Post-Quantum Signatures from Secure Multiparty Computation

Thibauld Feneuil

ReAdPQC — CIFRIS24

September 27, 2024, Frascati (Rome)

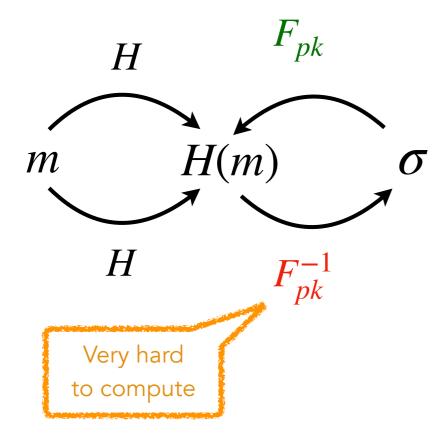
Table of Contents

- Introduction
- The TCitH and VOLEitH frameworks, in the PIOP formalism
 - Polynomial IOP
 - Committing to polynomials
- Building signatures
- Conclusion

Introduction

How to build signature schemes?

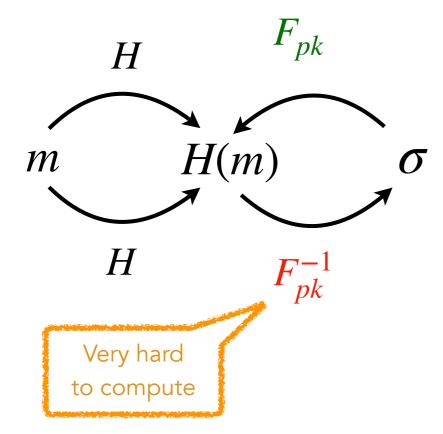
Hash & Sign



- Short signatures
- "Trapdoor" in the public key

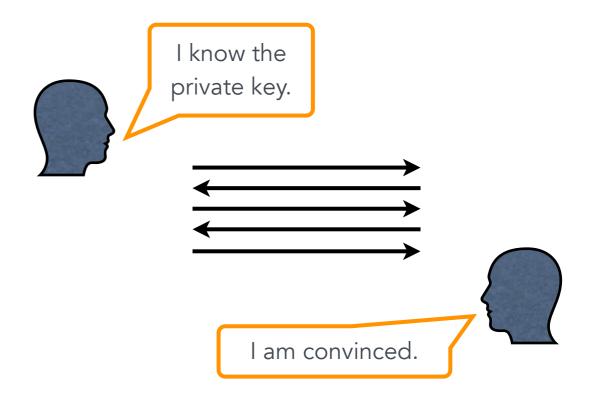
How to build signature schemes?

Hash & Sign



- Short signatures
- "Trapdoor" in the public key

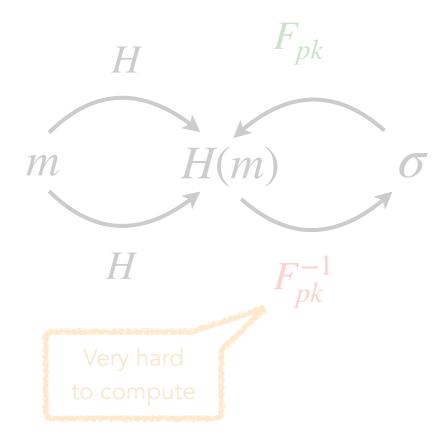
From an identification scheme



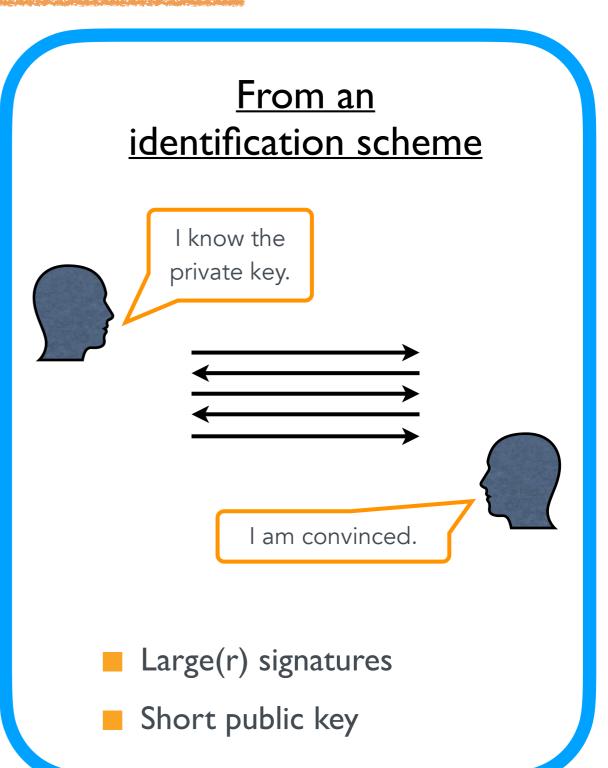
- Large(r) signatures
- Short public key

How to build signature schemes?

Hash & Sign



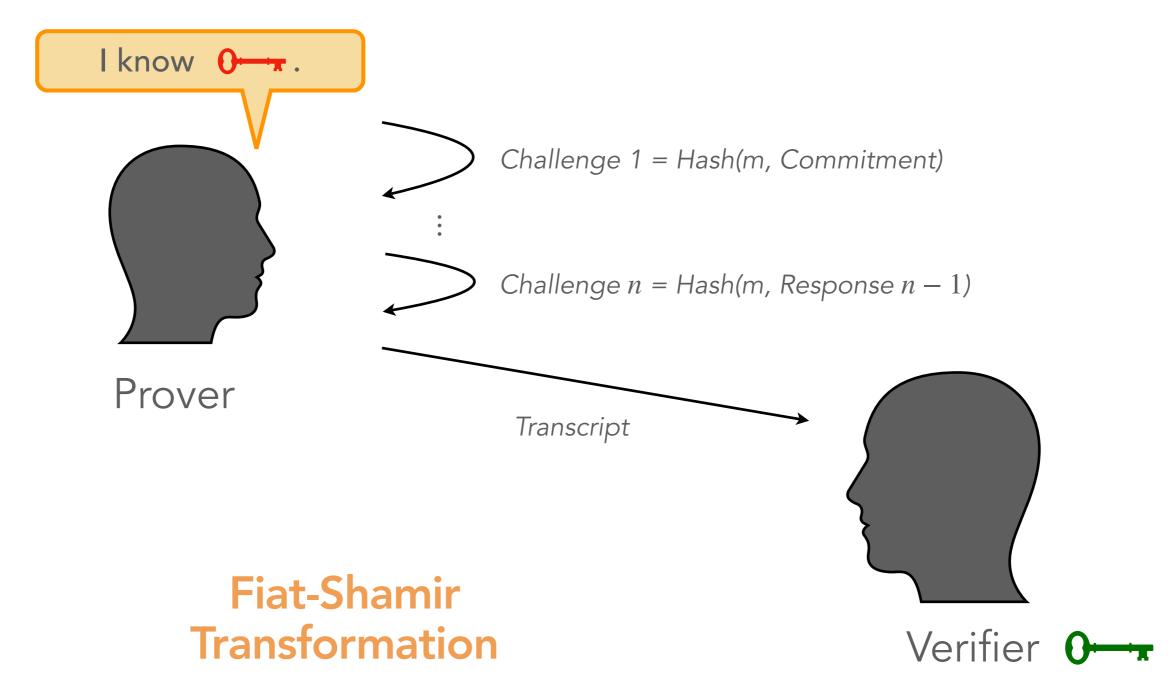
- Short signatures
- "Trapdoor" in the public key



Identification Scheme

- Completeness: Pr[verif ✓ | honest prover] = 1
- Soundness: $Pr[verif \checkmark | malicious prover] \le \varepsilon$ (e.g. 2^{-128})
- Zero-knowledge: verifier learns nothing on 0→x.

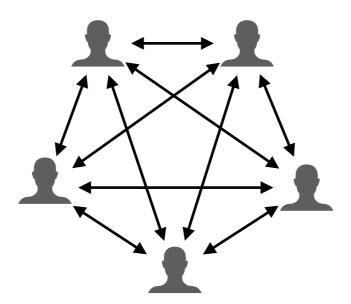
Identification Scheme



m: message to sign

MPC in the Head

- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn a *multiparty computation* (MPC) into an identification scheme / zero-knowledge proof of knowledge



• Generic: can be applied to any cryptographic problem

MPC in the Head

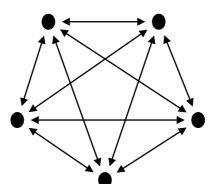
- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Convenient to build (candidate) **post-quantum signature** schemes
- **Picnic**: submission to NIST (2017)
- First round of recent NIST call: 7~9 MPCitH schemes / 40 submissions

AIMer Biscuit FAEST MIRA MIRA SDitH

$$F: x \mapsto y$$

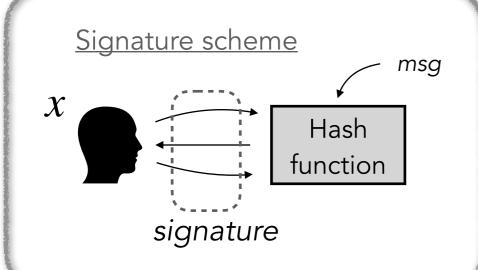
E.g. AES, MQ system, Syndrome decoding

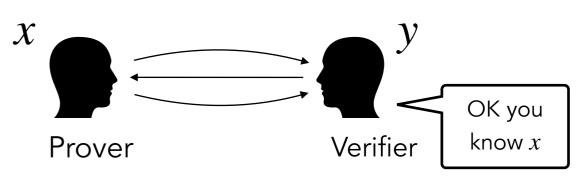
Multiparty computation (MPC)



Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

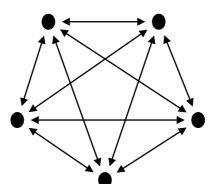




$$F: x \mapsto y$$

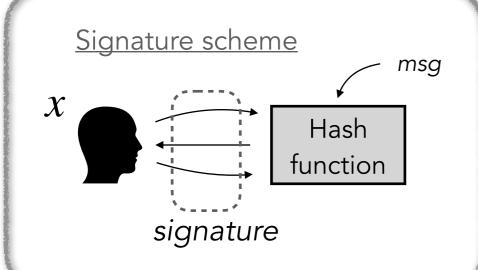
E.g. AES, MQ system, Syndrome decoding

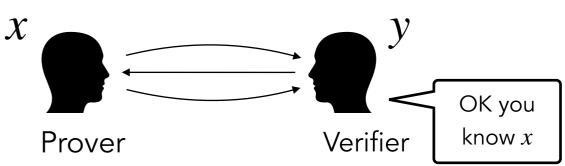
Multiparty computation (MPC)



Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

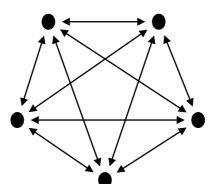




$$F: x \mapsto y$$

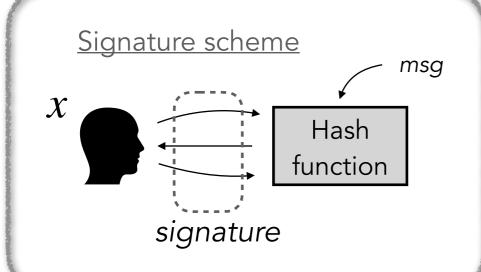
E.g. AES, MQ system, Syndrome decoding

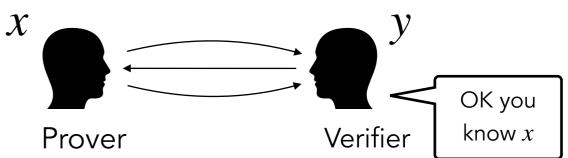
Multiparty computation (MPC)



Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

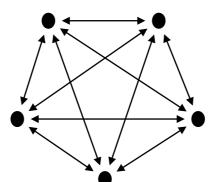




$$F: x \mapsto y$$

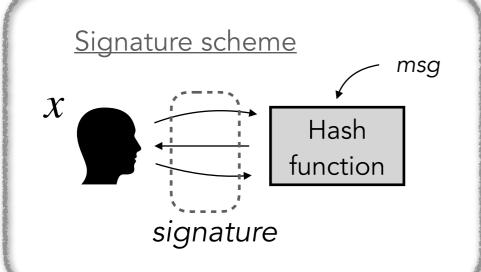
E.g. AES, MQ system, Syndrome decoding

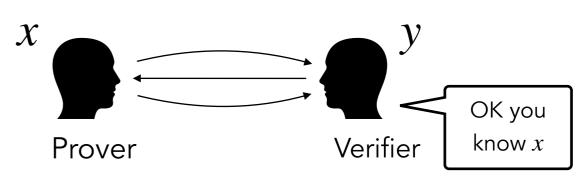
Multiparty computation (MPC)



Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

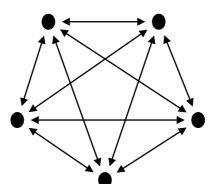




$$F: x \mapsto y$$

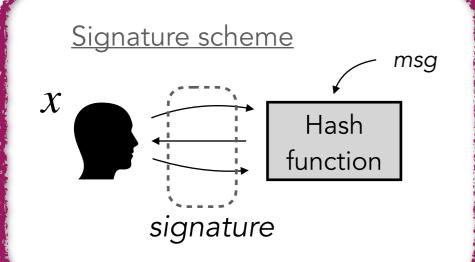
E.g. AES, MQ system, Syndrome decoding

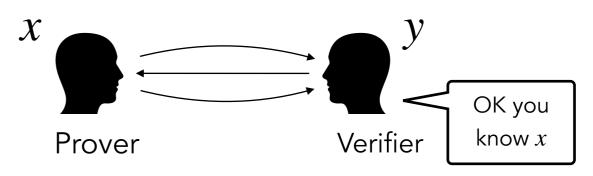
Multiparty computation (MPC)



Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$



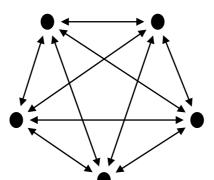


$$F: x \mapsto y$$

E.g. AES, MQ system, Syndrome decoding

X Hash function signature

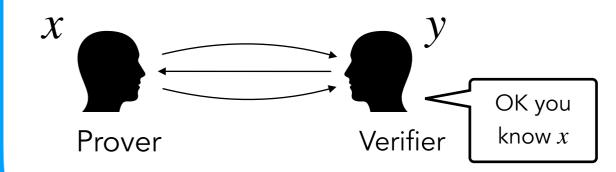
Multiparty computation (MPC)



Input sharing [x]Joint evaluation of:

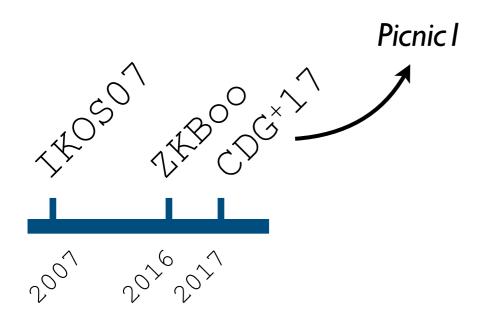
$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

