MQ on my Mind (MQOM)

Post-Quantum Signatures from the Non-Structured Multivariate Quadratic Problem

Ryad Benadjila, <u>Thibauld Feneuil</u>, Matthieu Rivain

EuroS&P 2024

July 10, 2024, Vienna

SPHINCS⁺

Which Security Assumptions

Which Security Assumptions

Design Strategy

• Rely on the MQ problem

 $\begin{aligned} & \underset{\substack{f_{i,j,k} \\ i,j,k}}{\text{From } \{a_{i,j,k}\}_{i,j,k}, \{b_{i,j}\}_{i,j} \text{ and } \{y_i\}_i, \text{ find } \textbf{x}_1, \dots, \textbf{x}_n \in \mathbb{F}_q \text{ such that}} \\ & \begin{cases} y_1 &= \sum_{j,k} a_{1,j,k} \textbf{x}_j \textbf{x}_k + \sum_j b_{1,j} \textbf{x}_j, \\ \vdots \\ y_m &= \sum_{j,k} a_{m,j,k} \textbf{x}_j \textbf{x}_k + \sum_j b_{m,j} \textbf{x}_j. \end{cases} \end{aligned}$

Design Strategy

• Rely on the MQ problem

 $\begin{aligned} & \underbrace{\text{Multivariate Quadratic Problem}}_{\text{From } \{a_{i,j,k}\}_{i,j,k'} \{b_{i,j}\}_{i,j} \text{ and } \{y_i\}_{i'} \text{ find } \textbf{x}_1, \dots, \textbf{x}_n \in \mathbb{F}_q \text{ such that}} \\ & \begin{cases} y_1 &= \sum_{j,k} a_{1,j,k} \textbf{x}_j \textbf{x}_k + \sum_j b_{1,j} \textbf{x}_j, \\ \vdots \\ y_m &= \sum_{j,k} a_{m,j,k} \textbf{x}_j \textbf{x}_k + \sum_j b_{m,j} \textbf{x}_j. \end{cases} \end{aligned}$

<u>Multivariate Quadratic Problem (matrix form)</u> From $(A_1, ..., A_m, b_1, ..., b_m, y_1, ..., y_m)$, find $x \in \mathbb{F}_q^n$ such that $\forall i \leq m, \ y_i = x^T A_i x + b_i^T x.$

Design Strategy

• Rely on the MQ problem

 $\begin{array}{l} \hline \text{Multivariate Quadratic Problem} \\ \text{From } \{a_{i,j,k}\}_{i,j,k'}\{b_{i,j}\}_{i,j} \text{ and } \{y_i\}_i, \text{ find } \textbf{x}_1, \dots, \textbf{x}_n \in \mathbb{F}_q \text{ such that} \\ \begin{cases} y_1 &= \sum_{j,k} a_{1,j,k} \textbf{x}_j \textbf{x}_k + \sum_j b_{1,j} \textbf{x}_j, \\ \vdots \\ y_m &= \sum_{j,k} a_{m,j,k} \textbf{x}_j \textbf{x}_k + \sum_j b_{m,j} \textbf{x}_j. \end{cases} \end{cases}$

<u>Multivariate Quadratic Problem (matrix form)</u> From $(A_1, ..., A_m, b_1, ..., b_m, y_1, ..., y_m)$, find $x \in \mathbb{F}_q^n$ such that $\forall i \leq m, \ y_i = x^T A_i x + b_i^T x.$

• Build the **more conservative** multivariate signature scheme

How to build signature schemes?

Hash & Sign

Short signatures

"Trapdoor" in the public key

How to build signature schemes?

Hash & Sign F_{pk} $H(m) \qquad \sigma$ F_{pk}^{-1} Very hard to compute

From an identification scheme

Short signatures

" "Trapdoor" in the public key

- Large(r) signatures
- Short public key

How to build signature schemes?

Identification Scheme

- **Completeness:** Pr[verif ✓ | honest prover] = 1
- Soundness: $\Pr[\operatorname{verif} \checkmark | \operatorname{malicious prover}] \le \varepsilon$ (e.g. 2^{-128})

Identification Scheme

m: message to sign

Framework to prove linear relations over secret values

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai. Zeroknowledge from secure multiparty computation. STOC 2007

[KKW18] Katz, Kolesnikov, Wang. Improved non-interactive zero knowledge with applications to post-quantum signatures. ACM CCS 2018.

