
Post-Quantum Signatures from 
Secure Multiparty Computation

Thibauld Feneuil 

ReAdPQC — CIFRIS24 

September 27, 2024, Frascati (Rome)



Table of Contents

• Introduction 

• The TCitH and VOLEitH frameworks, in the PIOP formalism 

• Polynomial IOP 

• Committing to polynomials 

• Building signatures 

• Conclusion



Introduction



How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

Very hard 
to compute

m

H

H



How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

I know the 
private key.

I am convinced.

Large(r) signatures

Short public key

Very hard 
to compute

From an
identification scheme

m

H

H



How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

I know the 
private key.

I am convinced.

Large(r) signatures

Short public key

Very hard 
to compute

From an
identification scheme

m

H

H



Identification Scheme

• Completeness: Pr[verif ✓ | honest prover] = 1 

• Soundness: Pr[verif ✓ | malicious prover]   (e.g.  ) 

• Zero-knowledge: verifier learns nothing on          .

≤ ε 2−128

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier

I know           .

I am convinced.



Identification Scheme

Challenge 1 = Hash(m, Commitment)

Prover

Verifier

Challenge  = Hash(m, Response )n n − 1

⋮

I know           .

Transcript

Fiat-Shamir 
Transformation

m: message to sign 



MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007) 

• Turn a multiparty computation (MPC) into an identification scheme / zero-
knowledge proof of knowledge 

• Generic: can be applied to any cryptographic problem



MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007) 

• Convenient to build (candidate) post-quantum signature schemes 

• Picnic: submission to NIST (2017) 

• First round of recent NIST call: 7~9 MPCitH schemes / 40 submissions

AIMer 
Biscuit 
FAEST 
MIRA 
MiRitH

MQOM 
PERK 
RYDE 
SDitH



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature

MPC-in-the-Head transform



MPCitH for signature schemes



IK
OS
07

ZK
Bo
o

CD
G+
17

MPC-in-the-Head Paradigm

Picnic1

20
16
20
17

20
07



IK
OS
07

ZK
Bo
o

CD
G+
17

Li
ge
ro

Broadcast

MPC-in-the-Head Paradigm

Br
ak
ed
ow
n

20
17

20
21Sublinear 

Arguments 
Of Knowledge



IK
OS
07

ZK
Bo
o

CD
G+
17

Li
ge
ro

KK
W1
8

BN
20

Broadcast

MPC-in-the-Head Paradigm

Br
ak
ed
ow
n

BBQ
Banquet

Limbo
BN++

Helium

Sublinear 
Arguments 

Of Knowledge

Signature 
Schemes



Im
pr
ov
ed
  

TC
it
H

IK
OS
07

ZK
Bo
o

CD
G+
17

Li
ge
ro

KK
W1
8

BN
20

AG
H+
22

Broadcast

MPC-in-the-Head Paradigm

Br
ak
ed
ow
n

VO
LE
it
H

Or
ig
in
al
  

TC
it
H

20
22

20
23

20
23

Signature 
Schemes

Sublinear 
Arguments 

Of Knowledge



Im
pr
ov
ed
  

TC
it
H

IK
OS
07

ZK
Bo
o

CD
G+
17

Li
ge
ro

KK
W1
8

BN
20

AG
H+
22

Broadcast

MPC-in-the-Head Paradigm

Br
ak
ed
ow
n

VO
LE
it
H

Or
ig
in
al
  

TC
it
H

Sublinear 
Arguments 

Of Knowledge

AIMer
Biscuit
MIRA

MiRitH

MQOM
SDitH (hyp)

RYDE

SDitH (thr)

FAEST



Im
pr
ov
ed
  

TC
it
H

IK
OS
07

ZK
Bo
o

CD
G+
17

Li
ge
ro

KK
W1
8

BN
20

AG
H+
22

Broadcast

MPC-in-the-Head Paradigm

Br
ak
ed
ow
n

VO
LE
it
H

Or
ig
in
al
  

TC
it
H

Sublinear 
Arguments 

Of Knowledge

Signature 
Schemes

Rely on MPC techniques : GMW87, Beaver triples, …



Im
pr
ov
ed
  

TC
it
H

IK
OS
07

ZK
Bo
o

CD
G+
17

Li
ge
ro

KK
W1
8

BN
20

AG
H+
22

Broadcast

MPC-in-the-Head Paradigm

Br
ak
ed
ow
n

VO
LE
it
H

Or
ig
in
al
  

TC
it
H

Sublinear 
Arguments 

Of Knowledge

Signature 
Schemes

Can be interpreted as 
Polynomial IOP (Interactive 

Oracle Proof)



