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Identification Scheme

• Completeness: Pr[verif ✓ | honest prover] = 1 

• Soundness: Pr[verif ✓ | malicious prover]   (e.g.  ) 

• Zero-knowledge: verifier learns nothing on          .

≤ ε 2−128
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⋮
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Prover Verifier
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I am convinced.



Identification Scheme

Challenge 1 = Hash(m, Commitment)

Prover

Verifier

Challenge  = Hash(m, Response )n n − 1

⋮

I know           .

Transcript

Fiat-Shamir 
Transformation

m: message to sign 



MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007) 

• Turn a multiparty computation (MPC) into an identification scheme / zero-
knowledge proof of knowledge 

• Generic: can be applied to any cryptographic problem



MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007) 

• Convenient to build (candidate) post-quantum signature schemes 

• Picnic: submission to NIST (2017) 

• First round of recent NIST call: 7~9 MPCitH schemes / 40 submissions
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MPCitH: general principle
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MPC-in-the-Head Framework

Additive secret sharing: 
x = [[x]]1 + [[x]]2 + … + [[x]]N

Shamir’s secret sharing: 
, 

where  is a random degree-  
polynomial such that .

∀i, [[x]]i = P(ei)
P ℓ

P(0) = x

If  lives in , a possible sharing of  is x := 42 𝔽1021 x
  over x = 429 + 19 + 583 + 231 + 822 𝔽1021

Secret  which satisfies 
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Sharing  of the secret [[x]] x
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MPC model

[[x]]1

• Jointly compute 

 

•  private: the views of any  
parties provide no information on  

• Semi-honest model: assuming that the 
parties follow the steps of the protocol 

• Broadcast model 

‣ Parties locally compute on their shares 
 

‣ Parties broadcast  and recompute 
 

‣ Parties start again (now knowing )
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Reject if F(x) ≠ y
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[FJR22] Feneuil, Joux, Rivain: “Syndrome Decoding 
in the Head: Shorter Signatures from Zero-
Knowledge Proofs” (ePrint 2022/188, Crypto 2022)

[FJR23] Feneuil, Joux, Rivain: “Shared Permutation 
for Syndrome Decoding: New Zero-Knowledge 
Protocol and Code-Based Signature” (ePrint 
2021/1576, Journal DCC)
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• Subset Sum Problem:  KB   KB [FMRV22,Fen23] 

• Multivariate Quadratic Problem:  KB [Fen22,BFR23] 

• MinRank Problem:  KB [ARV22,Fen22,ABB+23] 

• Rank Syndrome Decoding Problem:  KB [Fen22] 

• Permuted Kernel Problem (or variant):  KB [BG22,BBD+24] 

• …

≥ 100 ⇒ 19.1

6.3 − 7.3

≈ 5 − 6

≈ 5 − 6

≈ 6

Exploring other assumptions

Remark: the displayed signature sizes correspond to 
the state-of-the-art for the NIST submission deadline 

of the call for additional post-quantum signatures, 
better sizes can be achieved using newer results.



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Three approaches:

Rely on standard symmetric primitives
• AES: BBQ (2019), Banquet (2021), Limbo-Sign (2021), Helium+AES (2022), FAEST (2023)
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E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Three approaches:

Rely on standard symmetric primitives

Rely on MPC-friendly symmetric primitives
• LowMC: Picnic1 (2017), Picnic2 (2018), Picnic3 (2020)

• Rain: Rainier (2021), BN++Rain (2022)

• AIM: AIMer (2022)



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Three approaches:

Rely on standard symmetric primitives

Rely on MPC-friendly symmetric primitives

Rely on well-known hard problems (non-exhaustive list)
• Syndrome Decoding: SDitH (2022), RYDE (2023)

• MinRank: MiRitH (2022), MIRA (2023)

• Multivariate Quadratic: MQOM (2023), Biscuit (2023)

• Permuted Kernel: PERK (2023)
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Rely on MPC-friendly symmetric primitives

Rely on well-known hard problems
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E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Three approaches:

Rely on standard symmetric primitives

Rely on MPC-friendly symmetric primitives

Rely on well-known hard problems

Expressed as an arithmetic 
circuit, enabling us to use 
existing MPCitH-based 

proof systems (as BN++)