MPC-in-the-Head transform

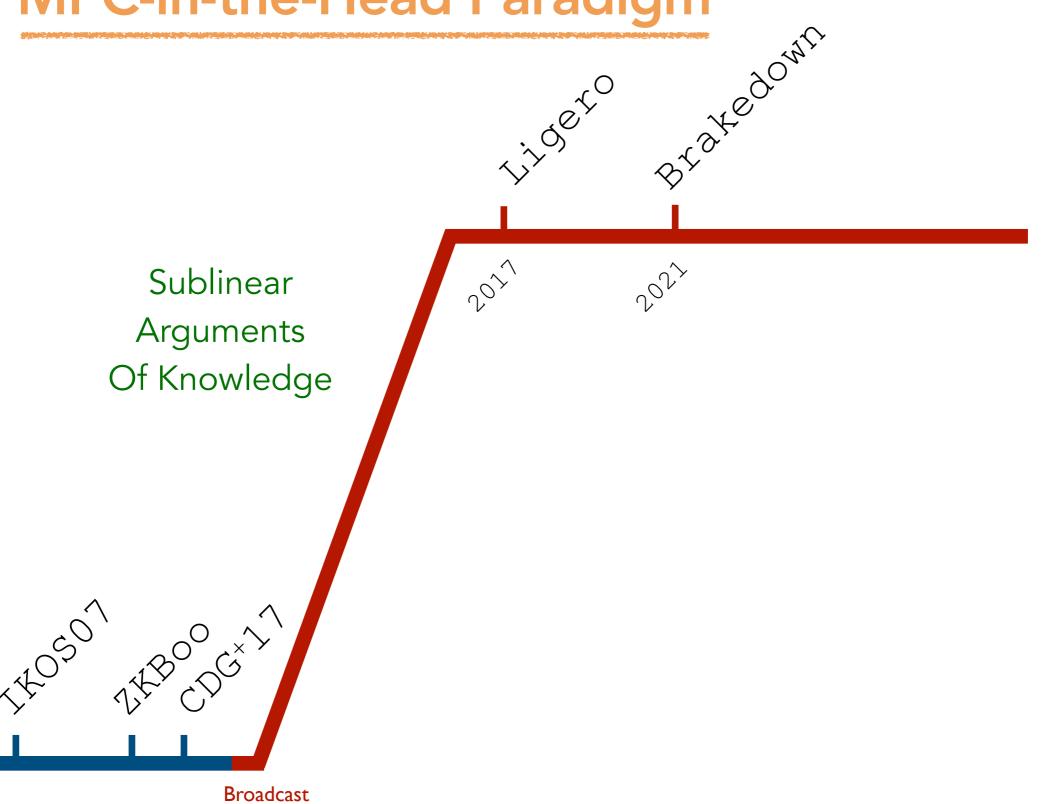


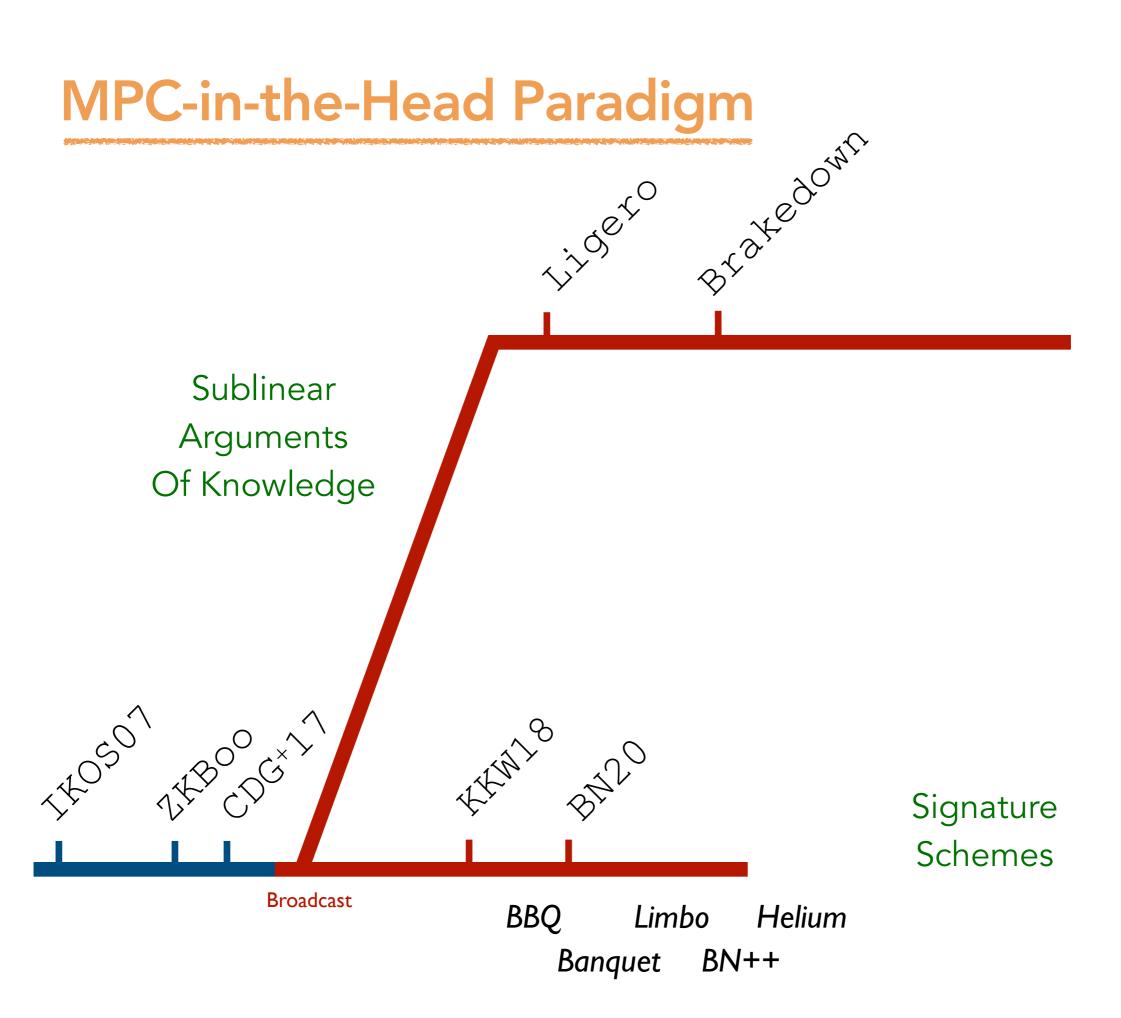
MPCitH for signature schemes

MPC-in-the-Head Paradigm

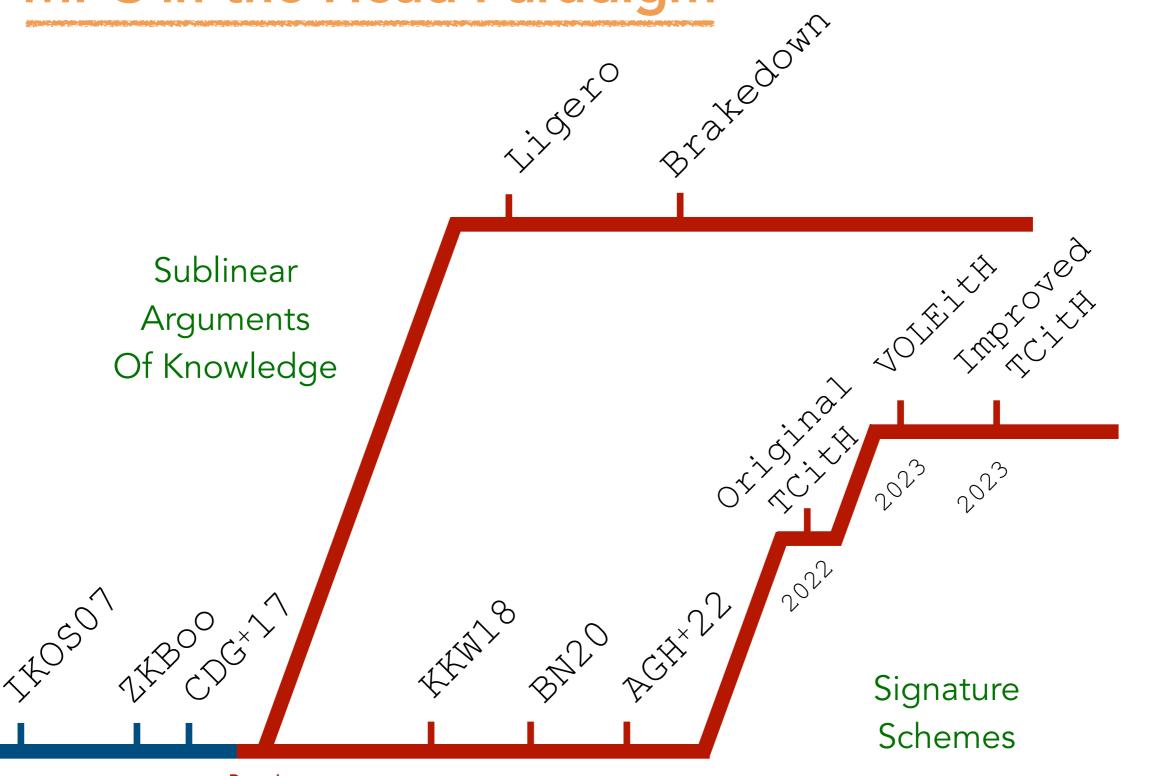


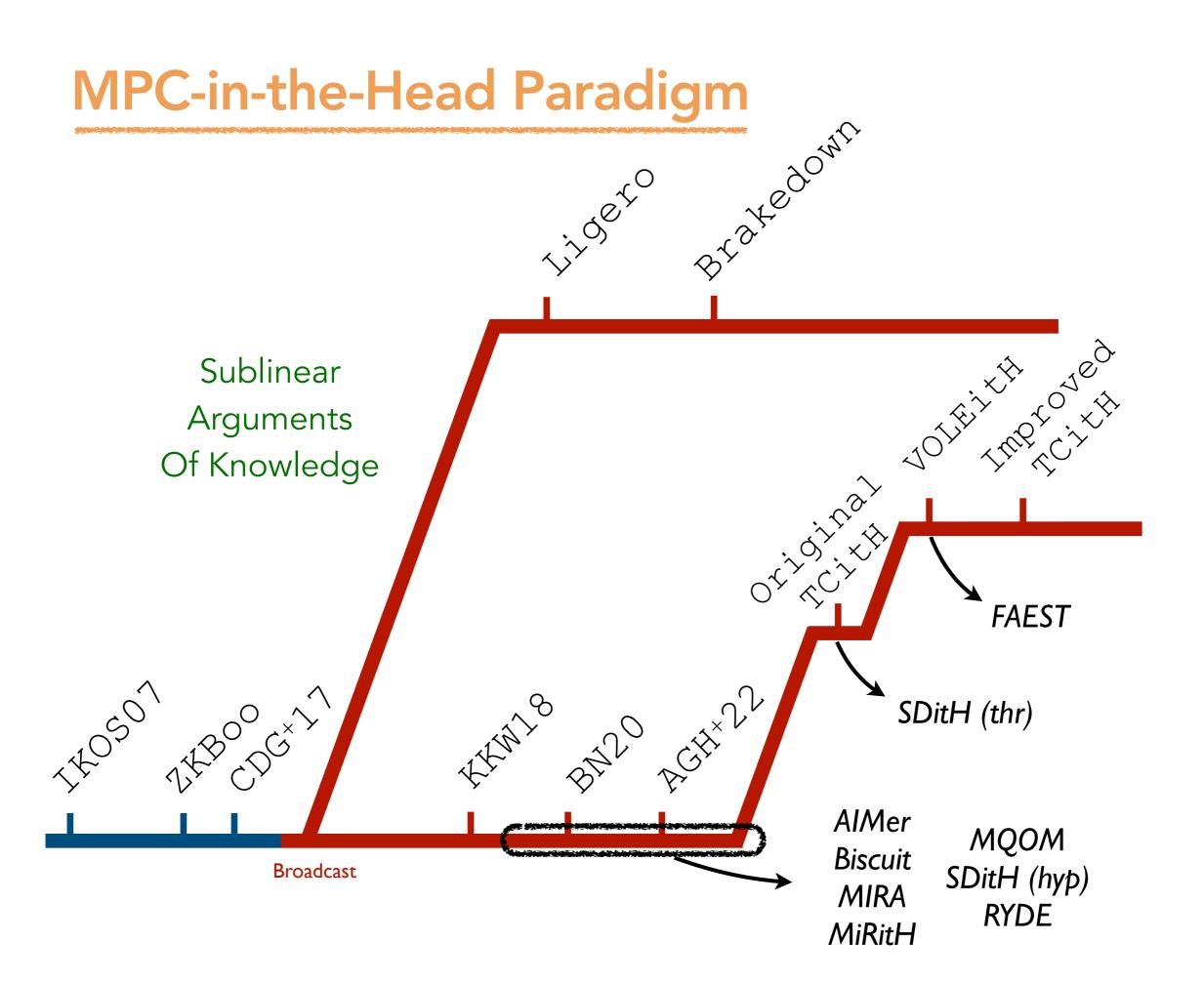
MPC-in-the-Head Paradigm

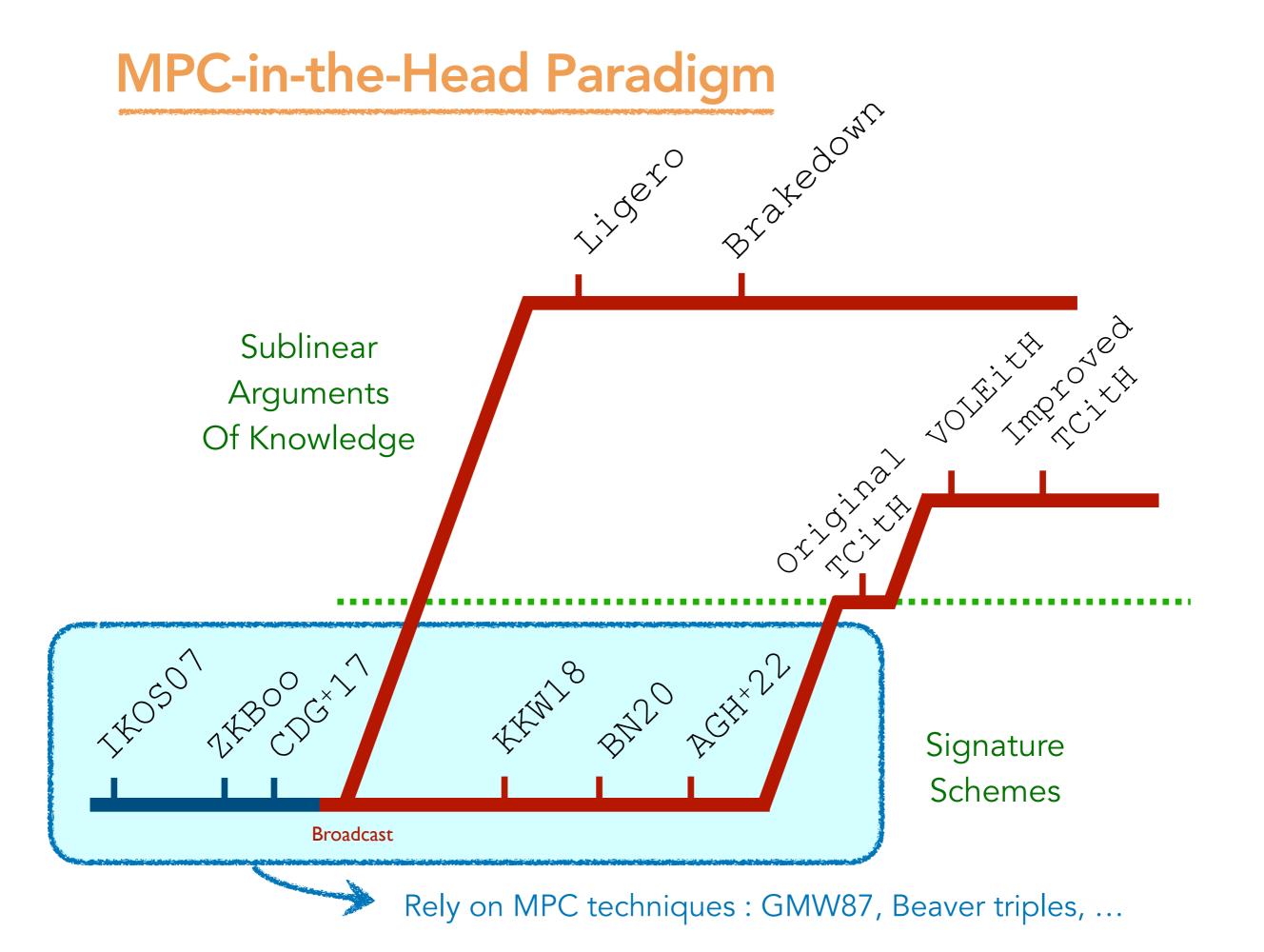


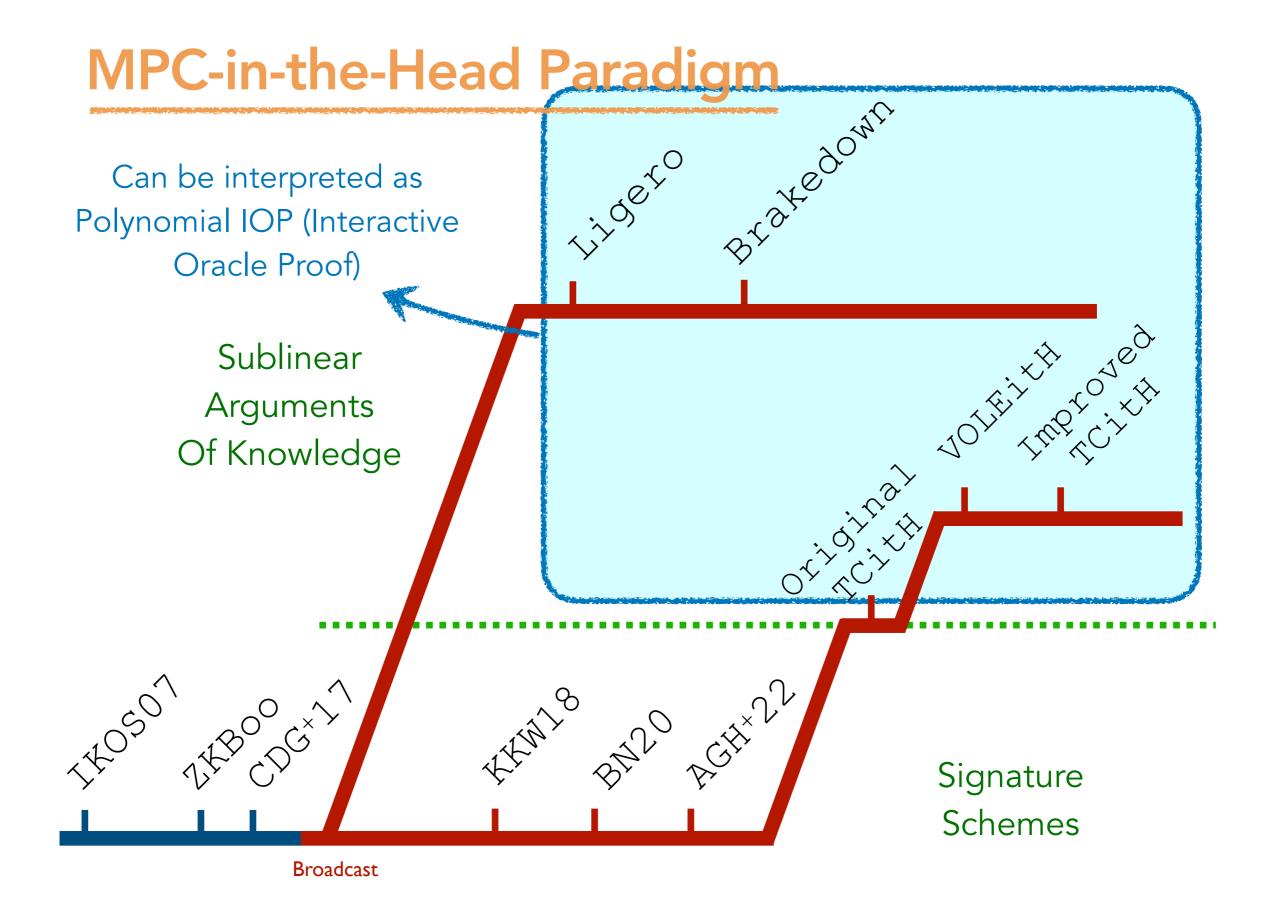


MPC-in-the-Head Paradigm









(for signature schemes)

