
Constructions for digital signature Part I:
Introduction to MPC-in-the-Head

Thibauld Feneuil

NIST PQC Seminar

May 21, 2024, online

Table of Contents

• Introduction

• MPC-in-the-Head: general principle

• From MPC-in-the-Head to signatures

• Optimisations and variants

• Conclusion

Introduction

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

Very hard
to compute

m

H

H

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

I know the
private key.

I am convinced.

Large(r) signatures

Short public key

Very hard
to compute

From an
identification scheme

m

H

H

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

I know the
private key.

I am convinced.

Large(r) signatures

Short public key

Very hard
to compute

From an
identification scheme

m

H

H

Identification Scheme

• Completeness: Pr[verif ✓ | honest prover] = 1

• Soundness: Pr[verif ✓ | malicious prover] (e.g.)

• Zero-knowledge: verifier learns nothing on .

≤ ε 2−128

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier

I know .

I am convinced.

Identification Scheme

Challenge 1 = Hash(m, Commitment)

Prover

Verifier

Challenge = Hash(m, Response)n n − 1

⋮

I know .

Transcript

Fiat-Shamir
Transformation

m: message to sign

MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:

“Zero-knowledge from secure multiparty computation” (STOC 2007)

• Turn a multiparty computation (MPC) into an identification scheme / zero-
knowledge proof of knowledge

• Generic: can be applied to any cryptographic problem

MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:

“Zero-knowledge from secure multiparty computation” (STOC 2007)

• Convenient to build (candidate) post-quantum signature schemes

• Picnic: submission to NIST (2017)

• First round of recent NIST call: 7~9 MPCitH schemes / 40 submissions

AIMer
Biscuit
FAEST
MIRA
MiRitH

MQOM
PERK
RYDE
SDitH

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

MPC-in-the-Head transform

MPCitH: general principle

MPC-in-the-Head Framework

Secret which satisfies
some public relation

x
y = F(x)

How to build a zero-knowledge
proof of knowledge for ?x🤔

MPC-in-the-Head Framework

Secret which satisfies
some public relation

x
y = F(x)

Sharing of the secret [[x]] x

Additive secret sharing:
x = [[x]]1 + [[x]]2 + … + [[x]]N

Shamir’s secret sharing:
,

where is a random degree-
polynomial such that .

∀i, [[x]]i = P(ei)
P ℓ

P(0) = x

MPC-in-the-Head Framework

Additive secret sharing:
x = [[x]]1 + [[x]]2 + … + [[x]]N

Shamir’s secret sharing:
,

where is a random degree-
polynomial such that .

∀i, [[x]]i = P(ei)
P ℓ

P(0) = x

Secret which satisfies
some public relation

x
y = F(x)

Sharing of the secret [[x]] x

MPC-in-the-Head Framework

Additive secret sharing:
x = [[x]]1 + [[x]]2 + … + [[x]]N

Shamir’s secret sharing:
,

where is a random degree-
polynomial such that .

∀i, [[x]]i = P(ei)
P ℓ

P(0) = x

If lives in , a possible sharing of is x := 42 𝔽1021 x
 over x = 429 + 19 + 583 + 231 + 822 𝔽1021

Secret which satisfies
some public relation

x
y = F(x)

Sharing of the secret [[x]] x

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]5

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

MPC-in-the-Head Framework

Secret which satisfies
some public relation

x
y = F(x)

Sharing of the secret [[x]] x

MPC model: discrete logarithm

• Secret satisfies , with public.

• We want a multiparty computation that
computes

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y

MPC model: discrete logarithm

• Secret satisfies , with public.

• We want a multiparty computation that
computes

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y

• Party :

‣ Receive the th share

‣ Compute .

‣ Broadcast .

‣ Receive all the broadcasted values

‣ Recover and check that .

i

i [[x]]i

[[zx]]i ← z[[x]]i

[[zx]]i

[[zx]]1, …, [[zx]]N

zx y

MPC model: discrete logarithm

 z = 3 (mod 1907) x = 575 y = 1467 = zx (mod 1907)

• Party :

‣ Receive the th share

‣ Compute .