Framework to prove linear relations over secret values

<u>Example</u>: we want to prove that $x \cdot y = 55 \pmod{p}$

[BN20] Baum, Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. PKC 2020.

[KZ22] Kales, Zaverucha. Efficient Lifting for Shorter Zero-Knowledge Proofs and Post-Quantum Signatures. ePrint 2022.

Framework to prove linear relations over secret values

<u>Example</u>: we want to prove that $x \cdot y = 55 \pmod{p}$

Framework to prove linear relations over secret values

<u>Example</u>: we want to prove that $x \cdot y = 55 \pmod{p}$

Framework to prove linear relations over secret values

<u>Example</u>: we want to prove that $x \cdot y = 55 \pmod{p}$

Framework to prove linear relations over secret values

Step 1: batching MQ equations

• <u>Goal</u>: prove that $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ satisfies $\forall i \in [1:m], \quad y_i - \mathbf{x}^T A_i \ \mathbf{x} - b_i^T = 0$

Step 1: batching MQ equations

- <u>Goal</u>: prove that $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ satisfies $\forall i \in [1:m], \quad y_i - \mathbf{x}^T A_i \ \mathbf{x} - b_i^T = 0$
- <u>Batched check</u>: prove that $x = (x_1, ..., x_n)$ satisfies

$$\sum_{i=1}^{m} \gamma_i \left(y_i - x^T A_i \ x - b_i^T \right) = 0$$

Extension of degree η
where $\gamma_1, \dots, \gamma_m$ are uniformly at random in \mathbb{F}_{q^η}
 \Rightarrow False positive probability: $p_1 = \frac{1}{q^{\eta}}$

$$\frac{n(n+1)}{2} \underset{(e.g. 946)}{\text{multiplications}} \longrightarrow n\eta \text{ multiplications} (e.g. 172)$$

Step 1: batching MQ equations

• Goal: prove that
$$\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$$
 satisfies
 $\forall i \in [1:m], \quad y_i - \mathbf{x}^T A_i \ \mathbf{x} - b_i^T = 0$

• <u>Batched check</u>: prove that $x = (x_1, ..., x_n)$ satisfies

$$\sum_{i=1}^{m} \gamma_i \left(y_i - x^T A_i \ x - b_i^T \right) = 0$$

where $\gamma_1, \dots, \gamma_m$ are uniformly at random in \mathbb{F}_{q^η}
 \Rightarrow False positive probability: $p_1 = \frac{1}{q^\eta}$

• Rewrite as
$$\langle \boldsymbol{x}, \boldsymbol{w} \rangle = \boldsymbol{z}$$

 $\boldsymbol{z} := \sum_{i=1}^{m} \gamma_i (y_i - b_i^T \boldsymbol{x})$
 $\boldsymbol{w} := \left(\sum_{i=1}^{m} \gamma_i A_i\right) \boldsymbol{x}$

Linear (affine) functions of *x*

Step 2: inner product check

• <u>Goal</u>: prove that (x, w, z) satisfies $\langle x, w \rangle = z$

Step 2: inner product check

• <u>Goal</u>: prove that (x, w, z) satisfies $\langle x, w \rangle = z$

Step 2: inner product check

• <u>Goal</u>: prove that (x, w, z) satisfies $\langle x, w \rangle = z$ <u>Goal</u>: prove that (x, w, z) and Q_0 satisfy

$$z = \sum_{i=1}^{n_1} Q_0(f_i)$$
$$Q_0 = \sum_{j=1}^{n_2} X_j W_j$$

- Checking a MQ solution can be efficiently expressed as linear equations.
- Using MPCitH paradigm, we obtain an efficient identification scheme.
- Using the Fiat-Shamir transformation, we obtain a signature scheme.

Implementation

• MQOM: A candidate to the NIST call for additional post-quantum signatures.

https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures

• Website MQOM, with specification:

https://mqom.org/

- Two open-source source codes
 - **Reference code**: generic C implementation
 - **Optimized for Intel processor**: implementation which has been optimized using AVX2 instruction set.