Prover Verifier

I know  such that 

 

where  are public degree-  polynomials.

w1, …, wn

f1(w1, …, wn) = 0
⋮

fm(w1, …, wn) = 0,

f1, …, fm d
Prove it!

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)



Prover Verifier

①  For all , sample a random degree-  
polynomial  such that 

i ℓ
Pi(X ) Pi(0) = wi

Com(P1, …, Pn)②  Commit the polynomials P1, …, Pn

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)



Prover Verifier

①  For all , sample a random degree-  
polynomial  such that 

i ℓ
Pi(X ) Pi(0) = wi

②  Commit the polynomials P1, …, Pn

γ1, …, γm

③  Choose random coefficients 
γ1, …, γm ←$ 𝔽

④  Commit the polynomial  such that Q(X )

X ⋅ Q(X ) =
m

∑
j=1

γj ⋅ fj(P1(X ), …, Pn(X ))
Q

Com(P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)



Prover Verifier

①  For all , sample a random degree-  
polynomial  such that 

i ℓ
Pi(X ) Pi(0) = wi

②  Commit the polynomials P1, …, Pn

γ1, …, γm

③  Choose random coefficients 
γ1, …, γm ←$ 𝔽

④  Commit the polynomial  such that Q(X )

X ⋅ Q(X ) =
m

∑
j=1

γj ⋅ fj(P1(X ), …, Pn(X ))
Q

Well-defined!

Com(P1, …, Pn)

m

∑
j=1

γj ⋅ fj(P1(0), …, Pn(0)) =
m

∑
j=1

γj ⋅ fj(w1, …, wn)

=
m

∑
j=1

γj ⋅ 0 = 0

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)



Prover Verifier

①  For all , sample a random degree-  
polynomial  such that 

i ℓ
Pi(X ) Pi(0) = wi

②  Commit the polynomials P1, …, Pn

γ1, …, γm

③  Choose random coefficients 
γ1, …, γm ←$ 𝔽

④  Commit the polynomial  such that Q(X )

X ⋅ Q(X ) =
m

∑
j=1

γj ⋅ fj(P1(X ), …, Pn(X ))
Q

⑤  Choose a random evaluation 
point r ∈ S ⊂ 𝔽

⑥  Reveal the evaluation  for all . vi := Pi(r) i v1, …, vn

r

Com(P1, …, Pn)

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)



Prover Verifier

①  For all , sample a random degree-  
polynomial  such that 

i ℓ
Pi(X ) Pi(0) = wi

②  Commit the polynomials P1, …, Pn

γ1, …, γm

③  Choose random coefficients 
γ1, …, γm ←$ 𝔽

④  Commit the polynomial  such that Q(X )

X ⋅ Q(X ) =
m

∑
j=1

γj ⋅ fj(P1(X ), …, Pn(X ))
Q

⑥  Reveal the evaluation  for all . vi := Pi(r) i v1, …, vn ⑦  Check that  are 
consistent with the commitment. 
      Check that 

v1, …, vn

r ⋅ Q(r) =
m

∑
j=1

γj ⋅ fj(v1, …, vm)

r

Com(P1, …, Pn)

⑤  Choose a random evaluation 
point r ∈ S ⊂ 𝔽

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)



Malicious Prover 😈 Verifier

①  For all , choose a degree-  polynomial 
. There exists  s.t. 