‣ Broadcast .

‣ Receive all the broadcasted values

‣ Recover and check that .

i

i [[x]]i

[[zx]]i ← z[[x]]i

[[zx]]i

[[zx]]1, …, [[zx]]N

zx y

• Secret satisfies , with public.

• We want a multiparty computation that
computes

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y

MPC model: discrete logarithm

180 397

542

713

649

z = 3 (mod 1907) x = 575 y = 1467 = zx (mod 1907)

[[x]]1 = 180, [[x]]2 = 397, [[x]]3 = 649, [[x]]4 = 713, [[x]]5 = 542

x = [[x]]1 + [[x]]2 + [[x]]3 + [[x]]4 + [[x]]5 (mod 953)

• Party :

‣ Receive the th share

‣ Compute .

‣ Broadcast .

‣ Receive all the broadcasted values

‣ Recover and check that .

i

i [[x]]i

[[zx]]i ← z[[x]]i

[[zx]]i

[[zx]]1, …, [[zx]]N

zx y

• Secret satisfies , with public.

• We want a multiparty computation that
computes

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y

MPC model: discrete logarithm

180 397

542

713

649

1368
1603

1235

268

1397 • Party :

‣ Receive the th share

‣ Compute .

‣ Broadcast .

‣ Receive all the broadcasted values

‣ Recover and check that .

i

i [[x]]i

[[zx]]i ← z[[x]]i

[[zx]]i

[[zx]]1, …, [[zx]]N

zx y

• Secret satisfies , with public.

• We want a multiparty computation that
computes

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y

z = 3 (mod 1907) x = 575 y = 1467 = zx (mod 1907)

[[x]]1 = 180, [[x]]2 = 397, [[x]]3 = 649, [[x]]4 = 713, [[x]]5 = 542

x = [[x]]1 + [[x]]2 + [[x]]3 + [[x]]4 + [[x]]5 (mod 953)

MPC model: discrete logarithm

180 397

542

713

649

1368
1603

1235

268

1397 • Party :

‣ Receive the th share

‣ Compute .

‣ Broadcast .

‣ Receive all the broadcasted values

‣ Recover and check that .

i

i [[x]]i

[[zx]]i ← z[[x]]i

[[zx]]i

[[zx]]1, …, [[zx]]N

zx y

• Secret satisfies , with public.

• We want a multiparty computation that
computes

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y

z = 3 (mod 1907) x = 575 y = 1467 = zx (mod 1907)

[[x]]1 = 180, [[x]]2 = 397, [[x]]3 = 649, [[x]]4 = 713, [[x]]5 = 542

x = [[x]]1 + [[x]]2 + [[x]]3 + [[x]]4 + [[x]]5 (mod 953)

MPC model: discrete logarithm

180 397

542

713

649

1368
1603

1235

268

1397 ∏ = 1467

• Party :

‣ Receive the th share

‣ Compute .

‣ Broadcast .

‣ Receive all the broadcasted values

‣ Recover and check that .

i

i [[x]]i

[[zx]]i ← z[[x]]i

[[zx]]i

[[zx]]1, …, [[zx]]N

zx y

• Secret satisfies , with public.

• We want a multiparty computation that
computes

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y

z = 3 (mod 1907) x = 575 y = 1467 = zx (mod 1907)

[[x]]1 = 180, [[x]]2 = 397, [[x]]3 = 649, [[x]]4 = 713, [[x]]5 = 542

x = [[x]]1 + [[x]]2 + [[x]]3 + [[x]]4 + [[x]]5 (mod 953)

MPC model: discrete logarithm

180 397

542

713

649

1368
1603

1235

268

1397 ∏ = 1467

• Party :

‣ Receive the th share

‣ Compute .

‣ Broadcast .

‣ Receive all the broadcasted values

‣ Recover and check that .

i

i [[x]]i

[[zx]]i ← z[[x]]i

[[zx]]i

[[zx]]1, …, [[zx]]N

zx y

• Secret satisfies , with public.

