<u>Constructions for digital signature Part I</u>: Introduction to MPC-in-the-Head

Thibauld Feneuil

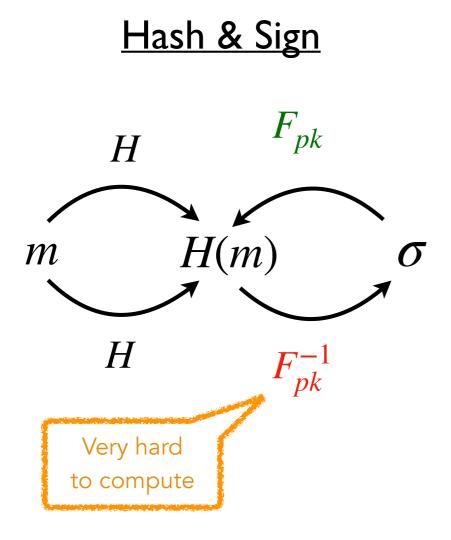
NIST PQC Seminar

May 21, 2024, online

Table of Contents

- Introduction
- MPC-in-the-Head: general principle
- From MPC-in-the-Head to signatures
- Optimisations and variants
- Conclusion

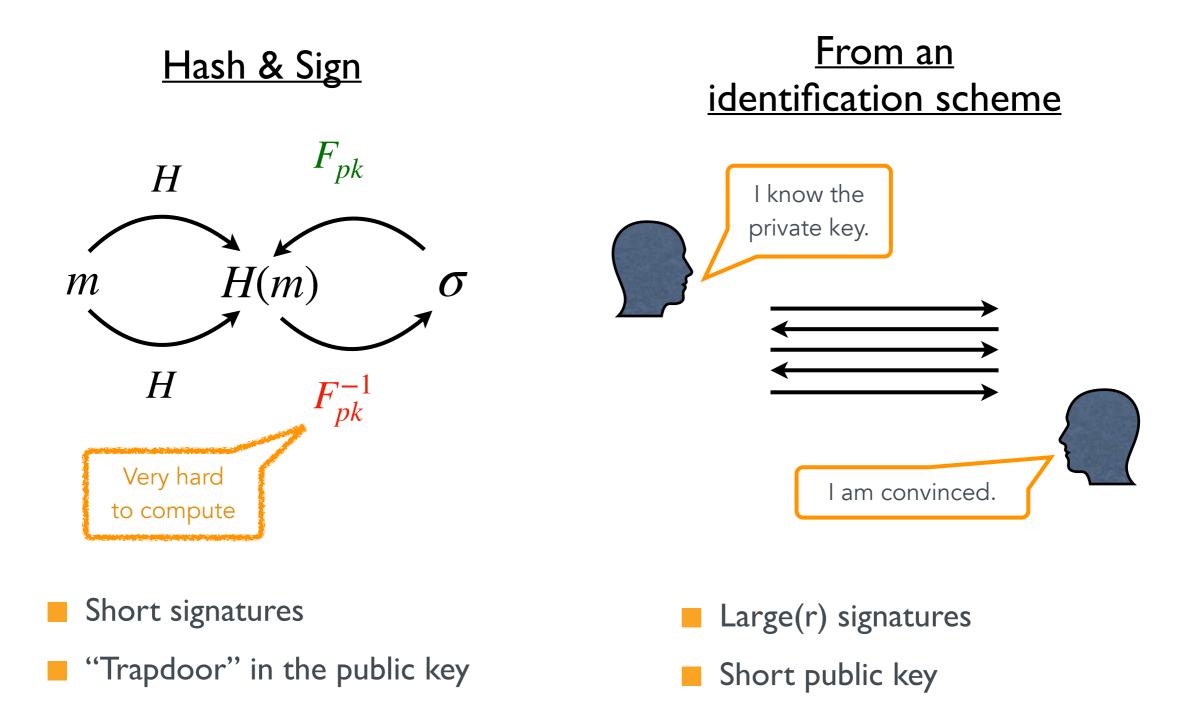
How to build signature schemes?



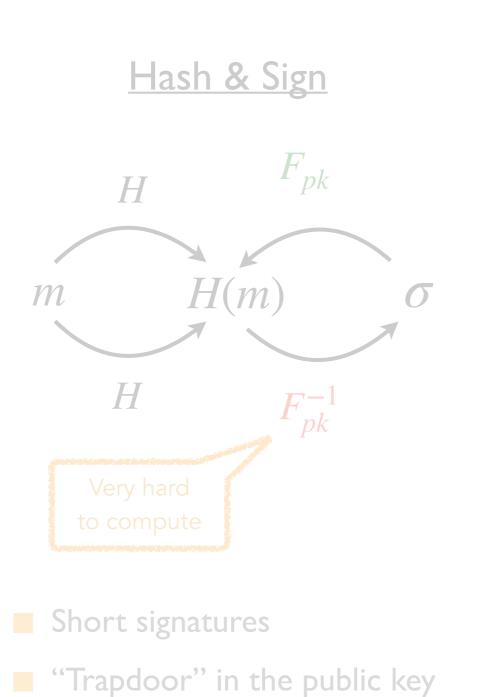
Short signatures

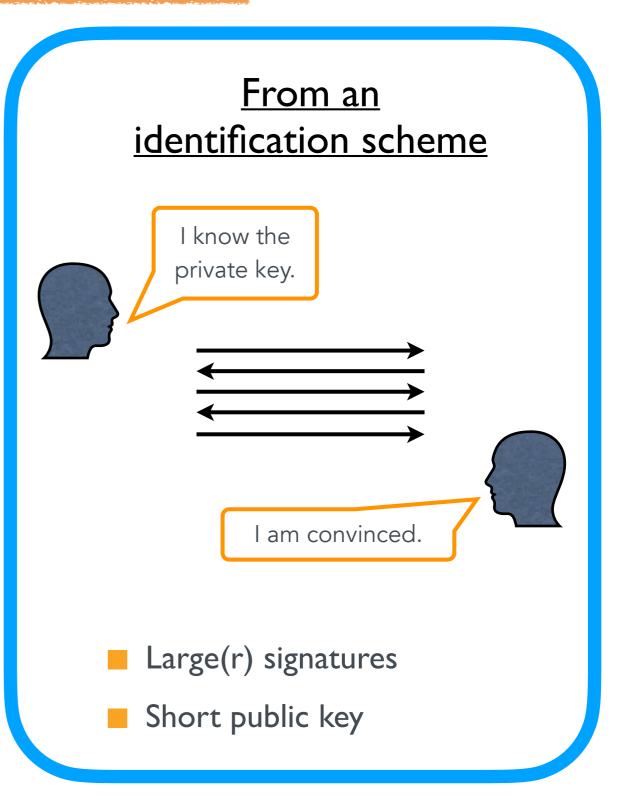
"'Trapdoor'' in the public key

How to build signature schemes?



How to build signature schemes?

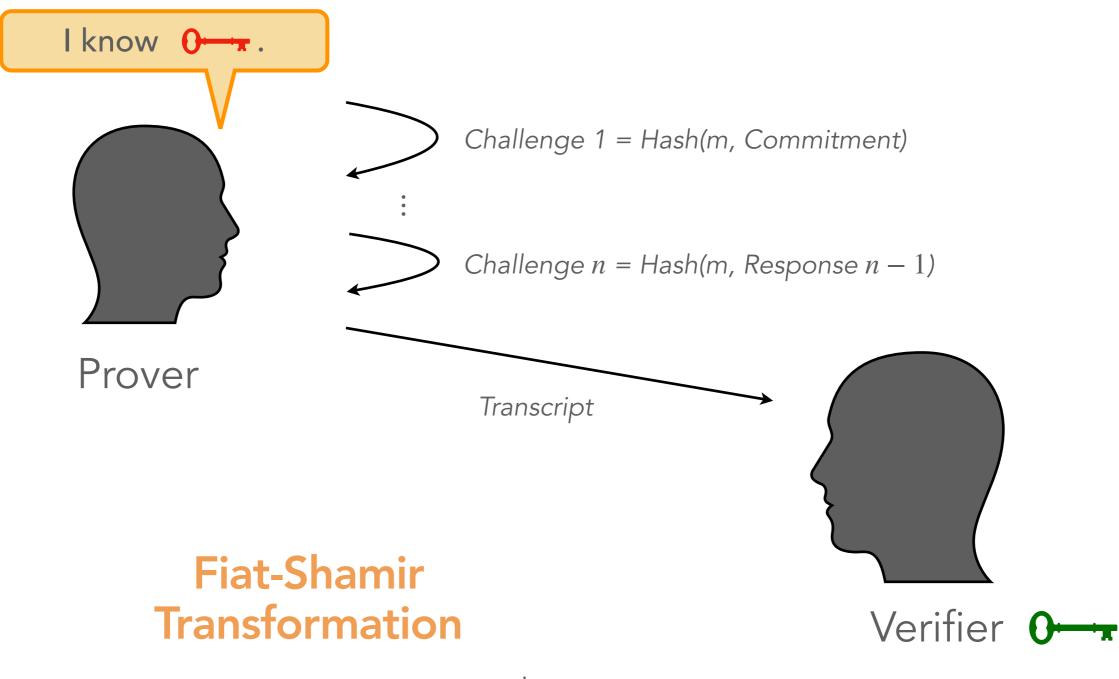




Identification Scheme

- **Completeness:** Pr[verif ✓ | honest prover] = 1
- Soundness: $\Pr[\operatorname{verif} \checkmark | \operatorname{malicious prover}] \le \varepsilon$ (e.g. 2^{-128})

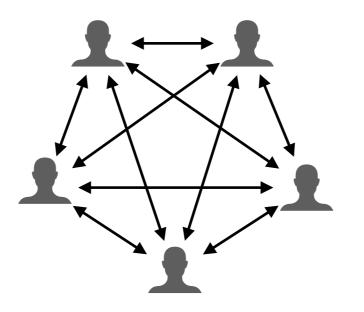
Identification Scheme



m: message to sign

MPC in the Head

- **[IKOS07]** Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn a *multiparty computation* (MPC) into an identification scheme / zeroknowledge proof of knowledge

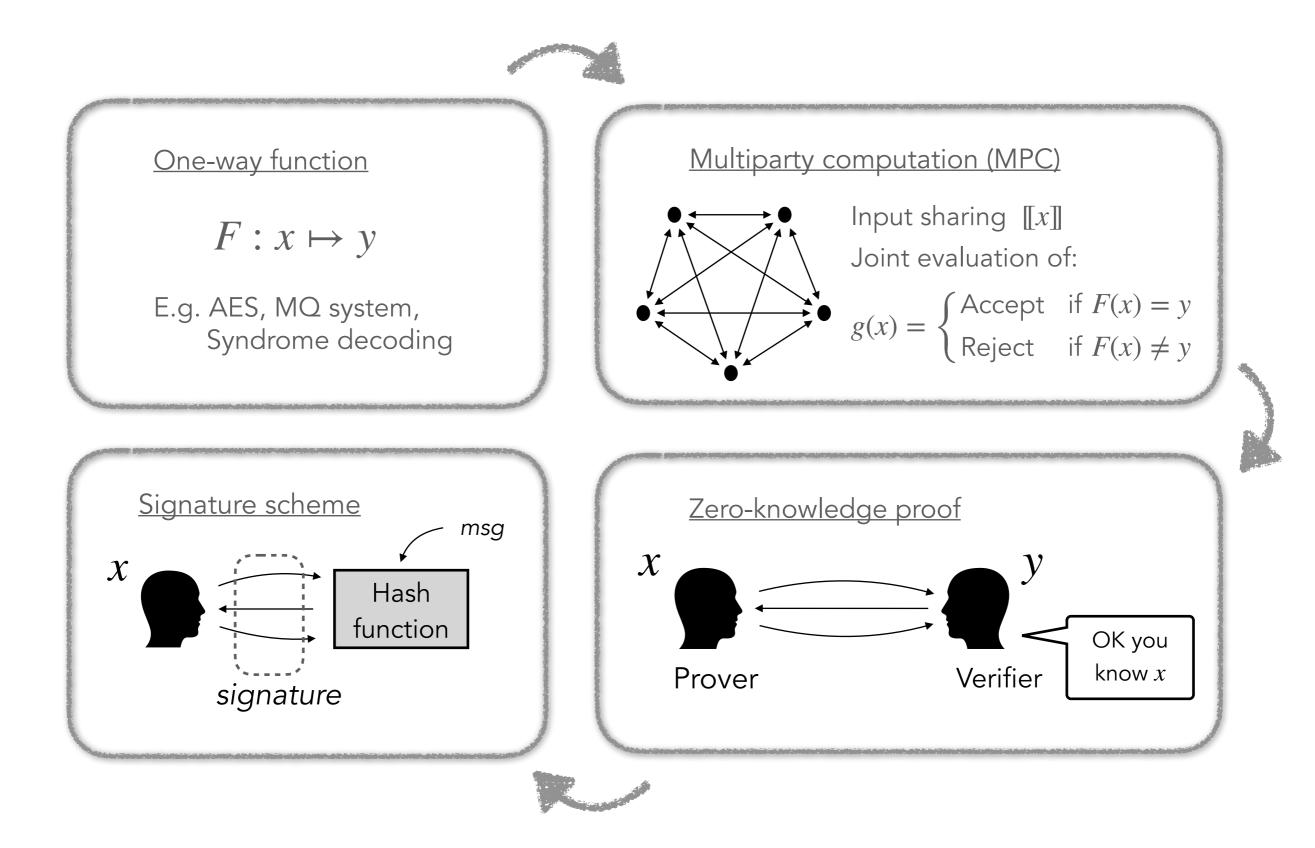


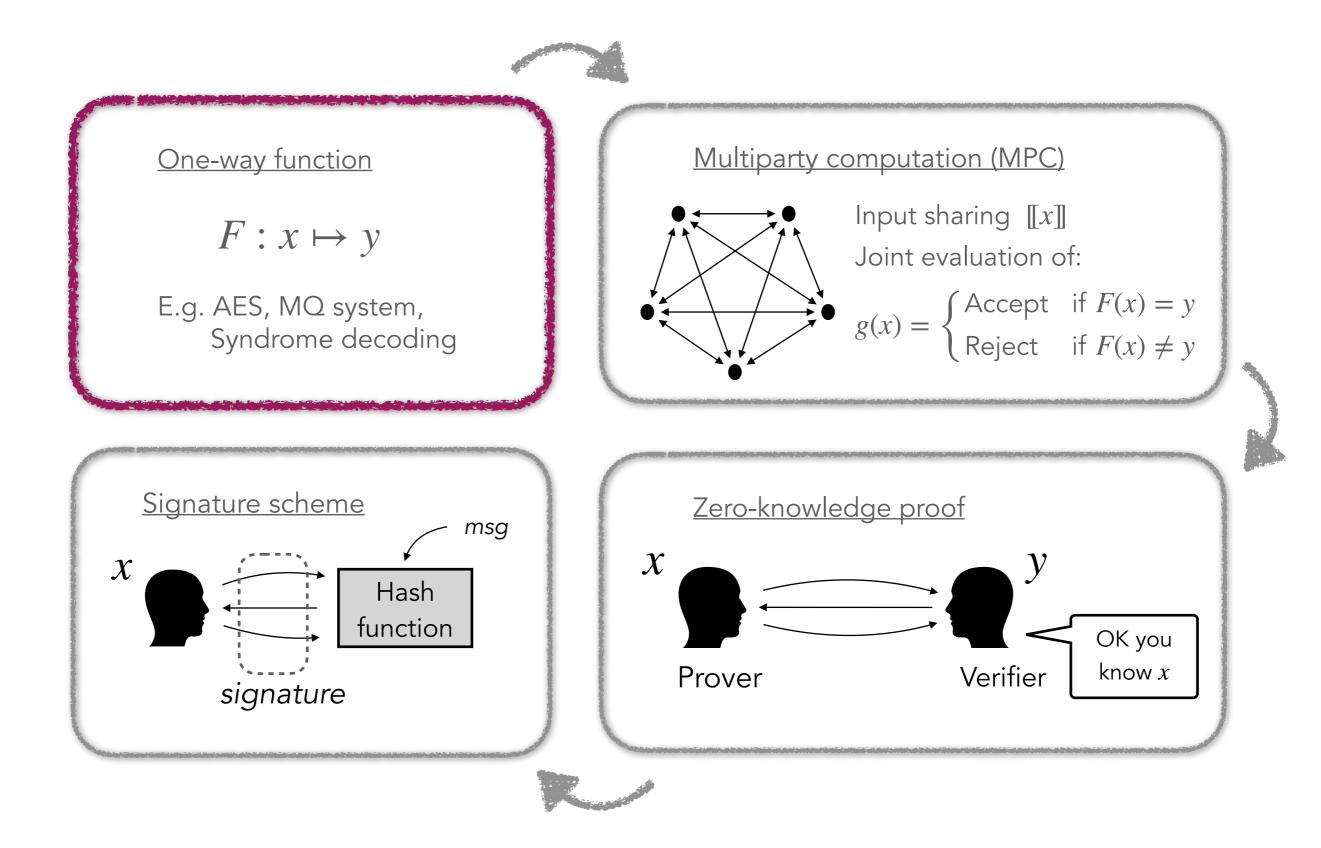
• **Generic**: can be applied to any cryptographic problem

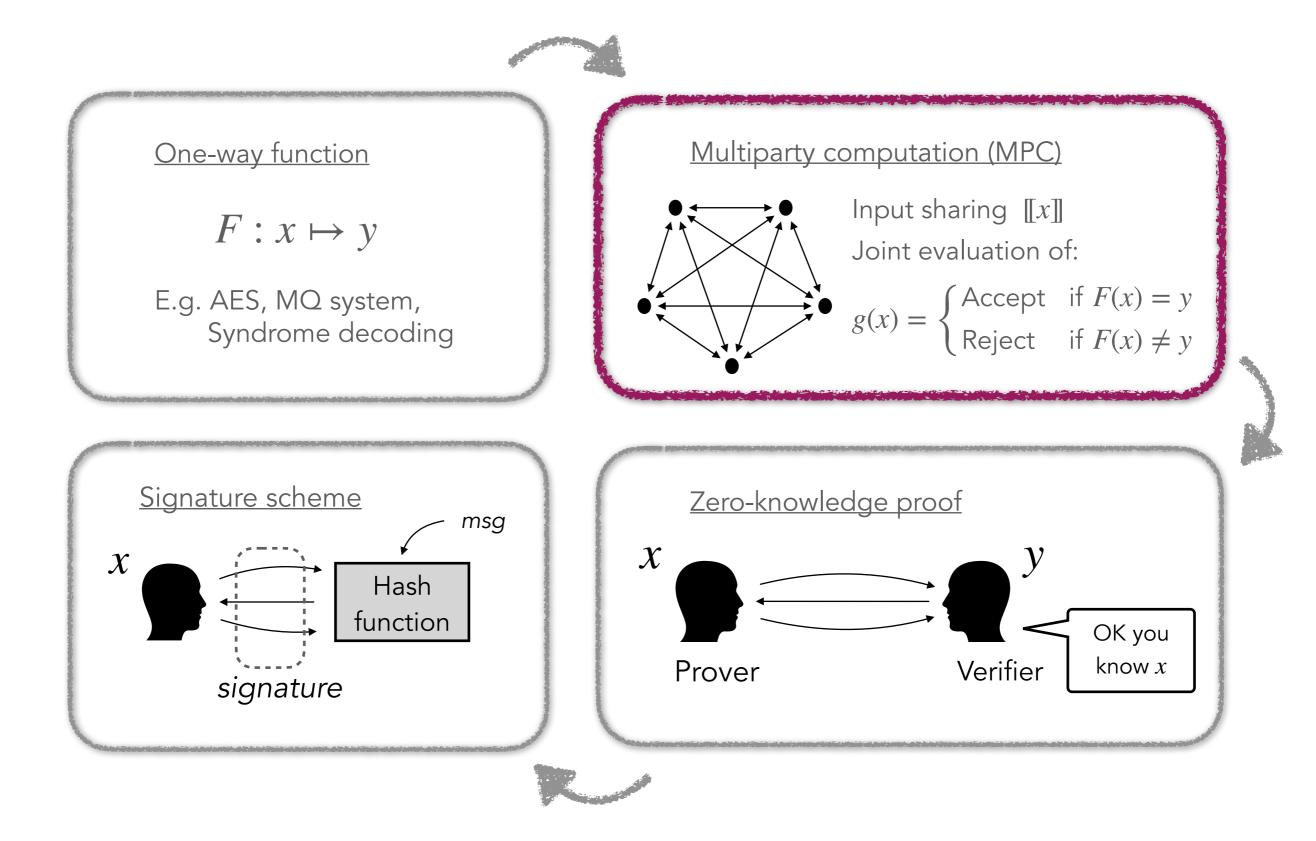
MPC in the Head

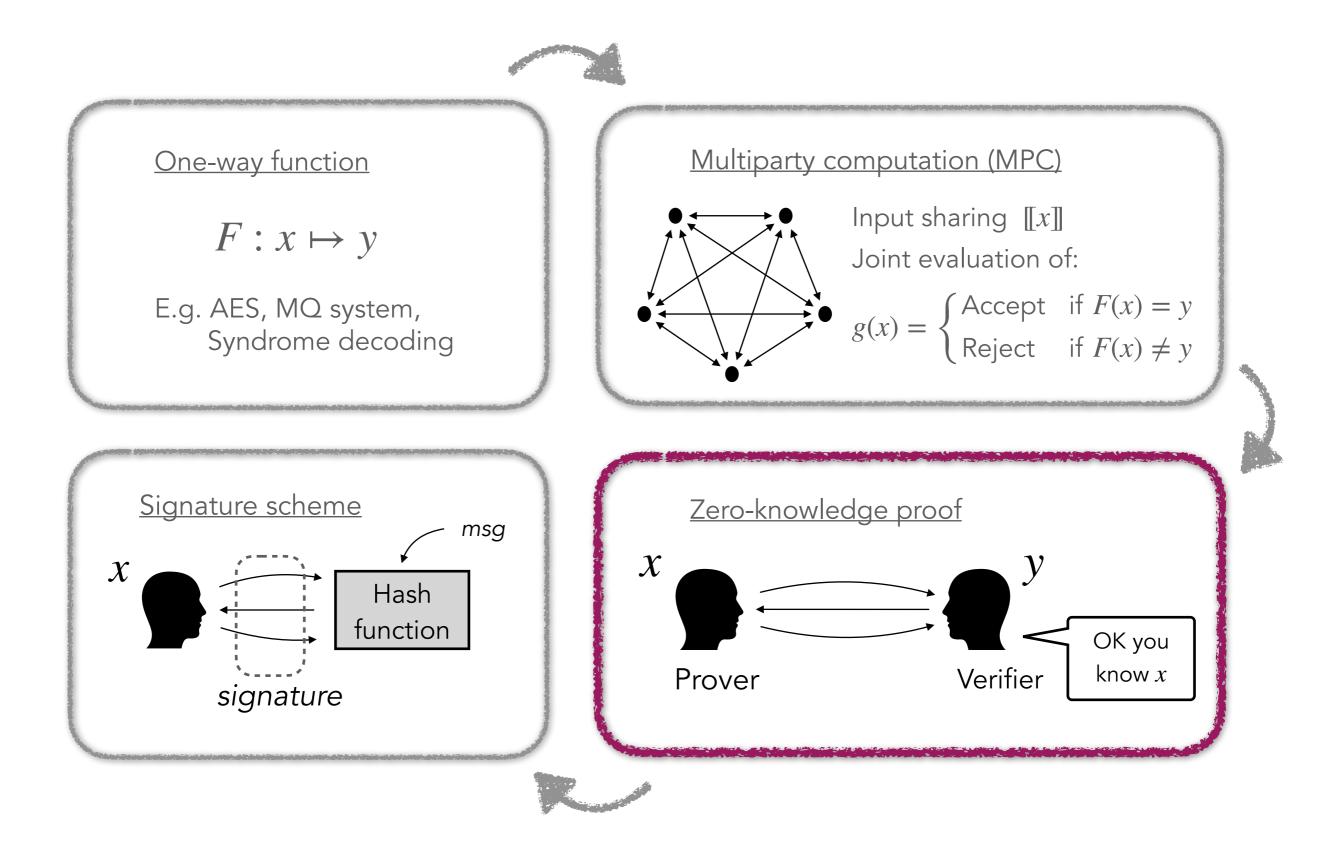
- **[IKOS07]** Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Convenient to build (candidate) **post-quantum signature** schemes
- **Picnic**: submission to NIST (2017)
- First round of recent NIST call: 7~9 MPCitH schemes / 40 submissions