I know $w_1, ..., w_n$ such that

$$\begin{cases} f_1(w_1, ..., w_n) &= 0 \\ \vdots \\ f_m(w_1, ..., w_n) &= 0, \end{cases}$$

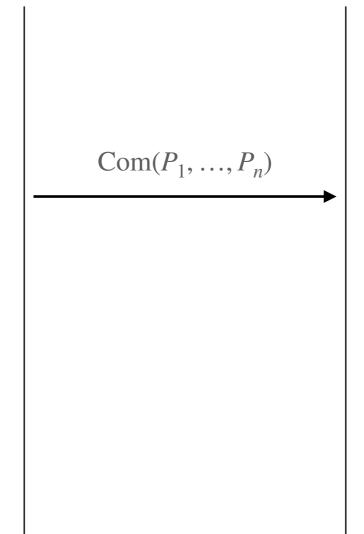
where $f_1, ..., f_m$ are public **degree**-d **polynomials**.

Prove it!

Prover

(for signature schemes)

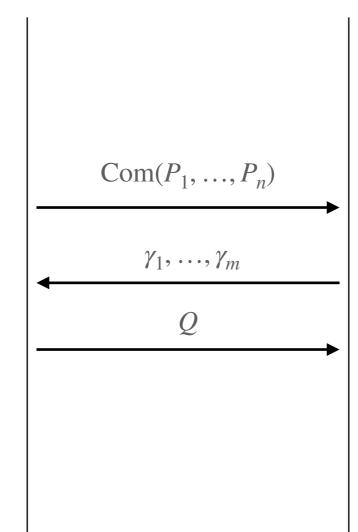
- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- ② Commit the polynomials $P_1, ..., P_n$



<u>Prover</u>

(for signature schemes)

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- ② Commit the polynomials $P_1, ..., P_n$
- ① Commit the polynomial Q(X) such that $X \cdot Q(X) = \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$

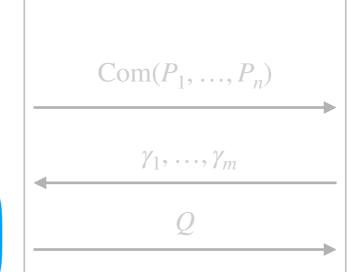


③ Choose random coefficients $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$

Prover

(for signature schemes)

- 1 For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- 2 Commit the polynomials $P_1, ..., P_n$
- ① Commit the polynomial Q(X) such that $X \cdot Q(X) = \sum_{i=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$



③ Choose random coefficients $\gamma_1, \ldots, \gamma_m \leftarrow^{\$} \mathbb{F}$

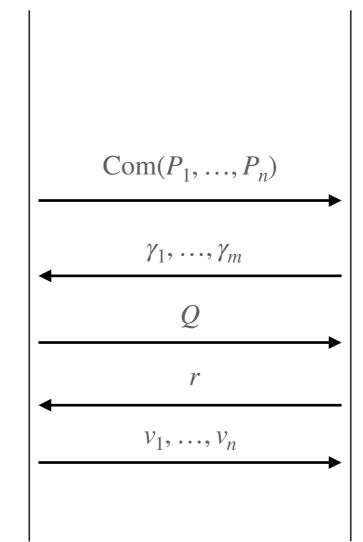
Well-defined!

Prover

$$\sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(0), \dots, P_n(0)) = \sum_{j=1}^{m} \gamma_j \cdot f_j(w_1, \dots, w_n)$$
$$= \sum_{j=1}^{m} \gamma_j \cdot 0 = 0$$

(for signature schemes)

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- ② Commit the polynomials $P_1, ..., P_n$
- ④ Commit the polynomial Q(X) such that $X \cdot Q(X) = \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$
- **6** Reveal the evaluation $v_i := P_i(r)$ for all i.

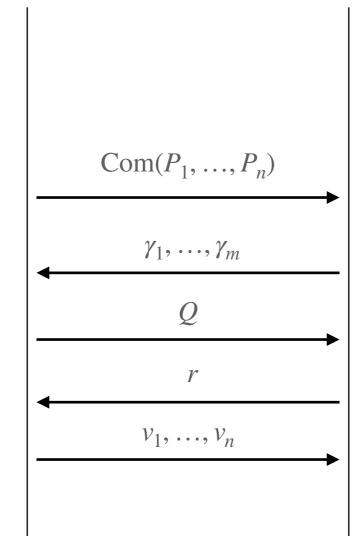


- ③ Choose random coefficients $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$

Prover

(for signature schemes)

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- ② Commit the polynomials $P_1, ..., P_n$
- ① Commit the polynomial Q(X) such that $X \cdot Q(X) = \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$
- 6 Reveal the evaluation $v_i := P_i(r)$ for all i.



- ③ Choose random coefficients $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- \bigcirc Choose a random evaluation point $r \in S \subset \mathbb{F}$
- Check that $v_1, ..., v_n$ are consistent with the commitment. Check that

$$r \cdot Q(r) = \sum_{j=1}^{m} \gamma_j \cdot f_j(v_1, \dots, v_m)$$

Prover

Verifier

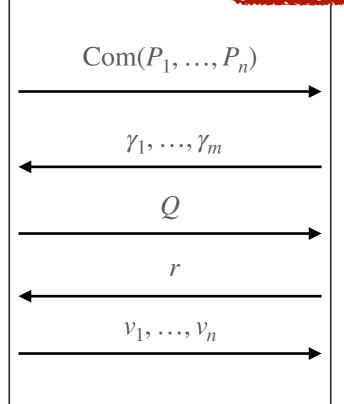
(for signature schemes)

① For all i, choose a degree- ℓ polynomial $P_i(X)$. There exists j^* s.t.

$$f_{j*}(P_1(0),...,P_n(0)) \neq 0.$$

- ② Commit the polynomials $P_1, ..., P_n$
- ④ Commit the polynomial Q(X). We know that $X \cdot Q(X) \neq \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$
 - 6 Reveal the evaluation $v_i := P_i(r)$ for all i.

Soundness Analysis



- ③ Choose random coefficients $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- Choose a random evaluation point $r \in S \subset \mathbb{F}$
- Check that $v_1, ..., v_n$ are consistent with the commitment. Check that

$$r \cdot Q(r) = \sum_{j=1}^{m} \gamma_j \cdot f_j(v_1, \dots, v_m)$$

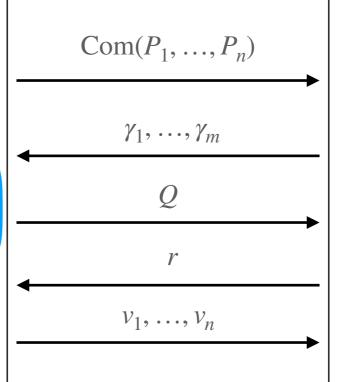
(for signature schemes)

① For all i, choose a degree- ℓ polynomial $P_i(X)$. There exists j^* s.t.

$$f_{j*}(P_1(0),...,P_n(0)) \neq 0.$$

- ② Commit the polynomials $P_1, ..., P_n$
- ① Commit the polynomial Q(X). We know that $X \cdot Q(X) \neq \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$
 - 6 Reveal the evaluation $v_i := P_i(r)$ for all i.

Soundness Analysis



- ③ Choose random coefficients $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- \bigcirc Choose a random evaluation point $r \in S \subset \mathbb{F}$
- 7 Check that $v_1, ..., v_n$ are consistent with the commitment.

It is an inequality with **high probability** over the randomness of $\gamma_1, ..., \gamma_m$, since we have

$$\sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(0), \dots, P_n(0)) \neq 0$$

Malicious Prover **5**

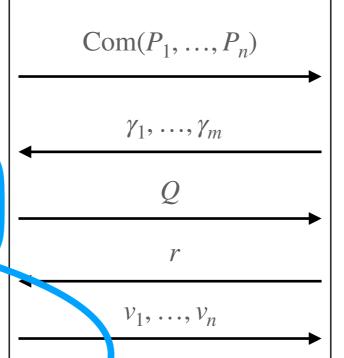
(for signature schemes)

① For all i, choose a degree- ℓ polynomial $P_i(X)$. There exists j^* s.t.

$$f_{j*}(P_1(0),...,P_n(0)) \neq 0.$$

- ② Commit the polynomials $P_1, ..., P_n$
- ④ Commit the polynomial Q(X). We know that $X \cdot Q(X) \neq \sum_{m=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$
 - 6 Reveal the evaluation $v_i := P_i(r)$ for all i.

Soundness Analysis



- ③ Choose random coefficients $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- \bigcirc Choose a random evaluation point $r \in S \subset \mathbb{F}$
- \bigcirc Check that $v_1, ..., v_n$ are consistent with the commitment.

Check that

$$r \cdot Q(r) = \sum_{j=1}^{m} \gamma_j \cdot f_j(v_1, \dots, v_m)$$

<u>Verifier</u>

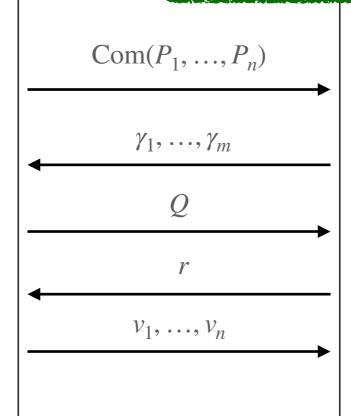
Schwartz-Zippel Lemma: Since it is a degree- $(d \cdot \ell)$ relation,

$$\Pr[\text{verification passes}] \le \frac{d \cdot \ell}{|S|}.$$

(for signature schemes)

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- ② Commit the polynomials $P_1, ..., P_n$
- ④ Commit the polynomial Q(X) such that $X \cdot Q(X) = \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$
- 6 Reveal the evaluation $v_i := P_i(r)$ for all i.

Zero-Knowledge Analysis



- ③ Choose random coefficients $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- \bigcirc Choose a random evaluation point $r \in S \subset \mathbb{F}$
- Check that $v_1, ..., v_n$ are consistent with the commitment. Check that

$$r \cdot Q(r) = \sum_{j=1}^{m} \gamma_j \cdot f_j(v_1, \dots, v_m)$$

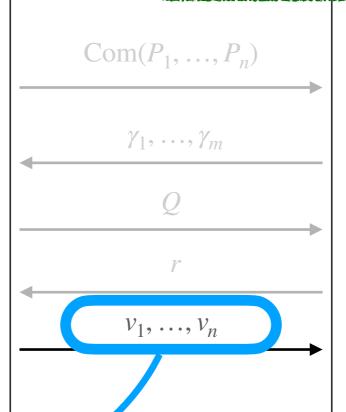
Verifier

<u>Prover</u>

(for signature schemes)

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- 2 Commit the polynomials $P_1, ..., P_n$
- ① Commit the poynomial Q(X) such that $X \cdot Q(X) = \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$
- 6 Reveal the evaluation $v_i := P_i(r)$ for all i.