• We want a multiparty computation that
computes

x y = zx z

g(x) = {Accept if zx = y
Reject if zx ≠ y

z = 3 (mod 1907) x = 575 y = 1467 = zx (mod 1907)

[[x]]1 = 180, [[x]]2 = 397, [[x]]3 = 649, [[x]]4 = 713, [[x]]5 = 542

x = [[x]]1 + [[x]]2 + [[x]]3 + [[x]]4 + [[x]]5 (mod 953)

🔒

If someone sees the computation of
all the parties except one, it leaks no

information on . 🧐x

MPC model

[[x]]1

• Jointly compute

• private: the views of any
parties provide no information on

• Semi-honest model: assuming that the
parties follow the steps of the protocol

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]]2

[[x]]5

[[x]]4

[[x]]3

Public
domain

[[α]]1
[[α]]2

[[α]]3

[[α]]4

[[α]]5

x = [[x]]1 + [[x]]2 + … + [[x]]N

MPC model

[[x]]1

• Jointly compute

• private: the views of any
parties provide no information on

• Semi-honest model: assuming that the
parties follow the steps of the protocol

• Broadcast model

‣ Parties locally compute on their shares

‣ Parties broadcast and recompute

‣ Parties start again (now knowing)

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

Public
domain

[[α]]1
[[α]]2

[[α]]3

[[α]]4

[[α]]5

x = [[x]]1 + [[x]]2 + … + [[x]]N

MPCitH transform

Prover Verifier

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

i*

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

✅ Completeness
✅ Zero-Knowledge

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N

② Run MPC in their head

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

② Run MPC in their head

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

② Run MPC in their head

④ Open parties {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept

② Run MPC in their head

④ Open parties {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Cheating detected!

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept

② Run MPC in their head

④ Open parties {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Seems OK.

MPCitH transform
• Zero-knowledge MPC protocol is -private

• Soundness:

• Parallel repetition

Protocol repeated times in parallel → soundness error

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

τ (1
N)

τ

MPCitH transform
• Zero-knowledge MPC protocol is -private

• Soundness:

• Parallel repetition

Protocol repeated times in parallel → soundness error

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

τ (1
N)

τ

MPCitH transform
• Zero-knowledge MPC protocol is -private

• Soundness:

• Parallel repetition

Protocol repeated times in parallel → soundness error

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

τ (1
N)

τ

From MPC-in-the-Head to signatures

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

MPC-in-the Head transform

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

20
07

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

Invention of the
MPC-in-the-Head

framework

LowMC

AES

Rain

32.1

12.1 12.3

6.6

30.9

13.0

9.7

5.0

6.8

Signature size
(in kilobytes)

SPHINCS+

Lo
ga

rit
hm

ic
 s

ca
le

16

SPHINCS+

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20
25

Signature size
(in kilobytes)

Lo
ga

rit
hm

ic
 s

ca
le

Syndrome Decoding Problem:
From a matrix and a vector , find such that

• ,
• has at most non-zero coordinates.

H y x
y = Hx
x w

17

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20
25

Signature size
(in kilobytes)

Lo
ga

rit
hm

ic
 s

ca
le

Binary field

37.4

31.7

SPHINCS+

Syndrome Decoding Problem:
From a matrix and a vector , find such that

• ,
• has at most non-zero coordinates.

H y x
y = Hx
x w

17

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20
25

Signature size
(in kilobytes)

Lo
ga

rit
hm

ic
 s

ca
le

Binary field

37.4

46.1

31.7

38.7 37.4

24.8

21.2

Medium-size field

22.5
Quasi-cyclic

SPHINCS+

Syndrome Decoding Problem:
From a matrix and a vector , find such that

• ,
• has at most non-zero coordinates.

