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How to build signature schemes?
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Identification Scheme
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v Commitment )

Challenge 1
Response 1 >
Challenge n
Response n S
Prover A Veritier Q==

[ | am convinced. ]

® Completeness: Priverif v | honest prover] = 1
® Soundness: Prlverif v | malicious prover] < ¢ (e.g. 128

® Zero-knowledge: verifier learns nothing on Q=—=.



Identification Scheme

| know Q=—x.

> Challenge 1 = Hash(m, Commitment)

> Challenge n = Hash(m, Responsen — 1)
Prover \
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m: message to sign



e [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

e Turn a multiparty computation (MPC) into an identification scheme / zero-
knowledge proof of knowledge
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® Generic: can be applied to any cryptographic problem



MPC in the H‘ead

e [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

® (Convenient to build (candidate) post-quantum signature schemes

® Picnic: submission to NIST (2017)

® First round of recent NIST call: 7~9 MPCitH schemes / 40 submissions
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One-way function Multiparty computation (MPC)

o Input sharing [[x]]
\ Joint evaluation of:

» Accept if F(x) =y
Reject it F(x) #y

F:x—y

E.g. AES, MQ system,
Syndrome decoding
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One-way function Multiparty computation (MPC)

o o Input sharing [[x]]

L X |
Fx Y ‘: M Joint evaluation of:
E.g. AES, MQ system, ‘. ° ; Accept it F(x) =y

:\},‘/ - 800 = {Reject it F(x) #y

MPC-in-the-Head transform
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TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

: | know wy, ..., w, such that

fiw,...ow) =0

f Wy, ooow) =0,

i wheref|,..., [, are public degree-d polynomials.

Prove it!

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

1 Forall i, sample a random degree-¢
polynomial P(X) such that P,(0) = w;,

@ Commit the polynomials Py, ..., P, Com(P;,...,P)

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

1 Forall i, sample a random degree-¢
polynomial P(X) such that P,(0) = w;,

@ Commit the polynomials Py, ..., P, Com(P, ..., P)
» | B Choose random coefficients
Yis o2 ¥Ym }/1,...,}/m<—$[|:
@ Commit the polynomial Q(X) such that <
i 0
X-Q(X) =)y f(Py(X), ... P(X)) >

J=1

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

@ Commit the polynomial Q(X) such that
X-Q(X) =)y f(Py(X), ... P(X))

J=1

Well-defined!

Y v f(Py0), ...

j=1

P0) = D 7wy, ...
j=1

Prover _ \ _
v =27-0=0
=1




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

1 Forall i, sample a random degree-¢
polynomial P(X) such that P,(0) = w;,
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» | B Choose random coefficients
$
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@ Commit the polynomial Q(X) such that <
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j=21 U " ; ® Choose a random evaluation
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® Reveal the evaluation v, := P(r) for all i. Visees Vy
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TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

1 Forall i, sample a random degree-¢
polynomial P(X) such that P,(0) = w;,

@ Commit the polynomials Py, ..., P, Com(P,, ..., P,)
» | B Choose random coefficients
$
yla---aym yl’...,}/me [F
@ Commit the polynomial Q(X) such that <
i Q
X-0X)= ) v ;(P(X),...,P(X)) >
j:zl U " ; ® Choose a random evaluation
< pointreSCFlF
® Reveal the evaluation v, := P(r) for all i. Visees Vy

» | @ Check thatv,,...,v, are
consistent with the commitment.

Check that
re Q) =) 1 Vv
j=1

Prover Verifier




@ Forall i, choose a degree-¢ polynomial
P{(X). There exists j* s.t.

fi(Py(0), ..., P,(0)) # 0.

@ Commit the polynomials Py, ..., P, Com(P,, ..., P)
» | @ Choose random coefficients
$
}’1,---,7m yl’...,}/m& F
@ Commit the polynomial Q(X). We know that <
/n Q
X-0X)# ) vi-f;(Pi(X),...,P,(X)) >
].:ZI J ; B Choose a random evaluation
< pointreScFlF
® Reveal the evaluation v, := P(r) for all i. Vis ooV .| @ Checkthatvy,...,v, are
consistent with the commitment.
Check that
m
Q) =) 7 [ V)
j=1

Malicious Prover ©& Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

@ Forall i, choose a degree-¢ polynomial
P{(X). There exists j* s.t.

