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Design Strategy

• Rely on the MQ problem

Multivariate Quadratic Problem
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• Build the more conservative multivariate signature scheme
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Identification Scheme

• Completeness: Pr[verif ✓ | honest prover] = 1 

• Soundness: Pr[verif ✓ | malicious prover]   (e.g.  ) 

• Zero-knowledge: verifier learns nothing on          .

≤ ε 2−128

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier

I know           .

I am convinced.



Identification Scheme

Challenge 1 = Hash(m, Commitment)

Prover

Verifier

Challenge  = Hash(m, Response )n n − 1

⋮

I know           .

Transcript

Fiat-Shamir 
Transformation

m: message to sign 



Additive-based MPC-in-the-Head

‣ Framework to prove linear relations over secret values

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai. Zero-
knowledge from secure multiparty computation. STOC 2007 

[KKW18] Katz, Kolesnikov, Wang. Improved non-interactive zero knowledge 
with applications to post-quantum signatures. ACM CCS 2018.



Additive-based MPC-in-the-Head

‣ Framework to prove linear relations over secret values

Example: we want to prove that x ⋅ y = 55 (mod p)

[BN20] Baum, Nof. Concretely-efficient zero-knowledge arguments for arithmetic 
circuits and their application to lattice-based cryptography. PKC 2020. 

[KZ22] Kales, Zaverucha. Efficient Lifting for Shorter Zero-Knowledge Proofs and 
Post-Quantum Signatures. ePrint 2022.
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Additive-based MPC-in-the-Head

‣ Framework to prove linear relations over secret values

Example: we want to prove that x ⋅ y = 55 (mod p)

Secret values: 
     ,  
      random, 

x y
a b := −a ⋅ y

Compute 
α ← ε ⋅ x + a

ε Sample  at randomε
α

Prove that {0 = ε ⋅ x + a−α (mod p)
0 = α ⋅ y + b−55 ⋅ ε (mod p)

Prover Verifier

⇒ ε ⋅ (x ⋅ y−55) + (ay + b) = 0

Leaks no information about the 
secret  since  is random.(x, y) a



Step 1: batching MQ equations

• Goal: prove that  satisfies 
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Step 1: batching MQ equations

• Goal: prove that  satisfies 

 

• Batched check: prove that  satisfies 

 

where  are uniformly at random in  

 False positive probability:  

• Rewrite as 

x = (x1, …, xn)

∀i ∈ [1 : m], yi − xT Ai x−bT
i = 0

x = (x1, …, xn)
m

∑
i=1

γi (yi − xT Ai x−bT
i ) = 0

γ1, …, γm 𝔽qη

⇒ p1 =
1
qη

⟨x, w⟩ = z

Extension of degree η

z :=
m

∑
i=1

γi(yi − bT
i x)

w := (
m

∑
i=1

γiAi) x

Linear (affine) 
functions of x



Step 2: inner product check

• Goal: prove that  satisfies (x, w, z) ⟨x, w⟩ = z

• Goal: check that , ,  are 
s.t.  

• Locally interpolate  
    ,  …,  
    , …,  

• Hint oracle      s.t. 

(1)  

• Check that    sat. (1)  and  

(2)  

[[x]] [[w]] [[z]]
⟨x, w⟩ = z

[[X1]] [[Xn2
]]

[[W1]] [[Wn2
]]

→ [[Q0]]

Q0 = ∑
n2

j=1
XjWj

[[Q0]]

∑
n1

i=1
Q0( fi) = z      ⟨x, w⟩ = z ⟺

n1

∑
i=1

n2

∑
j=1

Xj( fi)Wj( fi) = z

........................

...... ⋯x

⋯w

interpolation
X1 X2 Xn2

W1 W2 Wn2

 coordinatesn1

 blocksn2

We have
z = ⟨x, w⟩ =

n1−1

∑
i=0

n2−1

∑
j=0

xi⋅n2+j+1 ⋅ wi⋅n2+j+1

=
n1

∑
i=1

n2

∑
j=1

Xj( fi)Wj( fi)

X1( f1) = x1
⋮

X1( fn1
) = xn1

X2( f1) = xn1+1

⋮
X2( fn1

) = x2n1

⋮
Same for W1, W2, …
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MQOM: Summary

• Checking a MQ solution can be efficiently expressed as 
linear equations. 

• Using MPCitH paradigm, we obtain an efficient 
identification scheme. 

• Using the Fiat-Shamir transformation, we obtain a 
signature scheme.



Implementation

• MQOM: A candidate to the NIST call for additional post-quantum 
signatures. 

https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures 

• Website MQOM, with specification: 

https://mqom.org/ 

• Two open-source source codes 

• Reference code: generic C implementation 

• Optimized for Intel processor: implementation which has been 
optimized using AVX2 instruction set.

https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures
https://mqom.org/


Performances

Sig sizes: 

• Cat I (128-bit):   6.3 - 7.8 KB 

• Cat III (192-bit): 14 - 17 KB 

• Cat V (256-bit):  24 - 30 KB

Key sizes: 

• Cat I (128-bit):   ,   100 B 

• Cat III (192-bit): ,   160 B 

• Cat V (256-bit):  ,   220 B

|pk | |sk | ≤

|pk | |sk | ≤

|pk | |sk | ≤

Timings: one to few dozen Mc (megacycles)

• Sig sizes:  

• Cat I (128-bit):    6.3  7.8 KB 

• Cat III (192-bit):  14  17 KB 

• Cat V (256-bit):   24  30 KB 

• Timings: one to few dozen Mc (megacycles)