H y x
y = Hx
x w

17

SPHINCS+

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20
25

Signature size
(in kilobytes)

Lo
ga

rit
hm

ic
 s

ca
le

Binary field

37.4

46.1

31.7

38.7 37.4

24.8

16.0

21.2

8.5

12.1

Medium-size field

22.5
Quasi-cyclic

MPC-in-the-Head

[FJR22] Feneuil, Joux, Rivain: “Syndrome Decoding
in the Head: Shorter Signatures from Zero-
Knowledge Proofs” (ePrint 2022/188, Crypto 2022)

[FJR23] Feneuil, Joux, Rivain: “Shared Permutation
for Syndrome Decoding: New Zero-Knowledge
Protocol and Code-Based Signature” (ePrint
2021/1576, Journal DCC)

Syndrome Decoding Problem:
From a matrix and a vector , find such that

• ,
• has at most non-zero coordinates.

H y x
y = Hx
x w

17

• Subset Sum Problem: KB KB [FMRV22,Fen23]

• Multivariate Quadratic Problem: KB [Fen22,BFR23]

• MinRank Problem: KB [ARV22,Fen22,ABB+23]

• Rank Syndrome Decoding Problem: KB [Fen22]

• Permuted Kernel Problem (or variant): KB [BG22,BBD+24]

• …

≥ 100 ⇒ 19.1

6.3 − 7.3

≈ 5 − 6

≈ 5 − 6

≈ 6

Exploring other assumptions

Remark: the displayed signature sizes correspond to
the state-of-the-art for the NIST submission deadline

of the call for additional post-quantum signatures,
better sizes can be achieved using newer results.

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Three approaches:

Rely on standard symmetric primitives
• AES: BBQ (2019), Banquet (2021), Limbo-Sign (2021), Helium+AES (2022), FAEST (2023)

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Three approaches:

Rely on standard symmetric primitives

Rely on MPC-friendly symmetric primitives
• LowMC: Picnic1 (2017), Picnic2 (2018), Picnic3 (2020)

• Rain: Rainier (2021), BN++Rain (2022)

• AIM: AIMer (2022)

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Three approaches:

Rely on standard symmetric primitives

Rely on MPC-friendly symmetric primitives

Rely on well-known hard problems (non-exhaustive list)
• Syndrome Decoding: SDitH (2022), RYDE (2023)

• MinRank: MiRitH (2022), MIRA (2023)

• Multivariate Quadratic: MQOM (2023), Biscuit (2023)

• Permuted Kernel: PERK (2023)

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Three approaches:

Rely on standard symmetric primitives

Rely on MPC-friendly symmetric primitives

Rely on well-known hard problems

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Three approaches:

Rely on standard symmetric primitives

Rely on MPC-friendly symmetric primitives

Rely on well-known hard problems

Expressed as an arithmetic
circuit, enabling us to use
existing MPCitH-based

proof systems (as BN++)

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Three approaches:

Rely on standard symmetric primitives

Rely on MPC-friendly symmetric primitives

Rely on well-known hard problems

Expressed as an arithmetic
circuit, enabling us to use
existing MPCitH-based

proof systems (as BN++)

Should be rephrased to achieve
interesting performances

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Three approaches:

Rely on standard symmetric primitives

Rely on MPC-friendly symmetric primitives

Rely on well-known hard problems

Expressed as an arithmetic
circuit, enabling us to use
existing MPCitH-based

proof systems (as BN++)

Should be rephrased to achieve
interesting performances

Example (RYDE): how to check that a vector has a rank weight
smaller than some public bound ?

x ∈ 𝔽 n
qm

r

By checking that are roots of a degree- -polynomial .x1, …, xn qr q
r

∑
i=0

aiXqi

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

Should take [KZ20] attack into account (when there are more than 3 rounds)!
[KZ20] Kales, Zaverucha. “An attack on some signature schemes constructed from five-pass identification schemes” (CANS20)

Fiat-Shamir transform

MPCitH-based NIST Candidates

Assumption Size (in KB)
AIMer AIM (MPC-friendly one-way function) 3.8-5.9

Biscuit Structured MQ problem (PowAff2) 4.8-6.7

FAEST* AES block cipher 4.6-6.3

MIRA MinRank problem 5.6-7.4

MiRitH MinRank problem 5.7-9.1

PERK Permuted Kernel problem (variant) 6.8-8.4

MQOM Unstructured MQ problem 6.3-7.8

RYDE Syndrome decoding problem in rank metric 6.0-7.4

SDitH Syndrome decoding problem in Hamming
metric

8.3-10.4

* FAEST has not been formally introduced as an MPCitH-based scheme.