Zero-Knowledge Analysis



- 3 Choose random coefficients $\gamma_1, \ldots, \gamma_m \leftarrow^{\$} \mathbb{F}$
- 5 Choose a random evaluation point $r \in S \subset \mathbb{F}$
- 7 Check that $v_1, ..., v_n$ are consistent with the commitment. Check that

$$r \cdot Q(r) = \sum_{j=1}^{m} \gamma_j \cdot f_j(v_1, \dots, v_m)$$

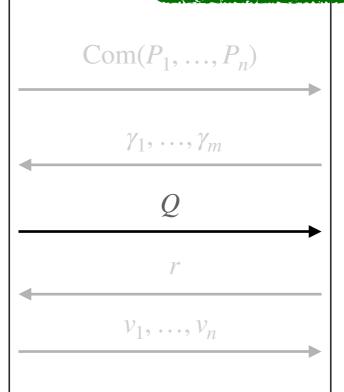
Verifier ••

Revealing an evaluation of $P_i(X)$ leaks no information about w_i .

(for signature schemes)

- For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$
- 2 Commit the polynomials $P_1, ..., P_n$
- 4 Commit the polynomial Q(X) such that $X \cdot Q(X) = \sum_{i} \gamma_{i} \cdot f_{i}(P_{1}(X), \dots, P_{n}(X))$
- 6 Reveal the evaluation $v_i := P_i(r)$ for all i.

Zero-Knowledge Analysis



- 3 Choose random coefficients $\gamma_1, \ldots, \gamma_m \leftarrow^{\$} \mathbb{F}$
- 5 Choose a random evaluation point $r \in S \subset \mathbb{F}$
- 7 Check that $v_1, ..., v_n$ are consistent with the commitment. Check that

$$r \cdot Q(r) = \sum_{j=1}^{m} \gamma_j \cdot f_j(v_1, \dots, v_m)$$

Verifier ••

 \triangle Leak information about the witness $w_1, ..., w_n$

TCitH and VOLEitH Frameworks, in the PIOP formalism

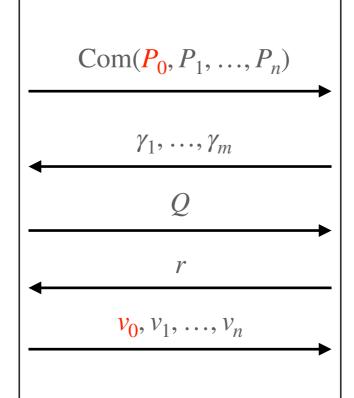
(for signature schemes)

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$ Sample a random degree- $(d\ell-1)$ polynomial $P_0(X)$
- ② Commit the polynomials $P_0, P_1, ..., P_n$
- 4 Commit the polynomial Q(X) such that

$$X \cdot Q(X) = X \cdot P_0(X) + \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$$

6 Reveal the evaluation $v_i := P_i(r)$ for all i.

Zero-Knowledge Analysis



- ③ Choose random coefficients $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- Check that $v_1, ..., v_n$ are consistent with the commitment. Check that

$$r \cdot Q(r) = r \cdot v_0 + \sum_{j=1}^m \gamma_j \cdot f_j(v_1, \dots, v_m)$$

Verifier .

Prover

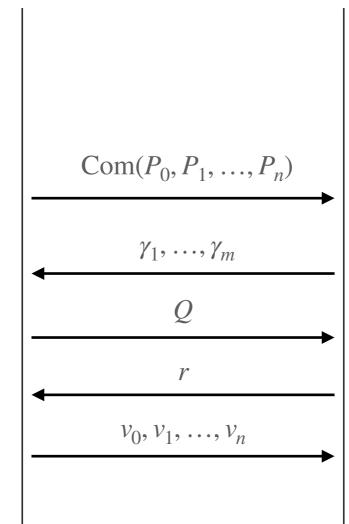
TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$ Sample a random degree- $(d\ell-1)$ polynomial $P_0(X)$
- ② Commit the polynomials $P_0, P_1, ..., P_n$
- 4 Commit the polynomial Q(X) such that

$$X \cdot Q(X) = X \cdot P_0(X) + \sum_{j=1}^{m} \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$$

6 Reveal the evaluation $v_i := P_i(r)$ for all i.



- ③ Choose random coefficients $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- Check that $v_1, ..., v_n$ are consistent with the commitment. Check that

$$r \cdot Q(r) = r \cdot v_0 + \sum_{j=1}^m \gamma_j \cdot f_j(v_1, \dots, v_m)$$

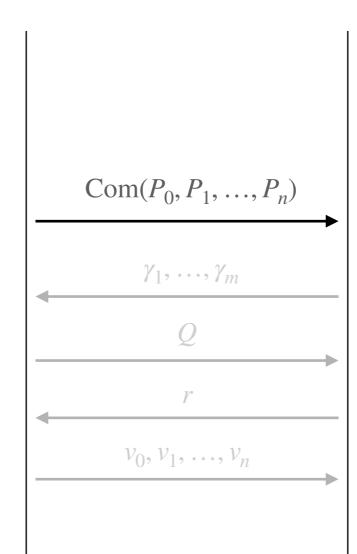
Verifier

<u>Prover</u>

TCitH and VOLEitH Frameworks, in the PIOP formalism

(for signature schemes)

- ① For all i, sample a random degree- ℓ polynomial $P_i(X)$ such that $P_i(0) = w_i$ Sample a random degree- $(d\ell-1)$ polynomial $P_0(X)$
- ② Commit the polynomials $P_0, P_1, ..., P_n$
- ① Commit the polynomial Q(X) such that $X \cdot Q(X) = X \cdot P_0(X) + \sum_{j=1}^m \gamma_j \cdot f_j(P_1(X), ..., P_n(X))$
 - 6 Reveal the evaluation $v_i := P_i(r)$ for all i.



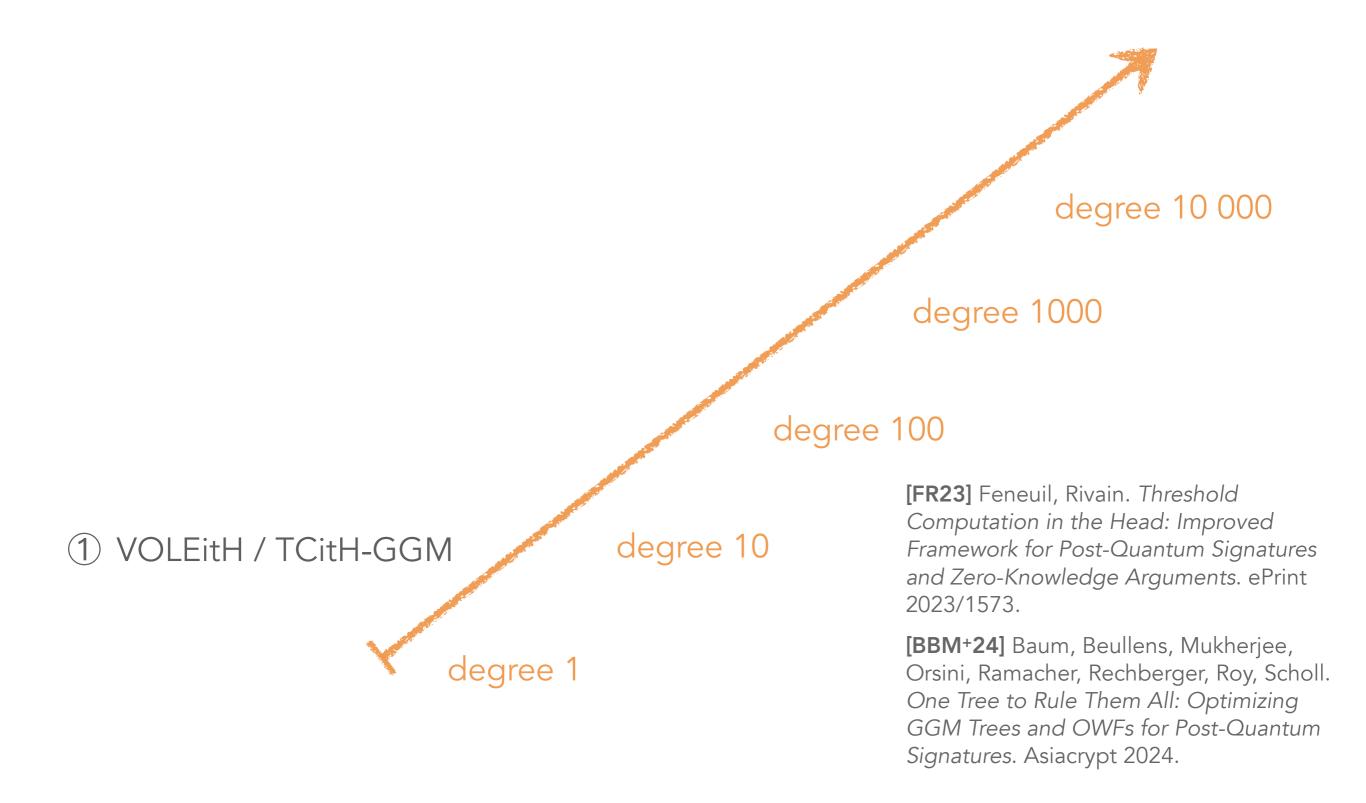
- 3 Choose random coefficients $\gamma_1, ..., \gamma_m \leftarrow^{\$} \mathbb{F}$
- 5 Choose a random evaluation point $r \in S \subset \mathbb{F}$
- \bigcirc Check that $v_1, ..., v_n$ are consistent with the commitment.