−

−

−

• Key sizes: 

• Cat I (128-bit):    |pk| , |sk|  100 B 

• Cat III (192-bit):  |pk| , |sk|  160 B 

• Cat V (256-bit):   |pk| , |sk|  220 B 

⩽

⩽

⩽



Comparison (multivariate crypto)

Signature Size Public Key Size Security Assumption

3WISE 32 B 187 000 B MQ with hidden structure

MAYO 321 B 1 168 B MQ with hidden structure

PROV 160 B 68 326 B MQ with hidden structure

QR-UOV 157 B 23 657 B MQ with hidden structure

SNOVA 248 B 1 016 B MQ with hidden structure

TUOV 112 B 42 608 B MQ with hidden structure

UOV 128 B 43 576 B MQ with hidden structure

VOX 102 B 9 104 B MQ with hidden structure

HPPC 21 B 129 000 B MQ with hidden structure

Biscuit 4 758 B 50 B MQ with public structure

MQOM 6 352 B 47 B MQ with no structure 

Multivariate signatures that are NIST candidates to the second call



What Next?

Recent works in MPC-in-the-Head (MPCitH): 

• Threshold-based MPCitH [BBDK+23,FR23]:  

Framework to prove polynomial relations over secret values 

• Recent works to optimize the efficiency of the MPCitH paradigm 
[BCD23,BBMO+24] 

[BBDK+23] Baum, Braun, Delpech, Klooß, Orsini, Roy, Scholl. Publicly Verifiable Zero-
Knowledge and Post-Quantum Signatures From VOLE-in-the-Head. Crypto 2023 

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for 
Post-Quantum Signatures and Zero-Knowledge Arguments. ePrint 2023/1573 

[BCD23] Bui, Cong, Delpech. Improved All-but-One Vector Commitment with 
Applications to Post-Quantum Signature. ePrint 2024/097 

[BBMO+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. 
One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum 
Signatures. ePrint 2024/490
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Recent works in MPC-in-the-Head (MPCitH): 

• Threshold-based MPCitH [BBDK+23,FR23]:  

Framework to prove polynomial relations over secret values 

• Recent works to optimize the efficiency of the MPCitH paradigm 
[BCD23,BBMO+24] 

Simpler, shorter, faster! 🥳 

Towards MQOMv2: 

Signature size: around 2.6-3.6 KB, instead of 6.3-7.8 KB 

Timings: around 0.5-6.0 ms, instead of 3.0-11.0 ms

Thank you for your attention.

What Next?
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MQOM: Parameter Selection

: field size 
: numbers of variables 
: number of equations

q
n
m

MQ parameters:
: number of parties 

: numbers of repetitions
N
τ

MPCitH parameters:

: security level (in bits)λ ∈ {128,192,256}

: proof parametersη, n1, n2

We take , since it corresponds to the harder MQ instances. 
We choose  and  such that solving the MQ problem takes respectively 

,  and  bit operations.

n = m
n m

2143 2207 2272



MQOM: Parameter Selection

We take ,  and  such that forging a signature without the secret key 
takes respectively ,  and  hash operations, while minimizing the 
signature size.

N τ η
2128 2192 2256

: field size 
: numbers of variables 
: number of equations

q
n
m

MQ parameters:
: number of parties 

: numbers of repetitions
N
τ

MPCitH parameters:

: security level (in bits)λ ∈ {128,192,256}

: proof parametersη, n1, n2



Comparison (unstructured MQ)

Security Signature Size Public Key Size Running Times

MQ-DSS 141 28 400 B 46 B ≈ 3-5 Mc

MudFish 149 14 400 B 38 B ≈ 15 Mc

Mesquite - Fast 149 9 492 B 38 B ≈ 12-15 Mc

Mesquite - Compact 149 8 844 B 38 B ≈ 24-31 Mc

[Fen22] - gf251 - Fast 135 8 488 B 56 B ≈ 8 Mc

[Fen22] - gf251 - Short 135 7 114 B 56 B ≈ 23 Mc

MQOM - gf251 - Fast 144 7 809 B 59 B ≈ 11 Mc

MQOM - gf251 - Short 144 6 575 B 59 B ≈ 28 Mc

MQOM - gf31 - Fast 143 7 621 B 47 B ≈ 17 Mc

MQOM - gf31 - Short 143 6 348 B 47 B ≈ 44 Mc



Comparison (MPCitH)

Signature 
Size

Public Key 
Size

Running Time Security Assumption

Picnic3 13 802 B 46 B ≈ 3-5 Mc LowMC cipher

AIMer 4 176 B 32 B ≈ 15 Mc AIM one-way function

Biscuit 4 758 B 50 B ≈ 12-15 Mc Structured MQ

FAEST 5 006 B 32 B 
 B

≈ 12-15 Mc AES cipher

MIRA 5 640 B 84 B ≈ 24-31 Mc MinRank 

MiRitH 5 673 B 38 B ≈ 8 Mc MinRank

PERK 6 060 B 240 B ≈ 23 Mc Permuted Kernel

RYDE 5 956 B 86 B ≈ 11 Mc Rank Syndrome Decoding

SDitH 8 260 B 120 B ≈ 28 Mc Syndrome Decoding

MQOM - gf251 - Short 6 575 B 59 B ≈ 28 Mc Non-structured MQ

MQOM - gf31 - Short 6 348 B 47 B ≈ 44 Mc Non-structured MQ