Optimisations and variants

Optimisations and variants

With SDitH-L1-gf251 as example.

NIST Category I

Field GF(251)

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Naive MPCitH transformation

Size ≈ τ ⋅ (N ⋅ 2λ + N ⋅ |α | + (N − 1) ⋅ |x |)

Size of a
commitment digest

Size of the MPC input (per party)

Size of the broadcast (per party)

Number of repetitions to achieve the desired security level

τ ≈
λ

log2 N

Naive MPCitH transformation

SDitH-L1-gf251:
the input of the MPC protocol is around 323 bytes,
The broadcast value of the MPC protocol is around 36 bytes.

x
α

Size ≈ τ ⋅ (N ⋅ 2λ + N ⋅ |α | + (N − 1) ⋅ |x |)

Size of a
commitment digest

Size of the MPC input (per party)

Size of the broadcast (per party)

Number of repetitions to achieve the desired security level

τ ≈
λ

log2 N

Naive MPCitH transformation

SDitH-L1-gf251:
the input of the MPC protocol is around 323 bytes,
The broadcast value of the MPC protocol is around 36 bytes

x
α

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

MPCitH transform

Prover

Verifier

① Generate and commit shares

 Compute
[[x]] = ([[x]]1, …, [[x]]N)

∀i, comi = Comρi([[x]]i)

② Run MPC in their head

h2 = Hash([[α]]1, …, [[α]]N)
③ Choose a random party

i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}

([[x]]i, ρi)i≠i*

⑤ Compute
 - Commitments
 - MPC computation
 Check
 Check
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept
h1 = Hash(com1, …, comN)
h2 = Hash([[α]]1, …, [[α]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*
(comi*, [[α]]i*)

h1 = Hash(𝖼𝗈𝗆1, …, 𝖼𝗈𝗆N)

MPCitH transform

Prover

Verifier

① Generate and commit shares

 Compute
[[x]] = ([[x]]1, …, [[x]]N)

∀i, comi = Comρi([[x]]i)

② Run MPC in their head

h2 = Hash([[α]]1, …, [[α]]N)
③ Choose a random party

i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}

([[x]]i, ρi)i≠i*

⑤ Compute
 - Commitments
 - MPC computation
 Check
 Check
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept
h1 = Hash(com1, …, comN)
h2 = Hash([[α]]1, …, [[α]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*
(comi*, [[α]]i*)

h1 = Hash(𝖼𝗈𝗆1, …, 𝖼𝗈𝗆N)

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

seed1 seed2 seed3 seedN−1 seedN

+ΔxPR
G

PR
G

PR
G

PR
G

PR
G

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

+Δx
PRG

PRG PR
G

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤) ← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

Using a Seed Tree

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

+Δx
PRG

PRG PR
G

to be revealedi*

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

+Δx
PRG

PRG PR
G

to be revealedi*

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

+Δx
PRG

PRG PR
G

to be revealedi*

sibling path
→ seedslog(N)

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

Traditional MPCitH transformation

Size ≈ τ ⋅ (|Δx | + |α | + λ ⋅ log2 N + 2λ)

Path in the seed (GGM) treeSize of the auxiliary value

Size of the broadcast (of the hidden party)

Number of repetitions to achieve the desired security level

τ ≈
λ

log2 N

Commitment
of the hidden party

Traditional MPCitH transformation

SDitH-L1-gf251:
the input of the MPC protocol is around 323 bytes,
The broadcast value of the MPC protocol is around 36 bytes.