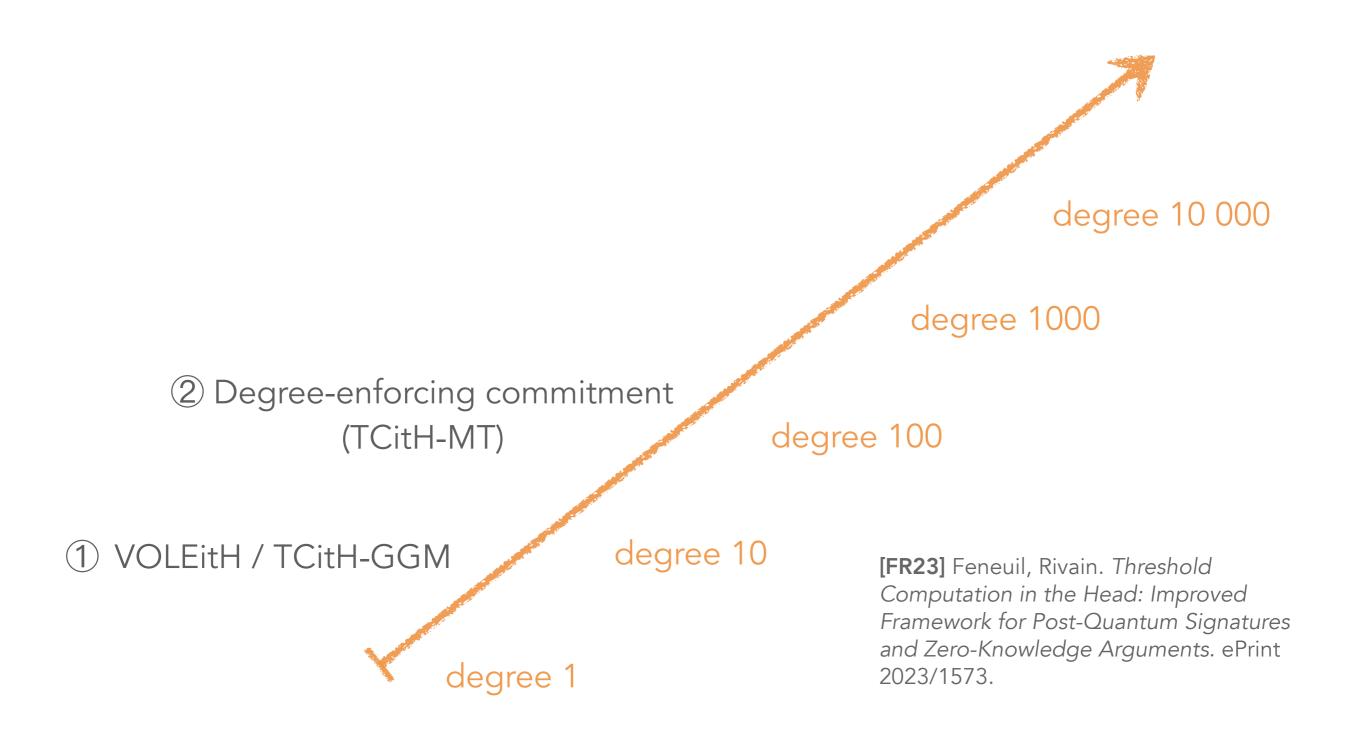
Check that

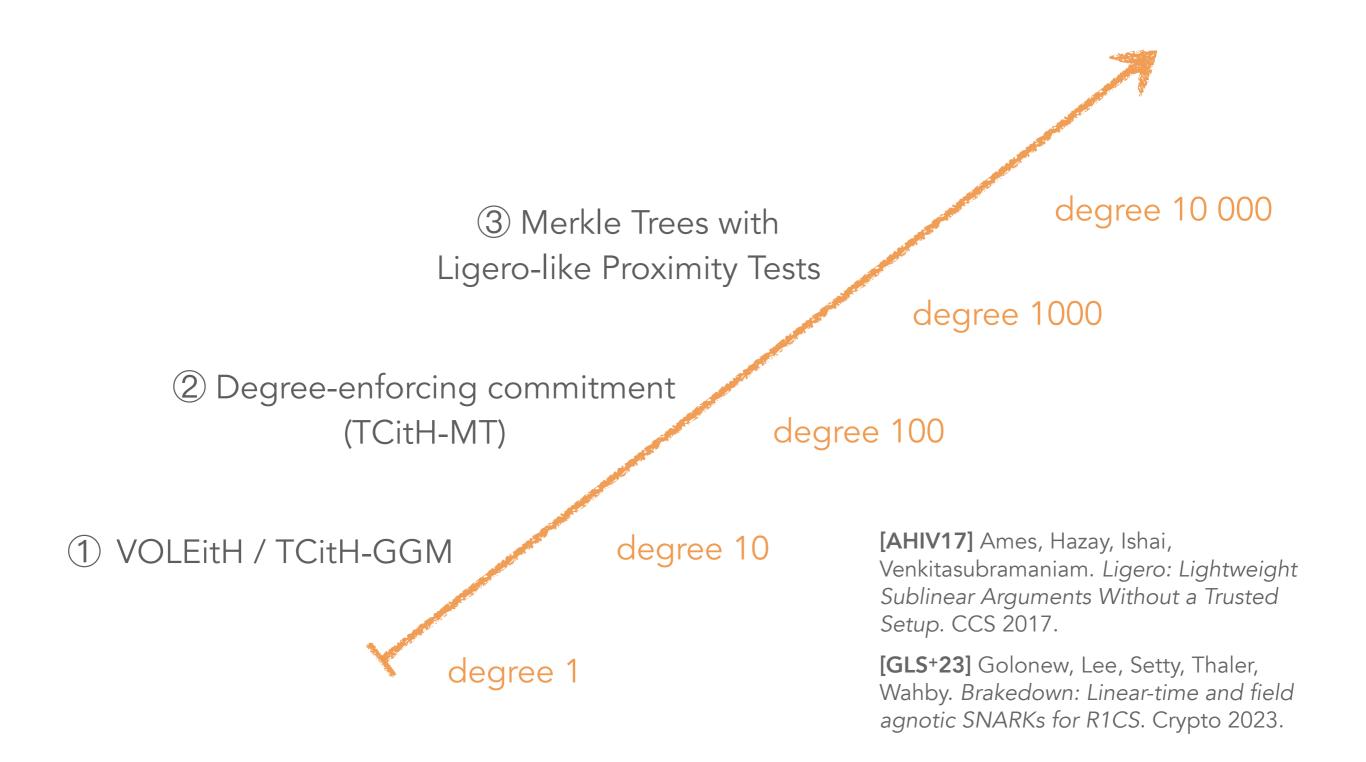
$$r \cdot Q(r) = r \cdot v_0 + \sum_{j=1}^{m} \gamma_j \cdot f_j(v_1, \dots, v_m)$$

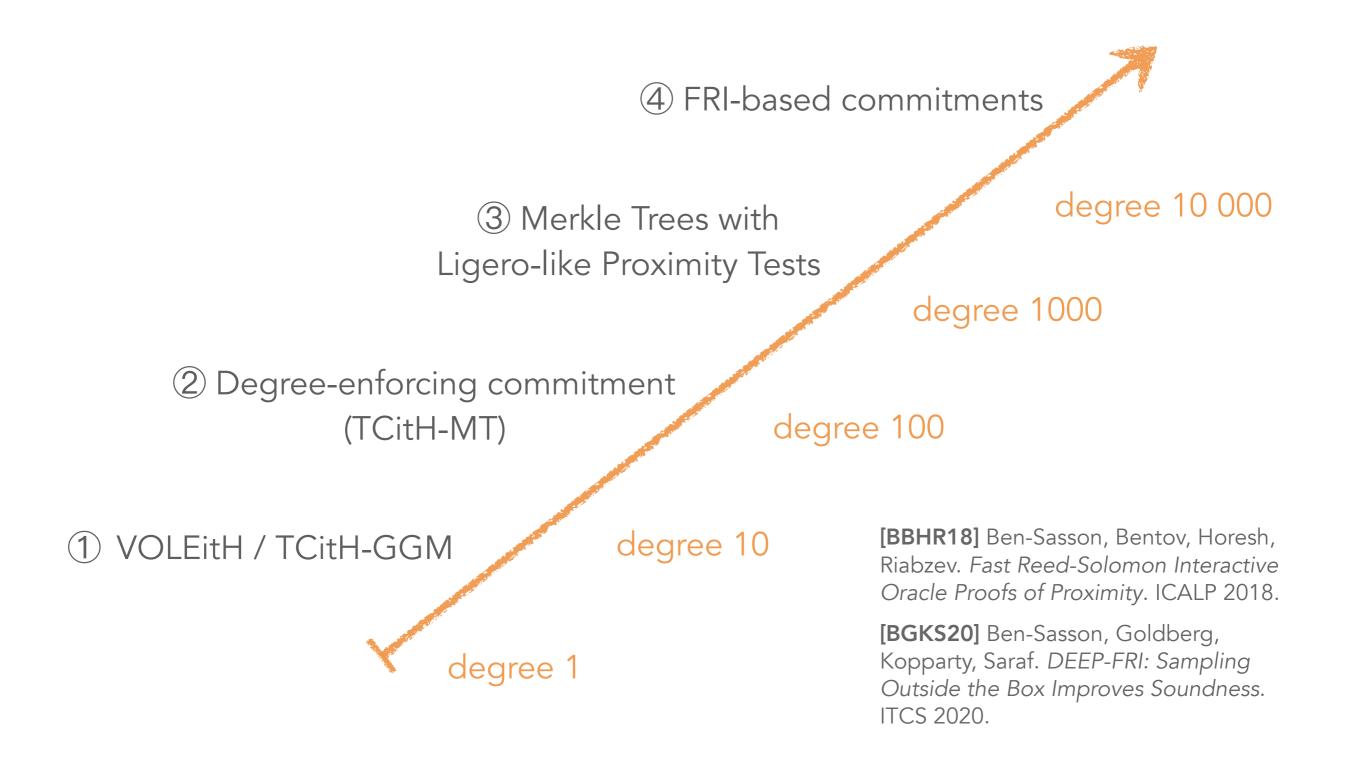
Verifier

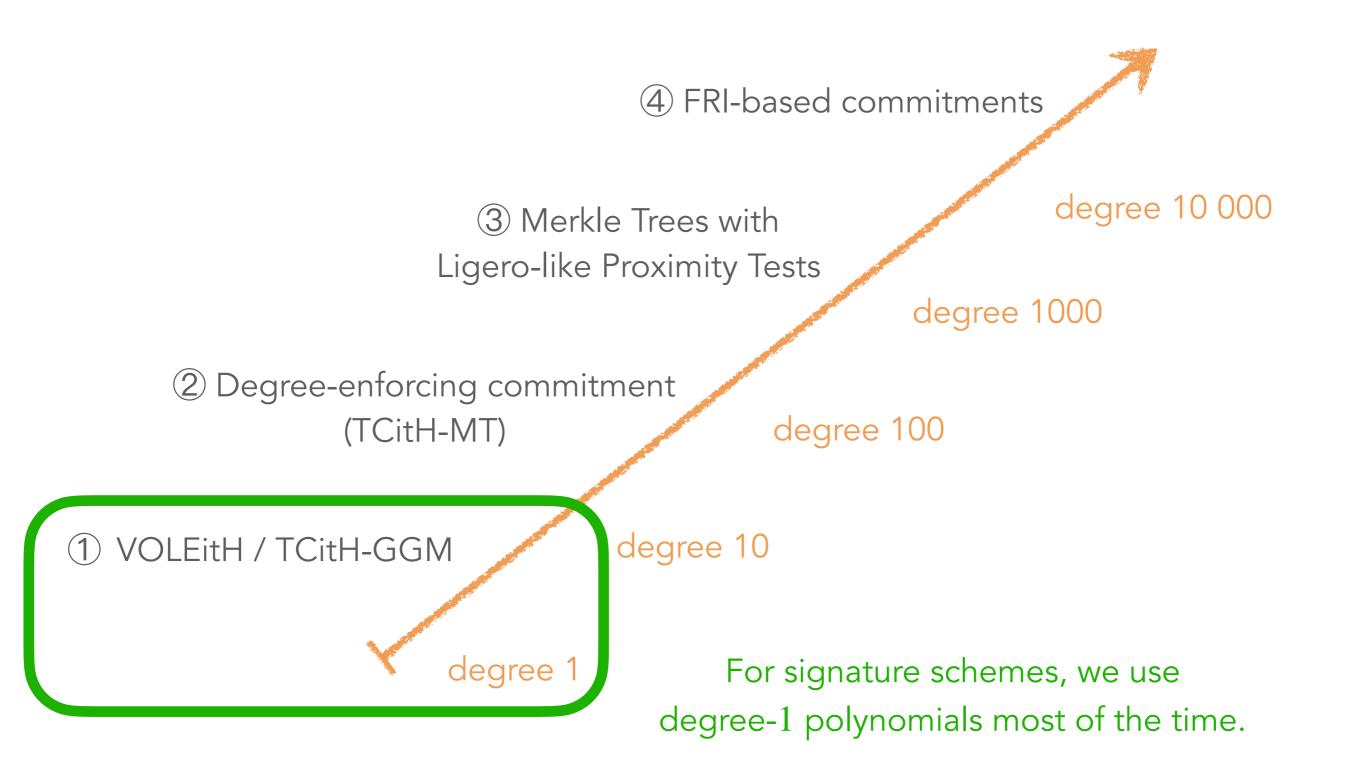
<u>Prover</u>











Commit: we want to sample and commit degree-1 polynomials such that $P_i(0) = w_i$.