Should be rephrased to achieve 
interesting performances

Example (RYDE): how to check that a vector  has a rank weight 
smaller than some public bound  ?

x ∈ 𝔽 n
qm

r

By checking that  are roots of a degree-  -polynomial .x1, …, xn qr q
r

∑
i=0

aiXqi
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One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature

Should take [KZ20] attack into account (when there are more than 3 rounds)!
[KZ20] Kales, Zaverucha. “An attack on some signature schemes constructed from five-pass identification schemes” (CANS20)

Fiat-Shamir transform



MPCitH-based NIST Candidates

Assumption Size (in KB)
AIMer AIM (MPC-friendly one-way function) 3.8-5.9

Biscuit Structured MQ problem (PowAff2) 4.8-6.7

FAEST* AES block cipher 4.6-6.3

MIRA MinRank problem 5.6-7.4

MiRitH MinRank problem 5.7-9.1

PERK Permuted Kernel problem (variant) 6.8-8.4

MQOM Unstructured MQ problem 6.3-7.8

RYDE Syndrome decoding problem in rank metric 6.0-7.4

SDitH Syndrome decoding problem in Hamming 
metric

8.3-10.4

* FAEST has not been formally introduced as an MPCitH-based scheme.



Optimisations and variants



Optimisations and variants

With SDitH-L1-gf251 as example.

NIST Category I

Field GF(251)



MPCitH transform

Prover Verifier

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

②  Run MPC in their head

send broadcast 
 [[α]]1, …, [[α]]N

③  Choose a random party 
i* ←$ {1,…, N}i*

④  Open parties  {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check  
      - Commitments  
      - MPC computation  
   Check 

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*



Naive MPCitH transformation

Size ≈ τ ⋅ (N ⋅ 2λ + N ⋅ |α | + (N − 1) ⋅ |x |)

Size of a 
commitment digest

Size of the MPC input (per party)

Size of the broadcast (per party)

Number of repetitions to achieve the desired security level

τ ≈
λ

log2 N
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SDitH-L1-gf251:
the input  of the MPC protocol is around 323 bytes,
The broadcast value  of the MPC protocol is around 36 bytes.
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①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

②  Run MPC in their head

send broadcast 
 [[α]]1, …, [[α]]N

③  Choose a random party 
i* ←$ {1,…, N}i*

④  Open parties  {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check  
      - Commitments  
      - MPC computation  
   Check 

∀i ≠ i*
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[[α]]i = φ([[x]]i)
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MPCitH transform

Prover

Verifier

①  Generate and commit shares   
 

 Compute 
[[x]] = ([[x]]1, …, [[x]]N)

∀i, comi = Comρi([[x]]i)

②  Run MPC in their head

h2 = Hash([[α]]1, …, [[α]]N)
③  Choose a random party 

i* ←$ {1,…, N}i*

④  Open parties  {1,…, N}∖{i*}

([[x]]i, ρi)i≠i*

⑤ Compute  
      - Commitments  
      - MPC computation  
   Check  
   Check  
   Check 

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept
h1 = Hash(com1, …, comN)
h2 = Hash([[α]]1, …, [[α]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*
(comi*, [[α]]i*)

h1 = Hash(𝖼𝗈𝗆1, …, 𝖼𝗈𝗆N)
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 Compute 
[[x]] = ([[x]]1, …, [[x]]N)

∀i, comi = Comρi([[x]]i)
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③  Choose a random party 

i* ←$ {1,…, N}i*
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([[x]]i, ρi)i≠i*
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      - MPC computation  
   Check  
   Check  
   Check 

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept
h1 = Hash(com1, …, comN)
h2 = Hash([[α]]1, …, [[α]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*
(comi*, [[α]]i*)

h1 = Hash(𝖼𝗈𝗆1, …, 𝖼𝗈𝗆N)



x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to 
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree



x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

seed1 seed2 seed3 seedN−1 seedN

+ΔxPR
G

PR
G

PR
G

PR
G

PR
G

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to 
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree
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Using a Seed Tree
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x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N
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sibling path 
→  seedslog(N)

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to 
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree



Traditional MPCitH transformation

Size ≈ τ ⋅ ( |Δx | + |α | + λ ⋅ log2 N + 2λ)

Path in the seed (GGM) treeSize of the auxiliary value

Size of the broadcast (of the hidden party)