.

i ℓ
Pi(X ) j*

fj*(P1(0), …, Pn(0)) ≠ 0

②  Commit the polynomials P1, …, Pn

γ1, …, γm

③  Choose random coefficients 
γ1, …, γm ←$ 𝔽

④  Commit the polynomial . We know that Q(X )

X ⋅ Q(X ) ≠
m

∑
j=1

γj ⋅ fj(P1(X ), …, Pn(X ))

⑥  Reveal the evaluation  for all . vi := Pi(r) i ⑦  Check that  are 
consistent with the commitment. 
      Check that 

v1, …, vn

r ⋅ Q(r) =
m

∑
j=1

γj ⋅ fj(v1, …, vm)

Q

v1, …, vn

r

Com(P1, …, Pn)

⑤  Choose a random evaluation 
point r ∈ S ⊂ 𝔽

Soundness Analysis

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)



Verifier

①  For all , choose a degree-  polynomial 
. There exists  s.t. 

.

i ℓ
Pi(X ) j*

fj*(P1(0), …, Pn(0)) ≠ 0

②  Commit the polynomials P1, …, Pn

γ1, …, γm

③  Choose random coefficients 
γ1, …, γm ←$ 𝔽

④  Commit the polynomial . We know that Q(X )

X ⋅ Q(X ) ≠
m

∑
j=1

γj ⋅ fj(P1(X ), …, Pn(X ))

⑥  Reveal the evaluation  for all . vi := Pi(r) i ⑦  Check that  are 
consistent with the commitment. 
      Check that 

v1, …, vn

r ⋅ Q(r) =
m

∑
j=1

γj ⋅ fj(v1, …, vm)

Q

v1, …, vn

r

Com(P1, …, Pn)

⑤  Choose a random evaluation 
point r ∈ S ⊂ 𝔽

It is an inequality with high probability over the 
randomness of , since we haveγ1, …, γm

m

∑
j=1

γj ⋅ fj(P1(0), …, Pn(0)) ≠ 0Malicious Prover 😈

Soundness Analysis

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)



Malicious Prover 😈 Verifier

①  For all , choose a degree-  polynomial 
. There exists  s.t. 

.

i ℓ
Pi(X ) j*

fj*(P1(0), …, Pn(0)) ≠ 0

②  Commit the polynomials P1, …, Pn

γ1, …, γm

③  Choose random coefficients 
γ1, …, γm ←$ 𝔽

④  Commit the polynomial . We know that Q(X )

X ⋅ Q(X ) ≠
m

∑
j=1

γj ⋅ fj(P1(X ), …, Pn(X ))

⑥  Reveal the evaluation  for all . vi := Pi(r) i ⑦  Check that  are 
consistent with the commitment. 
      Check that 

v1, …, vn

r ⋅ Q(r) =
m

∑
j=1

γj ⋅ fj(v1, …, vm)

Q

v1, …, vn

r

Com(P1, …, Pn)

⑤  Choose a random evaluation 
point r ∈ S ⊂ 𝔽

Schwartz-Zippel Lemma: Since it is a degree-  relation,

.

(d ⋅ ℓ)

Pr[verification passes] ≤
d ⋅ ℓ
|S |

Soundness Analysis

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)



Prover Verifier

①  For all , sample a random degree-  
polynomial  such that 

i ℓ
Pi(X ) Pi(0) = wi

②  Commit the polynomials P1, …, Pn

γ1, …, γm

③  Choose random coefficients 
γ1, …, γm ←$ 𝔽

④  Commit the polynomial  such that Q(X )

X ⋅ Q(X ) =
m

∑
j=1

γj ⋅ fj(P1(X ), …, Pn(X ))
Q

⑥  Reveal the evaluation  for all . vi := Pi(r) i v1, …, vn ⑦  Check that  are 
consistent with the commitment. 
      Check that 

v1, …, vn

r ⋅ Q(r) =
m

∑
j=1

γj ⋅ fj(v1, …, vm)

r

Com(P1, …, Pn)

⑤  Choose a random evaluation 
point r ∈ S ⊂ 𝔽

Zero-Knowledge Analysis

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)



Q

v1, …, vn

r

Prover Verifier 👀

①  For all , sample a random degree-  
polynomial  such that 

i ℓ
Pi(X ) Pi(0) = wi

②  Commit the polynomials P1, …, Pn

γ1, …, γm

③  Choose random coefficients 
γ1, …, γm ←$ 𝔽

④  Commit the polynomial  such that Q(X )

X ⋅ Q(X ) =
m

∑
j=1

γj ⋅ fj(P1(X ), …, Pn(X ))

⑥  Reveal the evaluation  for all . vi := Pi(r) i ⑦  Check that  are 
consistent with the commitment. 
      Check that 

v1, …, vn

r ⋅ Q(r) =
m

∑
j=1

γj ⋅ fj(v1, …, vm)

Com(P1, …, Pn)

⑤  Choose a random evaluation 
point r ∈ S ⊂ 𝔽

Revealing an evaluation of  
leaks no information about .