Performances

MQOM Variants	NIST Security		MQ Parameters		MPC Parameters				Sig. size (Bytes)		Sig. perf.		Verif. perf.		
	Category	Bits	q	m = n	$\left \begin{array}{c} N=2^D \end{array} \right $	n_1	n_2	η	au	Avg.	Max.	Time (ms)	Cycles (Mc)	Time (ms)	Cycles (Mc)
MQOM-L1-gf31-short	I	143	31	49	256	5	10	10	20	6348	6352	11.7	44.3	11.0	41.7
MQOM-L1-gf31-fast	I	143	31	49	32	5	10	6	35	7621	7657	4.6	17.6	4.1	15.5
MQOM-L1-gf251-short	I	143	251	43	256	4	11	5	22	6575	6578	7.5	28.5	7.2	27.3
MQOM-L1-gf251-fast	I	143	251	43	32	4	11	4	34	7809	7850	3.0	11.5	2.7	10.2
MQOM-L3-gf31-short	III	207	31	77	256	6	13	11	30	13837	13846	28.5	108.1	27	102.2
MQOM-L3-gf31-fast	III	207	31	77	32	6	13	7	51	16590	16669	14.8	56.3	13.5	51.2
MQOM-L3-gf251-short	III	207	251	68	256	5	14	7	30	14257	14266	18.3	69.5	17.3	65.5
MQOM-L3-gf251-fast	III	207	251	68	32	5	14	4	52	17161	17252	8.6	32.8	7.8	29.6
MQOM-L5-gf31-short	V	272	31	106	256	6	18	10	42	24147	24158	59.2	224.4	56.3	213.6
MQOM-L5-gf31-fast	V V	272	31	106	32	6	18	8	66	28917	29036	41.2	156.2	38.5	146.2
MQOM-L5-gf251-short	V V	272	251	93	256	6	16	7	41	24926	24942	39.0	148.0	37.5	142.2
MQOM-L5-gf251-fast	V	272	251	93	32	6	16	5	66	29919	30092	21.5	81.5	19.9	75.6

<u>Sig sizes:</u>

- Cat I (128-bit): 6.3 7.8 KB
- Cat III (192-bit): 14 17 KB
- Cat V (256-bit): 24 30 KB

Key sizes:

- Cat I (128-bit): |pk|, $|sk| \leq 100$ B Cat III (192-bit): |pk|, $|sk| \leq 160$ B
- Cat V (256-bit): |pk|, $|sk| \le 220$ B

<u>Timings:</u> one to few dozen Mc (megacycles)

Comparison (multivariate crypto)

Multivariate signatures that are NIST candidates to the second call

	Signature Size	Public Key Size	Security Assumption
3WISE	32 B	187 000 B	MQ with hidden structure
MAYO	321 B	1 168 B	MQ with hidden structure
PROV	160 B	68 326 B	MQ with hidden structure
QR-UOV	157 B	23 657 B	MQ with hidden structure
SNOVA	248 B	1 016 B	MQ with hidden structure
TUOV	112 B	42 608 B	MQ with hidden structure
UOV	128 B	43 576 B	MQ with hidden structure
VOX	102 B	9 104 B	MQ with hidden structure
HPPC	21 B	129000 B	MQ with hidden structure
Biscuit	4 758 B	50 B	MQ with public structure
MQOM	6 352 B	47 B	MQ with no structure

Recent works in MPC-in-the-Head (MPCitH):

• Threshold-based MPCitH [BBDK+23,FR23]:

Framework to prove **polynomial relations** over secret values

• Recent works to optimize the efficiency of the MPCitH paradigm [BCD23,BBMO+24]

[BBDK+23] Baum, Braun, Delpech, Klooß, Orsini, Roy, Scholl. Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures From VOLE-in-the-Head. Crypto 2023

[FR23] Feneuil, Rivain. Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments. ePrint 2023/1573

[BCD23] Bui, Cong, Delpech. Improved All-but-One Vector Commitment with Applications to Post-Quantum Signature. ePrint 2024/097

[BBMO+24] Baum, Beullens, Mukherjee, Orsini, Ramacher, Rechberger, Roy, Scholl. One Tree to Rule Them All: Optimizing GGM Trees and OWFs for Post-Quantum Signatures. ePrint 2024/490

<u>Recent works in MPC-in-the-Head (MPCitH):</u>

• Threshold-based MPCitH [BBDK+23,FR23]:

Framework to prove **polynomial relations** over secret values

• Recent works to optimize the efficiency of the MPCitH paradigm [BCD23,BBMO+24]