Number of repetitions to achieve the desired security level

τ ≈
λ

log2 N

Commitment 
of the hidden party



Traditional MPCitH transformation

SDitH-L1-gf251:
the input  of the MPC protocol is around 323 bytes,
The broadcast value  of the MPC protocol is around 36 bytes.

x
α
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Signing algorithm

Traditional MPCitH transformation

9 %

63 %

28 %

Symmetric
MPC Emulation
Misc

for  partiesN := 256
Signing time

 parties256

Running times @3.80Ghz (  ms)19



The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH” 
(Eurocrypt 2023)

x = r1 + r2 + … + rN + Δx

Traditional: one sharing of x



The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH” 
(Eurocrypt 2023)

x =

r1,1 + r1,2 + … + r1,N1

r2,1 + r2,2 + … + r2,N2…
rD,1 + rD,2 + … + rD,ND

+ Δx

Hypercube:  sharings of , with the same auxiliary value D x Δx

such that N = N1 ⋅ N2 ⋅ … ⋅ ND

x = r1 + r2 + … + rN + Δx

Traditional: one sharing of x
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How to build these  sharings?D

N = N1 ⋅ N2 ⋅ … ⋅ ND

r1 rN…

r1 r2

rN

rN1

N1

N2
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x =

r1,1 + r1,2 + … + r1,N1

r2,1 + r2,2 + … + r2,N2…
rD,1 + rD,2 + … + rD,ND

+ Δx



The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH” 
(Eurocrypt 2023)

How to build these  sharings?D
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r1 rN…

For D = 2

r1,1

r1,N2

⋮
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…

x =
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r2,1 + r2,2 + … + r2,N2…
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+ Δx



The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH” 
(Eurocrypt 2023)

N = N1 ⋅ N2 ⋅ … ⋅ ND

r1 rN…

For D ≥ 2

Source: Figure from [AGHHJY23]

x =

r1,1 + r1,2 + … + r1,N1

r2,1 + r2,2 + … + r2,N2…
rD,1 + rD,2 + … + rD,ND

+ Δx

How to build these  sharings?D



The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH” 
(Eurocrypt 2023)

Performance

N = N1 ⋅ N2 ⋅ … ⋅ ND

 - Same soundness error as before:  

 - Same signature size as before: 1 auxiliary value + 1 seed tree of  leaves 

1/N

N
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r1,1 + r1,2 + … + r1,N1

r2,1 + r2,2 + … + r2,N2…
rD,1 + rD,2 + … + rD,ND

+ Δx



The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH” 
(Eurocrypt 2023)

Performance

N = N1 ⋅ N2 ⋅ … ⋅ ND

 - Same soundness error as before:  

 - Same signature size as before: 1 auxiliary value + 1 seed tree of  leaves 

 - Emulation cost: one needs to emulate 

 parties 

1/N

N

1 + (N1 − 1) + (N2 − 1) + … + (ND − 1)

x =

r1,1 + r1,2 + … + r1,N1

r2,1 + r2,2 + … + r2,N2…
rD,1 + rD,2 + … + rD,ND

+ Δx

1 + log2 NN1 = … = ND = 2
D = log2 N

instead of N = N1 ⋅ N2 ⋅ … ⋅ ND



The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH” 
(Eurocrypt 2023)

Traditional:  party emulations per repetitionN

Hypercube:  party emulations per repetition1 + log2 N

N = 256

1 + log2 N = 9

N1 = … = ND = 2
D = log2 N
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Running times @3.80Ghz
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Signing algorithm

6 %

12 %

13 %

69 %

Symmetric
Packing
MPC Emulation
Misc

for  partiesN := 256
Signing time

 parties256

Running times @3.80Ghz (  ms)7

The Hypercube Technique



The (original) Threshold Approach

In the threshold approach, we used a low-threshold sharing scheme. 
For example, Shamir’s -secret sharing scheme. 

To share a value , 
sample  uniformly at random, 

build the polynomial , 

Set the share , where  is publicly known. 

(ℓ + 1,N)

x
r1, r2, …, rℓ

P(X) = x +
ℓ

∑
k=0

rk ⋅ Xk

[[x]]i ← P(ei) ei

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head” 
(Asiacrypt 2023)



In the threshold approach, we used a low-threshold sharing scheme. 
For example, Shamir’s -secret sharing scheme. 

