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Identification Scheme

• Completeness: Pr[verif ✓ | honest prover] = 1 

• Soundness: Pr[verif ✓ | malicious prover]   (e.g.  ) 

• Zero-knowledge: verifier learns nothing on          .

≤ ε 2−128
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⋮
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Identification Scheme

Challenge 1 = Hash(m, Commitment)

Prover

Verifier

Challenge  = Hash(m, Response )n n − 1

⋮

I know           .

Transcript

Fiat-Shamir 
Transformation

m: message to sign 



MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007) 

• Turn a multiparty computation (MPC) into an identification scheme / zero-
knowledge proof of knowledge 

• Generic: can be applied to any cryptographic problem



MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007) 

• Convenient to build (candidate) post-quantum signature schemes 

• Picnic: submission to NIST (2017) 

• First round of recent NIST call: 7~9 MPCitH schemes / 40 submissions
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Prover Verifier

I know  such that 

 

where  are public degree-  polynomials.

w1, …, wn

f1(w1, …, wn) = 0
⋮

fm(w1, …, wn) = 0,

f1, …, fm d
Prove it!

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)
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d ⋅ ℓ
|S |
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How to commit to polynomials?
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How to commit to polynomials?

①  VOLEitH / TCitH-GGM

② Degree-enforcing commitment 
(TCitH-MT)

③ Merkle Trees with 
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000

For signature schemes, we use 
degree-  polynomials most of the time.1



Committing to a Polynomial using a Seed Tree

Commit: we want to sample and commit degree-  polynomials such that . 

1. Sample  values . 

2. Commit to each value  independently. 

3. Reveal the value 

. 

4. For all , the committed polynomial  is 

        with       . 

1 Pi(0) = wi

N r1, …, rN ∈ 𝔽

ri

Δw ← w +
N

∑
i

ri

i Pi(X)

Pi(X) = ai ⋅ X + wi a =
N

∑
i=1

1
ϕ(i)

⋅ ri ∈ 𝔽



Committing to a Polynomial using a Seed Tree

Commit: we want to sample and commit degree-  polynomials such that . 
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Commit: we want to sample and commit degree-  polynomials such that . 

1. Sample  values . 

2. Commit to each value  independently. 

3. Reveal the value 
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4. For all , the committed polynomial  is 

        with       . 

Open: to reveal  with , , just reveal all . 

Verify: just check that the commitment of all  and deduce that 
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1. Taking . Impossible since the complexity would be in . 

2. TCitH-GGM Approach. Taking  small (e.g. ) and repeating the 

protocol  times. Soundness error of . 

3. VOLEitH Approach. Embed  polynomials over  into a unique 

polynomial over , for which we will be able to open  evaluations. 

Soundness error of .
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The private key is the witness  that satisfies 

d f1, …, fm
w := (w1, …, wn)

f1(w1, …, wn) = 0,
⋮

fm(w1, …, wn) = 0.

When  are random degree-  polynomials, 

Signature relying on the Multivariate Quadratic (MQ) problem 

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum 
Signatures and Zero-Knowledge Arguments. ePrint 2023/1573. 

[BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them 
All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.
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Building Signature Schemes

Proving that the private key  satisfies 

 

with ) and  , where  is the public key. 

Signature relying on the Syndrome Decoding (SD) problem 

[FJR23] Feneuil, Joux, Rivain. Syndrome Decoding in the Head: Shorter Signatures from Zero-
Knowledge Proofs. Crypto 2022. 

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum 
Signatures and Zero-Knowledge Arguments. ePrint 2023/1573.

(x1, …, xn′￼  
y − Hx = 0,
x1 ⋅ Q(1) = 0

⋮
xn ⋅ Q(n) = 0.

x := (x1, …, xn′￼ Q(X) := Xt +
t−1

∑
i=0

qi ⋅ Xi (H, y)

Imply that .wtH(x) ≤ t



Building Signature Schemes

Proving that the private key  satisfies 

 with  

where  is the public key. 

Signature relying on the MinRank problem 

[BFG+24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the Head: Shorter 
Signatures from Rank SD and MinRank. Asiacrypt 2024.

(L, R) ∈ 𝔽
  𝔽

y − Hx = 0 x = vectorialize(L ⋅ R)
(H, y)



Signature Sizes with the New Frameworks

NIST Submission New frameworks + Opt.*

Security Assumptions Candidate Name Sizes Sizes

AES Block cipher FAEST 4.6 KB ≈ 4.1-4.5 KB

AIM Block cipher AIMer 3.8 KB ≈ 3.0 KB

MinRank MiRitH, MIRA 5.6 KB ≈ 2.9-3.1 KB

Multivariate Quadratic MQOM 6.3 KB ≈ 2.5-3.0 KB

Permuted Kernel PERK 5.8 KB ≈ 3.8 KB

Rank Syndrome Decoding RYDE 6.0 KB ≈ 2.9 KB

Structured MQ Biscuit 5.7 KB ≈ 3.0 KB

Syndrome Decoding SDitH 8.3 KB ≈ 5.0 KB

Running times of few ten millions of cycles.

* [BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: 
Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.
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Thank you for your attention.