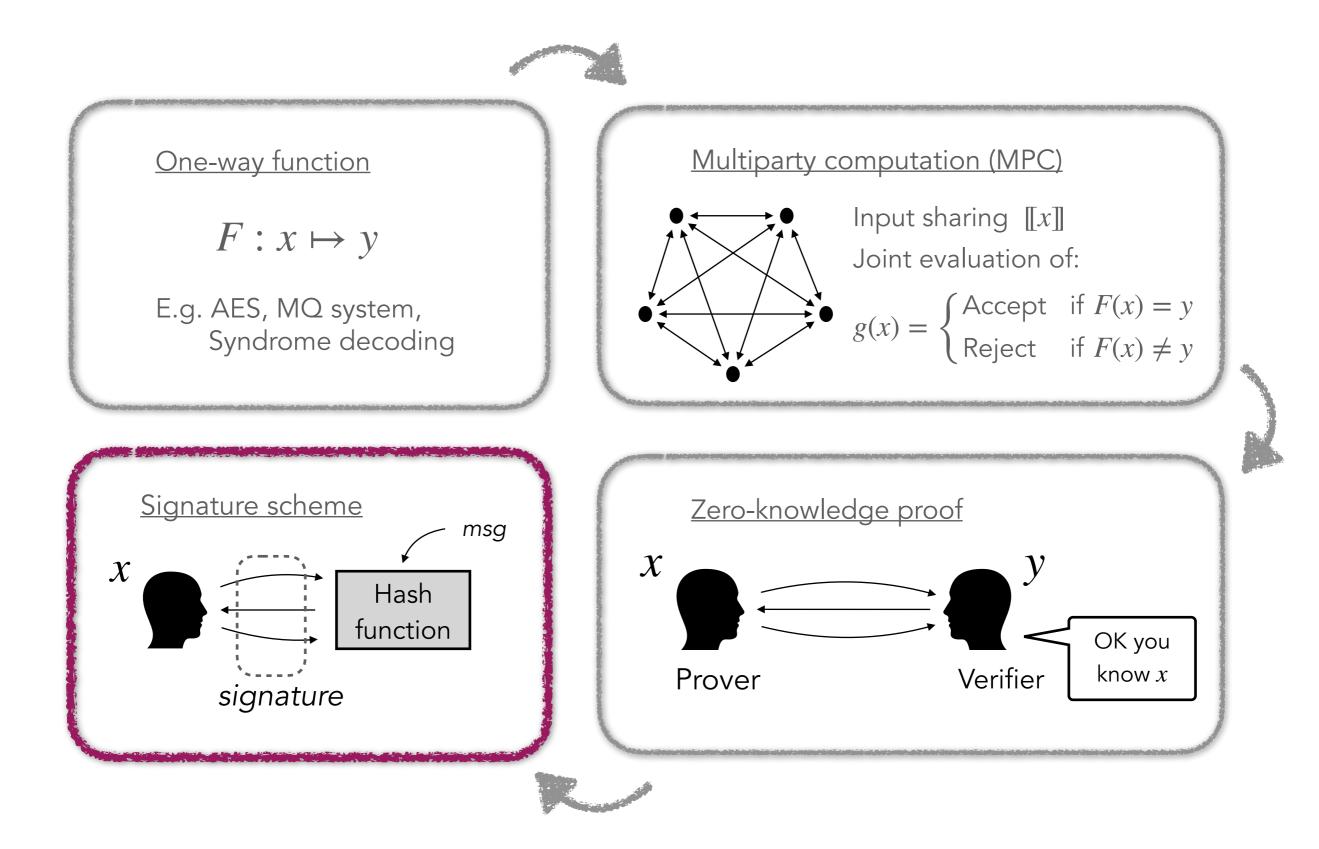
AIMer	МООМ
Biscuit	~
FAEST	PERK
MTRA	RYDE
MiRitH	SDitH

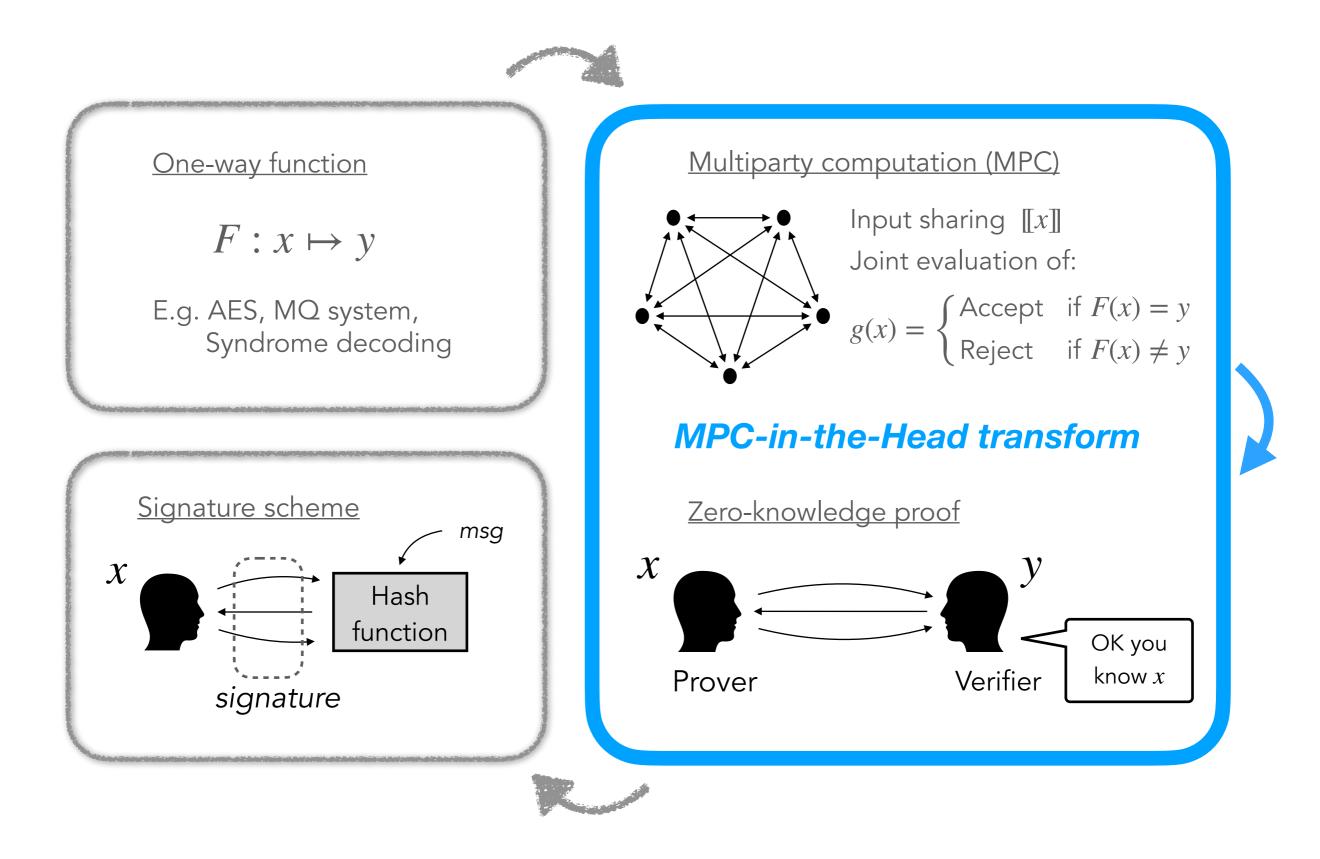








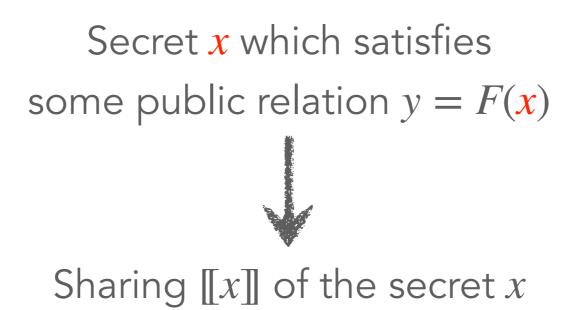




MPCitH: general principle

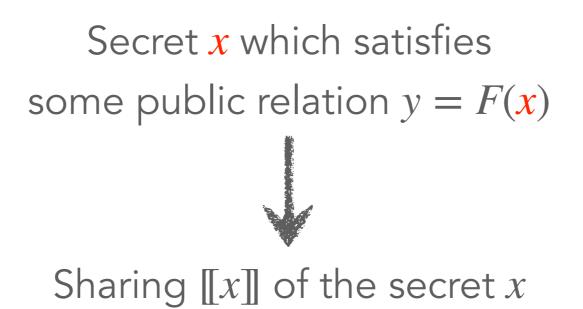
Secret x which satisfies some public relation y = F(x)

How to build a zero-knowledge proof of knowledge for *x*?



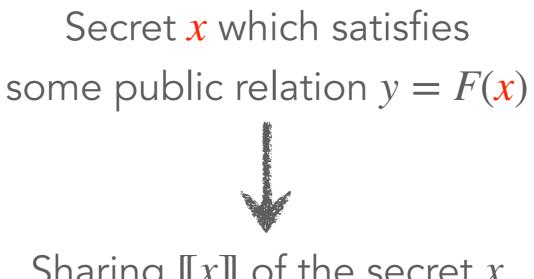
<u>Additive secret sharing</u>: $x = [[x]]_1 + [[x]]_2 + ... + [[x]]_N$

Shamir's secret sharing: $\forall i, [[x]]_i = P(e_i),$ where P is a random degree- ℓ polynomial such that P(0) = x.



<u>Additive secret sharing</u>: $x = [[x]]_1 + [[x]]_2 + ... + [[x]]_N$

Shamir's secret sharing: $\forall i, [[x]]_i = P(e_i),$ where *P* is a random degree- ℓ polynomial such that P(0) = x.

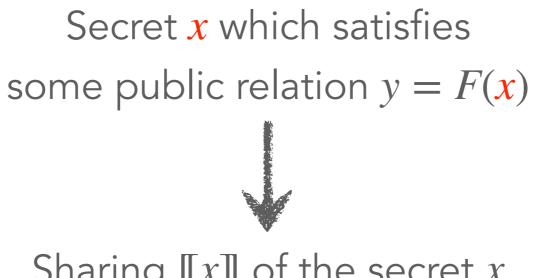


Sharing [[x]] of the secret x

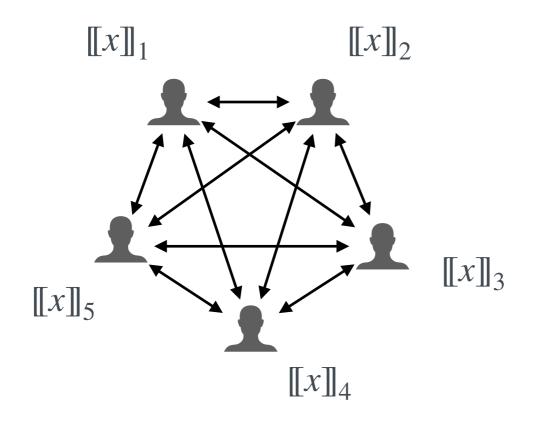
Additive secret sharing: $x = [[x]]_1 + [[x]]_2 + \dots + [[x]]_N$

Shamir's secret sharing: $\forall i, \llbracket x \rrbracket_i = P(e_i),$ where *P* is a random degree- ℓ polynomial such that P(0) = x.

If x := 42 lives in \mathbb{F}_{1021} , a possible sharing of x is x = 429 + 19 + 583 + 231 + 822 over \mathbb{F}_{1021}



Sharing [[x]] of the secret x

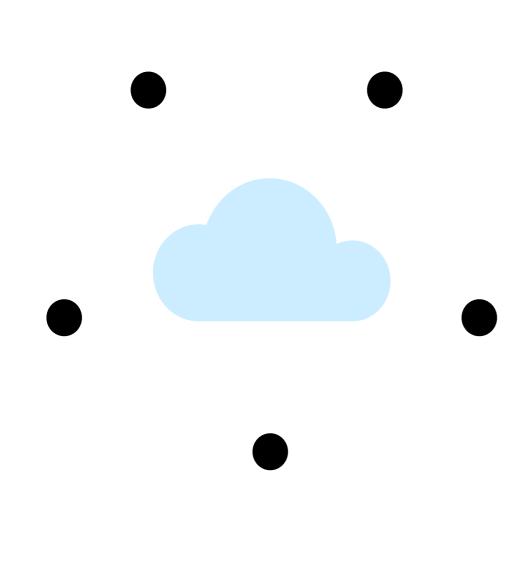


Input sharing [[x]]

Joint evaluation of: $g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$

• We want a multiparty computation that computes

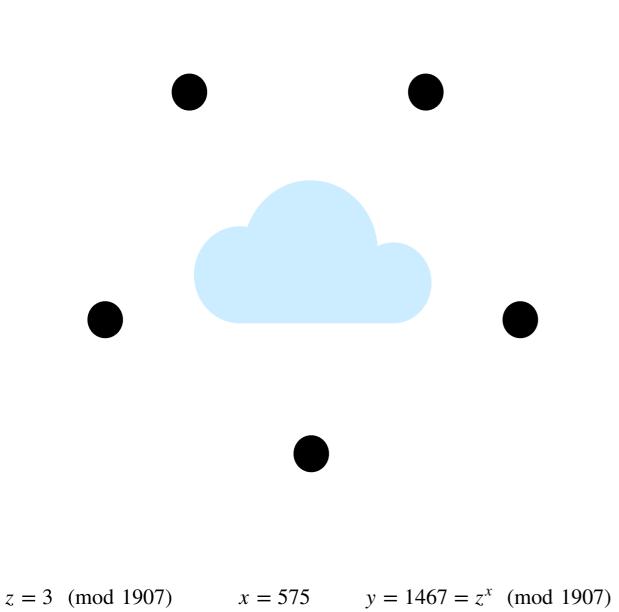
$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$



- Secret x satisfies $y = z^x$, with z public.
- We want a multiparty computation that computes

$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$

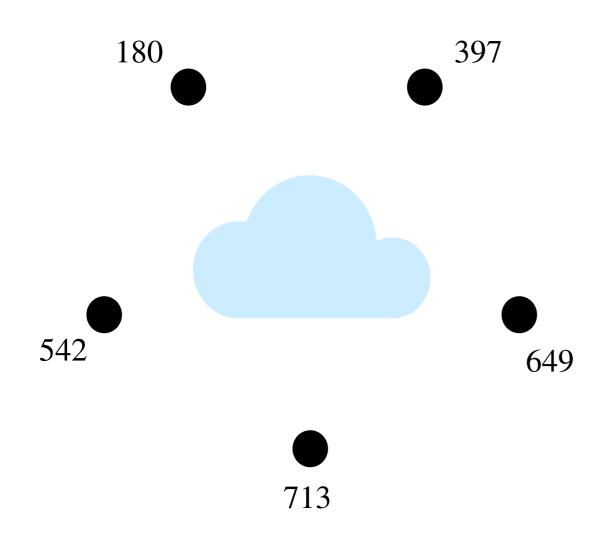
- <u>Party</u> *i*:
 - Receive the i^{th} share $[[x]]_i$
 - Compute $\llbracket z^x \rrbracket_i \leftarrow z^{\llbracket x \rrbracket_i}$.
 - Broadcast $[\![z^x]\!]_i$.
 - Receive all the broadcasted values $[\![z^x]\!]_1, \dots, [\![z^x]\!]_N$
 - Recover z^x and check that y.



- Secret x satisfies $y = z^x$, with z public.
- We want a multiparty computation that computes

$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$

- <u>Party</u> *i*:
 - Receive the i^{th} share $[[x]]_i$
 - Compute $\llbracket z^x \rrbracket_i \leftarrow z^{\llbracket x \rrbracket_i}$.
 - Broadcast $[\![z^x]\!]_i$.
 - Receive all the broadcasted values $[\![z^x]\!]_1, \dots, [\![z^x]\!]_N$
 - Recover z^x and check that y.



 $z = 3 \pmod{1907} \qquad x = 575 \qquad y = 1467 = z^x \pmod{1907}$ $\llbracket x \rrbracket_1 = 180, \quad \llbracket x \rrbracket_2 = 397, \quad \llbracket x \rrbracket_3 = 649, \quad \llbracket x \rrbracket_4 = 713, \quad \llbracket x \rrbracket_5 = 542$ $x = \llbracket x \rrbracket_1 + \llbracket x \rrbracket_2 + \llbracket x \rrbracket_3 + \llbracket x \rrbracket_4 + \llbracket x \rrbracket_5 \pmod{953}$

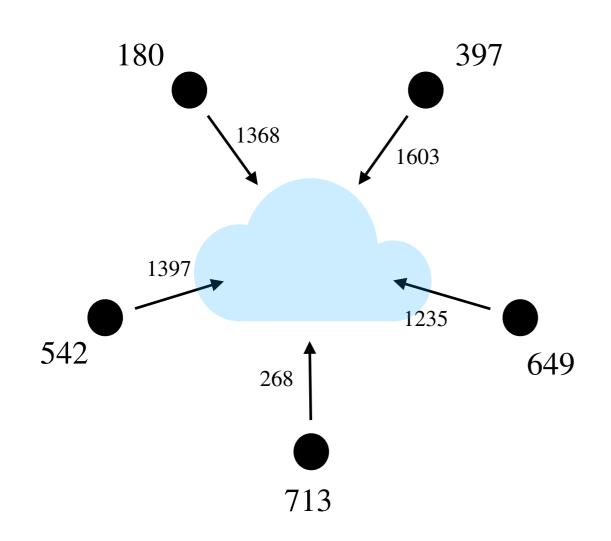
• Secret x satisfies $y = z^x$, with z public.

• We want a multiparty computation that computes

$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$

• <u>Party *i*</u>:

- Receive the i^{th} share $[[x]]_i$
- Compute $\llbracket z^x \rrbracket_i \leftarrow z^{\llbracket x \rrbracket_i}$.
- Broadcast $[[z^x]]_i$.
- Receive all the broadcasted values $[\![z^x]\!]_1, \ldots, [\![z^x]\!]_N$
- Recover z^x and check that y.



 $z = 3 \pmod{1907} \qquad x = 575 \qquad y = 1467 = z^x \pmod{1907}$ $\llbracket x \rrbracket_1 = 180, \quad \llbracket x \rrbracket_2 = 397, \quad \llbracket x \rrbracket_3 = 649, \quad \llbracket x \rrbracket_4 = 713, \quad \llbracket x \rrbracket_5 = 542$ $x = \llbracket x \rrbracket_1 + \llbracket x \rrbracket_2 + \llbracket x \rrbracket_3 + \llbracket x \rrbracket_4 + \llbracket x \rrbracket_5 \pmod{953}$

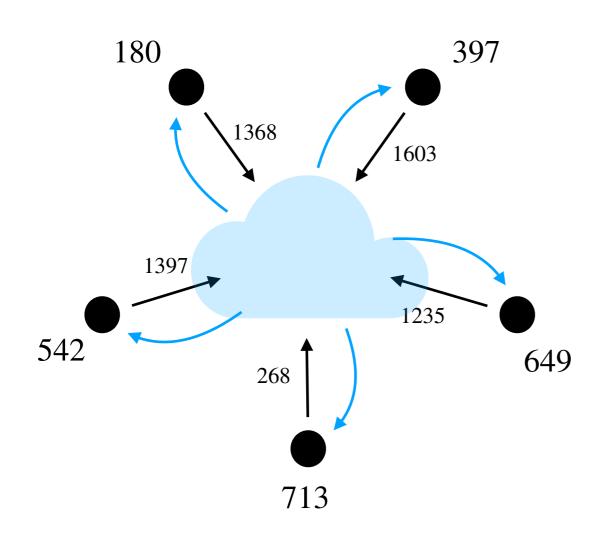
• Secret x satisfies $y = z^x$, with z public.

• We want a multiparty computation that computes

$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$

• <u>Party *i*</u>:

- Receive the i^{th} share $[[x]]_i$
- Compute $\llbracket z^x \rrbracket_i \leftarrow z^{\llbracket x \rrbracket_i}$.
- Broadcast $[[z^x]]_i$.
- Receive all the broadcasted values $[\![z^x]\!]_1, \ldots, [\![z^x]\!]_N$
- Recover z^x and check that y.

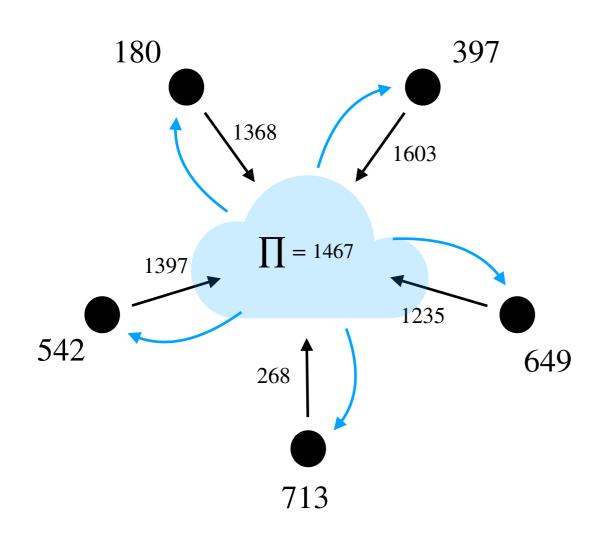


 $z = 3 \pmod{1907} \qquad x = 575 \qquad y = 1467 = z^x \pmod{1907}$ $\llbracket x \rrbracket_1 = 180, \quad \llbracket x \rrbracket_2 = 397, \quad \llbracket x \rrbracket_3 = 649, \quad \llbracket x \rrbracket_4 = 713, \quad \llbracket x \rrbracket_5 = 542$ $x = \llbracket x \rrbracket_1 + \llbracket x \rrbracket_2 + \llbracket x \rrbracket_3 + \llbracket x \rrbracket_4 + \llbracket x \rrbracket_5 \pmod{953}$

- Secret x satisfies $y = z^x$, with z public.
- We want a multiparty computation that computes

$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$

- <u>Party *i*</u>:
 - Receive the i^{th} share $[[x]]_i$
 - Compute $\llbracket z^x \rrbracket_i \leftarrow z^{\llbracket x \rrbracket_i}$.
 - Broadcast $\llbracket z^x \rrbracket_i$.
 - Receive all the broadcasted values $[\![z^x]\!]_1, \dots, [\![z^x]\!]_N$
 - Recover z^x and check that y.

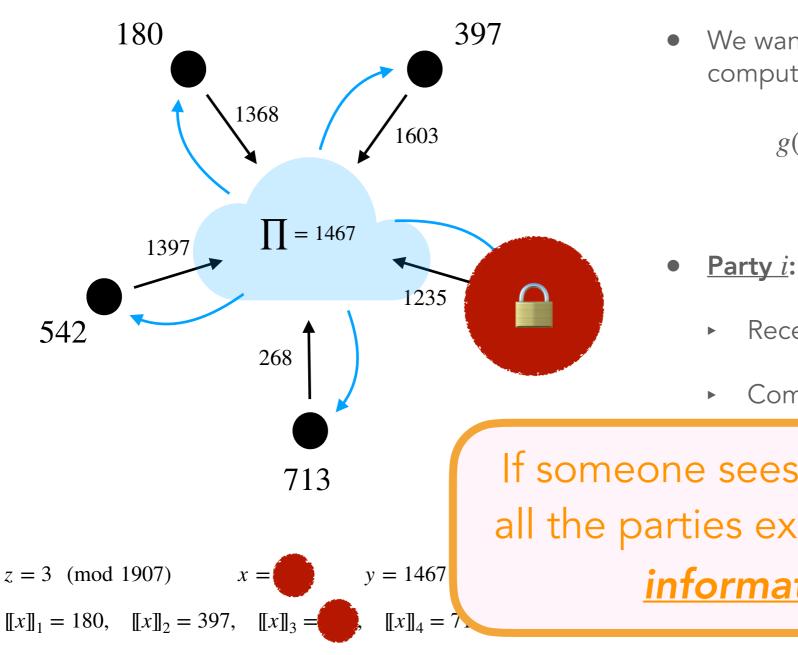


 $z = 3 \pmod{1907} \qquad x = 575 \qquad y = 1467 = z^x \pmod{1907}$ $\llbracket x \rrbracket_1 = 180, \quad \llbracket x \rrbracket_2 = 397, \quad \llbracket x \rrbracket_3 = 649, \quad \llbracket x \rrbracket_4 = 713, \quad \llbracket x \rrbracket_5 = 542$ $x = \llbracket x \rrbracket_1 + \llbracket x \rrbracket_2 + \llbracket x \rrbracket_3 + \llbracket x \rrbracket_4 + \llbracket x \rrbracket_5 \pmod{953}$

- Secret x satisfies $y = z^x$, with z public.
- We want a multiparty computation that computes

$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$

- <u>Party *i*</u>:
 - Receive the i^{th} share $[[x]]_i$
 - Compute $\llbracket z^x \rrbracket_i \leftarrow z^{\llbracket x \rrbracket_i}$.
 - Broadcast $[[z^x]]_i$.
 - Receive all the broadcasted values $[\![z^x]\!]_1, \dots, [\![z^x]\!]_N$
 - Recover z^x and check that y.