Pi(X)
wi

Zero-Knowledge Analysis

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)



Q

v1, …, vn

r

Prover Verifier 👀

①  For all , sample a random degree-  
polynomial  such that 

i ℓ
Pi(X ) Pi(0) = wi

②  Commit the polynomials P1, …, Pn

γ1, …, γm

③  Choose random coefficients 
γ1, …, γm ←$ 𝔽

④  Commit the polynomial  such that Q(X )

X ⋅ Q(X ) =
m

∑
j=1

γj ⋅ fj(P1(X ), …, Pn(X ))

⑥  Reveal the evaluation  for all . vi := Pi(r) i ⑦  Check that  are 
consistent with the commitment. 
      Check that 

v1, …, vn

r ⋅ Q(r) =
m

∑
j=1

γj ⋅ fj(v1, …, vm)

Com(P1, …, Pn)

⑤  Choose a random evaluation 
point r ∈ S ⊂ 𝔽

Zero-Knowledge Analysis

⚠ Leak information about the witness w1, …, wn

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)



①  For all , sample a random degree-  
polynomial  such that 

i ℓ
Pi(X ) Pi(0) = wi

Com(P0, P1, …, Pn)②  Commit the polynomials P0, P1, …, Pn

γ1, …, γm

Sample a random degree-  
       polynomial 

(dℓ − 1)
P0(X )

③  Choose random coefficients 
γ1, …, γm ←$ 𝔽

④  Commit the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X )+
m

∑
j=1

γj ⋅ fj(P1(X ), …, Pn(X ))
Q

⑥  Reveal the evaluation  for all . vi := Pi(r) i v0, v1, …, vn

r
⑤  Choose a random evaluation 

point r ∈ S ⊂ 𝔽

Verifier 👀Prover

Zero-Knowledge Analysis

⑦  Check that  are 
consistent with the commitment.

v1, …, vn

      Check that 

r ⋅ Q(r) = r ⋅ v0+
m

∑
j=1

γj ⋅ fj(v1, …, vm)

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)



①  For all , sample a random degree-  
polynomial  such that 

i ℓ
Pi(X ) Pi(0) = wi

Com(P0, P1, …, Pn)②  Commit the polynomials P0, P1, …, Pn

γ1, …, γm

Sample a random degree-  
       polynomial 

(dℓ − 1)
P0(X )

③  Choose random coefficients 
γ1, …, γm ←$ 𝔽

④  Commit the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
j=1

γj ⋅ fj(P1(X ), …, Pn(X ))
Q

⑥  Reveal the evaluation  for all . vi := Pi(r) i v0, v1, …, vn

r
⑤  Choose a random evaluation 

point r ∈ S ⊂ 𝔽

Prover

⑦  Check that  are 
consistent with the commitment.

v1, …, vn

      Check that 

r ⋅ Q(r) = r ⋅ v0 +
m

∑
j=1

γj ⋅ fj(v1, …, vm)

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)



①  For all , sample a random degree-  
polynomial  such that 

i ℓ
Pi(X ) Pi(0) = wi

Com(P0, P1, …, Pn)②  Commit the polynomials P0, P1, …, Pn

γ1, …, γm

Sample a random degree-  
       polynomial 

(dℓ − 1)
P0(X )

③  Choose random coefficients 
γ1, …, γm ←$ 𝔽

④  Commit the polynomial  such that Q(X )

X ⋅ Q(X ) = X ⋅ P0(X ) +
m

∑
j=1

γj ⋅ fj(P1(X ), …, Pn(X ))
Q

⑥  Reveal the evaluation  for all . vi := Pi(r) i v0, v1, …, vn

r
⑤  Choose a random evaluation 

point r ∈ S ⊂ 𝔽

Prover

⑦  Check that  are 
consistent with the commitment.

v1, …, vn

      Check that 

r ⋅ Q(r) = r ⋅ v0 +
m

∑
j=1

γj ⋅ fj(v1, …, vm)

Verifier

TCitH and VOLEitH Frameworks, in the PIOP formalism
(for signature schemes)



How to commit to polynomials?