- 1. Sample N values $r_1, ..., r_N \in \mathbb{F}^n$.
- 2. Commit to each value r_i independently.
- 3. Reveal the value

$$\Delta w \leftarrow w + \sum_{i}^{N} r_{i}.$$

4. For all i, the committed polynomial $P_i(X)$ is

$$P_i(X) = a_i \cdot X + w_i$$
 with $a = \sum_{i=1}^N \frac{1}{\phi(i)} \cdot r_i \in \mathbb{F}^n$.

Commit: we want to sample and commit degree-1 polynomials such that $P_i(0) = w_i$.

- 1. Sample N values $r_1, ..., r_N \in \mathbb{F}^n$.
- 2. Commit to each value r_i independently.
- 3. Reveal the value

$$\Delta w \leftarrow w + \sum_{i}^{N} r_{i}.$$

4. For all i, the committed polynomial $P_i(X)$ is

$$P_i(X) = a_i \cdot X + w_i$$
 with $a = \sum_{i=1}^N \frac{1}{\phi(i)} \cdot r_i \in \mathbb{F}^n$.

Open: to reveal P(r) with $r := \phi(i^*)$, $i^* \in \{1, ..., N\}$, just reveal all $\{r_i\}_{i \neq i^*}$.

Commit: we want to sample and commit degree-1 polynomials such that $P_i(0) = w_i$.

- 1. Sample N values $r_1, ..., r_N \in \mathbb{F}^n$.
- Commit to each value r_i independently.
- Reveal the value

$$\Delta w \leftarrow w + \sum_{i}^{N} r_{i}.$$

4. For all i, the committed polynomial $P_i(X)$ is

$$P_i(X) = a_i \cdot X + w_i \quad \text{with} \quad a = \sum_{i=1}^N \frac{1}{\phi(i)} \cdot r_i \in \mathbb{F}^n.$$

Open: to reveal P(r) with $r = \phi(i^*)$, $i^* \in \{1, ..., N\}$, just reveal all $\{r_i\}_{i \neq i^*}$.

 \triangleright An attacker can only restore $w + r_{i*}$, not w.

Commit: we want to sample and commit degree-1 polynomials such that $P_i(0) = w_i$.

- 1. Sample N values $r_1, ..., r_N \in \mathbb{F}^n$.
- 2. Commit to each value r_i independently.
- 3. Reveal the value

$$\Delta w \leftarrow w + \sum_{i}^{N} r_i$$
.

4. For all i, the committed polynomial $P_i(X)$ is

$$P_i(X) = a_i \cdot X + w_i$$
 with $a = \sum_{i=1}^N \frac{1}{\phi(i)} \cdot r_i \in \mathbb{F}^n$.

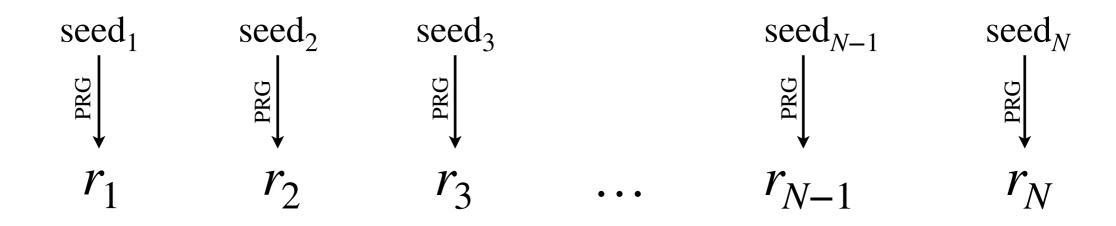
Open: to reveal P(r) with $r := \phi(i^*)$, $i^* \in \{1, ..., N\}$, just reveal all $\{r_i\}_{i \neq i^*}$.

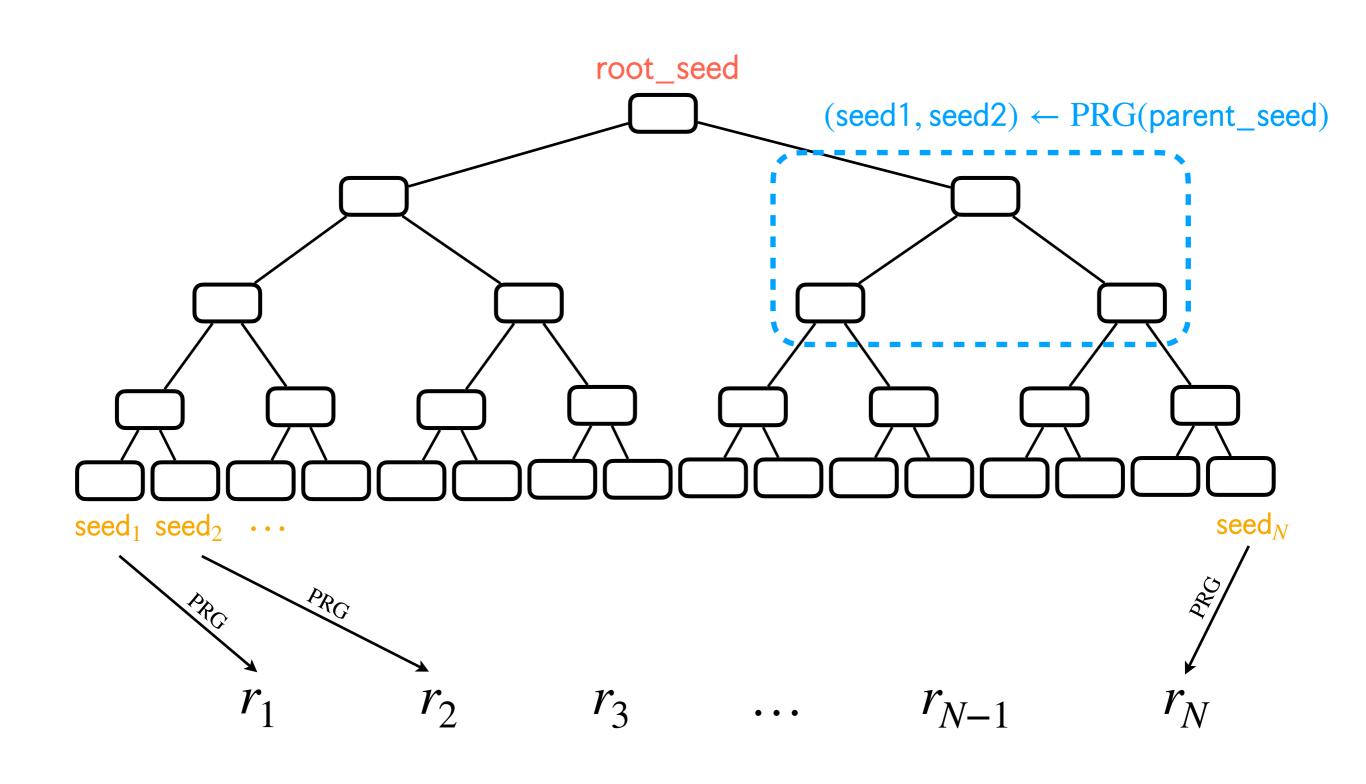
<u>Verify:</u> just check that the commitment of all $\{r_i\}_{i\neq i^*}$ and deduce that

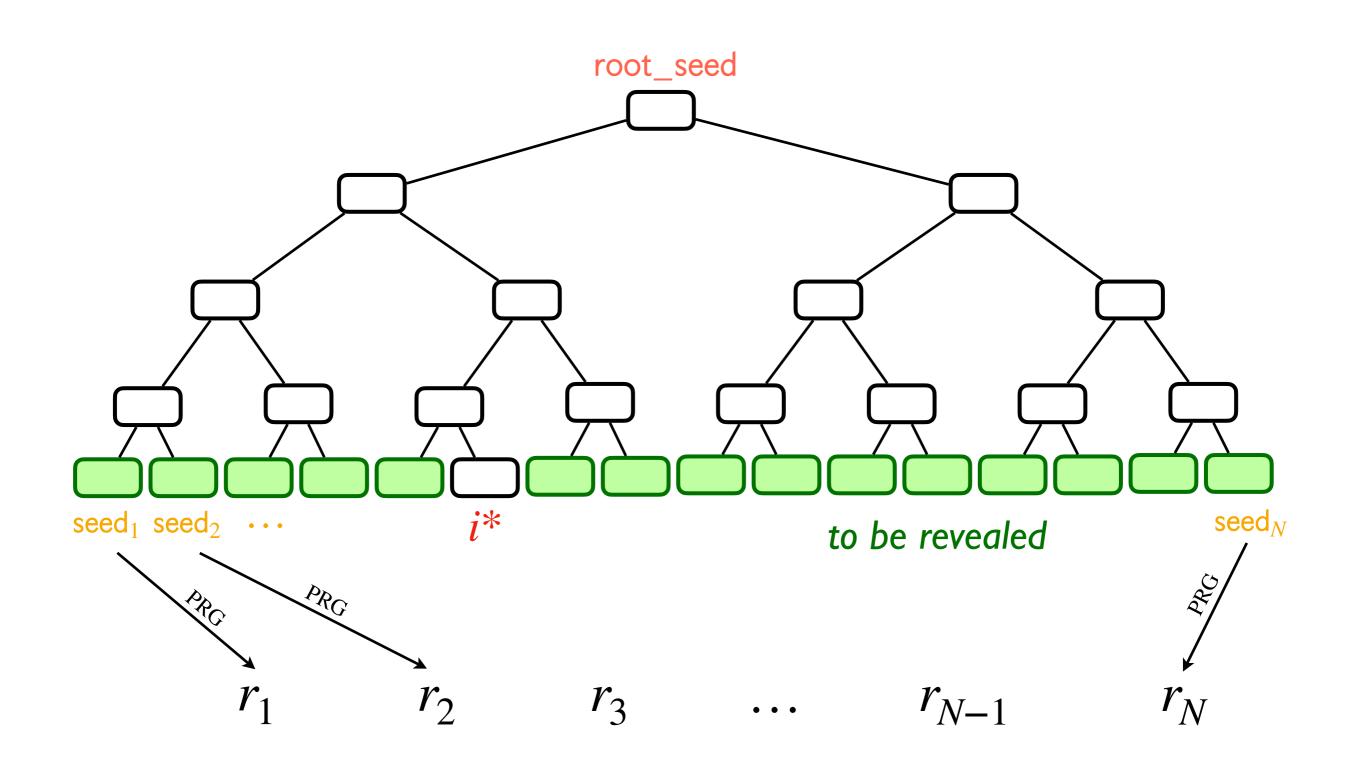
$$P_i(r) = v_i \qquad \text{with} \qquad v = \Delta w + \sum_{i=1, i \neq i^*}^N \left(\frac{\phi(i^*)}{\phi(i)} - 1 \right) \cdot r_i \in \mathbb{F}^n,$$