x
α

Traditional MPCitH transformation

Running times @3.80Ghz

Signing algorithm Verification algorithm

Traditional MPCitH transformation

Running times @3.80Ghz

Signing algorithm Verification algorithm

Symmetric
MPC Emulation
Misc

Signing algorithm

Traditional MPCitH transformation

9 %

63 %

28 %

Symmetric
MPC Emulation
Misc

for partiesN := 256
Signing time

 parties256

Running times @3.80Ghz (ms)19

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

x = r1 + r2 + … + rN + Δx

Traditional: one sharing of x

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

x =

r1,1 + r1,2 + … + r1,N1

r2,1 + r2,2 + … + r2,N2…
rD,1 + rD,2 + … + rD,ND

+ Δx

Hypercube: sharings of , with the same auxiliary value D x Δx

such that N = N1 ⋅ N2 ⋅ … ⋅ ND

x = r1 + r2 + … + rN + Δx

Traditional: one sharing of x

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

x =

r1,1 + r1,2 + … + r1,N1

r2,1 + r2,2 + … + r2,N2…
rD,1 + rD,2 + … + rD,ND

+ Δx

How to build these sharings?D

N = N1 ⋅ N2 ⋅ … ⋅ ND

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

N = N1 ⋅ N2 ⋅ … ⋅ ND

r1 rN…

x =

r1,1 + r1,2 + … + r1,N1

r2,1 + r2,2 + … + r2,N2…
rD,1 + rD,2 + … + rD,ND

+ Δx

How to build these sharings?D

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

How to build these sharings?D

N = N1 ⋅ N2 ⋅ … ⋅ ND

r1 rN…

r1 r2

rN

rN1

N1

N2

For D = 2

x =

r1,1 + r1,2 + … + r1,N1

r2,1 + r2,2 + … + r2,N2…
rD,1 + rD,2 + … + rD,ND

+ Δx

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

How to build these sharings?D

N = N1 ⋅ N2 ⋅ … ⋅ ND

r1 rN…

For D = 2

r1,1

r1,N2

⋮

r2,1 r2,N1
…

x =

r1,1 + r1,2 + … + r1,N1

r2,1 + r2,2 + … + r2,N2…
rD,1 + rD,2 + … + rD,ND

+ Δx

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

N = N1 ⋅ N2 ⋅ … ⋅ ND

r1 rN…

For D ≥ 2

Source: Figure from [AGHHJY23]

x =

r1,1 + r1,2 + … + r1,N1

r2,1 + r2,2 + … + r2,N2…
rD,1 + rD,2 + … + rD,ND

+ Δx

How to build these sharings?D

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

Performance

N = N1 ⋅ N2 ⋅ … ⋅ ND

 - Same soundness error as before:

 - Same signature size as before: 1 auxiliary value + 1 seed tree of leaves

1/N

N

x =

r1,1 + r1,2 + … + r1,N1

r2,1 + r2,2 + … + r2,N2…
rD,1 + rD,2 + … + rD,ND

+ Δx

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

Performance

N = N1 ⋅ N2 ⋅ … ⋅ ND

 - Same soundness error as before:

 - Same signature size as before: 1 auxiliary value + 1 seed tree of leaves

 - Emulation cost: one needs to emulate

 parties

1/N

N

1 + (N1 − 1) + (N2 − 1) + … + (ND − 1)

x =

r1,1 + r1,2 + … + r1,N1

r2,1 + r2,2 + … + r2,N2…
rD,1 + rD,2 + … + rD,ND

+ Δx

1 + log2 NN1 = … = ND = 2
D = log2 N

instead of N = N1 ⋅ N2 ⋅ … ⋅ ND

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

Traditional: party emulations per repetitionN

Hypercube: party emulations per repetition1 + log2 N

N = 256

1 + log2 N = 9

N1 = … = ND = 2
D = log2 N

Signing algorithm Verification algorithm

Running times @3.80Ghz

Before

The Hypercube Technique

Signing algorithm Verification algorithm

Running times @3.80Ghz

The Hypercube Technique

Symmetric
Packing
MPC Emulation
Misc

Signing algorithm

6 %

12 %

13 %

69 %

Symmetric
Packing
MPC Emulation
Misc

for partiesN := 256
Signing time

 parties256

Running times @3.80Ghz (ms)7

The Hypercube Technique

The (original) Threshold Approach

In the threshold approach, we used a low-threshold sharing scheme.
For example, Shamir’s -secret sharing scheme.