 $x = [[x]]_1 + [[x]]_2 + [[x]]_3 + [[x]]_4 + [[x]]_5 \pmod{953}$

• Secret x satisfies $y = z^x$, with z public.

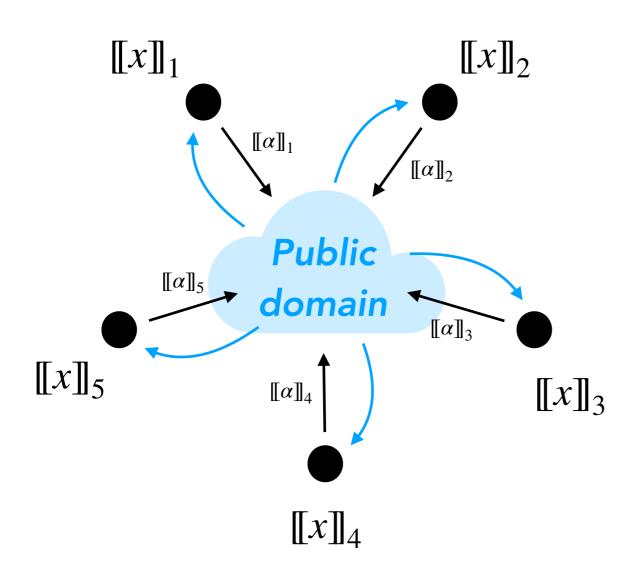
• We want a multiparty computation that computes

$$g(x) = \begin{cases} \text{Accept} & \text{if } z^x = y \\ \text{Reject} & \text{if } z^x \neq y \end{cases}$$

- Receive the i^{th} share $[[x]]_i$
- Compute $\llbracket z^x \rrbracket_i \leftarrow z^{\llbracket x \rrbracket_i}$.

If someone sees the computation of all the parties except one, it leaks <u>no</u> <u>information</u> on x. (2)

MPC model



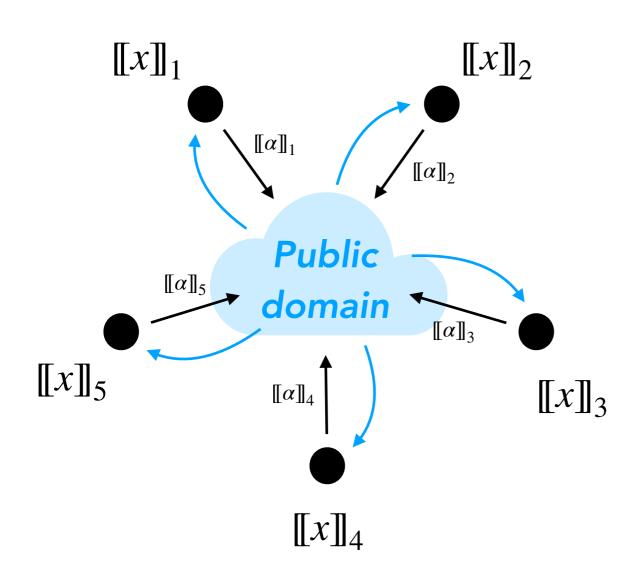
• Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- (N-1) private: the views of any N-1 parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol

 $x = [[x]]_1 + [[x]]_2 + \ldots + [[x]]_N$

MPC model



 $x = [\![x]\!]_1 + [\![x]\!]_2 + \ldots + [\![x]\!]_N$

• Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

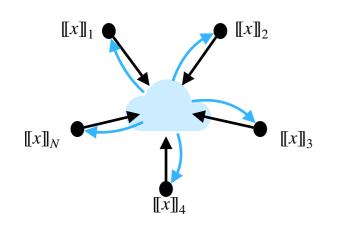
- (N-1) **private:** the views of any N-1 parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol
- Broadcast model
 - Parties locally compute on their shares $\llbracket x \rrbracket \mapsto \llbracket \alpha \rrbracket$
 - Parties broadcast [[α]] and recompute
 α
 - Parties start again (now knowing α)

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

$\operatorname{Com}^{\rho_1}([[x]]_1)$	
$\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$	
	• • •

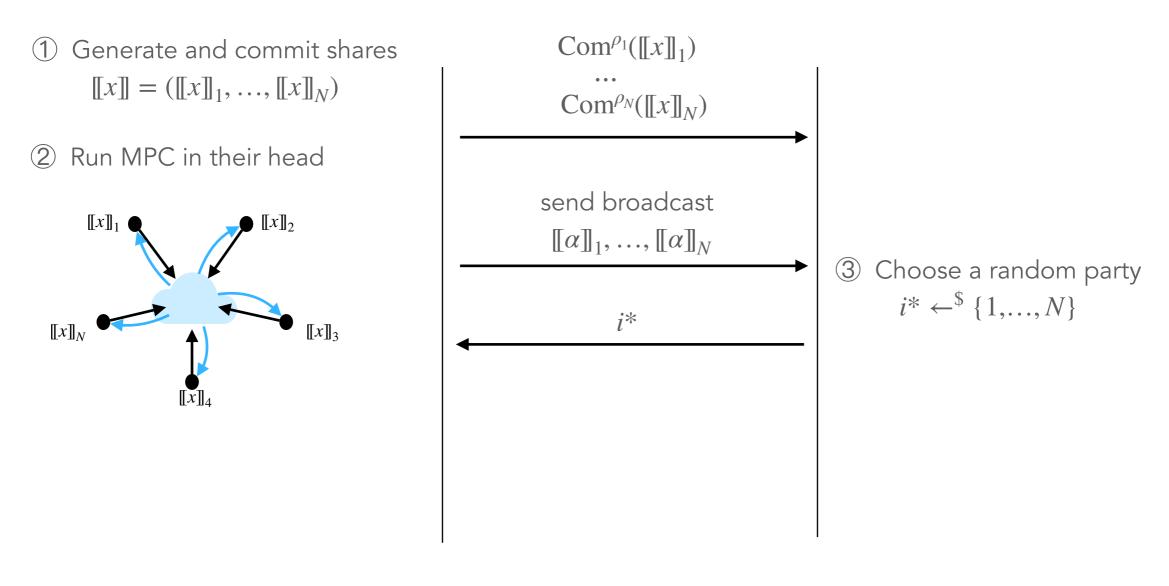
① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

② Run MPC in their head



$\operatorname{Com}^{\rho_1}([[x]]_1)$	
$\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$	
send broadcast $\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N$	

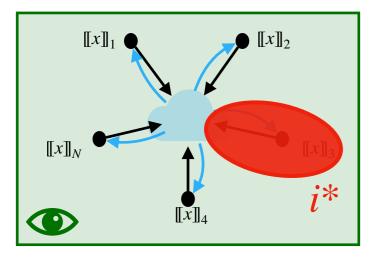
<u>Prover</u>



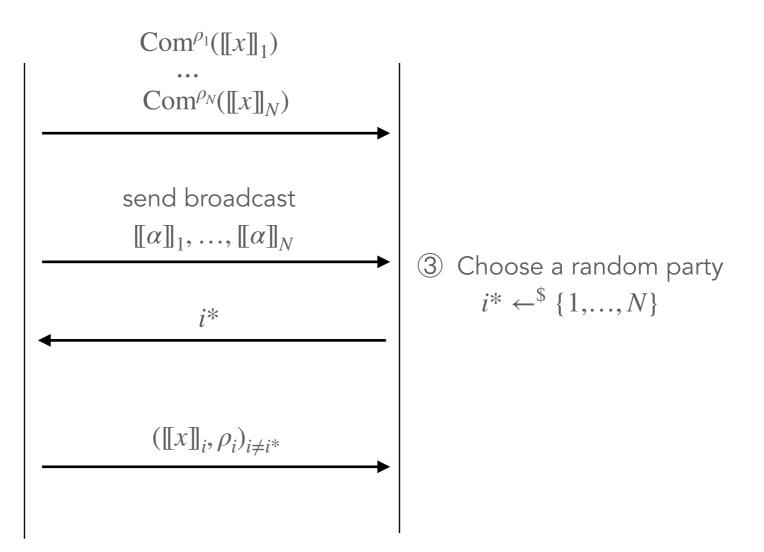
<u>Prover</u>

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

2 Run MPC in their head



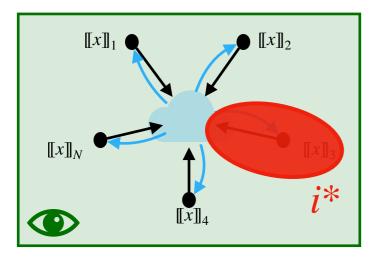
④ Open parties $\{1, ..., N\} \setminus \{i^*\}$



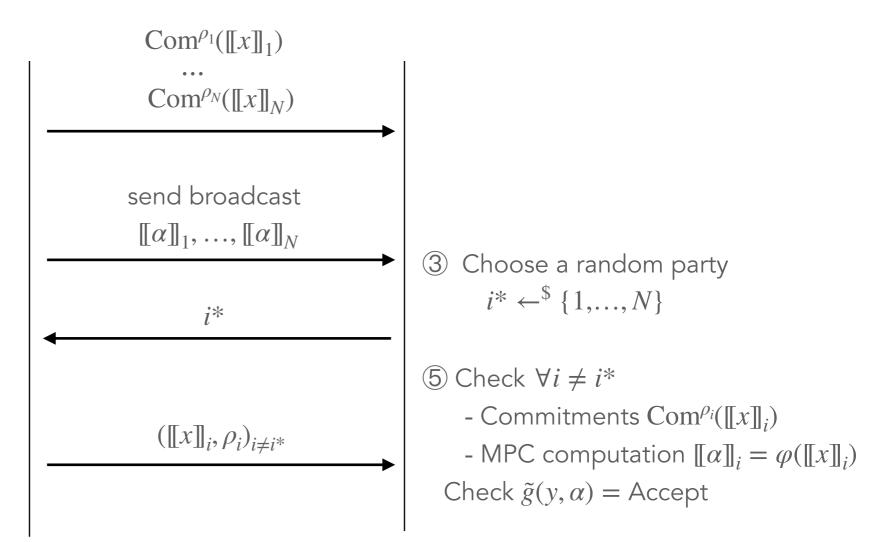
<u>Verifier</u>

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

2 Run MPC in their head



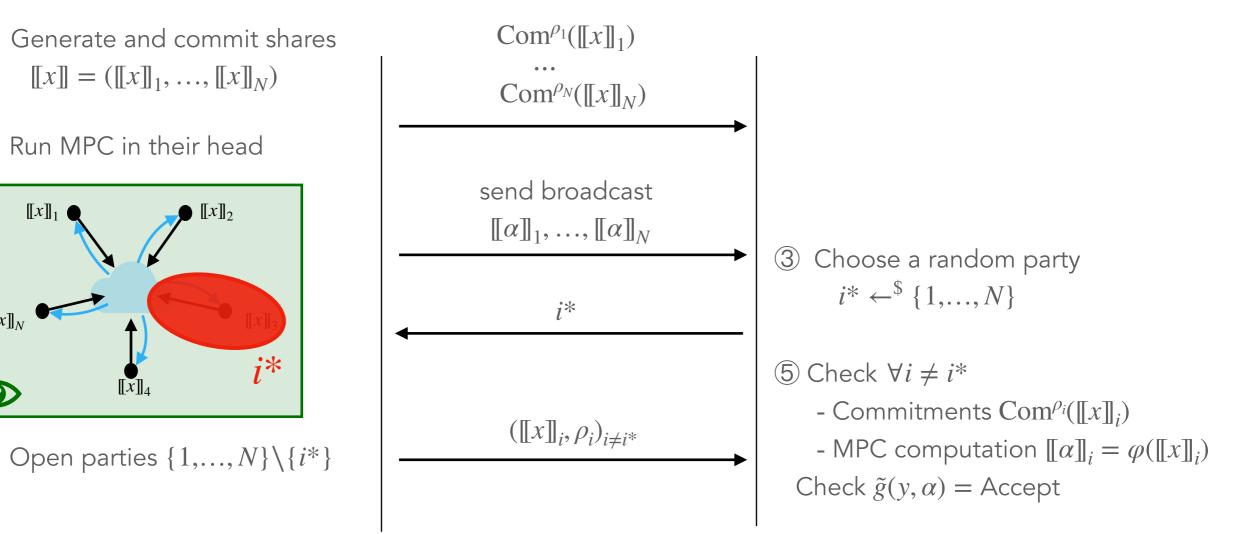
④ Open parties $\{1, ..., N\} \setminus \{i^*\}$



<u>Verifier</u>

<u>Prover</u>





<u>Verifier</u>

<u>Prover</u>

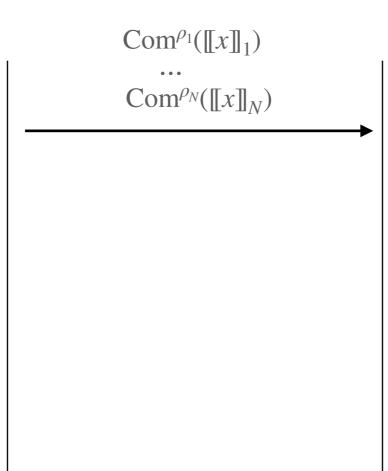
(1)

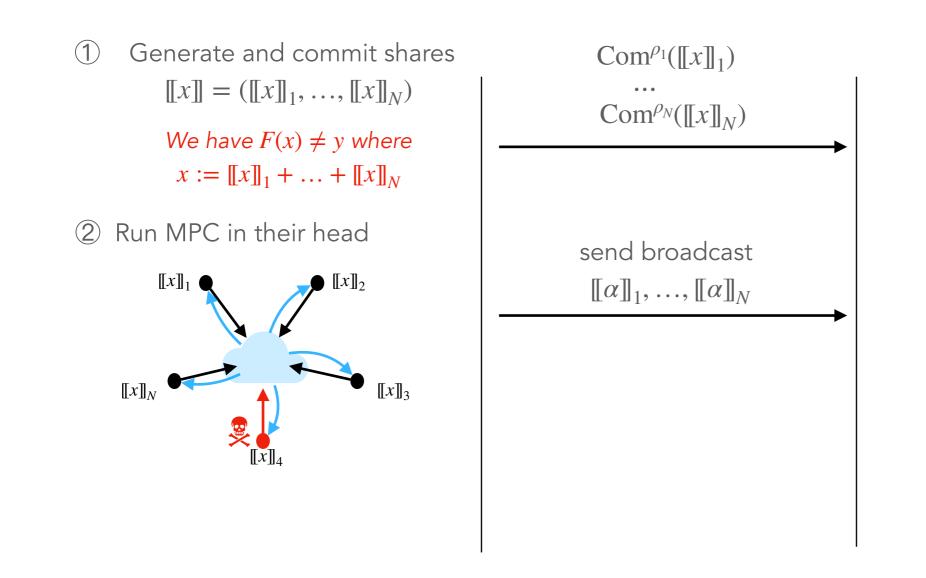
(2)

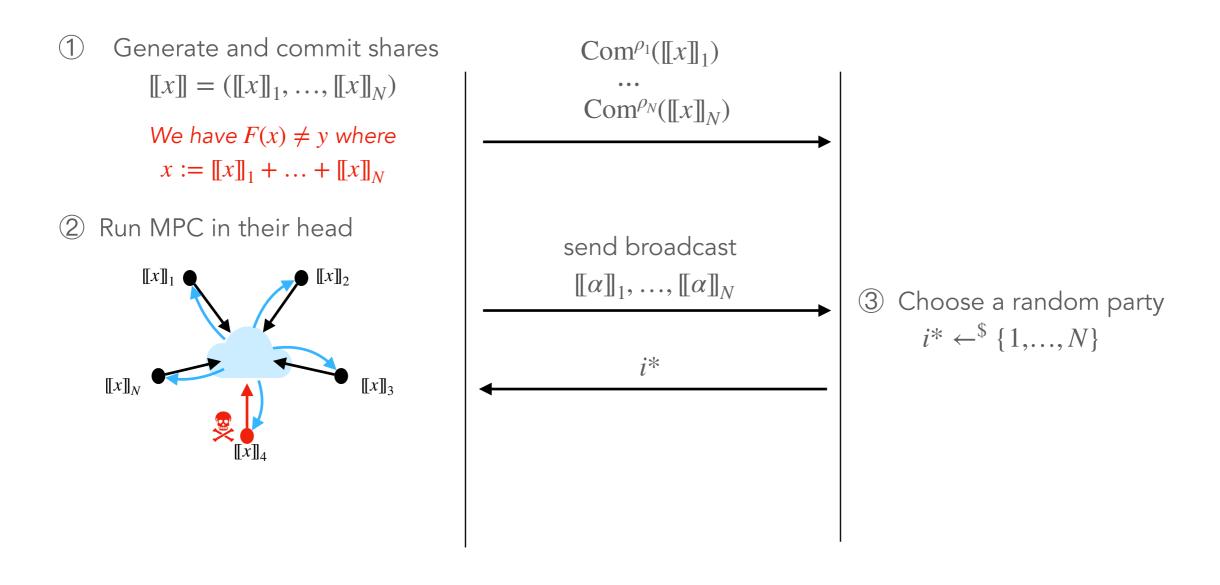
 $\llbracket x \rrbracket_N$

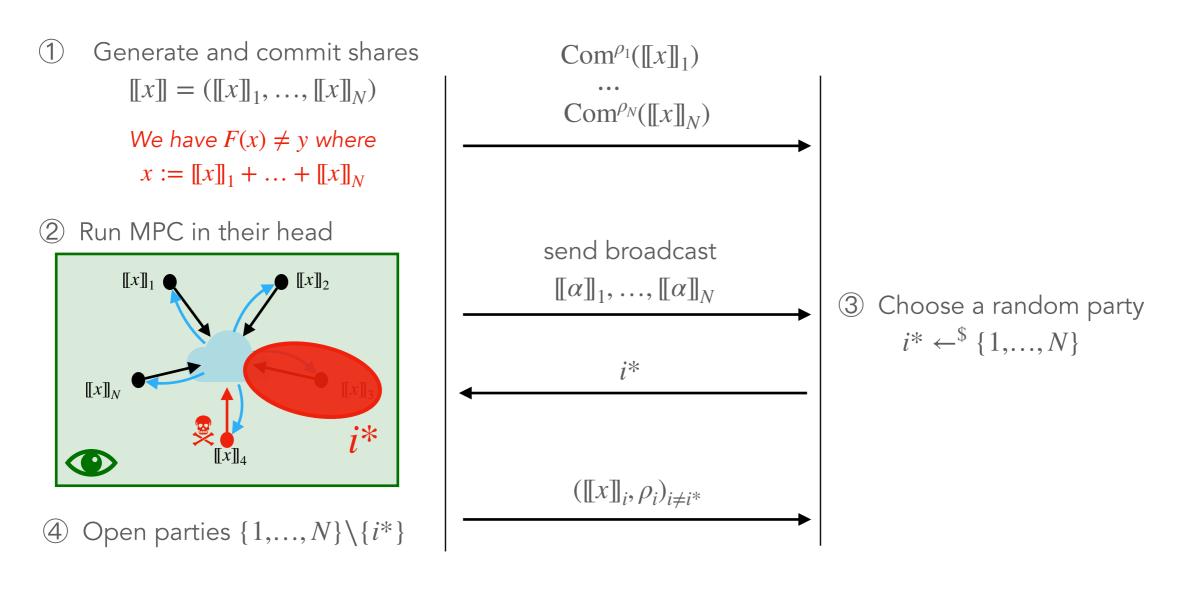
(4)

(1) Generate and commit shares $\llbracket x \rrbracket = (\llbracket x \rrbracket_1, \dots, \llbracket x \rrbracket_N)$ We have $F(x) \neq y$ where $x := \llbracket x \rrbracket_1 + \dots + \llbracket x \rrbracket_N$

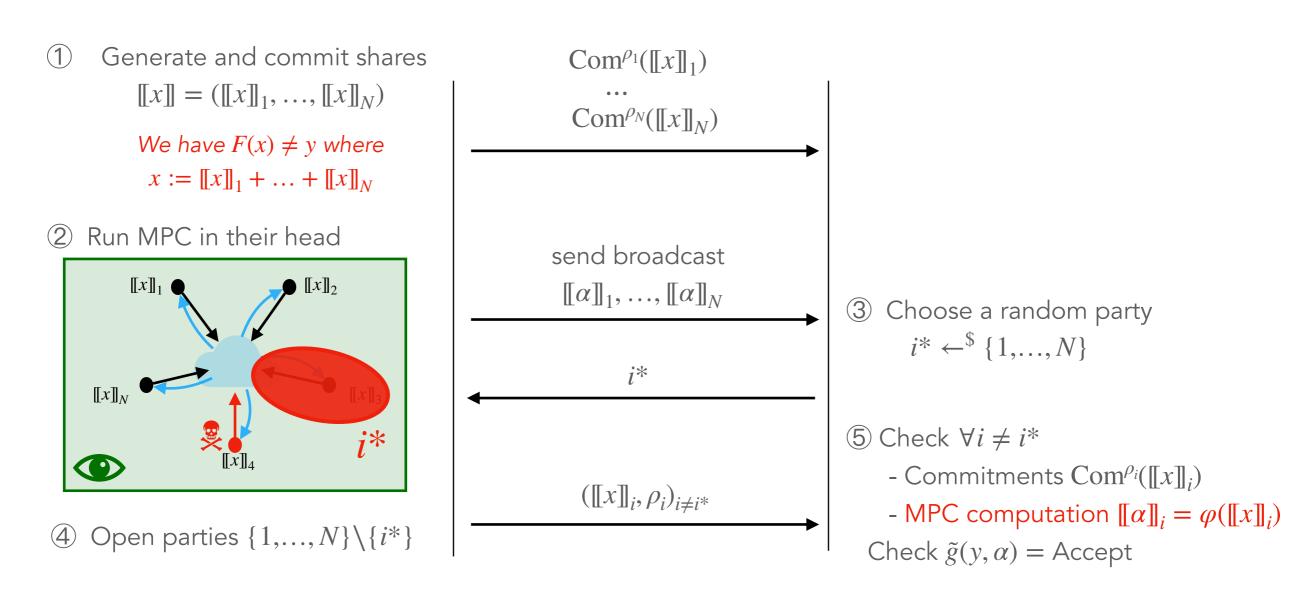






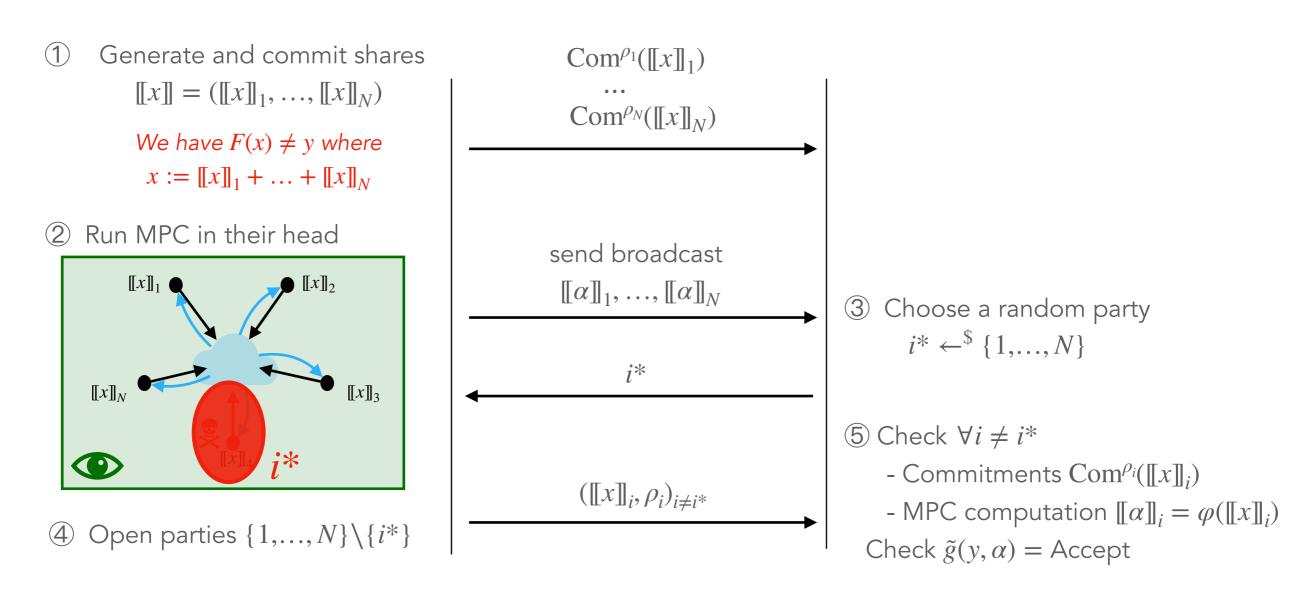


<u>Verifier</u>



Malicious Prover

<u>Verifier</u>



• **Zero-knowledge** \iff MPC protocol is (N-1)-private

- **Zero-knowledge** \iff MPC protocol is (N-1)-private
- Soundness:

 $\mathbb{P}(\text{malicious prover convinces the verifier}) = \mathbb{P}(\text{corrupted party remains hidden}) = \frac{1}{N}$

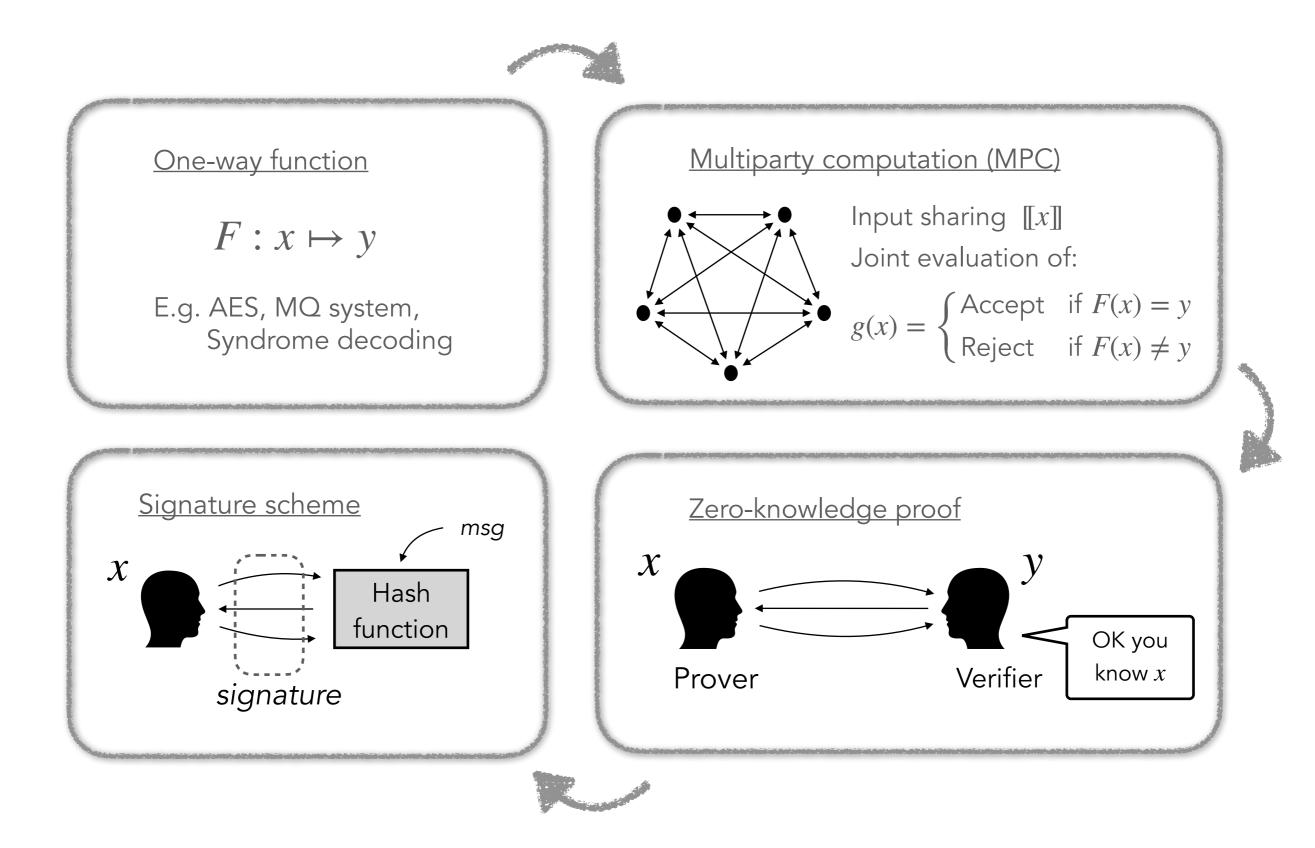
- **Zero-knowledge** \iff MPC protocol is (N-1)-private
- Soundness:

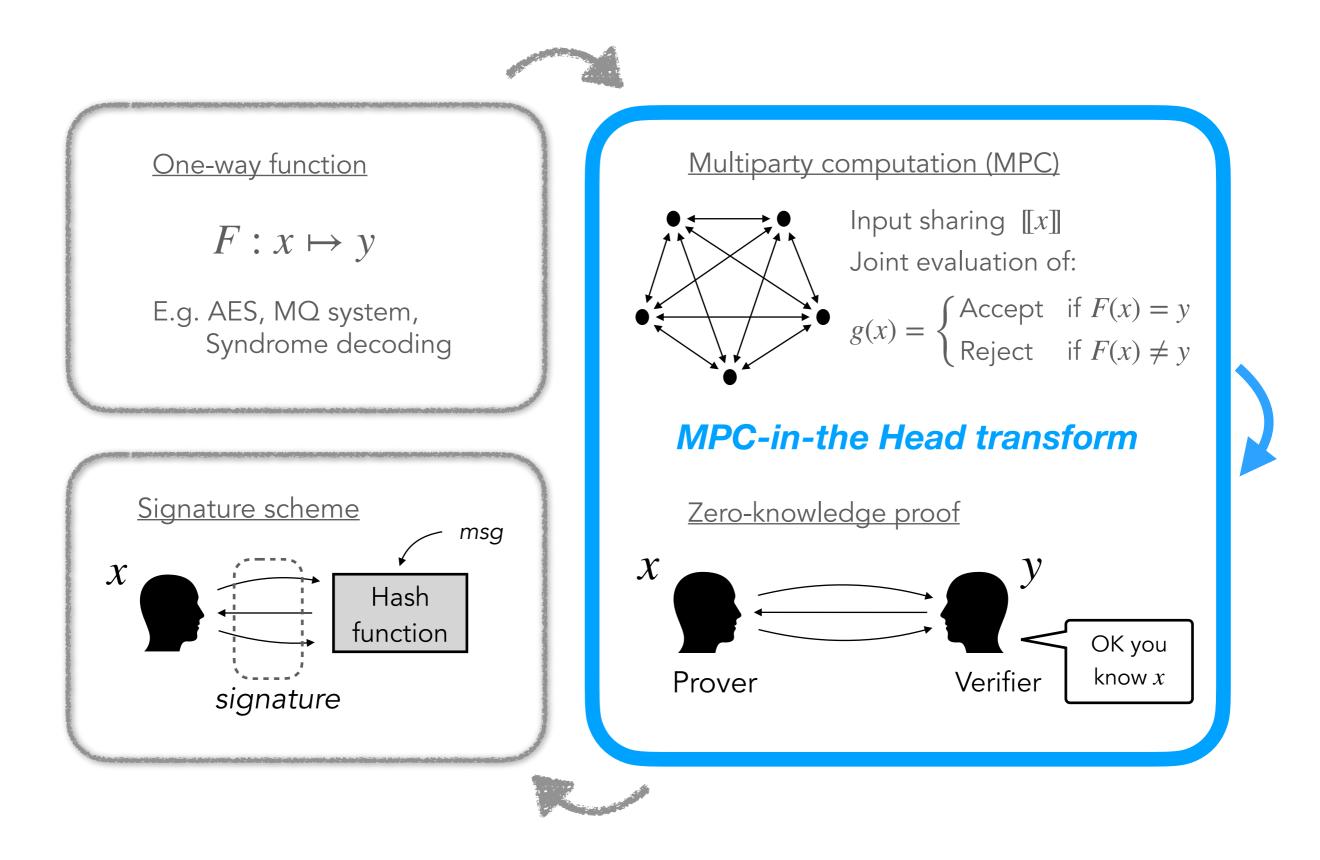
 $\mathbb{P}(\text{malicious prover convinces the verifier}) = \mathbb{P}(\text{corrupted party remains hidden}) = \frac{1}{N}$

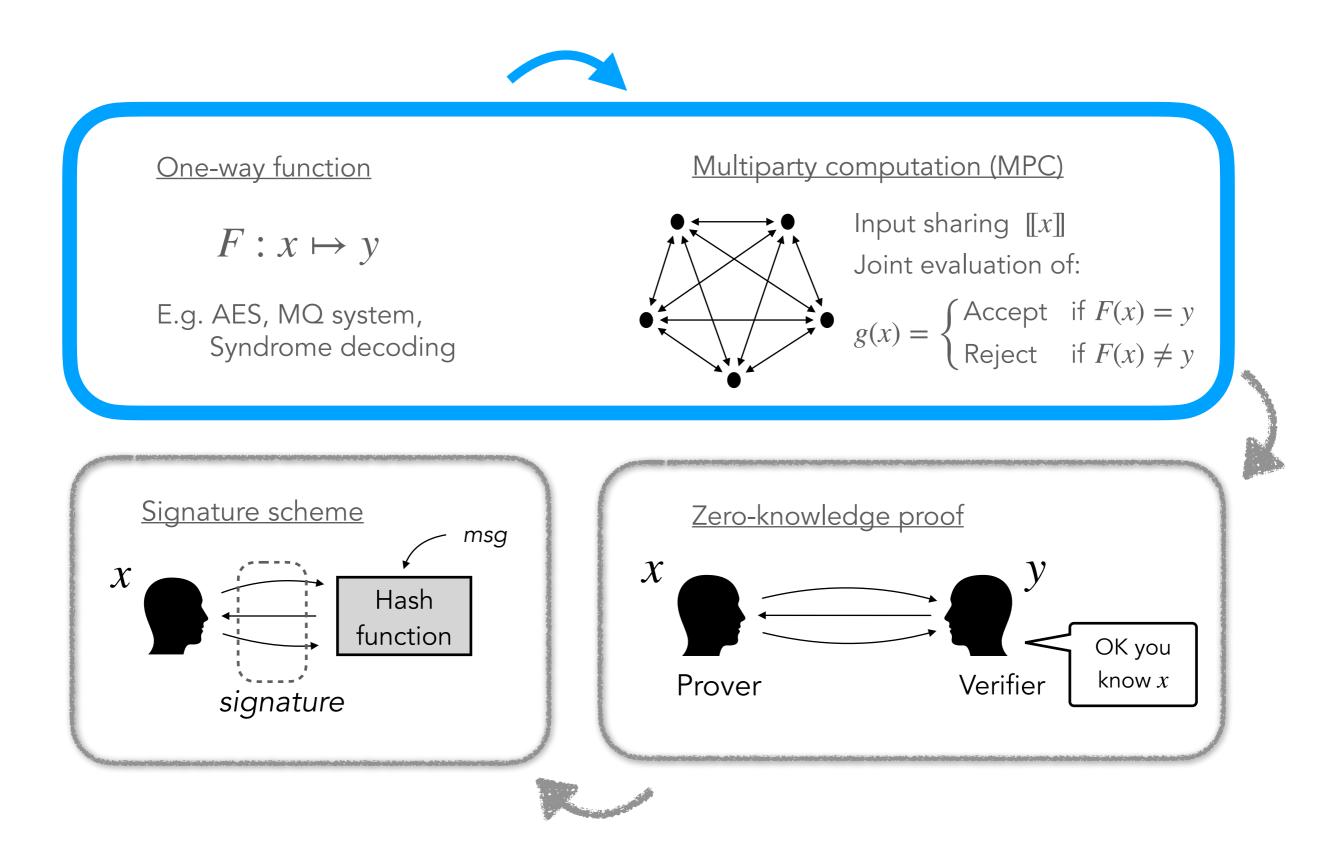
• Parallel repetition

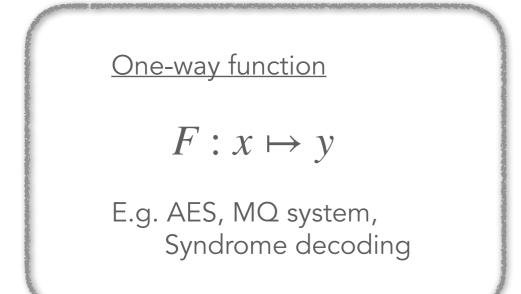
Protocol repeated τ times in parallel \rightarrow soundness error $\left(\frac{1}{N}\right)^{t}$