①  VOLEitH / TCitH-GGM

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[FR23] Feneuil, Rivain. Threshold 
Computation in the Head: Improved 
Framework for Post-Quantum Signatures 
and Zero-Knowledge Arguments. ePrint 
2023/1573. 

[BBM+24] Baum, Beullens, Mukherjee, 
Orsini, Ramacher, Rechberger, Roy, Scholl. 
One Tree to Rule Them All: Optimizing 
GGM Trees and OWFs for Post-Quantum 
Signatures. Asiacrypt 2024.



How to commit to polynomials?

①  VOLEitH / TCitH-GGM

② Degree-enforcing commitment 
(TCitH-MT)

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[FR23] Feneuil, Rivain. Threshold 
Computation in the Head: Improved 
Framework for Post-Quantum Signatures 
and Zero-Knowledge Arguments. ePrint 
2023/1573.



How to commit to polynomials?

①  VOLEitH / TCitH-GGM

② Degree-enforcing commitment 
(TCitH-MT)

③ Merkle Trees with 
Ligero-like Proximity Tests

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[AHIV17] Ames, Hazay, Ishai, 
Venkitasubramaniam. Ligero: Lightweight 
Sublinear Arguments Without a Trusted 
Setup. CCS 2017. 

[GLS+23] Golonew, Lee, Setty, Thaler, 
Wahby. Brakedown: Linear-time and field 
agnotic SNARKs for R1CS. Crypto 2023.



How to commit to polynomials?

①  VOLEitH / TCitH-GGM

② Degree-enforcing commitment 
(TCitH-MT)

③ Merkle Trees with 
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000

[BBHR18] Ben-Sasson, Bentov, Horesh, 
Riabzev. Fast Reed-Solomon Interactive 
Oracle Proofs of Proximity. ICALP 2018. 

[BGKS20] Ben-Sasson, Goldberg, 
Kopparty, Saraf. DEEP-FRI: Sampling 
Outside the Box Improves Soundness. 
ITCS 2020.



How to commit to polynomials?

①  VOLEitH / TCitH-GGM

② Degree-enforcing commitment 
(TCitH-MT)

③ Merkle Trees with 
Ligero-like Proximity Tests

④ FRI-based commitments

degree 1

degree 10

degree 100

degree 1000

degree 10 000

For signature schemes, we use 
degree-  polynomials most of the time.1



Committing to a Polynomial using a Seed Tree

Commit: we want to sample and commit degree-  polynomials such that . 

1. Sample  values . 

2. Commit to each value  independently. 

3. Reveal the value 

. 

4. For all , the committed polynomial  is 

        with       . 

1 Pi(0) = wi

N r1, …, rN ∈ 𝔽

ri

Δw ← w +
N

∑
i

ri

i Pi(X)

Pi(X) = ai ⋅ X + wi a =
N

∑
i=1

1
ϕ(i)

⋅ ri ∈ 𝔽



Committing to a Polynomial using a Seed Tree

Commit: we want to sample and commit degree-  polynomials such that . 

1. Sample  values . 

2. Commit to each value  independently. 

3. Reveal the value 

. 

4. For all , the committed polynomial  is 

        with       . 

Open: to reveal  with , , just reveal all . 

1 Pi(0) = wi

N r1, …, rN ∈ 𝔽

ri

Δw ← w +
N

∑
i

ri

i Pi(X)

Pi(X) = ai ⋅ X + wi a =
N

∑
i=1

1
ϕ(i)

⋅ ri ∈ 𝔽

P(r) r := ϕ(i*) i* ∈ {1,…, N} {ri}i≠i*



Committing to a Polynomial using a Seed Tree

Commit: we want to sample and commit degree-  polynomials such that . 

