times of few ten millions of cycles.

* **[BBM+24]** Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.

- Very versatile and tunable
- Can be applied to any one-way function
- A practical tool to build *conservative* signature schemes
 - No structure in the security assumption

- Very versatile and tunable
- Can be applied to any one-way function
- A practical tool to build *conservative* signature schemes
 - No structure in the security assumption
- A lot of improvements since 2016
- Latest frameworks: VOLEitH and TCitH
 - Can be interpreted as Polynomial IOP (Interactive Oracle Proof)

- Very versatile and tunable
- Can be applied to any one-way function
- A practical tool to build *conservative* signature schemes
 - No structure in the security assumption
- A lot of improvements since 2016
- Latest frameworks: VOLEitH and TCitH
 - Can be interpreted as Polynomial IOP (Interactive Oracle Proof)

Perspectives: Signatures with advanced functionalities ring signatures, threshold signatures, blind signatures, multi-signatures, …

- Very versatile and tunable
- Can be applied to any one-way function
- A practical tool to build *conservative* signature schemes
 - No structure in the security assumption
- A lot of improvements since 2016
- Latest frameworks: VOLEitH and TCitH
 - Can be interpreted as Polynomial IOP (Interactive Oracle Proof)

Perspectives: Signatures with advanced functionalities ring signatures, threshold signatures, blind signatures, multi-signatures, …

Thank you for your attention.