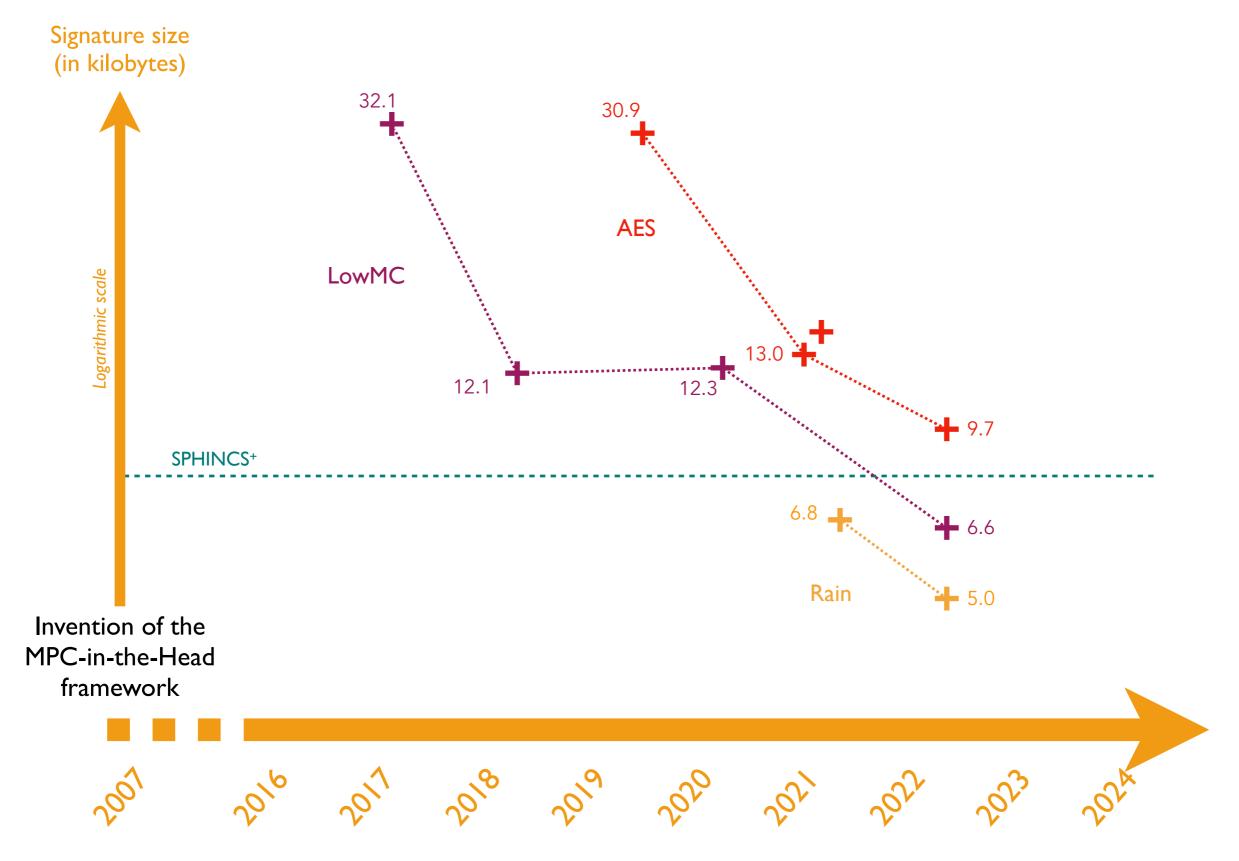
From MPC-in-the-Head to signatures

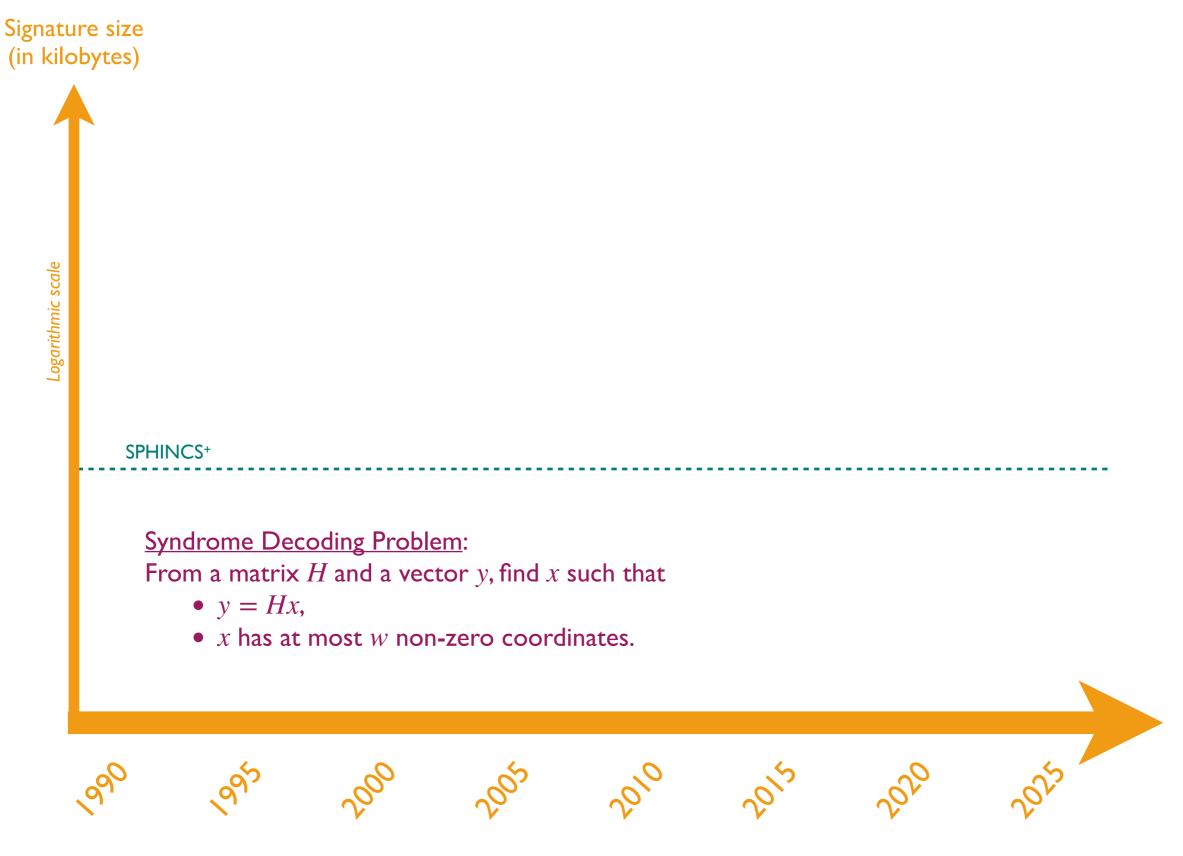


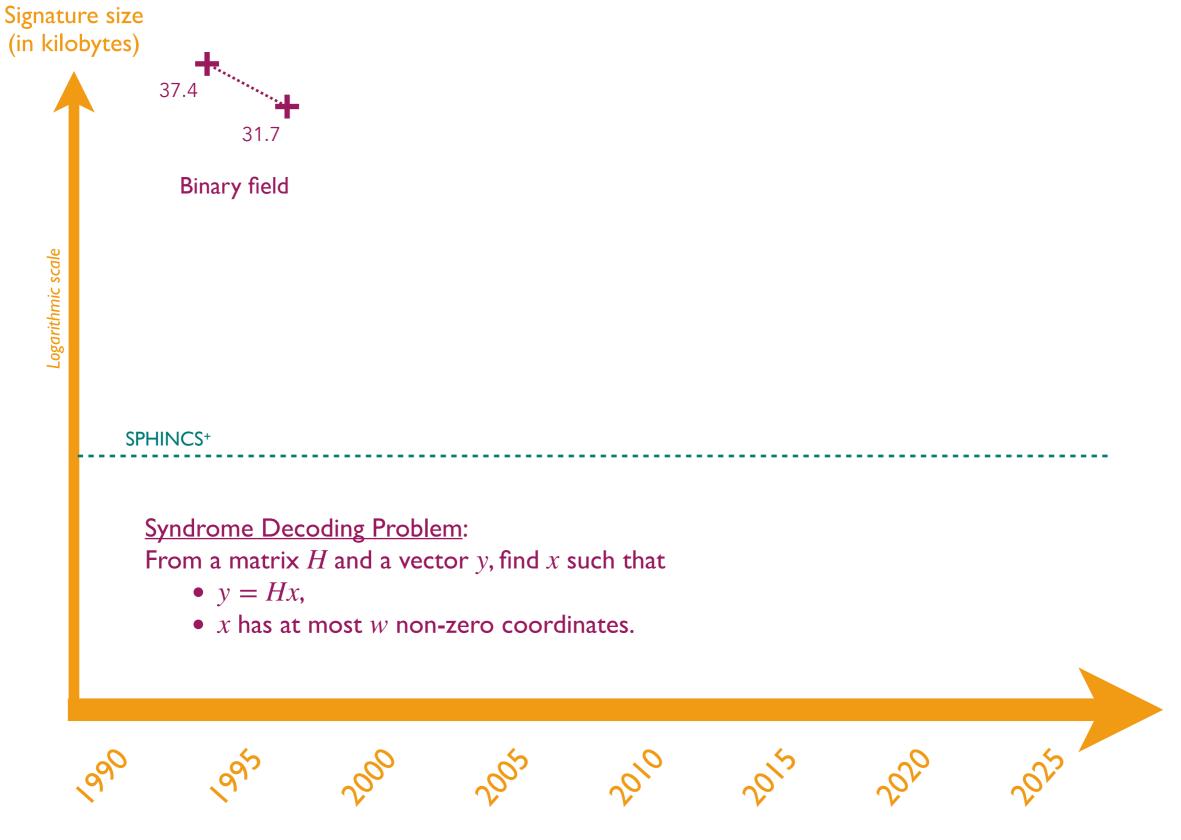


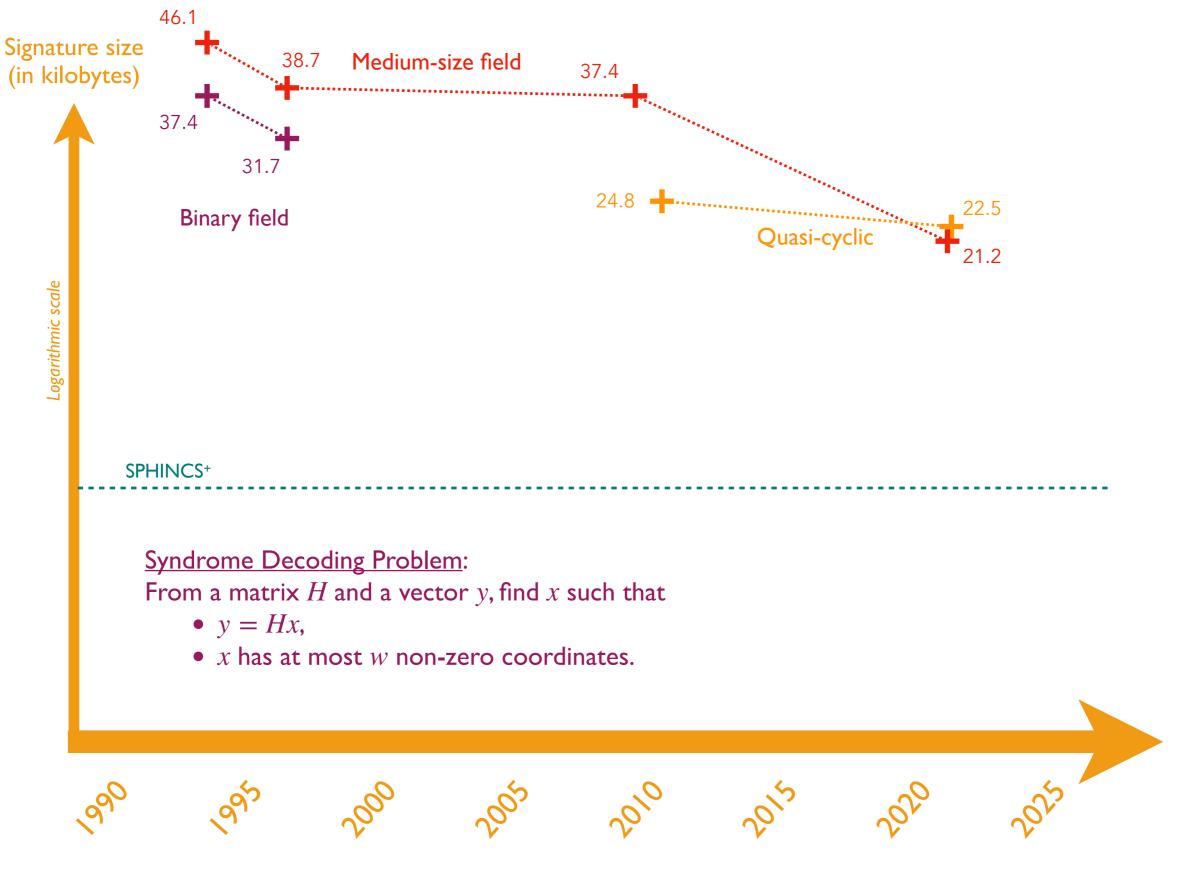


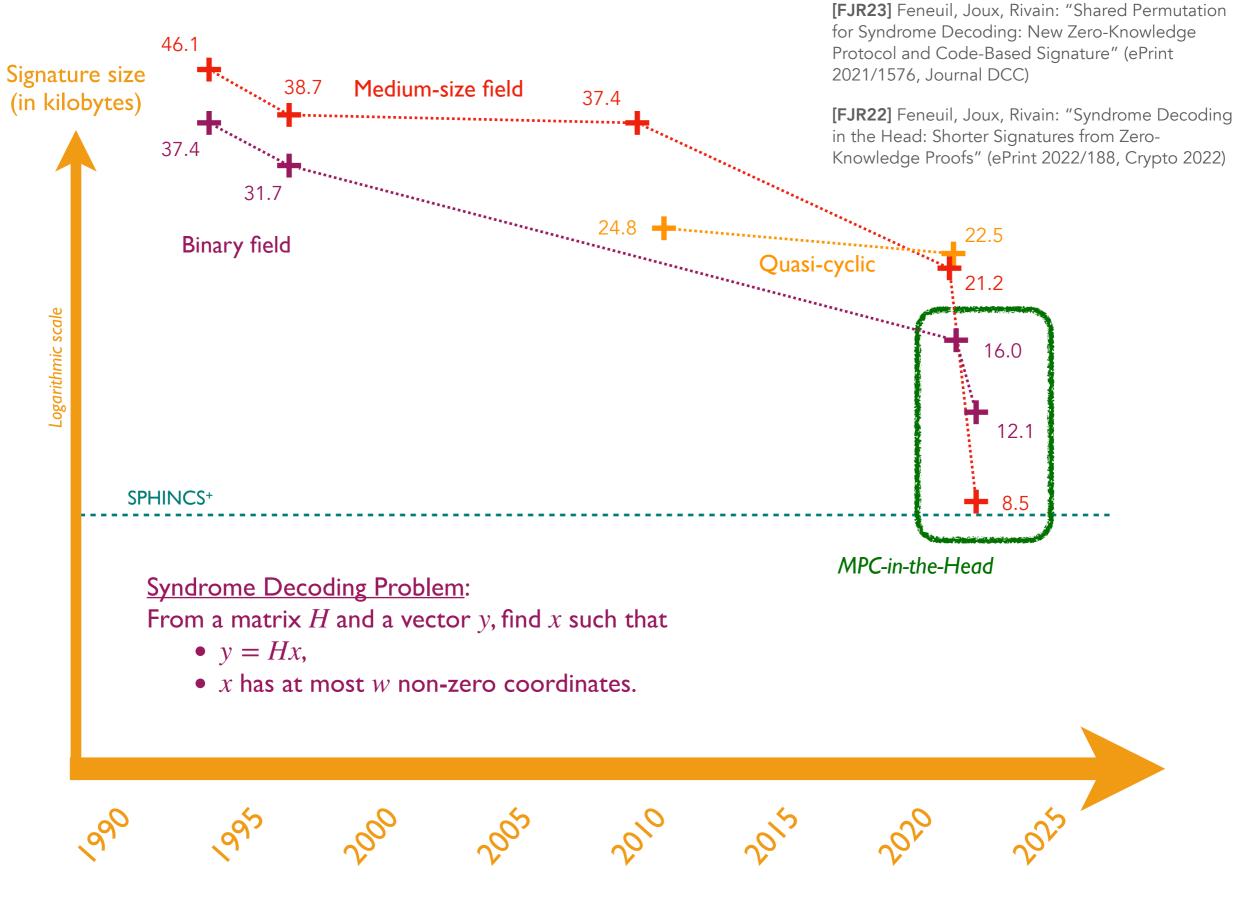








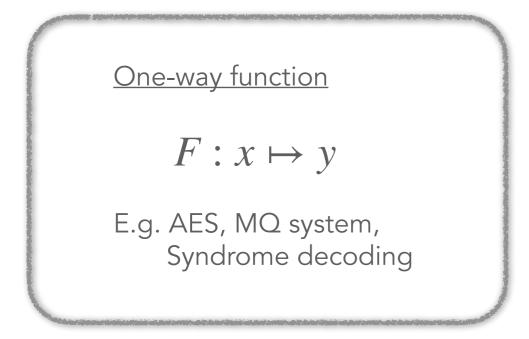




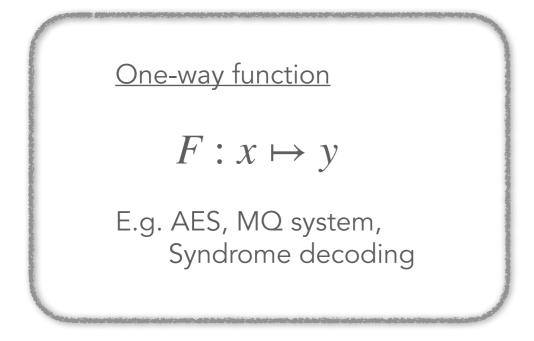
Exploring other assumptions

- Subset Sum Problem: $\geq 100 \text{ KB} \Rightarrow 19.1 \text{ KB}$ [FMRV22,Fen23]
- Multivariate Quadratic Problem: 6.3 7.3 KB [Fen22, BFR23]
- MinRank Problem: $\approx 5 6$ KB [ARV22,Fen22,ABB+23]
- Rank Syndrome Decoding Problem: $\approx 5 6$ KB [Fen22]
- Permuted Kernel Problem (or variant): ≈ 6 KB [BG22,BBD+24]
- ...

<u>Remark</u>: the displayed signature sizes correspond to the state-of-the-art for the NIST submission deadline of the call for additional post-quantum signatures, **better sizes** can be achieved using newer results.



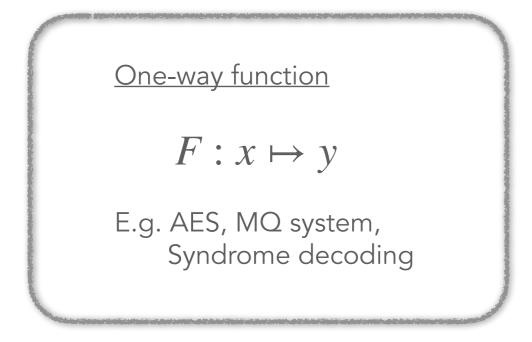
- Rely on <u>standard symmetric primitives</u>
 - AES: BBQ (2019), Banquet (2021), Limbo-Sign (2021), Helium+AES (2022), FAEST (2023)



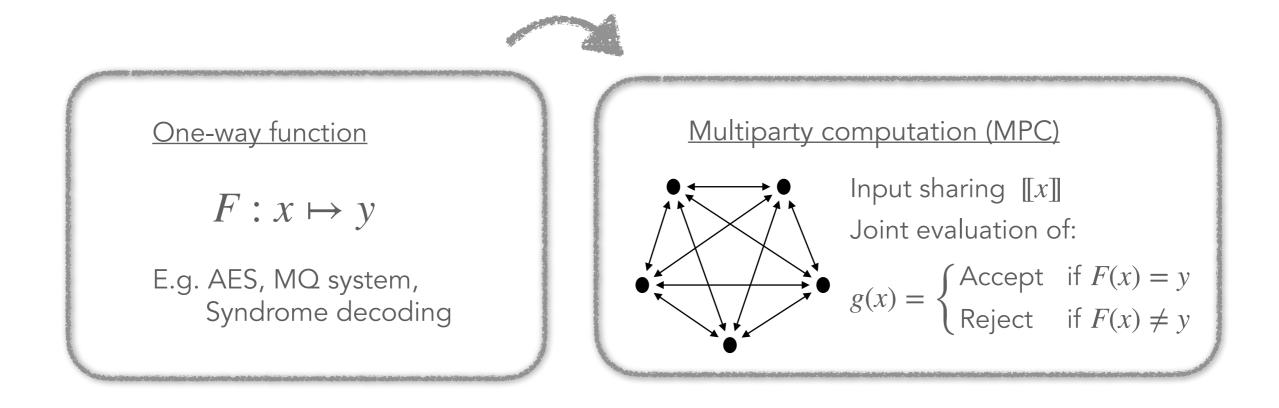
Rely on <u>standard symmetric primitives</u>

Rely on <u>MPC-friendly symmetric primitives</u>

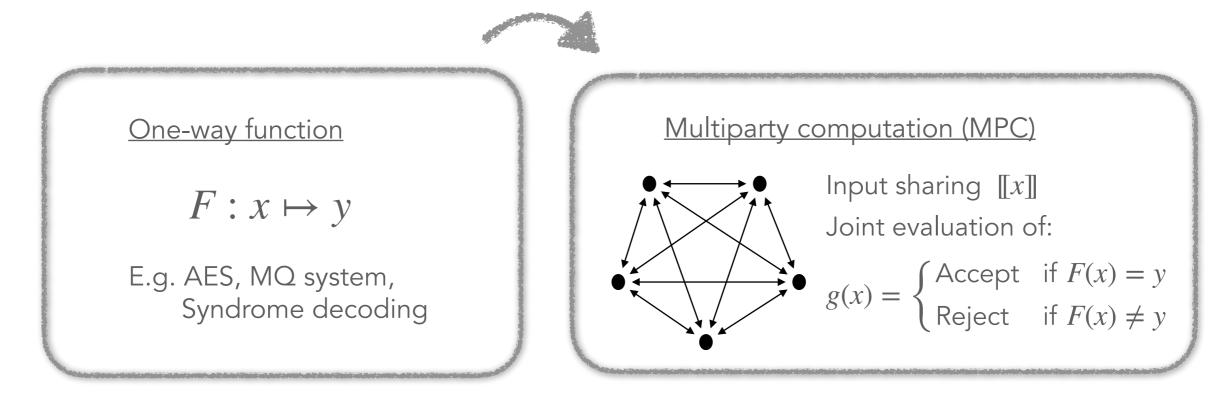
- LowMC: Picnic1 (2017), Picnic2 (2018), Picnic3 (2020)
- Rain: Rainier (2021), BN++Rain (2022)
- AIM: AIMer (2022)



- Rely on <u>standard symmetric primitives</u>
- Rely on <u>MPC-friendly symmetric primitives</u>
- Rely on well-known hard problems (non-exhaustive list)
 - Syndrome Decoding: SDitH (2022), RYDE (2023)
 - MinRank: *MiRitH* (2022), *MIRA* (2023)
 - Multivariate Quadratic: MQOM (2023), Biscuit (2023)
 - Permuted Kernel: PERK (2023)

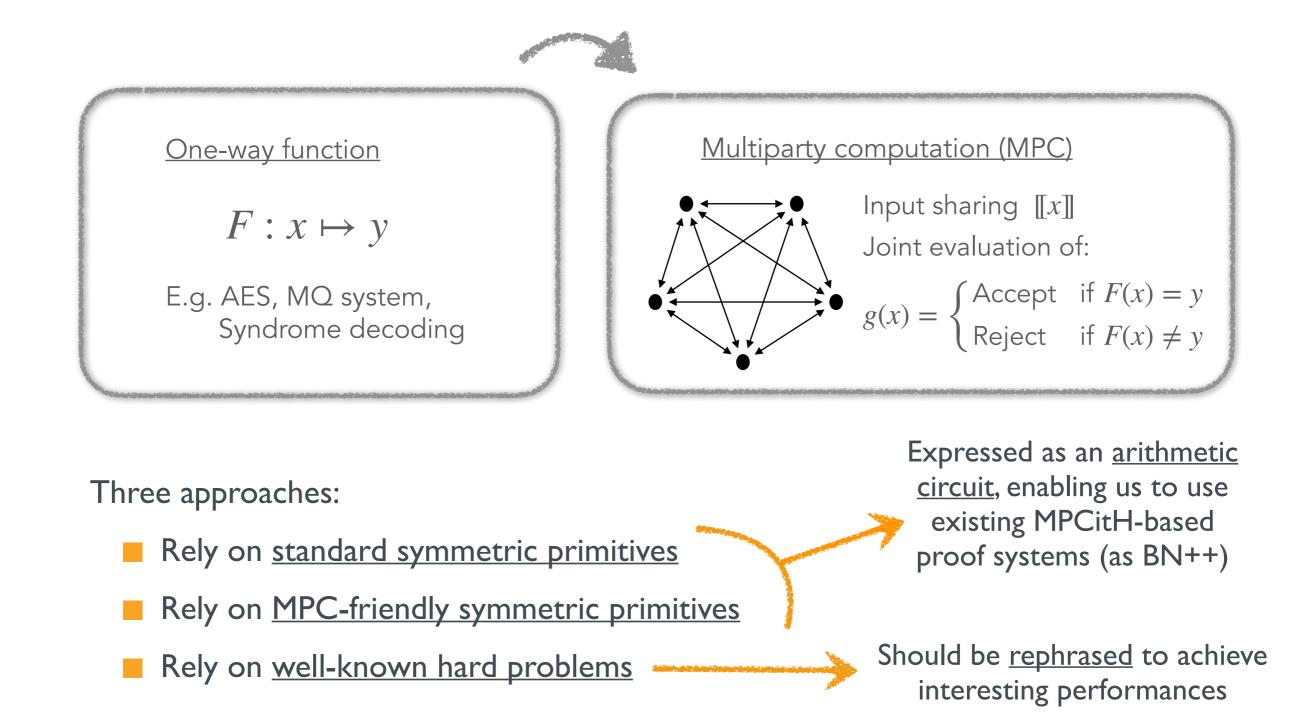


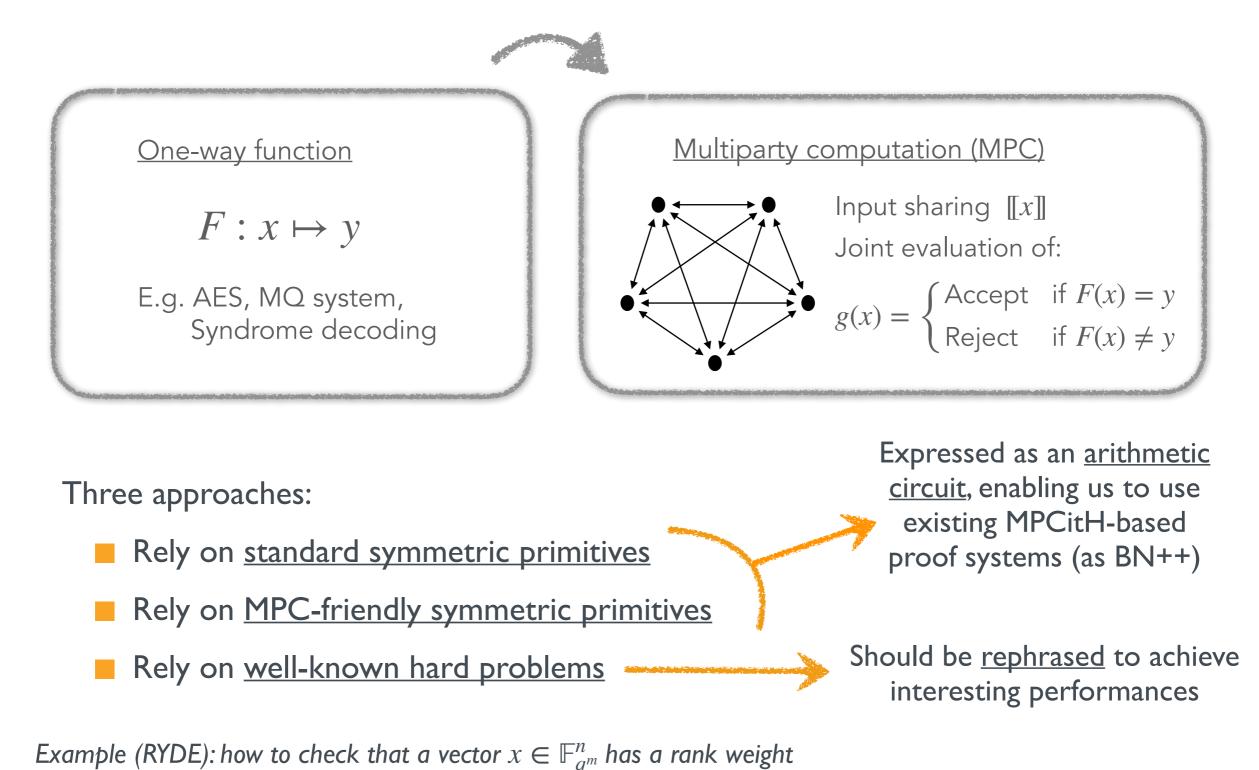
- Rely on <u>standard symmetric primitives</u>
- Rely on <u>MPC-friendly symmetric primitives</u>
- Rely on well-known hard problems



- Rely on <u>standard symmetric primitives</u>
- Rely on <u>MPC-friendly symmetric primitives</u>
- Rely on well-known hard problems

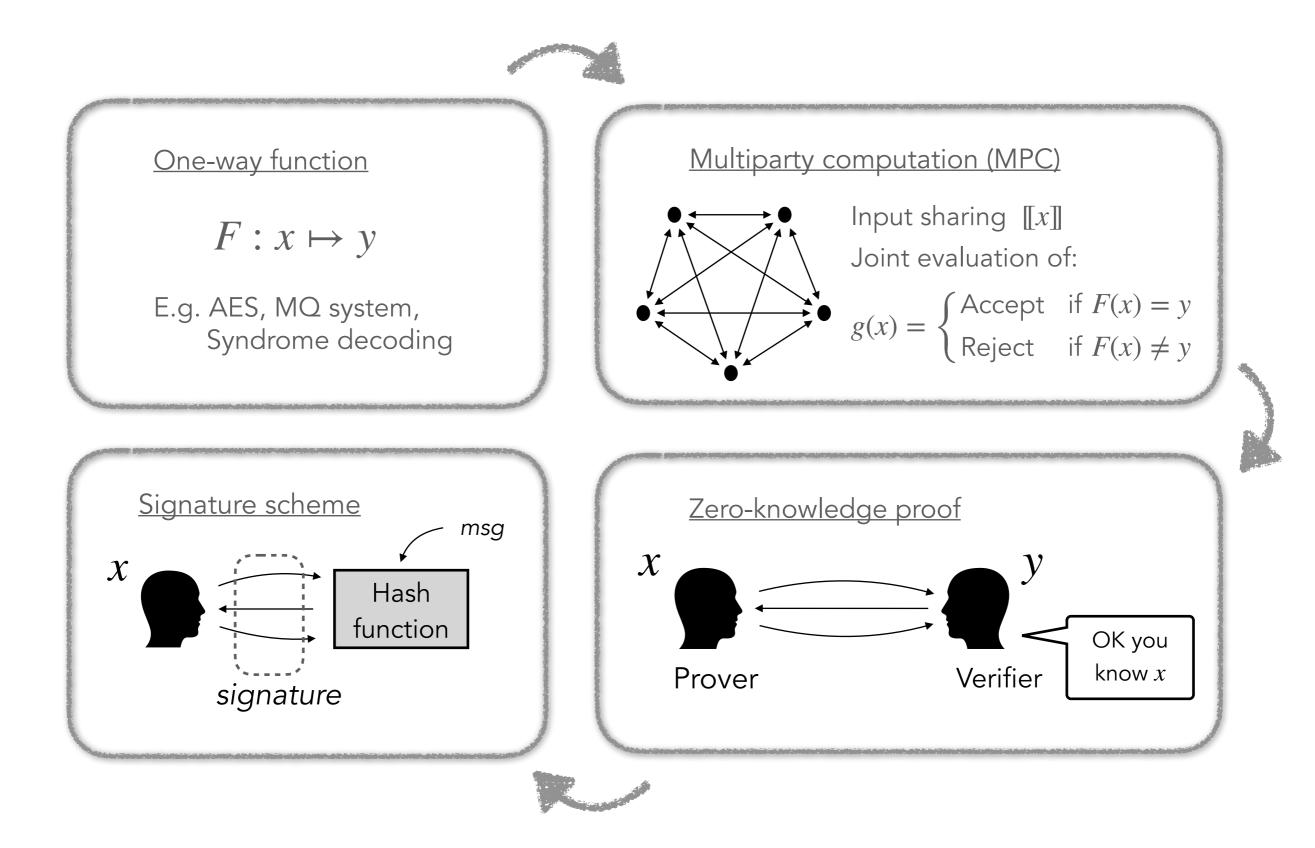
Expressed as an <u>arithmetic</u> <u>circuit</u>, enabling us to use existing MPCitH-based proof systems (as BN++)

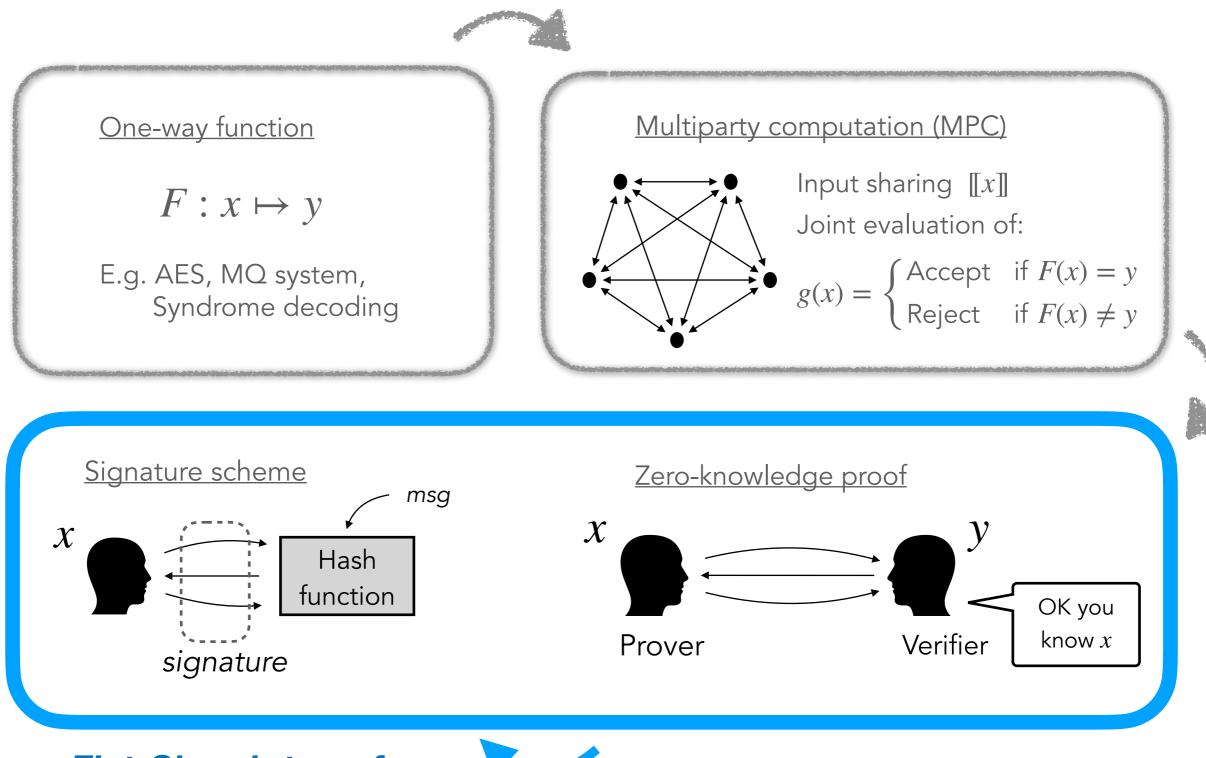




smaller than some public bound r?

By checking that $x_1, ..., x_n$ are roots of a degree- $q^r q$ -polynomial $\sum a_i X^{q^i}$.





Fiat-Shamir transform

Should take [KZ20] attack into account (when there are more than 3 rounds)!

[KZ20] Kales, Zaverucha. "An attack on some signature schemes constructed from five-pass identification schemes" (CANS20)

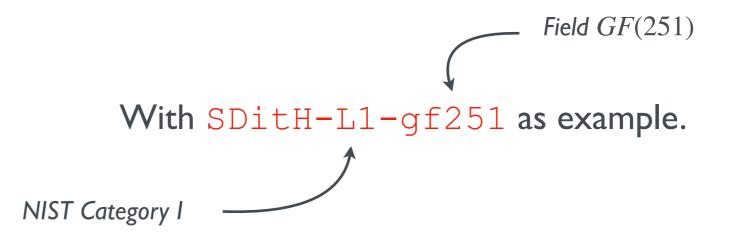
MPCitH-based NIST Candidates

	Assumption	Size (in KB)
AlMer	AIM (MPC-friendly one-way function)	3.8-5.9
Biscuit	Structured MQ problem (PowAff2)	4.8-6.7
FAEST*	AES block cipher	4.6-6.3
MIRA	MinRank problem	5.6-7.4
MiRitH	MinRank problem	5.7-9.1
PERK	Permuted Kernel problem (variant)	6.8-8.4
MQOM	Unstructured MQ problem	6.3-7.8
RYDE	Syndrome decoding problem in rank metric	6.0-7.4
SDitH	Syndrome decoding problem in Hamming	8.3-10.4

* FAEST has not been formally introduced as an MPCitH-based scheme.