1. Sample  values . 

2. Commit to each value  independently. 

3. Reveal the value 

. 

4. For all , the committed polynomial  is 

        with       . 

Open: to reveal  with , , just reveal all . 

1 Pi(0) = wi

N r1, …, rN ∈ 𝔽

ri

Δw ← w +
N

∑
i

ri

i Pi(X)

Pi(X) = ai ⋅ X + wi a =
N

∑
i=1

1
ϕ(i)

⋅ ri ∈ 𝔽

P(r) r := ϕ(i*) i* ∈ {1,…, N} {ri}i≠i*

🔎 An attacker can only restore , not .w + ri* w



Committing to a Polynomial using a Seed Tree

Commit: we want to sample and commit degree-  polynomials such that . 

1. Sample  values . 

2. Commit to each value  independently. 

3. Reveal the value 

. 

4. For all , the committed polynomial  is 

        with       . 

Open: to reveal  with , , just reveal all . 

Verify: just check that the commitment of all  and deduce that 

        with       ,

1 Pi(0) = wi

N r1, …, rN ∈ 𝔽

ri

Δw ← w +
N

∑
i

ri

i Pi(X)

Pi(X) = ai ⋅ X + wi a =
N

∑
i=1

1
ϕ(i)

⋅ ri ∈ 𝔽

P(r) r := ϕ(i*) i* ∈ {1,…, N} {ri}i≠i*

{ri}i≠i*

Pi(r) = vi v = Δw +
N

∑
i=1,i≠i*

( ϕ(i*)
ϕ(i)

− 1) ⋅ ri ∈ 𝔽



r2r1 r3 rN−1 rN…

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Committing to a Polynomial using a Seed Tree



seed1 seed2 seed3 seedN−1 seedN

PR
G

PR
G

PR
G

PR
G

PR
G

r2r1 r3 rN−1 rN…

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Committing to a Polynomial using a Seed Tree



𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

PRG
PRG PR

G

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤) ← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

r2r1 r3 rN−1 rN…

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Committing to a Polynomial using a Seed Tree



𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

PRG
PRG PR

G

to be revealedi*

r2r1 r3 rN−1 rN…

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Committing to a Polynomial using a Seed Tree



𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

PRG
PRG PR

G

to be revealedi*

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

r2r1 r3 rN−1 rN…

Committing to a Polynomial using a Seed Tree



𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

PRG
PRG PR

G

to be revealedi*

sibling path 
→  seedslog(N)

r2r1 r3 rN−1 rN…

[GGM84] Goldreich, Goldwasser, Micali: “How to construct random functions (extended extract)” (FOCS 1984)

Committing to a Polynomial using a Seed Tree



Committing to a Polynomial using a Seed Tree

Complexity in  to have a soundness error of  (degree-  polynomials). 

How to have a negligible soundness?

O(N )
d
N

1

🤔



Committing to a Polynomial using a Seed Tree

1. Taking . Impossible since the complexity would be in .N ≥ 2λ O(2λ)

Complexity in  to have a soundness error of  (degree-  polynomials). 

How to have a negligible soundness?

O(N )
d
N

1

🤔



Committing to a Polynomial using a Seed Tree

1. Taking . Impossible since the complexity would be in . 

2. TCitH-GGM Approach. Taking  small (e.g. ) and repeating the 

protocol  times. Soundness error of .

N ≥ 2λ O(2λ)

N N = 256

τ ( d
N )

τ

Complexity in  to have a soundness error of  (degree-  polynomials). 

How to have a negligible soundness?

O(N )
d
N

1

🤔



Committing to a Polynomial using a Seed Tree

1. Taking . Impossible since the complexity would be in . 

2. TCitH-GGM Approach. Taking  small (e.g. ) and repeating the 

protocol  times. Soundness error of . 

3. VOLEitH Approach. Embed  polynomials over  into a unique 

polynomial over , for which we will be able to open  evaluations. 

Soundness error of .

N ≥ 2λ O(2λ)

N N = 256

τ ( d
N )

τ

τ 𝔽

𝔽 Nτ

d
Nτ

Complexity in  to have a soundness error of  (degree-  polynomials). 

How to have a negligible soundness?