To share a value ,
sample uniformly at random,

build the polynomial ,

Set the share , where is publicly known.

(ℓ + 1,N)

x
r1, r2, …, rℓ

P(X) = x +
ℓ

∑
k=0

rk ⋅ Xk

[[x]]i ← P(ei) ei

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(Asiacrypt 2023)

In the threshold approach, we used a low-threshold sharing scheme.
For example, Shamir’s -secret sharing scheme.

The prover reveals only shares to the verifier (instead of).
In practice, .

(ℓ + 1,N)

ℓ N − 1
ℓ ∈ {1,2,3}

The (original) Threshold Approach
[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(Asiacrypt 2023)

In the threshold approach, we used a low-threshold sharing scheme.
For example, Shamir’s -secret sharing scheme.

The prover reveals only shares to the verifier (instead of).
In practice, .

Construction:
The verifier just needs to re-emulate parties (per repetition);

(ℓ + 1,N)

ℓ N − 1
ℓ ∈ {1,2,3}

ℓ

The (original) Threshold Approach
[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(Asiacrypt 2023)

In the threshold approach, we used a low-threshold sharing scheme.
For example, Shamir’s -secret sharing scheme.

The prover reveals only shares to the verifier (instead of).
In practice, .

Construction:
The verifier just needs to re-emulate parties (per repetition);
The prover just needs to emulate parties (per repetition);

(ℓ + 1,N)

ℓ N − 1
ℓ ∈ {1,2,3}

ℓ
1 + ℓ

The (original) Threshold Approach
[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(Asiacrypt 2023)

In the threshold approach, we used a low-threshold sharing scheme.
For example, Shamir’s -secret sharing scheme.

The prover reveals only shares to the verifier (instead of).
In practice, .

Construction:
The verifier just needs to re-emulate parties (per repetition);
The prover just needs to emulate parties (per repetition);
The prover uses a Merkle tree to commit the shares;

(ℓ + 1,N)

ℓ N − 1
ℓ ∈ {1,2,3}

ℓ
1 + ℓ

The (original) Threshold Approach
[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(Asiacrypt 2023)

In the threshold approach, we used a low-threshold sharing scheme.
For example, Shamir’s -secret sharing scheme.

The prover reveals only shares to the verifier (instead of).
In practice, .

Construction:
The verifier just needs to re-emulate parties (per repetition);
The prover just needs to emulate parties (per repetition);
The prover uses a Merkle tree to commit the shares;
The obtained signature size is larger;

(ℓ + 1,N)

ℓ N − 1
ℓ ∈ {1,2,3}

ℓ
1 + ℓ

The (original) Threshold Approach
[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(Asiacrypt 2023)

In the threshold approach, we used a low-threshold sharing scheme.
For example, Shamir’s -secret sharing scheme.

The prover reveals only shares to the verifier (instead of).
In practice, .

Construction:
The verifier just needs to re-emulate parties (per repetition);
The prover just needs to emulate parties (per repetition);
The prover uses a Merkle tree to commit the shares;
The obtained signature size is larger;
We have the constraint: .

(ℓ + 1,N)

ℓ N − 1
ℓ ∈ {1,2,3}

ℓ
1 + ℓ

N ≤ |𝔽 |

The (original) Threshold Approach
[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(Asiacrypt 2023)

Signing algorithm Verification algorithm

Running times @3.80Ghz

Before

The (original) Threshold Approach

Signing algorithm Verification algorithm

Running times @3.80Ghz

The (original) Threshold Approach

Signing algorithm

Running times @3.80Ghz

5 %
6 %

20 %

69 %

Symmetric
Share Computing
MPC Emulation
Misc

for partiesN := 251
Signing time

(ms)1.6

 parties251

The (original) Threshold Approach

Running times @3.80Ghz

4 %

46 % 50 %

Symmetric
MPC Emulation
Misc

for partiesN := 251
Verification time

(ms)0.2

Verification algorithm

 parties251

The (original) Threshold Approach

The existing MPCitH transforms

Traditional

Hypercube Threshold

Shorter signature sizes
Highly parallelizable
Slower signing time

Signing time Verification time
Computational cost is mainly

due to symmetric primitives

≈

Faster signing time
Highly parallelizable
Very fast verification
Larger signature size