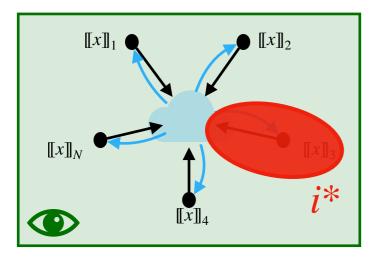
Optimisations and variants

Optimisations and variants

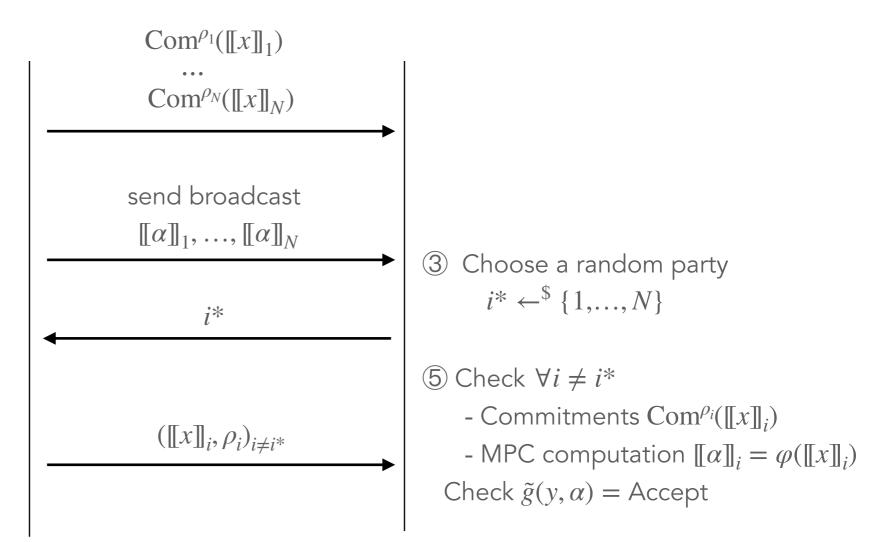


① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

2 Run MPC in their head



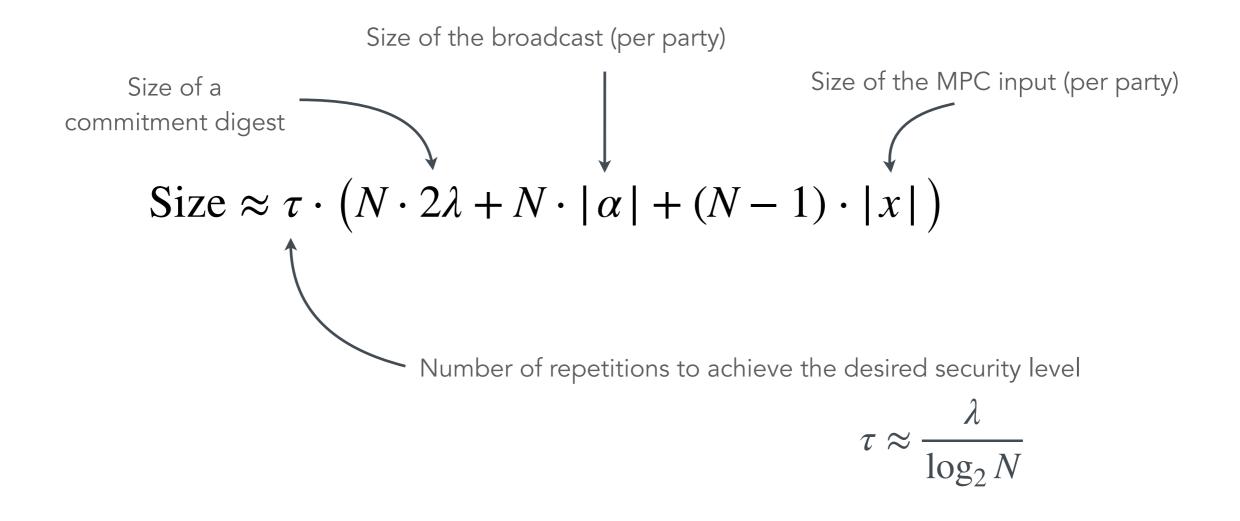
④ Open parties $\{1, ..., N\} \setminus \{i^*\}$



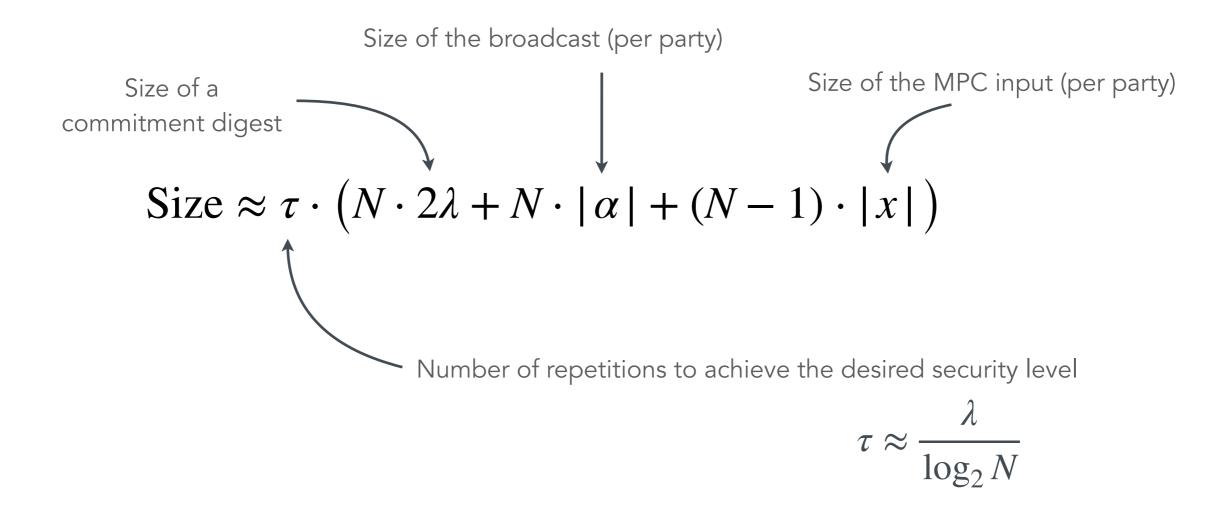
<u>Verifier</u>

<u>Prover</u>

Naive MPCitH transformation



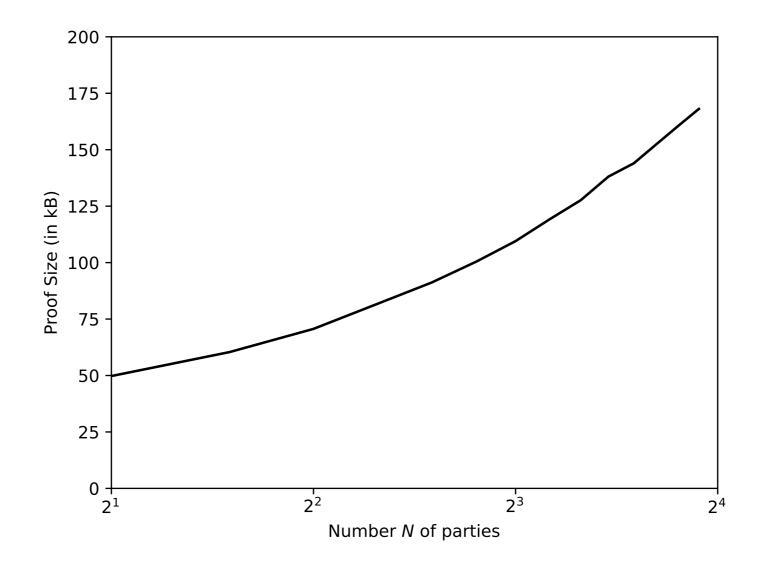
Naive MPCitH transformation



SDitH-L1-gf251:

the input x of the MPC protocol is around **323** bytes, The broadcast value α of the MPC protocol is around **36** bytes.

Naive MPCitH transformation



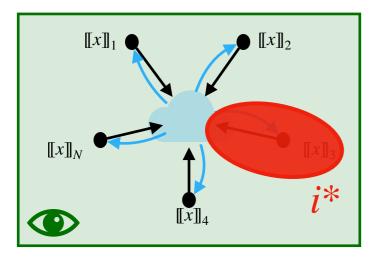
SDitH-L1-gf251:

the input x of the MPC protocol is around **323** bytes, The broadcast value α of the MPC protocol is around **36** bytes

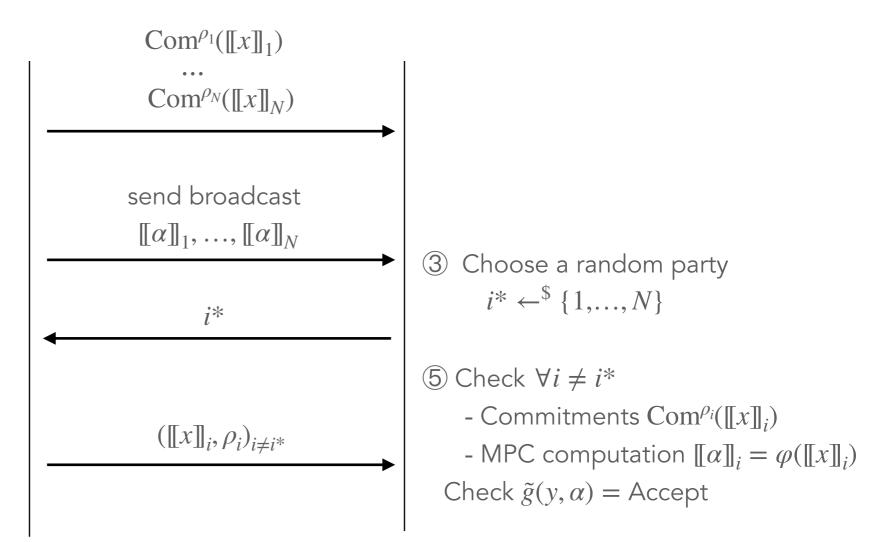
MPCitH transform

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

2 Run MPC in their head



④ Open parties $\{1, ..., N\} \setminus \{i^*\}$

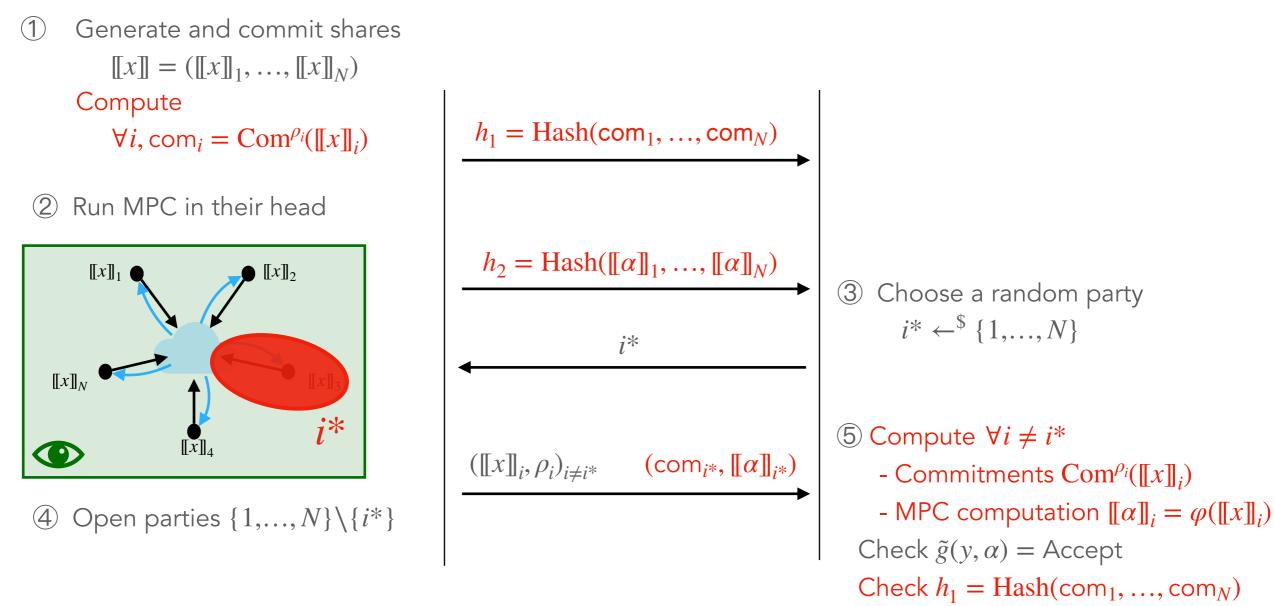


<u>Verifier</u>

<u>Prover</u>

MPCitH transform

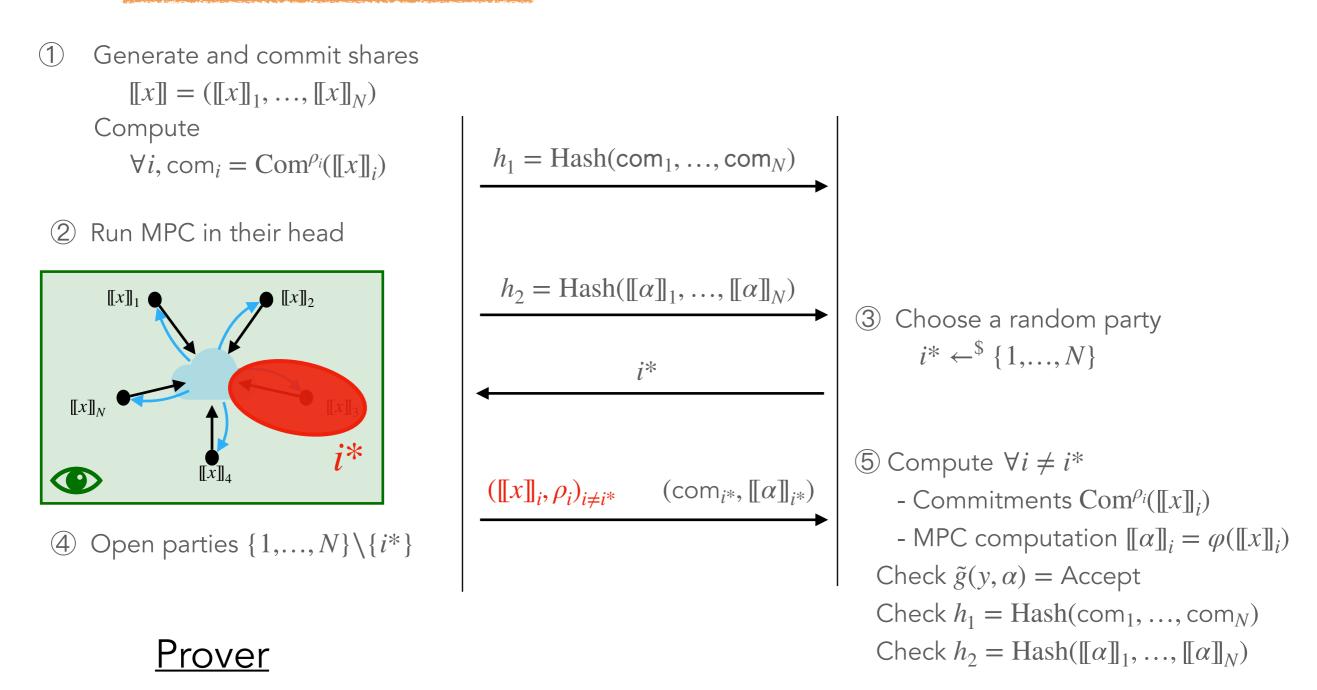
<u>Prover</u>



Check $h_2 = \text{Hash}(\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N)$

Verifier

MPCitH transform

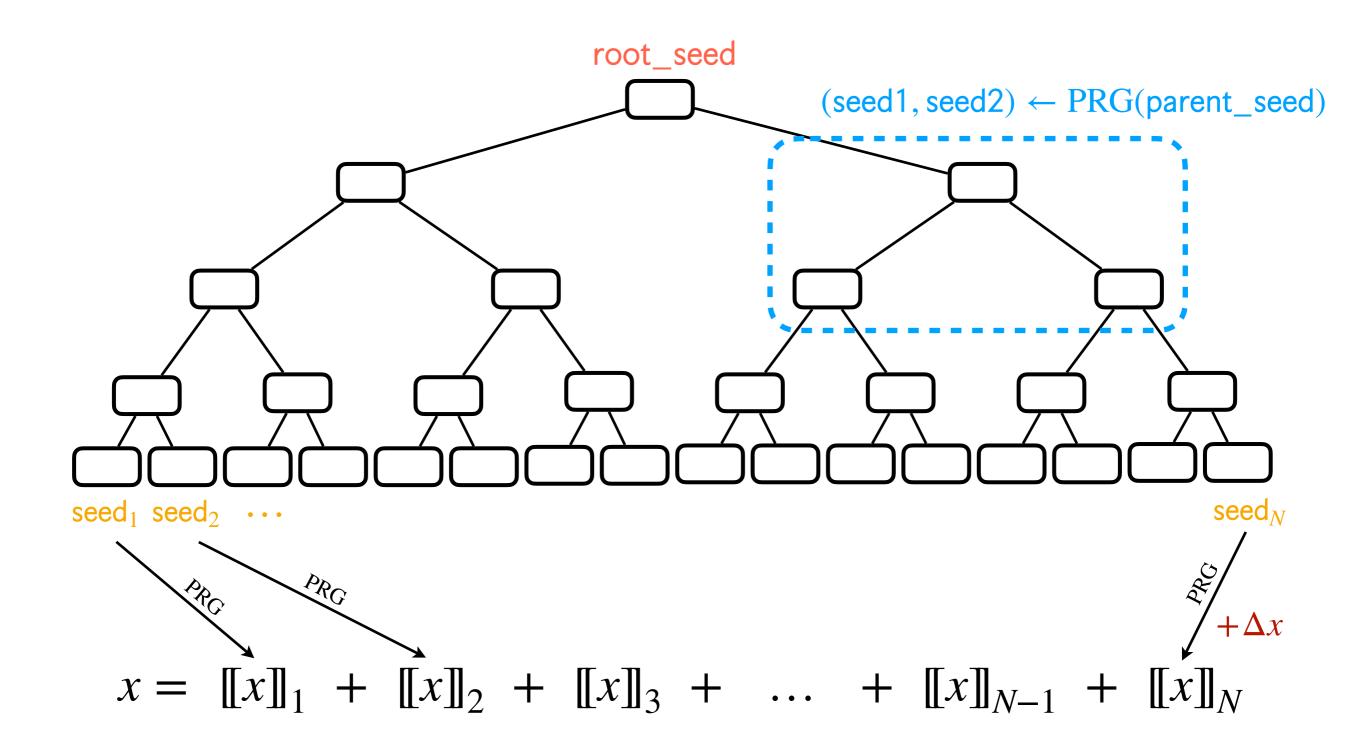


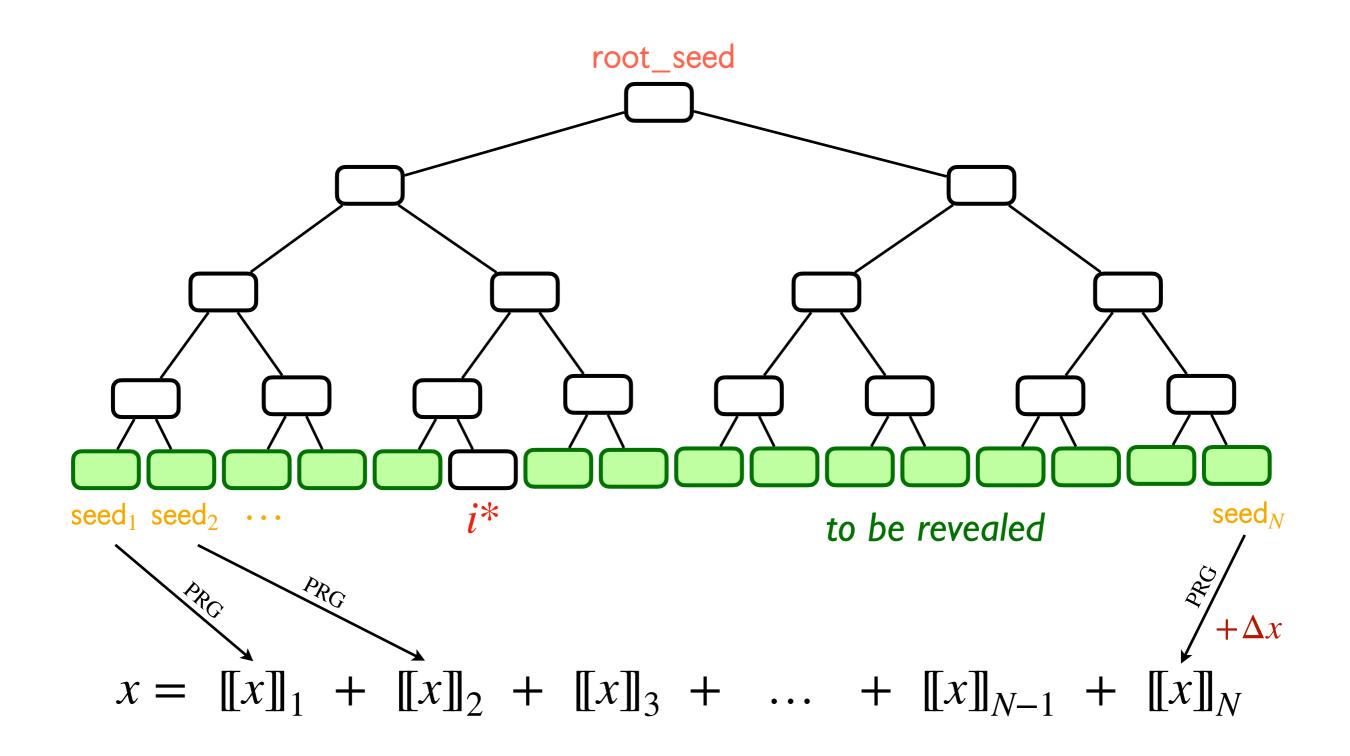
<u>Verifier</u>

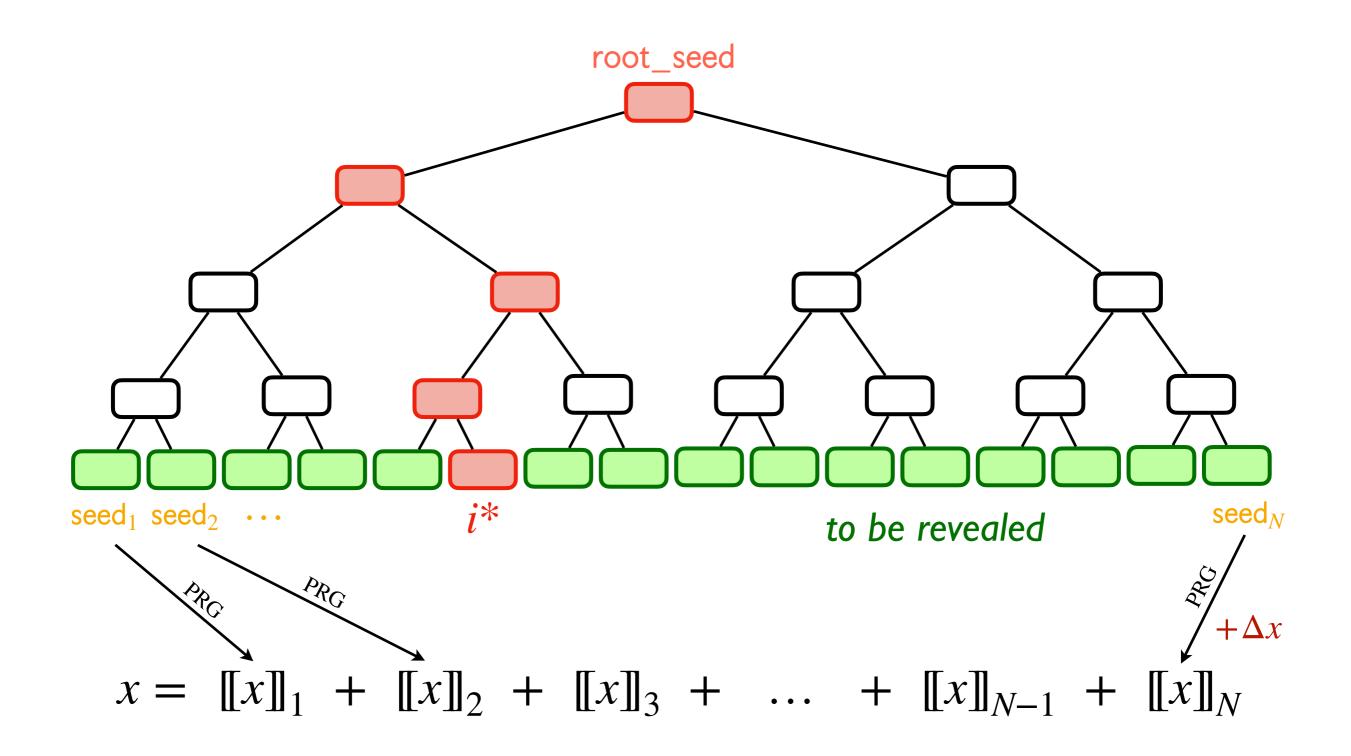
[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)