O(N )
d
N

1

🤔



Building Signature Schemes
The public key is composed of the degree-  polynomials . 

The private key is the witness  that satisfies 

d f1, …, fm
w := (w1, …, wn)

f1(w1, …, wn) = 0,
⋮

fm(w1, …, wn) = 0.



Building Signature Schemes
The public key is composed of the degree-  polynomials . 

The private key is the witness  that satisfies 

d f1, …, fm
w := (w1, …, wn)

f1(w1, …, wn) = 0,
⋮

fm(w1, …, wn) = 0.

When  are random degree-  polynomials, 

Signature relying on the Multivariate Quadratic (MQ) problem 

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum 
Signatures and Zero-Knowledge Arguments. ePrint 2023/1573. 

[BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them 
All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.

f1, …, fn 2



Building Signature Schemes

Proving that the private key  satisfies 

 

with ) and  , where  is the public key. 

Signature relying on the Syndrome Decoding (SD) problem 

[FJR23] Feneuil, Joux, Rivain. Syndrome Decoding in the Head: Shorter Signatures from Zero-
Knowledge Proofs. Crypto 2022. 

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum 
Signatures and Zero-Knowledge Arguments. ePrint 2023/1573.

(x1, …, xn′￼  
y − Hx = 0,
x1 ⋅ Q(1) = 0

⋮
xn ⋅ Q(n) = 0.

x := (x1, …, xn′￼ Q(X) := Xt +
t−1

∑
i=0

qi ⋅ Xi (H, y)

Imply that .wtH(x) ≤ t



Building Signature Schemes

Proving that the private key  satisfies 

 with  

where  is the public key. 

Signature relying on the MinRank problem 

[BFG+24] Bidoux, Feneuil, Gaborit, Neveu, Rivain. Dual Support Decomposition in the Head: Shorter 
Signatures from Rank SD and MinRank. Asiacrypt 2024.

(L, R) ∈ 𝔽
  𝔽

y − Hx = 0 x = vectorialize(L ⋅ R)
(H, y)



Signature Sizes with the New Frameworks

NIST Submission New frameworks + Opt.*

Security Assumptions Candidate Name Sizes Sizes

AES Block cipher FAEST 4.6 KB ≈ 4.1-4.5 KB

AIM Block cipher AIMer 3.8 KB ≈ 3.0 KB

MinRank MiRitH, MIRA 5.6 KB ≈ 2.9-3.1 KB

Multivariate Quadratic MQOM 6.3 KB ≈ 2.5-3.0 KB

Permuted Kernel PERK 5.8 KB ≈ 3.8 KB

Rank Syndrome Decoding RYDE 6.0 KB ≈ 2.9 KB

Structured MQ Biscuit 5.7 KB ≈ 3.0 KB

Syndrome Decoding SDitH 8.3 KB ≈ 5.0 KB

Running times of few ten millions of cycles.

* [BBM+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: 
Optimizing GGM Trees and OWFs for Post-Quantum Signatures. Asiacrypt 2024.



MPC-in-the-Head 

Very versatile and tunable 

Can be applied on any one-way function 

A practical tool to build conservative signature schemes 

No structure in the security assumption 

Recent frameworks: VOLEitH and TCitH 

Can be interpreted as Polynomial IOP (Interactive Oracle Proof)

Conclusion



MPC-in-the-Head 

Very versatile and tunable 

Can be applied on any one-way function 

A practical tool to build conservative signature schemes 

No structure in the security assumption 

Recent frameworks: VOLEitH and TCitH 

Can be interpreted as Polynomial IOP (Interactive Oracle Proof) 

Perspectives: Signatures with advanced functionalities 

ring signatures, threshold signatures, 

blind signatures, multi-signatures, …

Conclusion



MPC-in-the-Head 

Very versatile and tunable 

Can be applied on any one-way function 

A practical tool to build conservative signature schemes 

No structure in the security assumption 

Recent frameworks: VOLEitH and TCitH 

Can be interpreted as Polynomial IOP (Interactive Oracle Proof) 

Perspectives: Signatures with advanced functionalities 

ring signatures, threshold signatures, 

blind signatures, multi-signatures, …

Conclusion

Thank you for your attention.