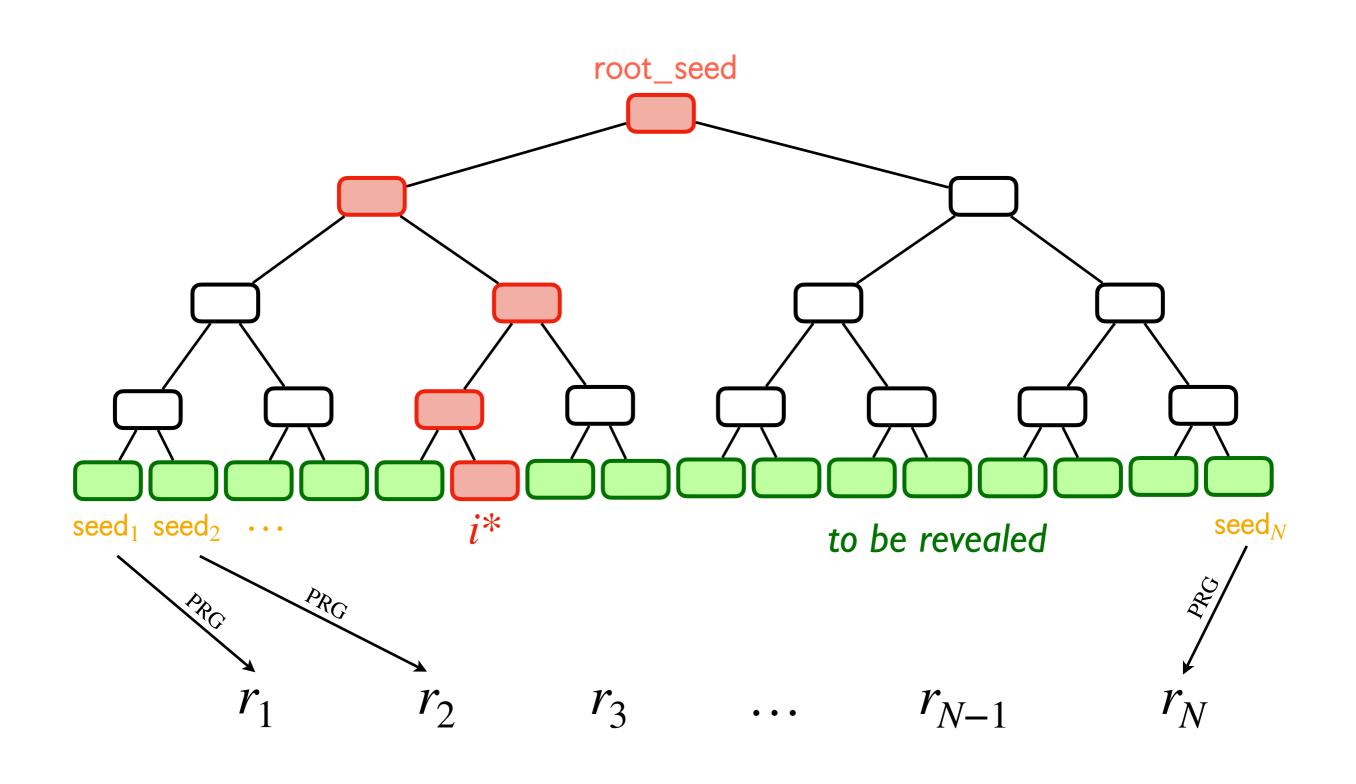
[GGM84] Goldreich, Goldwasser, Micali: "How to construct random functions (extended extract)" (FOCS 1984)

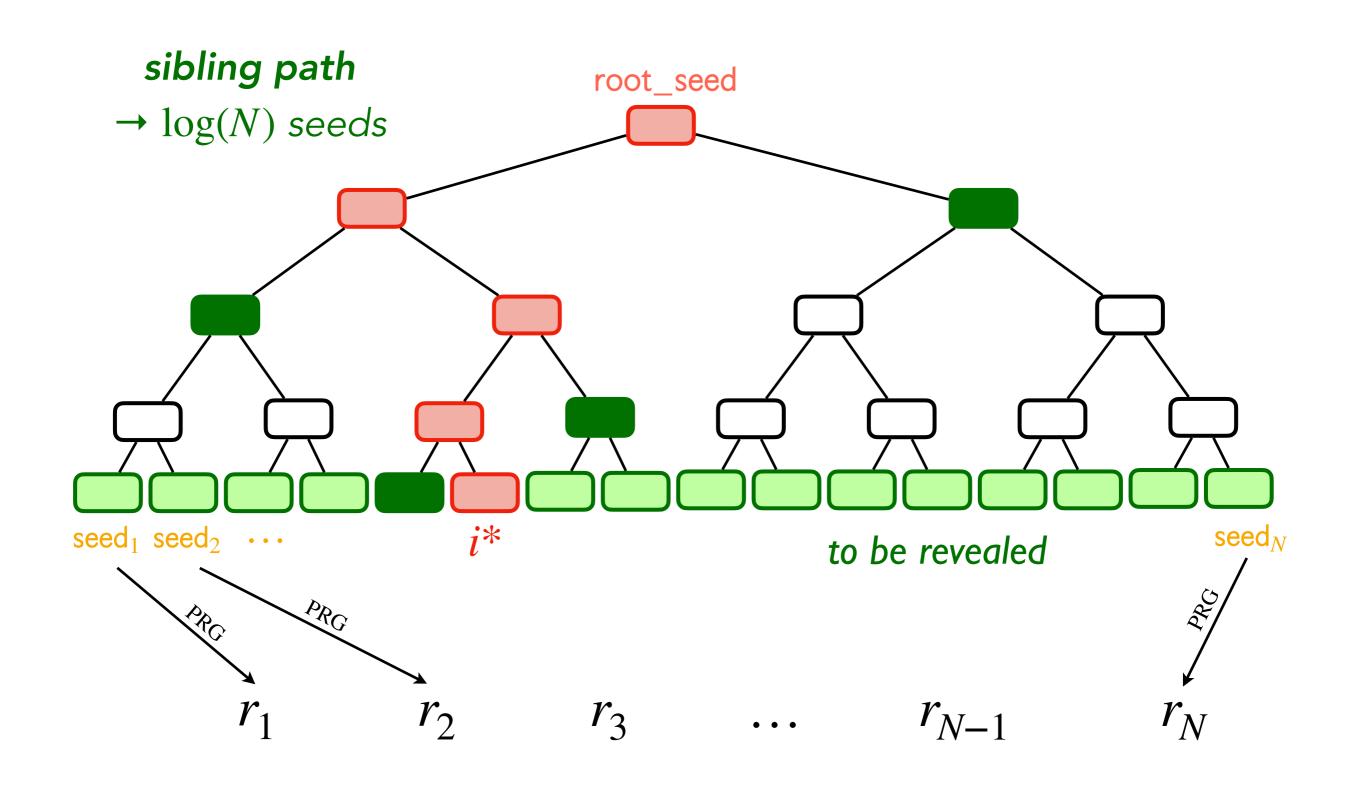
 $r_1 \qquad r_2 \qquad r_3 \qquad \dots \qquad r_{N-1} \qquad r_N$











Complexity in O(N) to have a soundness error of $\frac{d}{N}$ (degree-1 polynomials).

How to have a negligible soundness?

Complexity in O(N) to have a soundness error of $\frac{d}{N}$ (degree-1 polynomials).

How to have a negligible soundness?

1. Taking $N \ge 2^{\lambda}$. Impossible since the complexity would be in $O(2^{\lambda})$.

Complexity in O(N) to have a soundness error of $\frac{d}{N}$ (degree-1 polynomials).

How to have a negligible soundness?

- 1. Taking $N \ge 2^{\lambda}$. Impossible since the complexity would be in $O(2^{\lambda})$.
- 2. <u>TCitH-GGM Approach</u>. Taking N small (e.g. N=256) and repeating the protocol τ times. Soundness error of $\left(\frac{d}{N}\right)^{\tau}$.

Complexity in O(N) to have a soundness error of $\frac{d}{N}$ (degree-1 polynomials).

How to have a negligible soundness?

- 1. Taking $N \ge 2^{\lambda}$. Impossible since the complexity would be in $O(2^{\lambda})$.
- 2. <u>TCitH-GGM Approach</u>. Taking N small (e.g. N=256) and repeating the protocol τ times. Soundness error of $\left(\frac{d}{N}\right)^{\tau}$.
- 3. $\underline{VOLEitH\ Approach}$. Embed τ polynomials over \mathbb{F}_q into a unique polynomial over \mathbb{F}_{q^τ} , for which we will be able to open N^τ evaluations. Soundness error of $\frac{d}{N^\tau}$.

The **public key** is composed of the **degree**-d **polynomials** $f_1, ..., f_m$.

The **private key** is the **witness** $w := (w_1, ..., w_n)$ that satisfies

$$\begin{cases} f_1(w_1, ..., w_n) &= 0, \\ \vdots \\ f_m(w_1, ..., w_n) &= 0. \end{cases}$$

The **public key** is composed of the **degree**-d **polynomials** $f_1, ..., f_m$.

The **private key** is the **witness** $w := (w_1, ..., w_n)$ that satisfies

$$\begin{cases} f_1(w_1, ..., w_n) &= 0, \\ \vdots \\ f_m(w_1, ..., w_n) &= 0. \end{cases}$$

When $f_1, ..., f_n$ are random degree-2 polynomials,

Signature relying on the Multivariate Quadratic (MQ) problem

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments. ePrint 2023/1573.

[BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.

Proving that the private key $(x_1, ..., x_{n'}, q_0, ..., q_{t-1})$ satisfies

$$\begin{cases} y - Hx &= 0, \\ x_1 \cdot Q(1) &= 0 \\ \vdots \\ x_n \cdot Q(n) &= 0. \end{cases}$$
 Imply that $\operatorname{wt}_H(x) \leq t$.

with
$$x:=(x_1,\ldots,x_n)$$
 and $Q(X):=X^t+\sum_{i=0}^{t-1}q_i\cdot X^i$, where (H,y) is the public key.

Signature relying on the Syndrome Decoding (SD) problem

[FJR23] Feneuil, Joux, Rivain. Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs. Crypto 2022.

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments. ePrint 2023/1573.

Proving that the private key $(L, R) \in \mathbb{F}_q^{n \times r} \times \mathbb{F}^{r \times m}$ satisfies y - Hx = 0 with $x = \text{vectorialize}(L \cdot R)$

where (H, y) is the public key.

Signature relying on the MinRank problem

[BFG+24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the Head: Shorter Signatures from Rank SD and MinRank. Asiacrypt 2024.

Signature Sizes with the New Frameworks

	NIST Submission		New frameworks + Opt.*
Security Assumptions	Candidate Name	Sizes	Sizes
AES Block cipher	FAEST	4.6 KB	≈ 4.1-4.5 KB
AIM Block cipher	AlMer	3.8 KB	≈ 3.0 KB
MinRank	MiRitH, MIRA	5.6 KB	≈ 2.9-3.1 KB
Multivariate Quadratic	MQOM	6.3 KB	≈ 2.5-3.0 KB
Permuted Kernel	PERK	5.8 KB	≈ 3.8 KB
Rank Syndrome Decoding	RYDE	6.0 KB	≈ 2.9 KB
Structured MQ	Biscuit	5.7 KB	≈ 3.0 KB
Syndrome Decoding	SDitH	8.3 KB	≈ 5.0 KB

Running times of few ten millions of cycles.

^{* [}BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.

Conclusion

- MPC-in-the-Head
 - Very versatile and tunable
 - Can be applied on any one-way function
 - A practical tool to build *conservative* signature schemes
 - No structure in the security assumption
 - Recent frameworks: VOLEitH and TCitH
 - Can be interpreted as Polynomial IOP (Interactive Oracle Proof)

Conclusion

- MPC-in-the-Head
 - Very versatile and tunable
 - Can be applied on any one-way function
 - A practical tool to build *conservative* signature schemes
 - No structure in the security assumption
 - Recent frameworks: VOLEitH and TCitH
 - Can be interpreted as Polynomial IOP (Interactive Oracle Proof)
- Perspectives: Signatures with advanced functionalities ring signatures, threshold signatures, blind signatures, multi-signatures, ...

Conclusion

- MPC-in-the-Head
 - Very versatile and tunable
 - Can be applied on any one-way function
 - A practical tool to build *conservative* signature schemes
 - No structure in the security assumption
 - Recent frameworks: VOLEitH and TCitH
 - Can be interpreted as Polynomial IOP (Interactive Oracle Proof)
- Perspectives: Signatures with advanced functionalities ring signatures, threshold signatures, blind signatures, multi-signatures, ...

Thank you for your attention.