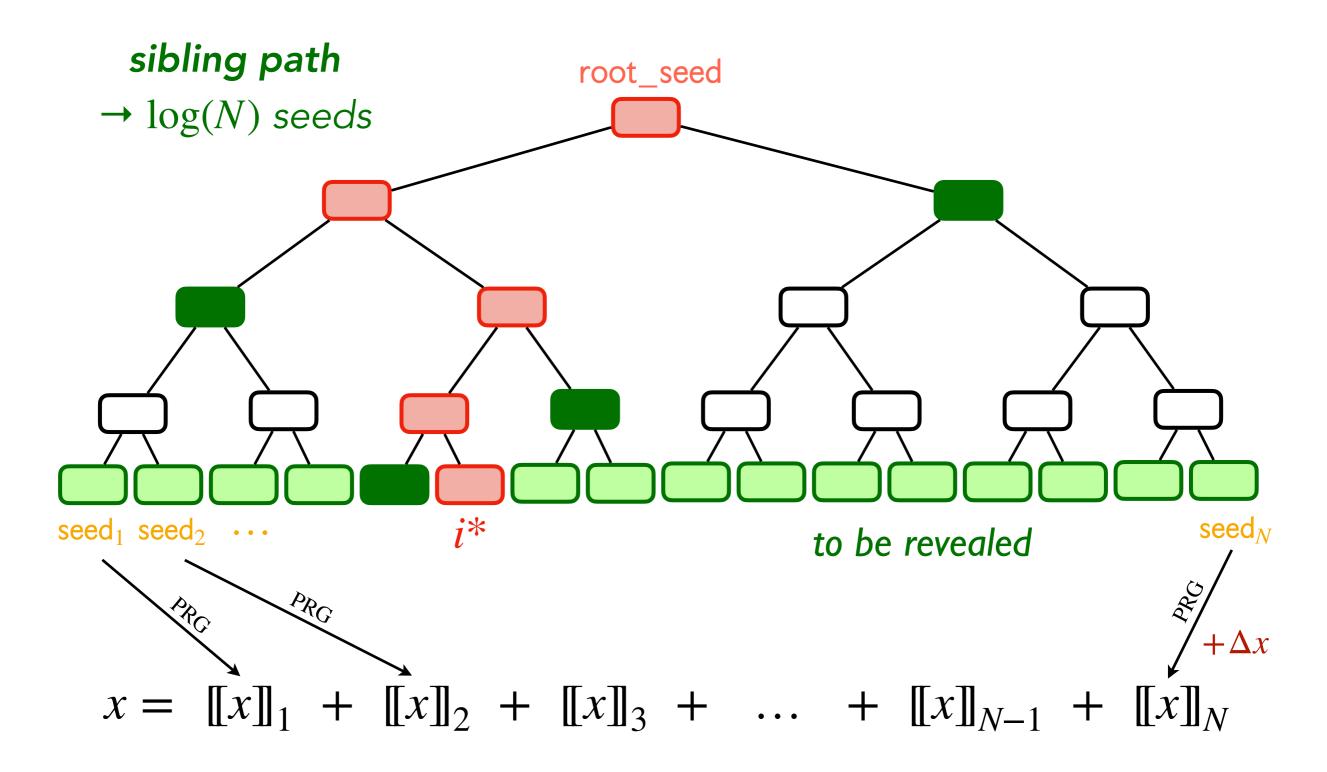
 $x = [x]_1 + [x]_2 + [x]_3 + \dots + [x]_{N-1} + [x]_N$

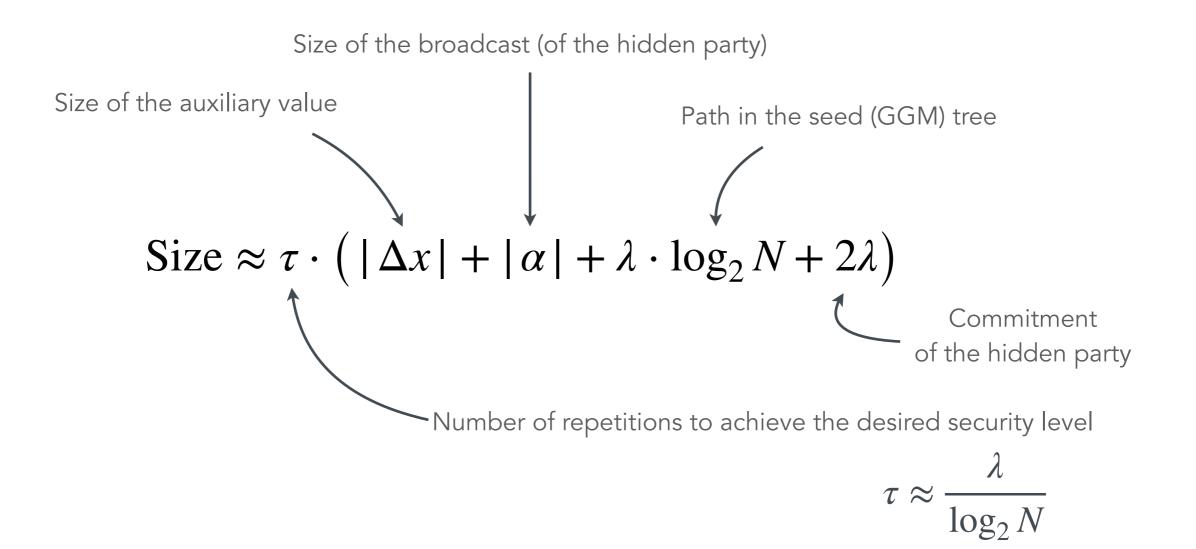


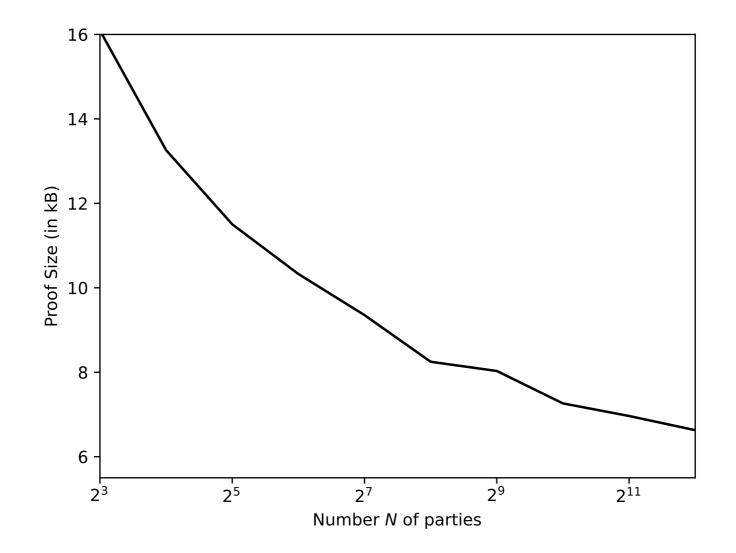






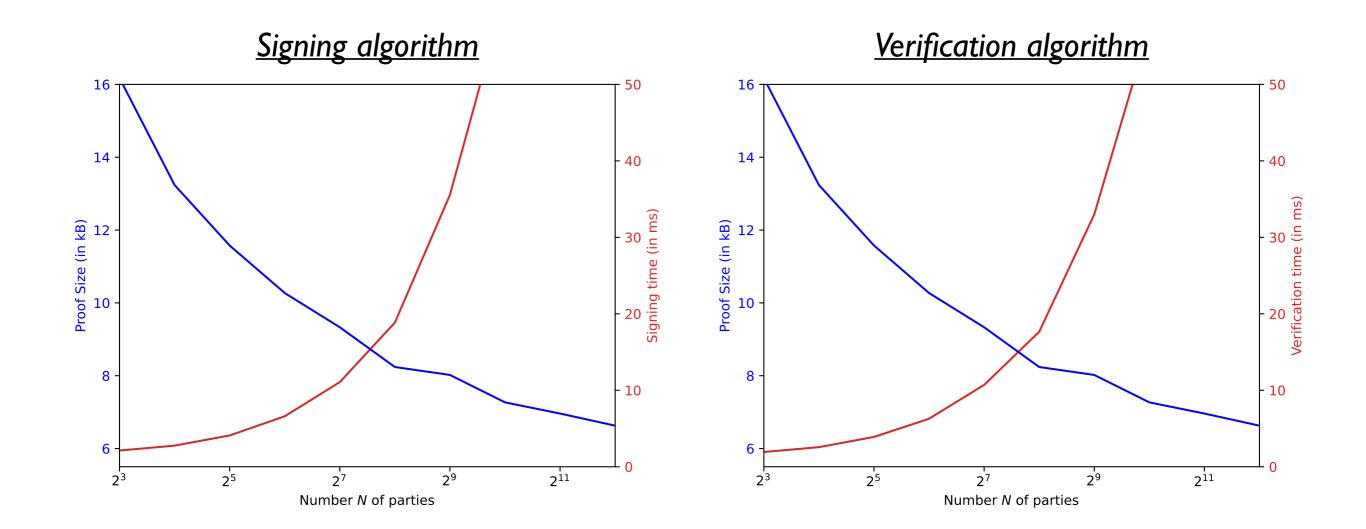




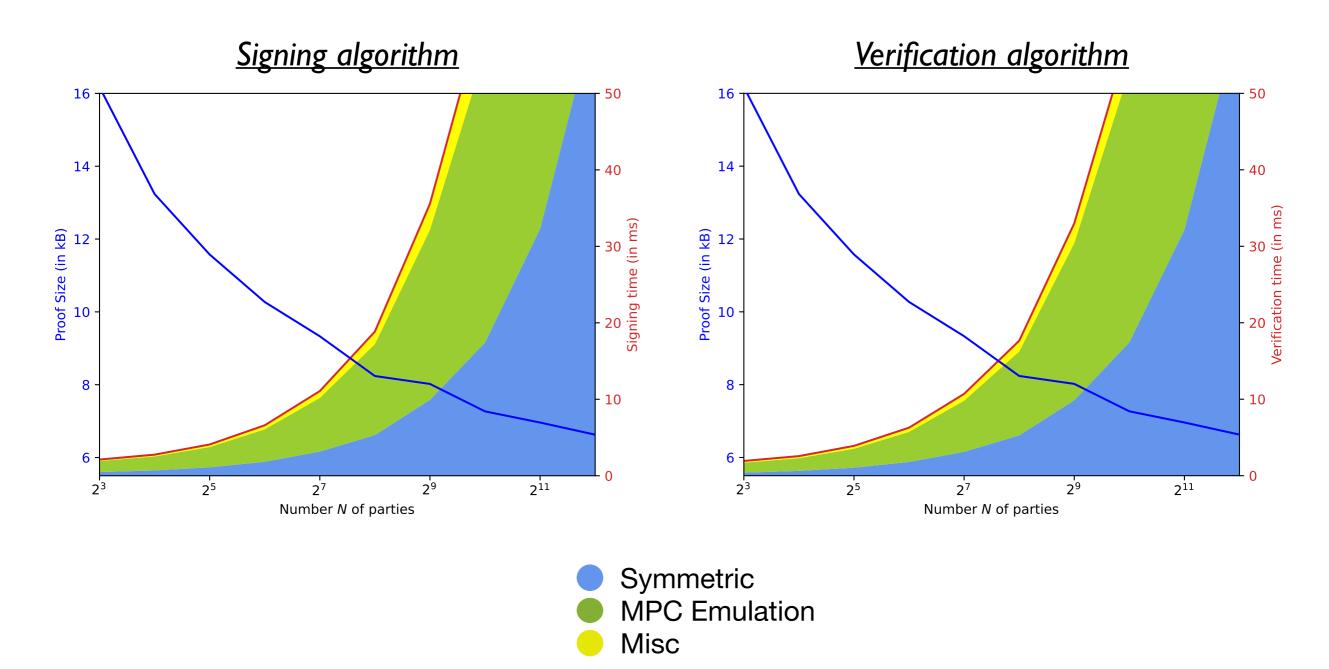


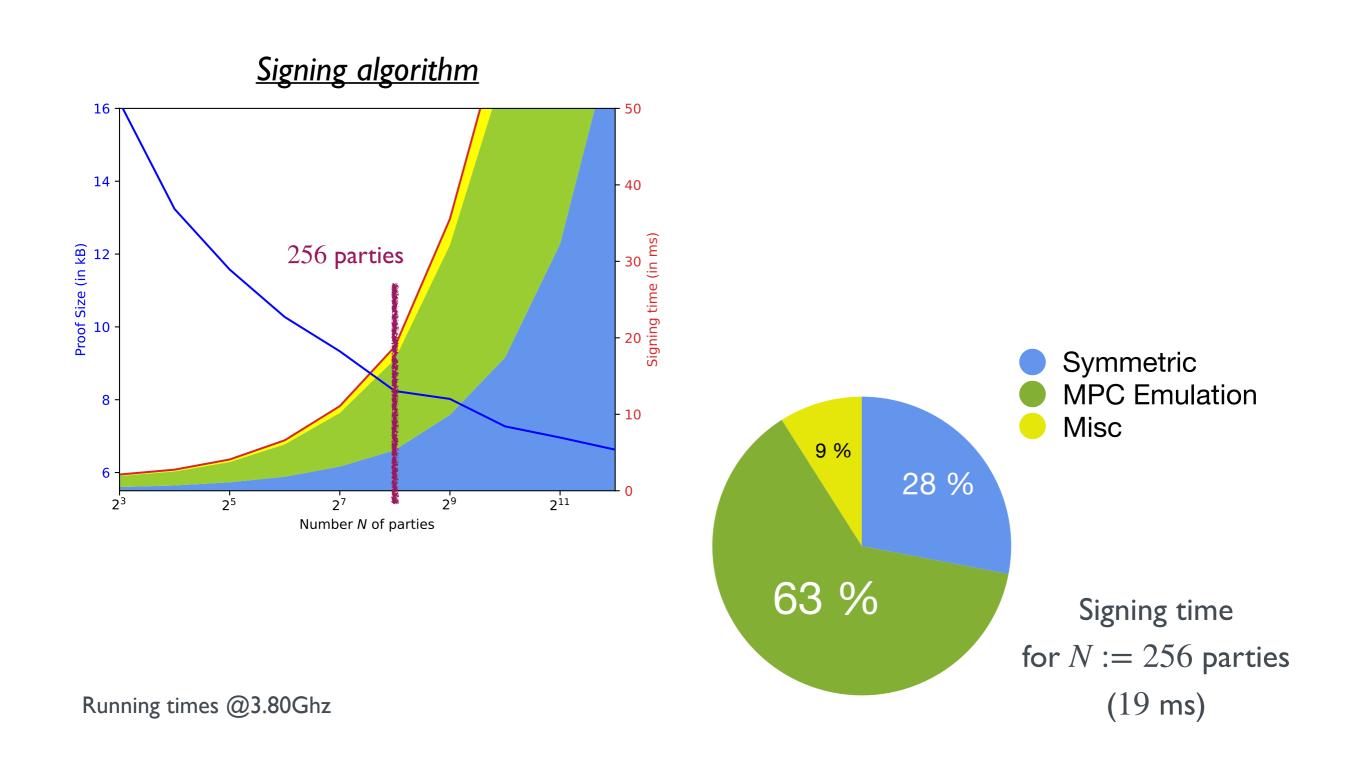
SDitH-L1-gf251:

the input x of the MPC protocol is around **323** bytes, The broadcast value α of the MPC protocol is around **36** bytes.



Running times @3.80Ghz





[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

<u>Traditional</u>: one sharing of x

$x = r_1 + r_2 + \ldots + r_N + \Delta x$

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

<u>Traditional</u>: one sharing of x

$$x = r_1 + r_2 + \ldots + r_N + \Delta x$$

<u>Hypercube</u>: D sharings of x, with the same auxiliary value Δx

$$x = \begin{cases} r_{1,1} + r_{1,2} + \dots + r_{1,N_1} \\ r_{2,1} + r_{2,2} + \dots + r_{2,N_2} \\ \dots \\ r_{D,1} + r_{D,2} + \dots + r_{D,N_D} \end{cases} + \Delta x$$

such that $N = N_1 \cdot N_2 \cdot \ldots \cdot N_D$

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

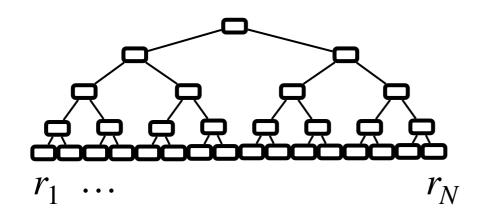
$$x = \begin{cases} r_{1,1} + r_{1,2} + \dots + r_{1,N_1} \\ r_{2,1} + r_{2,2} + \dots + r_{2,N_2} \\ \dots \\ r_{D,1} + r_{D,2} + \dots + r_{D,N_D} \end{cases} + \Delta x$$

$$N = N_1 \cdot N_2 \cdot \dots \cdot N_D$$

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

$$x = \begin{cases} r_{1,1} + r_{1,2} + \dots + r_{1,N_1} \\ r_{2,1} + r_{2,2} + \dots + r_{2,N_2} \\ \dots \\ r_{D,1} + r_{D,2} + \dots + r_{D,N_D} \end{cases} + \Delta x$$

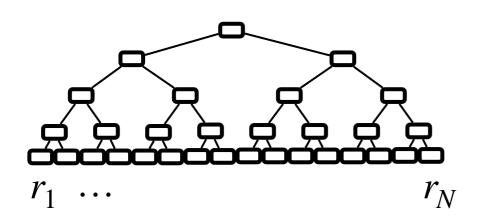
$$N = N_1 \cdot N_2 \cdot \dots \cdot N_D$$

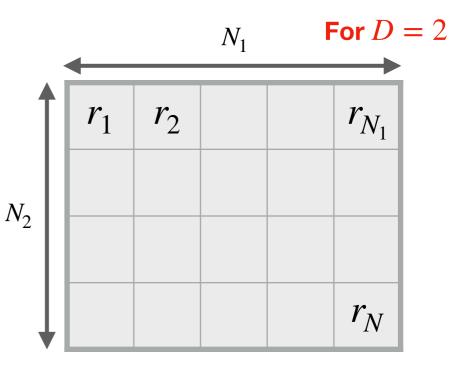


[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

$$x = \begin{cases} r_{1,1} + r_{1,2} + \dots + r_{1,N_1} \\ r_{2,1} + r_{2,2} + \dots + r_{2,N_2} \\ \dots \\ r_{D,1} + r_{D,2} + \dots + r_{D,N_D} \end{cases} + \Delta x$$

$$N = N_1 \cdot N_2 \cdot \dots \cdot N_D$$

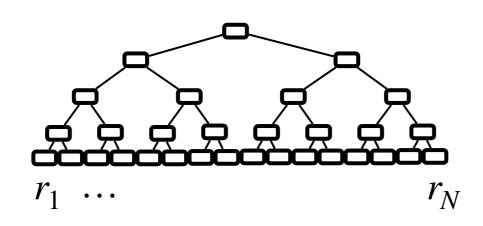


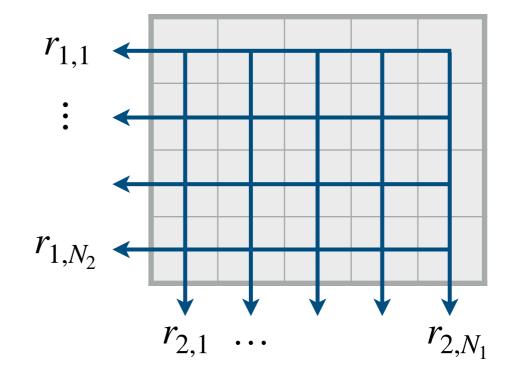


[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

$$x = \begin{cases} r_{1,1} + r_{1,2} + \dots + r_{1,N_1} \\ r_{2,1} + r_{2,2} + \dots + r_{2,N_2} \\ \dots \\ r_{D,1} + r_{D,2} + \dots + r_{D,N_D} \end{cases} + \Delta x$$

$$N = N_1 \cdot N_2 \cdot \dots \cdot N_D$$





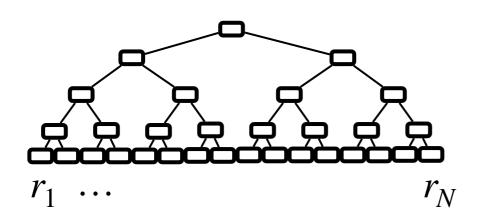
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

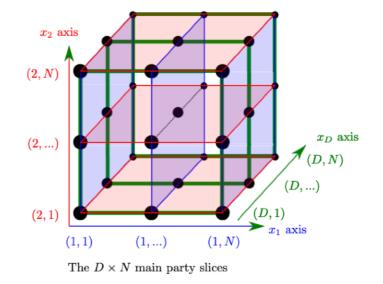
$$x = \begin{cases} r_{1,1} + r_{1,2} + \dots + r_{1,N_1} \\ r_{2,1} + r_{2,2} + \dots + r_{2,N_2} \\ \dots \\ r_{D,1} + r_{D,2} + \dots + r_{D,N_D} \end{cases} + \Delta x$$

$$N = N_1 \cdot N_2 \cdot \dots \cdot N_D$$

How to build these D sharings?