Restriction # of parties
Computational cost is mainly

due to arithmetics

MPCitH-based NIST candidates

Short Instance Fast Instance

AIMer Traditional (256-1615) Traditional (16-57)

Biscuit Traditional (256) Traditional (16)

MIRA Hypercube (256) Hypercube (32)

MiRitH
Traditional (256) Traditional (16)

Hypercube (256) Hypercube (16)

MQOM Hypercube (256) Hypercube (32)

RYDE Hypercube (256) Hypercube (32)

SDitH Hypercube (256) Threshold (251-256)

FAEST and PERK rely on other MPCitH techniques.

Conclusion

Limitations

Relatively slow (few milliseconds)

Greedy use of symmetric cryptography

Relatively large signatures (3-10 KB for L1)

Signature size: quadratic growth in the security level

Advantages and limitations

Limitations

Relatively slow (few milliseconds)

Greedy use of symmetric cryptography

Relatively large signatures (3-10 KB for L1)

Signature size: quadratic growth in the security level

Advantages and limitations

Advantages

Conservative hardness assumption:

No structure (often), no trapdoor

Small (public) keys

Good public key + signature size

Adaptive and tunable parameters

MPC-in-the-Head

Very versatile and tunable

 Can be applied on any one-way function

A practical tool to build conservative signature schemes

Conclusion

Conclusion

MPC-in-the-Head

Very versatile and tunable

 Can be applied on any one-way function

A practical tool to build conservative signature schemes

Recent MPCitH techniques

VOLE-in-the-Head
Vector-Oblivious-Linear-Evaluation-in-the-Head

presented by Carsten Baum

June 18, 2024

TC-in-the-Head
Threshold-Computation-in-the-Head

presented by Matthieu Rivain
July 2, 2024

Conclusion

MPC-in-the-Head

Very versatile and tunable

 Can be applied on any one-way function

A practical tool to build conservative signature schemes

VOLE-in-the-Head
Vector-Oblivious-Linear-Evaluation-in-the-Head

presented by Carsten Baum

June 18, 2024

TC-in-the-Head
Threshold-Computation-in-the-Head

presented by Matthieu Rivain
July 2, 2024

Thank you for your attention.

Recent MPCitH techniques

References

[FMRV22] Feneuil, Maire, Rivain, Vergnaud. Zero-Knowledge Protocols for the Subset Sum
Problem from MPC-in-the-Head with Rejection. Asiacrypt 2022.

[Fen23] Feneuil. Post-Quantum Signatures from Secure Multiparty Computation. PhD thesis
2023.

[Fen22] Feneuil. Building MPCitH-based Signatures from MQ, MinRank, and Rank SD. ACNS
2024.

[BFR23] Benadjila, Feneuil, Rivain. MQ on my Mind: Post-Quantum Signatures from the
Non-Structured Multivariate Quadratic Problem. EuroS&P 2024.

[ARV22] Adj, Rivera-Zamarripa, Verbel. MinRank in the Head: Short Signatures from Zero-
Knowledge Proofs. AfricaCrypt 2023

[ABB+23] Adj, Barbero, Bellini, Esser, Rivera-Zamarripa, Sanna, Verbel, Zweydinger. MiRitH:
Efficient Post-Quantum Signatures from MinRank in the Head. TCHES 2024.

[BG22] Bidoux, Gaborit. Compact Post-Quantum Signatures from Proofs of Knowledge
leveraging Structure for the PKP, SD and RSD Problems. C2SI 2023.

[BBD+24] Bettaieb, Bidoux, Dyseryn, Esser, Gaborit, Kulkarni, Palumbi. PERK: Compact
Signature Scheme Based on a New Variant of the Permuted Kernel Problem. Journal DCC
(2024).