Jp(P1(0), ..., P,(0)) # 0.

@ Commit the polynomials Py, ..., P, Com(P,, ..., P,)
» | @ Choose random coefficients
$
Vi -5 Vm V1o eeoo¥m g
@ Commit the polynomial Q(X). We know that <
i o
X-0X)# ) v J(P(X),...,P,(X)) >
j:zl U ! ; ® Choose a random evaluation
< pointreSCFlF
® Reveal the evaluation v, := P¥) for all i. Visees Vy

» | @ Check thatv,,...,v, are
consistent with the commitment.

It is an inequality with high probability over the
randomness of 7y, ..., 7,,, since we have

Y 7, f(Py(0), ... P,(0) # 0

J=1

Malicious Prover &




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

@ Forall i, choose a degree-¢ polynomial
P{(X). There exists j* s.t.

Jp(P1(0), ..., P,(0)) # 0.

@ Commit the polynomials Py, ..., P, Com(P,, ..., P,)
Vis +nvs Vo
@ Commit the polynomial Q(X). We know that <
i 0
X-0(X) # Y 1, f(P X, ... PX))
j=1 r

® Reveal the evaluation v, := P,(r) for all i.

Schwartz-Zippel Lemma: Since it is a degree-(d - ) relation,

d-t
Pr|verification passes] < W

@) Choose random coefficients
Y1 +-os Vm <SF

B Choose a random evaluation
pointreScl

@ Check that vy, ..., v, are

Check that
re Q) =) 1 Vv
=1

Verifier




1 Forall i, sample a random degree-¢
polynomial P(X) such that P,(0) = w;,

@ Commit the polynomials Py, ..., P,

@ Commit the polynomial Q(X) such that
X000 = D7 fP1(X)s ..., P, (X))

J=1

® Reveal the evaluation v, := P(r) for all i.

Prover

@) Choose random coefficients
Y1 +-os Vm <SF

B Choose a random evaluation
pointreSClF

@ Check that vy, ..., v, are
consistent with the commitment.

Check that
Q) =) 7 [ V)

J=1

Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

@ For all i, sample a random degree-# Zero-Knowledge Analysis
polynomial P,(X) such that P,(0) = w, 1

Revealing an evaluation of P,(X)

Veritier @@

leaks no information about w..




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

Zero-Knowledge Analysis

@ Commit the polynomial Q(X) such that
X-Q(X) =)y f(Py(X), ... P(X))

J=1

A\ Leak information about the witness wy, ...

Veritier @@




) For all i, sample a random degree-¢
polynomial P,(X) such that P;(0) =

Sample a random degree-(d¢ — 1)

polynomial Py(X)
. . Com(Py, Py, ..., P,)
@ Commit the polynomials Py, Py, ..., P, »| @ Choose random coefficients
Vis -+ Vm Yoo Vm <_$[F
<
@ Commit the polynomial Q(X) such that 0
X-0X)=X-PyX)+ Z i [(P{X), ..., Py(X)) »| ® Choose a random evaluation
i r pointreScl
<
® Reveal the evaluation v; := P(r) for all i. V0o Vi - o0 Vi | @ Checkthatv,,...,v, are
consistent with the commitment.
Check that

r-O) =r- v0+zyj "

Prover Verifier @@




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

@ For all i, sample a random degree-#
polynomial P,(X) such that P,(0) = w;

Sample a random degree-(d¢ — 1)
polynomial Py(X)

Com(P,, P,,...,P
@ Commit the polynomials Py, Py, ..., P, (Po, Py n)

» | @ Choose random coefficients

yl""’ym yl,...,}/m<—$|]:
>
@ Commit the polynomial Q(X) such that 0
X-0X)=X-PyX)+ Z v FPL(X), ..oy Py(X) » | B Choose a random evaluation
= r pointreScl
>
® Reveal the evaluation v; := P(r) for all i. Y0 Vi -e o0 Vi | @ Checkthatv,,...,v, are
consistent with the commitment.
Check that
r-Q(r)y=r-vy+ Z}/j SV s V)

j=1

Prover Verifier




TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

Com(P,, P,,...,P
@ Commit the polynomials Py, Py, ..., P, (Po, Py )

>
<
>
<
| @ Checkthatv,...,v, are

consistent with the commitment.