For $D \ge 2$





Source: Figure from [AGHHJY23]

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

$$x = \begin{cases} r_{1,1} + r_{1,2} + \dots + r_{1,N_1} \\ r_{2,1} + r_{2,2} + \dots + r_{2,N_2} \\ \dots \\ r_{D,1} + r_{D,2} + \dots + r_{D,N_D} \end{cases} + \Delta x$$

$$N = N_1 \cdot N_2 \cdot \dots \cdot N_D$$

<u>Performance</u>

- Same soundness error as before: 1/N
- Same signature size as before: 1 auxiliary value + 1 seed tree of N leaves

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

$$x = \begin{cases} r_{1,1} + r_{1,2} + \dots + r_{1,N_1} \\ r_{2,1} + r_{2,2} + \dots + r_{2,N_2} \\ \dots \\ r_{D,1} + r_{D,2} + \dots + r_{D,N_D} \end{cases} + \Delta x$$

$$N = N_1 \cdot N_2 \cdot \dots \cdot N_D$$

<u>Performance</u>

- Same soundness error as before: $1/\!N$
- Same signature size as before: 1 auxiliary value + 1 seed tree of N leaves
- Emulation cost: one needs to emulate

$$D = \log_2 N$$

$$N_1 = \dots = N_D = 2$$

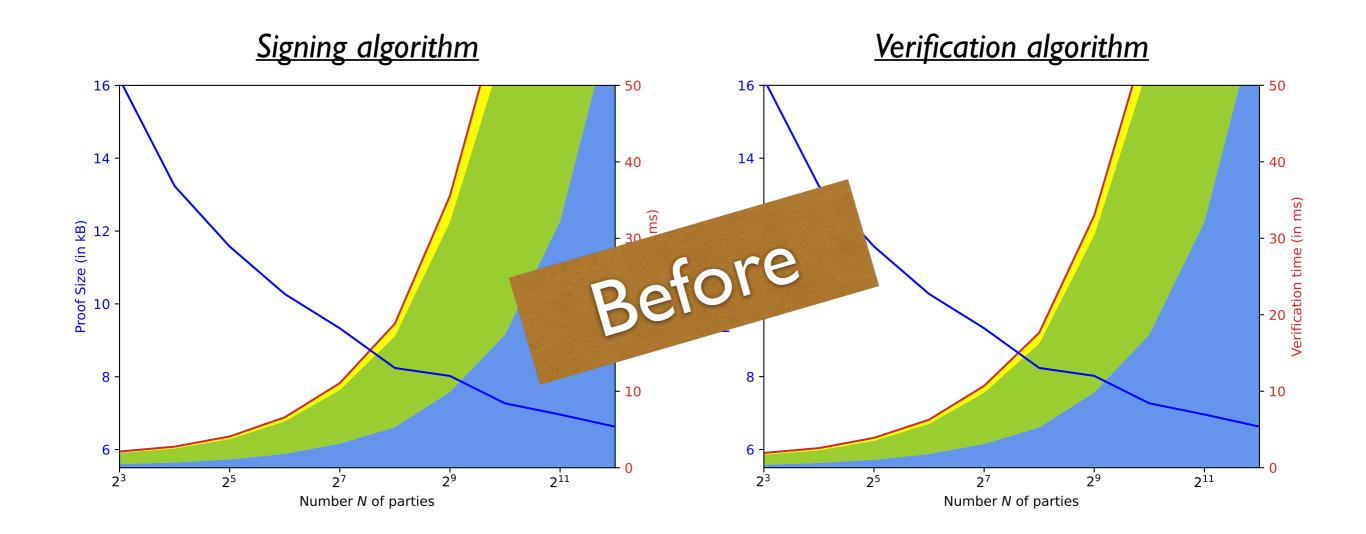
$$1 + (N_1 - 1) + (N_2 - 1) + \dots + (N_D - 1) \text{ parties}$$

$$N_1 \cdot N_2 \cdot \dots \cdot N_D$$
instead of $N = N_1 \cdot N_2 \cdot \dots \cdot N_D$

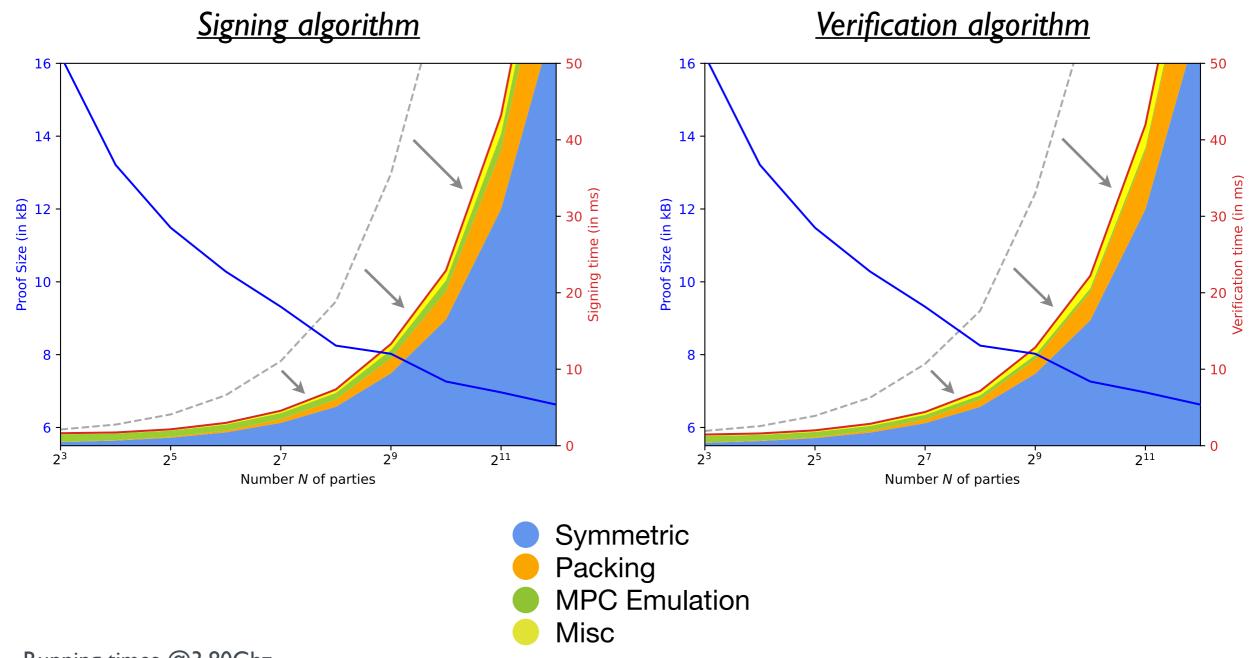
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

Traditional: N party emulations per repetition $D = \log_2 N$ $N_1 = \dots = N_D = 2$

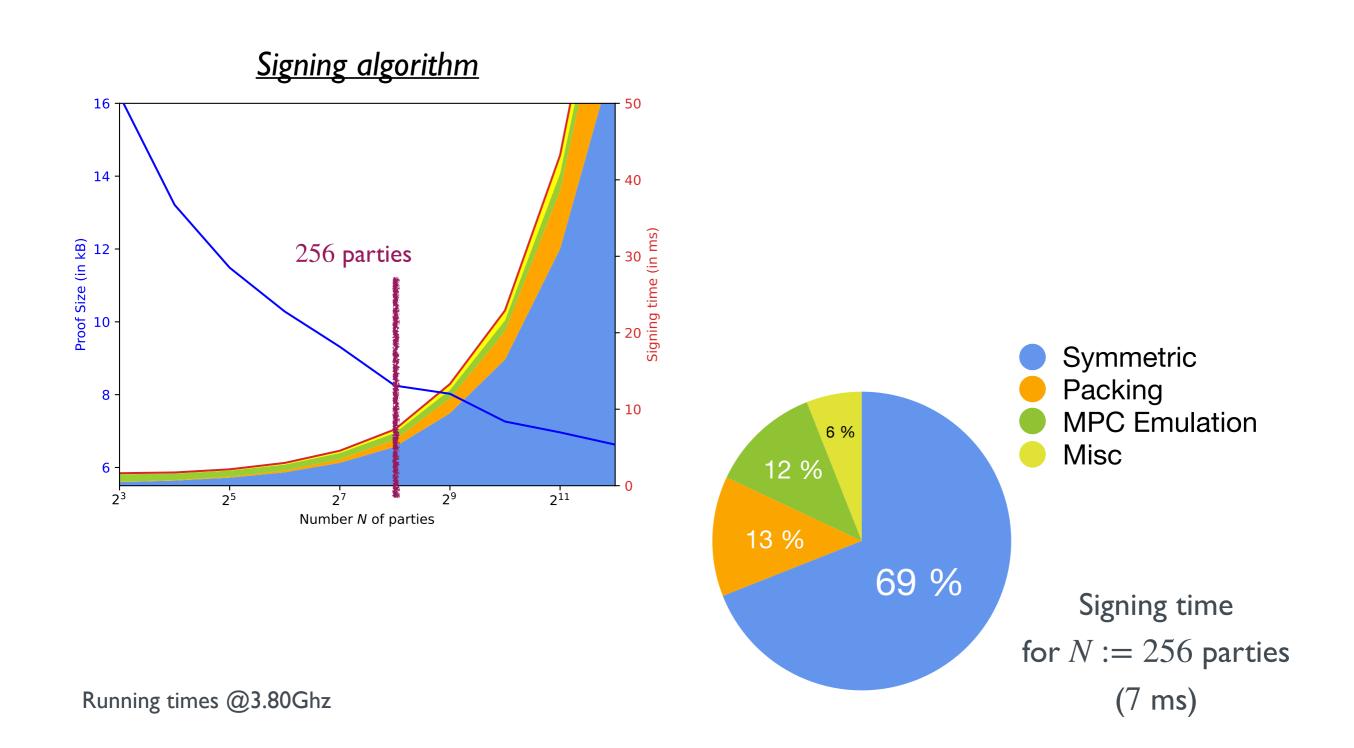
<u>Hypercube</u>: $1 + \log_2 N$ party emulations per repetition $1 + \log_2 N = 9$



Running times @3.80Ghz



Running times @3.80Ghz



[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (Asiacrypt 2023)

In the *threshold* approach, we used a **low-threshold** sharing scheme. For example, Shamir's $(\ell + 1, N)$ -secret sharing scheme.

To share a value x,

- sample $r_1, r_2, ..., r_{\ell}$ uniformly at random,
- build the polynomial $P(X) = x + \sum_{k=0}^{\iota} r_k \cdot X^k$,
- Set the share $[[x]]_i \leftarrow P(e_i)$, where e_i is publicly known.

[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (Asiacrypt 2023)

In the *threshold* approach, we used a **low-threshold** sharing scheme. For example, Shamir's $(\ell + 1, N)$ -secret sharing scheme.

The prover reveals only ℓ shares to the verifier (instead of N - 1). In practice, $\ell \in \{1,2,3\}$.

[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (Asiacrypt 2023)

In the *threshold* approach, we used a **low-threshold** sharing scheme. For example, Shamir's $(\ell + 1, N)$ -secret sharing scheme.

The prover reveals only ℓ shares to the verifier (instead of N - 1). In practice, $\ell \in \{1,2,3\}$.

<u>Construction</u>:

The verifier just needs to re-emulate *c* parties (per repetition);

[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (Asiacrypt 2023)

In the *threshold* approach, we used a **low-threshold** sharing scheme. For example, Shamir's ($\ell + 1, N$)-secret sharing scheme.

The prover reveals only ℓ shares to the verifier (instead of N - 1). In practice, $\ell \in \{1,2,3\}$.

<u>Construction</u>:

- The verifier just needs to re-emulate ℓ parties (per repetition);
- The prover just needs to emulate $1 + \ell$ parties (per repetition);

[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (Asiacrypt 2023)

In the *threshold* approach, we used a **low-threshold** sharing scheme. For example, Shamir's $(\ell + 1, N)$ -secret sharing scheme.

The prover reveals only ℓ shares to the verifier (instead of N - 1). In practice, $\ell \in \{1,2,3\}$.

<u>Construction</u>:

- The verifier just needs to re-emulate ℓ parties (per repetition);
- The prover just needs to emulate $1 + \ell$ parties (per repetition);
- The prover uses a Merkle tree to commit the shares;

[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (Asiacrypt 2023)

In the *threshold* approach, we used a **low-threshold** sharing scheme. For example, Shamir's $(\ell + 1, N)$ -secret sharing scheme.

The prover reveals only ℓ shares to the verifier (instead of N - 1). In practice, $\ell \in \{1,2,3\}$.

<u>Construction</u>:

- The verifier just needs to re-emulate ℓ parties (per repetition);
- The prover just needs to emulate $1 + \ell$ parties (per repetition);
- The prover uses a Merkle tree to commit the shares;
- The obtained signature size is **larger**;

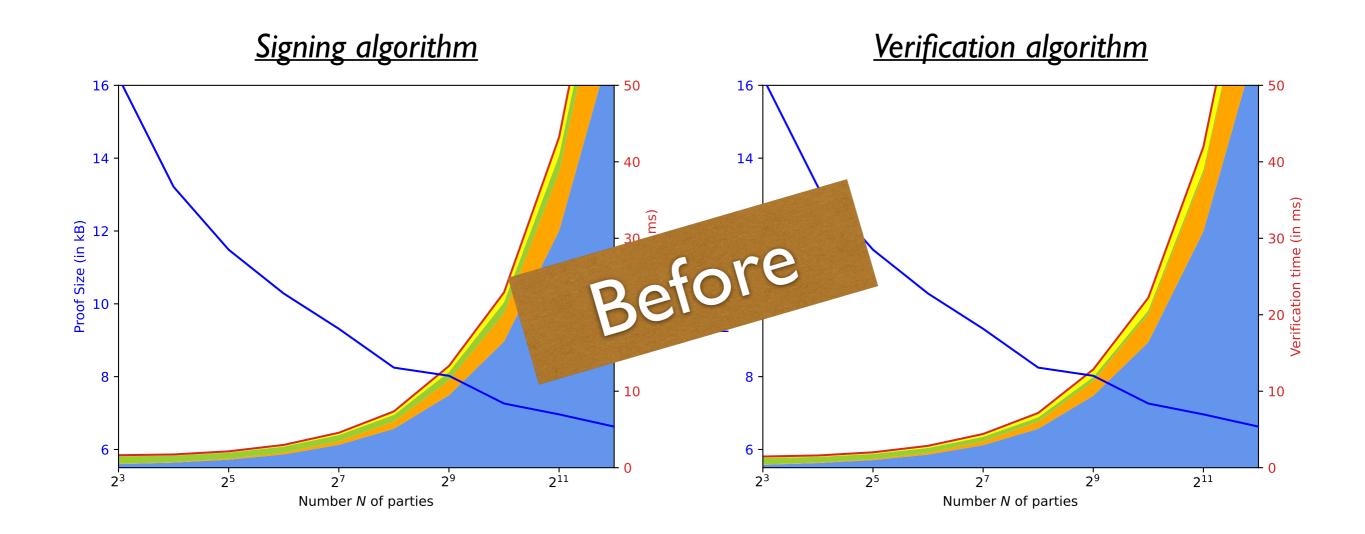
[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (Asiacrypt 2023)

In the *threshold* approach, we used a **low-threshold** sharing scheme. For example, Shamir's ($\ell + 1, N$)-secret sharing scheme.

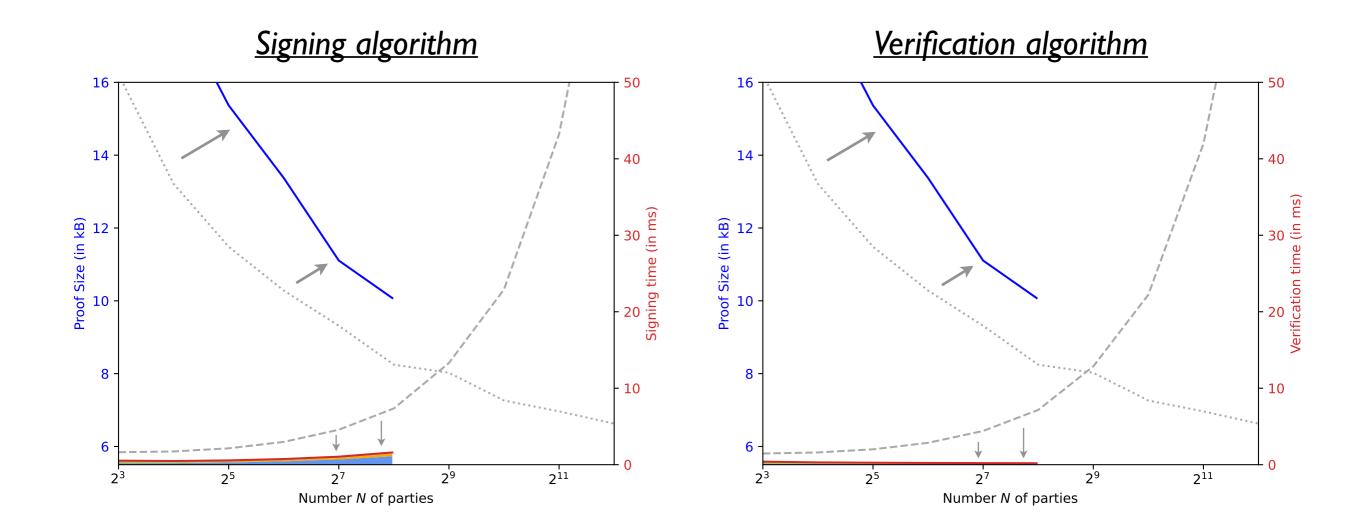
The prover reveals only ℓ shares to the verifier (instead of N - 1). In practice, $\ell \in \{1,2,3\}$.

<u>Construction</u>:

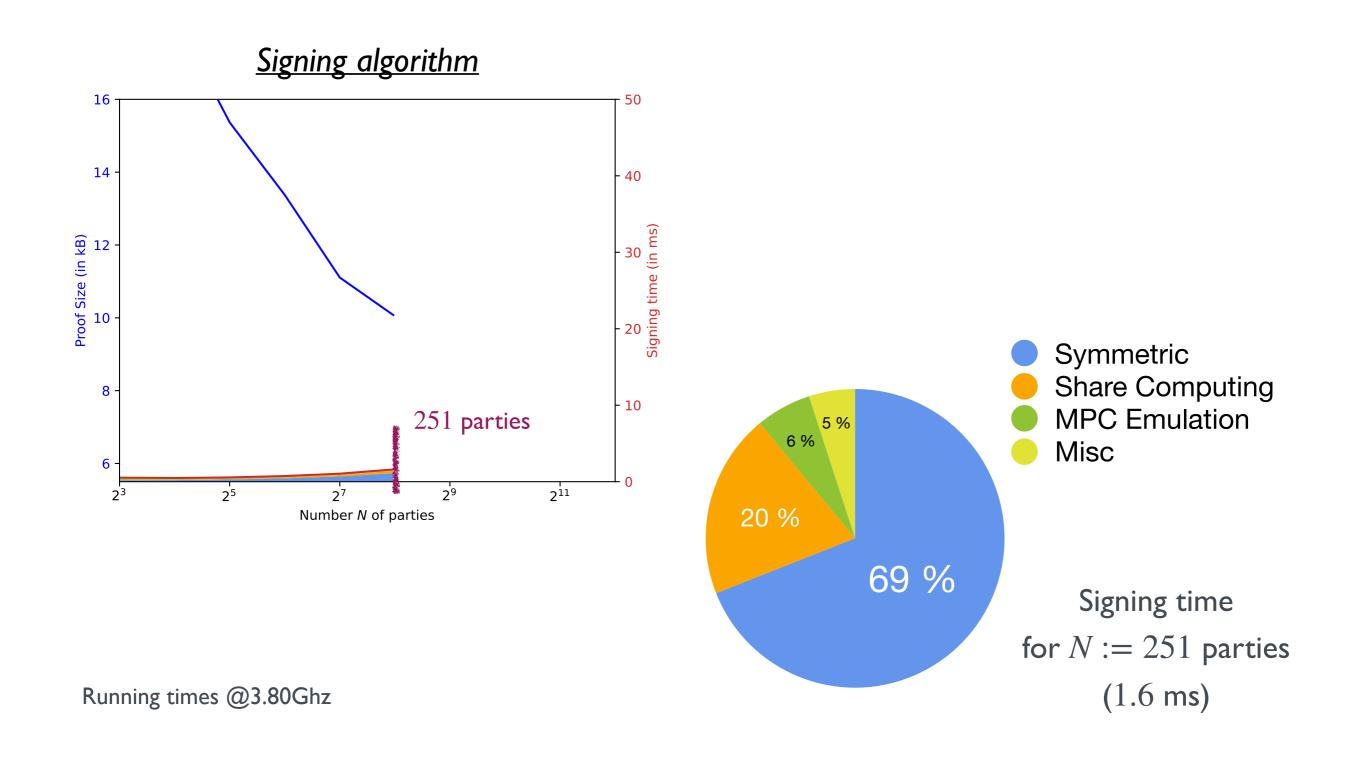
- The verifier just needs to re-emulate ℓ parties (per repetition);
- The prover just needs to emulate $1 + \ell$ parties (per repetition);
- The prover uses a Merkle tree to commit the shares;
- The obtained signature size is **larger**;
- We have the constraint: $N \leq |\mathbb{F}|$.

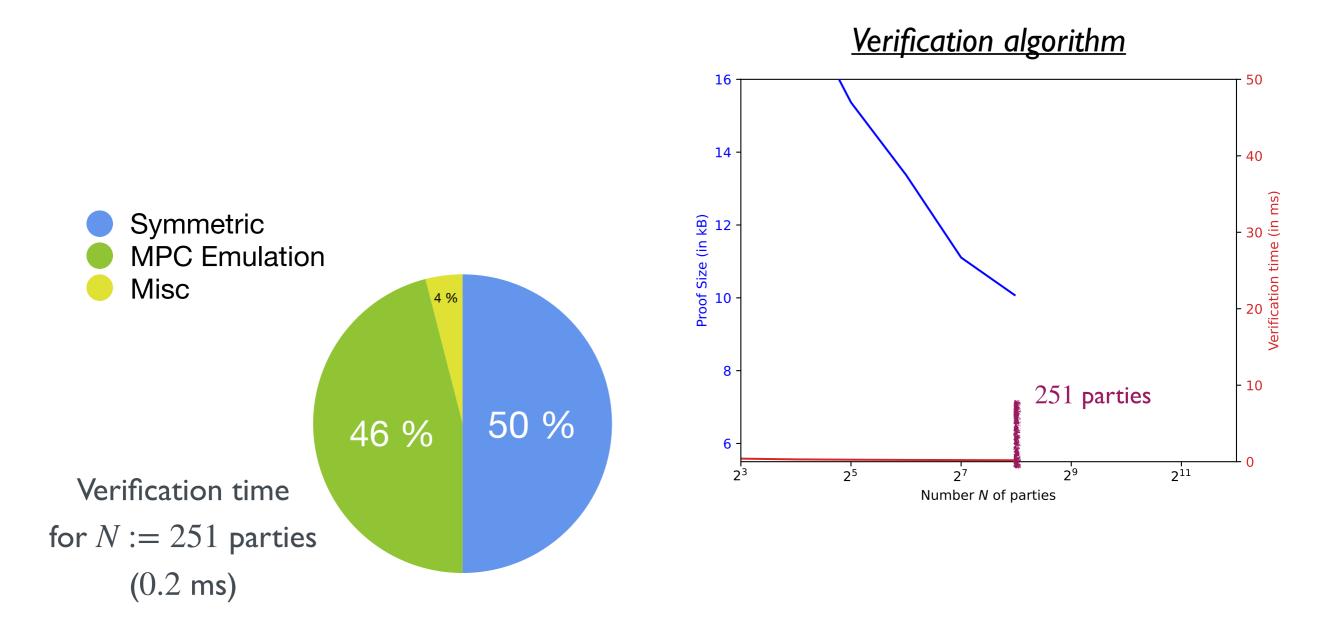


Running times @3.80Ghz



Running times @3.80Ghz





Running times @3.80Ghz

The existing MPCitH transforms

Traditional Hypercube Threshold

Shorter signature sizes Highly parallelizable Slower signing time Signing time ≈ Verification time Computational cost is mainly due to symmetric primitives Faster signing time Highly parallelizable Very fast verification Larger signature size Restriction # of parties Computational cost is mainly due to arithmetics

MPCitH-based NIST candidates

	Short Instance	Fast Instance
AlMer	Traditional (256-1615)	Traditional (16-57)
Biscuit	Traditional (256)	Traditional (16)
MIRA	Hypercube (256)	Hypercube (32)
MiRitH	Traditional (256)	Traditional (16)
	Hypercube (256)	Hypercube (16)
MQOM	Hypercube (256)	Hypercube (32)
RYDE	Hypercube (256)	Hypercube (32)
SDitH	Hypercube (256)	Threshold (251-256)

FAEST and PERK rely on other MPCitH techniques.

Advantages and limitations

<u>Limitations</u>

- Relatively *slow* (few milliseconds)
 - Greedy use of symmetric cryptography
- Relatively large signatures (3-10 KB for L1)
- Signature size: quadratic growth in the security level

Advantages and limitations

<u>Limitations</u>

- Relatively *slow* (few milliseconds)
 - Greedy use of symmetric cryptography
- Relatively large signatures (3-10 KB for L1)
- Signature size: quadratic growth in the security level

<u>Advantages</u>

- **Conservative** hardness assumption:
 - No structure (often), no trapdoor
- Small (public) keys
- Good public key + signature size
- Adaptive and *tunable* parameters

MPC-in-the-Head

- Very versatile and tunable
- Can be applied on any one-way function
- A practical tool to build conservative signature schemes

MPC-in-the-Head

- Very versatile and tunable
- Can be applied on any one-way function
- A practical tool to build *conservative* signature schemes

Recent MPCitH techniques

VOLE-in-the-Head

Vector-Oblivious-Linear-Evaluation-in-the-Head

presented by Carsten Baum June 18, 2024 TC-in-the-Head

Threshold-Computation-in-the-Head

presented by Matthieu Rivain July 2, 2024

MPC-in-the-Head

- Very versatile and tunable
- Can be applied on any one-way function
- A practical tool to build *conservative* signature schemes

Recent MPCitH techniques

VOLE-in-the-Head

Vector-Oblivious-Linear-Evaluation-in-the-Head

presented by Carsten Baum June 18, 2024 TC-in-the-Head

Threshold-Computation-in-the-Head

presented by Matthieu Rivain July 2, 2024

Thank you for your attention.

[FMRV22] Feneuil, Maire, Rivain, Vergnaud. Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection. Asiacrypt 2022.

[Fen23] Feneuil. Post-Quantum Signatures from Secure Multiparty Computation. PhD thesis 2023.

[Fen22] Feneuil. Building MPCitH-based Signatures from MQ, MinRank, and Rank SD. ACNS 2024.

[BFR23] Benadjila, Feneuil, Rivain. MQ on my Mind: Post-Quantum Signatures from the Non-Structured Multivariate Quadratic Problem. EuroS&P 2024.

[ARV22] Adj, Rivera-Zamarripa, Verbel. *MinRank in the Head: Short Signatures from Zero-Knowledge Proofs.* AfricaCrypt 2023

[ABB+23] Adj, Barbero, Bellini, Esser, Rivera-Zamarripa, Sanna, Verbel, Zweydinger. *MiRitH: Efficient Post-Quantum Signatures from MinRank in the Head.* TCHES 2024.

[BG22] Bidoux, Gaborit. Compact Post-Quantum Signatures from Proofs of Knowledge leveraging Structure for the PKP, SD and RSD Problems. C2SI 2023.

[BBD+24] Bettaieb, Bidoux, Dyseryn, Esser, Gaborit, Kulkarni, Palumbi. PERK: Compact Signature Scheme Based on a New Variant of the Permuted Kernel Problem. Journal DCC (2024).