Simpler, shorter, faster! 🕃

<u>Recent works in MPC-in-the-Head (MPCitH):</u>

• Threshold-based MPCitH [BBDK+23,FR23]:

Framework to prove **polynomial relations** over secret values

• Recent works to optimize the efficiency of the MPCitH paradigm [BCD23,BBMO+24]

Simpler, shorter, faster! 🕃

Towards MQOMv2:

- Signature size: around 2.6-3.6 KB, instead of 6.3-7.8 KB
- *Timings*: around 0.5-6.0 ms, instead of 3.0-11.0 ms

<u>Recent works in MPC-in-the-Head (MPCitH):</u>

• Threshold-based MPCitH [BBDK+23,FR23]:

Framework to prove **polynomial relations** over secret values

• Recent works to optimize the efficiency of the MPCitH paradigm [BCD23,BBMO+24]

Simpler, shorter, faster! 🕃

Towards MQOMv2:

Signature size: around 2.6-3.6 KB, instead of 6.3-7.8 KB

Timings: around 0.5-6.0 ms, instead of 3.0-11.0 ms

Thank you for your attention.

MQOM: Parameter Selection

 $\lambda \in \{128, 192, 256\}$: security level (in bits)

<u>MQ parameters</u>: q: field size n: numbers of variables m: number of equations MPCitH parameters:

N: number of parties

 τ : numbers of repetitions

 η, n_1, n_2 : proof parameters

MQOM: Parameter Selection

 $\lambda \in \{128, 192, 256\}$: security level (in bits)

<u>MQ parameters</u>: q: field size n: numbers of variables m: number of equations <u>MPCitH parameters</u>:

N: number of parties

 τ : numbers of repetitions

 η, n_1, n_2 : proof parameters

We take n = m, since it corresponds to the harder MQ instances. We choose n and m such that solving the MQ problem takes respectively 2^{143} , 2^{207} and 2^{272} bit operations.

MQOM: Parameter Selection

 $\lambda \in \{128, 192, 256\}$: security level (in bits)

<u>MQ parameters</u>: q: field size n: numbers of variables m: number of equations <u>MPCitH parameters</u>: N: number of parties τ : numbers of repetitions η, n_1, n_2 : proof parameters

We take N, τ and η such that forging a signature without the secret key takes respectively 2^{128} , 2^{192} and 2^{256} hash operations, while minimizing the signature size.

Comparison (unstructured MQ)

	Security	Signature Size	Public Key Size	Running Times
MQ-DSS	141	28 400 B	46 B	≈ 3-5 Mc
MudFish	149	14 400 B	38 B	≈ 15 Mc
Mesquite - Fast	149	9 492 B	38 B	≈ 12-15 Mc
Mesquite - Compact	149	8 844 B	38 B	≈ 24-31 Mc
[Fen22] - gf251 - Fast	135	8 488 B	56 B	≈ 8 Mc
[Fen22] - gf251 - Short	135	7 114 B	56 B	≈ 23 Mc
MQOM - gf251 - Fast	144	7 809 B	59 B	≈ 11 Mc
MQOM - gf251 - Short	144	6 575 B	59 B	≈ 28 Mc
MQOM - gf31 - Fast	143	7 621 B	47 B	≈ 17 Mc
MQOM - gf31 - Short	143	6 348 B	47 B	≈ 44 Mc

Comparison (MPCitH)

	Signature	Public Key	Running Time	Security Assumption
Picnic3	13 802 B	46 B	≈ 3-5 Mc	LowMC cipher
AlMer	4 176 B	32 B	≈ 15 Mc	AIM one-way function
Biscuit	4 758 B	50 B	≈ 12-15 Mc	Structured MQ
FAEST	5 006 B	32 B	≈ 12-15 Mc	AES cipher
MIRA	5 640 B	84 B	≈ 24-31 Mc	MinRank
MiRitH	5 673 B	38 B	≈ 8 Mc	MinRank
PERK	6 060 B	240 B	≈ 23 Mc	Permuted Kernel
RYDE	5 956 B	86 B	≈ 11 Mc	Rank Syndrome Decoding
SDitH	8 260 B	120 B	≈ 28 Mc	Syndrome Decoding
MQOM - gf251 - Short	6 575 B	59 B	≈ 28 Mc	Non-structured MQ
MQOM - gf31 - Short	6 348 B	47 B	≈ 44 Mc	Non-structured MQ