Prover Verifier




to commit to polynomials?

degree 10 000

degree 1000

degree 100

[FR23] Feneuil, Rivain. Threshold
Computation in the Head: Improved
deg ree 10 Framework for Post-Quantum Signatures

and Zero-Knowledge Arguments. ePrint
2023/1573.

[BBM+24] Baum, Beullens, Mukherjee,

deg ree 1 Orsini, Ramacher, Rechberger, Roy, Scholl.
One Tree to Rule Them All: Optimizing
GGM Trees and OWFs for Post-Quantum
Signatures. Asiacrypt 2024.

@ VOLEitH / TCitH-GGM "



to commit to polynomials?

degree 10 000

degree 1000

(2 Degree-enforcing commitment  _»

(TCitH-MT) degree 100

@ VOLEitH / TCitH-GGM “" degree 10 [FR23] Feneuil, Rivain. Threshold

Computation in the Head: Improved
Framework for Post-Quantum Signatures
and Zero-Knowledge Arguments. ePrint

degree 1 2023/1573.



to commit to polynomials?

@ Merkle Trees with degree 10 000

Ligero-like Proximity Tests )
* degree 1000

(2 Degree-enforcing commitment  _»

(TCitH-MT) degree 100
. . [AHIV17] Ames, Hazay, Ishai,
@ VOLEitH / TCitH-GGM /' degree 10 Venkitasubramaniam.{igero: Lightweight

Sublinear Arguments Without a Trusted
Setup. CCS 2017.

[GLS*23] Golonew, Lee, Setty, Thaler,
Wahby. Brakedown: Linear-time and field
agnotic SNARKs for R1CS. Crypto 2023.

degree 1



@) Merkle Trees with

to commit to polynomials?

@ FRI-based commitments

degree 10 000

Ligero-like Proximity Tests /I

degree 1000

(2 Degree-enforcing commitment  _»

(TCitH-MT)

(D VOLEitH / TCitH-GGM "

degree 1

degree 10

degree 100

[BBHR18] Ben-Sasson, Bentov, Horesh,
Riabzev. Fast Reed-Solomon Interactive
Oracle Proofs of Proximity. ICALP 2018.

[BGKS20] Ben-Sasson, Goldberg,
Kopparty, Saraf. DEEP-FRI: Sampling

Outside the Box Improves Soundness.
ITCS 2020.



to commit to polynomials?

@ FRI-based commitments

@ Merkle Trees with degree 10 000

Ligero-like Proximity Tests
* degree 1000

(2 Degree-enforcing commitment  _»

(TCitH-MT) degree 100

(D VOLEitH / TCitH-GGM " Jdegree 10

degree 1 For signature schemes, we use

degree-1 polynomials most of the time.



Commit: we want to sample and commit degree-1 polynomials such that P;(0) = w;,.
1. Sample N values ry,...,ry € F".

2. Commit to each value r; independently.

3. Reveal the value
N
Aw «— w + Z r;.
4. Forall i, the committed polynomial P,(X) is

, 1
P(X)=a;,-X+w;,  with a=2—.-r-€[|:”.
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Commit: we want to sample and commit degree-1 polynomials such that P;(0) = w;,.
1. Sample Nvaluesry,...,ry € F".

2. Commit to each value r: independently.

3. [ Reveal the value

Open: to reveal P(r) with r \= ¢(i*), i* € {1,...,N

just reveal all {r;}; ;.

& An attacker can only restore w + 1., not w.




to a Polynomial using

Commit: we want to sample and commit degree-1 polynomials such that P;(0) = w,.

1. Sample N valuesry,...,ry € F".

2. Commit to each value r; independently.

3. Reveal the value

N
Aw «— w + Z ;.
i
4. Forall i, the committed polynomial P,(X) is

1
PX)=a;- X+ w, with a=2—.~rl-€[F”.

Open: to reveal P(r) with r 1= ¢(i*), i* € {1,..., N}, just reveal all {r;}, ;.

Verify: just check that the commitment of all {r;},..;+ and deduce that

<¢(i>x<) B 1) -
¢(i)

N
P(r) = v, with v =Aw+ Z
i=1,ii*

-~



[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)




[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

seed, seed, seed, seedy_; seedy
@) ©) @) @) O)
X X & % X
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[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

e
D A

/4 /4 N Y/ S
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E

(seed1, seed?2) < PRG(parent_seed)

.