The prover reveals only  shares to the verifier (instead of ). 
In practice, . 
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ℓ N − 1
ℓ ∈ {1,2,3}
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Construction: 
The verifier just needs to re-emulate  parties (per repetition);
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In the threshold approach, we used a low-threshold sharing scheme. 
For example, Shamir’s -secret sharing scheme. 

The prover reveals only  shares to the verifier (instead of ). 
In practice, . 

Construction: 
The verifier just needs to re-emulate  parties (per repetition); 
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In the threshold approach, we used a low-threshold sharing scheme. 
For example, Shamir’s -secret sharing scheme. 

The prover reveals only  shares to the verifier (instead of ). 
In practice, . 

Construction: 
The verifier just needs to re-emulate  parties (per repetition); 
The prover just needs to emulate  parties (per repetition); 
The prover uses a Merkle tree to commit the shares; 
The obtained signature size is larger; 
We have the constraint: .

(ℓ + 1,N)
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The (original) Threshold Approach
[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head” 
(Asiacrypt 2023)
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The existing MPCitH transforms

Traditional

Hypercube Threshold

Shorter signature sizes 
Highly parallelizable 
Slower signing time 

Signing time  Verification time 
Computational cost is mainly 

due to symmetric primitives

≈

Faster signing time 
Highly parallelizable 
Very fast verification 
Larger signature size 

Restriction # of parties 
Computational cost is mainly 

due to arithmetics



MPCitH-based NIST candidates

Short Instance Fast Instance

AIMer Traditional (256-1615) Traditional (16-57)

Biscuit Traditional (256) Traditional (16)

MIRA Hypercube (256) Hypercube (32)

MiRitH
Traditional (256) Traditional (16)

Hypercube (256) Hypercube (16)

MQOM Hypercube (256) Hypercube (32)

RYDE Hypercube (256) Hypercube (32)

SDitH Hypercube (256) Threshold (251-256)

FAEST and PERK rely on other MPCitH techniques.
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Advantages and limitations

Advantages 

Conservative hardness assumption: 

No structure (often), no trapdoor 

Small (public) keys 

Good public key + signature size 

Adaptive and tunable parameters
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Conclusion

MPC-in-the-Head 

Very versatile and tunable 

 Can be applied on any one-way function 

A practical tool to build conservative signature schemes

VOLE-in-the-Head 
Vector-Oblivious-Linear-Evaluation-in-the-Head 

presented by Carsten Baum 

June 18, 2024

TC-in-the-Head 
Threshold-Computation-in-the-Head 

presented by Matthieu Rivain 
July 2, 2024

Thank you for your attention.

Recent MPCitH techniques



References

[FMRV22] Feneuil, Maire, Rivain, Vergnaud. Zero-Knowledge Protocols for the Subset Sum 
Problem from MPC-in-the-Head with Rejection. Asiacrypt 2022. 

[Fen23] Feneuil. Post-Quantum Signatures from Secure Multiparty Computation. PhD thesis 
2023. 

[Fen22] Feneuil. Building MPCitH-based Signatures from MQ, MinRank, and Rank SD. ACNS 
2024. 

[BFR23] Benadjila, Feneuil, Rivain. MQ on my Mind: Post-Quantum Signatures from the 
Non-Structured Multivariate Quadratic Problem. EuroS&P 2024. 

[ARV22] Adj, Rivera-Zamarripa, Verbel. MinRank in the Head: Short Signatures from Zero-
Knowledge Proofs. AfricaCrypt 2023 

[ABB+23] Adj, Barbero, Bellini, Esser, Rivera-Zamarripa, Sanna, Verbel, Zweydinger. MiRitH: 
Efficient Post-Quantum Signatures from MinRank in the Head. TCHES 2024. 

[BG22] Bidoux, Gaborit. Compact Post-Quantum Signatures from Proofs of Knowledge 
leveraging Structure for the PKP, SD and RSD Problems. C2SI 2023. 

[BBD+24] Bettaieb, Bidoux, Dyseryn, Esser, Gaborit, Kulkarni, Palumbi. PERK: Compact 
Signature Scheme Based on a New Variant of the Permuted Kernel Problem. Journal DCC 
(2024). 