[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)
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[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)
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[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

sibling path root_seed
— log(NV) seeds /:

to be revealed

I ) I3 . IN—1 'y



Complexity in O(N) to have a soundness error Ofﬁ (degree-1 polynomials).

How to have a negligible soundness?
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Complexity in O(N) to have a soundness error Ofﬁ (degree-1 polynomials).

How to have a negligible soundness?
&

1. Taking N > 2*. Impossible since the complexity would be in O(2%).

2. ICitH-GGM Approach. Taking N small (e.g. N = 256) and repeating the
d

(3
protocol 7 times. Soundness error of <—> :

N



d

Complexity in O(N) to have a soundness error Ofﬁ (degree-1 polynomials).

How to have a negligible soundness?
=

1. Taking N > 24, Impossible since the complexity would be in 024).

2. ICitH-GGM Approach. Taking N small (e.g. N = 256) and repeating the

d T
protocol 7 times. Soundness error of <N :

3. VOLEitH Approach. Embed 7 polynomials over [ into a unique

polynomial over ., for which we will be able to open N* evaluations.

d

Soundness error of —.
NT



The public key is composed of the degree-d polynomials f;, ..., f...

The private key is the withess w := (wy, ..., w,) that satisfies

fiwg,...ow) =0,

f Wi, oooow) =0,



The public key is composed of the degree-d polynomials f;, ..., f...

The private key is the withess w := (wy, ..., w,) that satisfies

fiwg,...ow) =0,

f Wi, oooow) =0,

When f, ..., f, are random degree-2 polynomials,

Signature relying on the Multivariate Quadratic (MQ) problem

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum
Signatures and Zero-Knowledge Arguments. ePrint 2023/1573.

[BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them
All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.



Proving that the private key (xi, ..., X, qg, - -, g,_1) Satisfies
ry —Hx =0,
x-0(1) =0

Imply that wt(x) < 7.

X, O(n) = 0.

r—1
with x := (xq, ..., x,) and Q(X) := X'+ Z q; - X', where (H,y) is the public key.
i=0

Signature relying on the Syndrome Decoding (SD) problem

[FJR23] Feneuil, Joux, Rivain. Syndrome Decoding in the Head: Shorter Signatures from Zero-
Knowledge Proofs. Crypto 2022.

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum
Signatures and Zero-Knowledge Arguments. ePrint 2023/1573.



Proving that the private key (L, R) € F*" X ™" satisfies
y — Hx = 0 with x = vectorialize(L - R)
where (H,y) is the public key.

Signature relying on the MinRank problem

[BFG+24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the Head: Shorter
Signatures from Rank SD and MinRank. Asiacrypt 2024.



NIST Submission New frameworks + Opt.”
Security Assumptions Candidate Name Sizes Sizes
AES Block cipher FAEST 4.6 KB ~ 4.1-4.5 KB
AIM Block cipher AlMer 3.8 KB ~ 3.0 KB
MinRank MiRitH, MIRA 5.6 KB ~ 2.9-3.1 KB
Multivariate Quadratic MQOM 6.3 KB ~ 2.5-3.0 KB
Permuted Kernel PERK 5.8 KB ~ 3.8 KB
Rank Syndrome Decoding RYDE 6.0 KB ~ 2.9 KB
Structured MQ Biscuit 5.7 KB ~ 3.0 KB
Syndrome Decoding SDitH 8.3 KB ~ 5.0 KB

Running times of few ten millions of cycles.

* [BBM+*24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All:
Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.
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m Can be applied on any one-way function

m A practical tool to build conservative signature schemes

» No structure in the security assumption

m Recent frameworks: VOLEitH and TCitH

= Can be interpreted as Polynomial IOP (Interactive Oracle Proof)
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Conclusion

m MPC-in-the-Head

m Very versatile and tunable
m Can be applied on any one-way function

m A practical tool to build conservative signature schemes

» No structure in the security assumption

m Recent frameworks: VOLEitH and TCitH

= Can be interpreted as Polynomial IOP (Interactive Oracle Proof)

m Perspectives: Signatures with advanced functionalities

ring signatures, threshold signatures,

blind signatures, multi-signatures, ...

Thank you for your attention.



