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e [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

® Turn a multiparty computation (MPC) into an identification scheme
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® Generic: can be apply to any cryptographic problem
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One-way function Multiparty computation (MPC)

o Input sharing [[x]]
\ Joint evaluation of:

» Accept if F(x) =y
Reject it F(x) #y

F:x—y
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Designing the MPC protocol

e \We consider only broadcast communication [KKW18] and
inear operations.

e To minimize the signature size, we need to

> Minimize the size of the input of the MPC protocol,

» Minimize the size of the broadcasted values.

e Relax the MPC functionality [BN20].
e |f F(x) =y, the MPC protocol should always output Accept.

e If F(x) # y, the MPC protocol should output Reject with
high probability.

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

[BN20] Baum, Nof: “Concretely-efficient zero-knowledge arguments for arithmetic circuits and their
application to lattice-based cryptography” (PKC 2020)



MPC for MQ

Multivariate Quadratic Problem

From (A,...,A,,b,....D,,V,...,y,), findx € [FZ such that

Vi<m, y;=x"Ax+b!x.

The multi-party computation must check that the vector x satisfies
y; = xTApx+b] x

y; = xTApx+b] x

y, =x'A x+blx



MPC for MQ

Multivariate Quadratic Problem

L) m,

From (A,...,A,,b,....D,,V,...,y,), findx € [FZ such that

Vi<m, y;=x"Ax+b!x.
The multi-party computation must check that the vector x satisfies

2 Y; - (yl- — xTAix—biTx) =0
i=1

where vy, ..., 7, € F,.. chosen by the verifier.
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False positive rate:
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MPC for MQ

Multivariate Quadratic Problem

From (A,...,A,,b,....D,,V,...,y,), findx € [FZ such that

Vi<m, y;=x"Ax+b!x.

The multi-party computation must check that the vector x satisfies

where v, ..., }/

False positive rate:




g = 256
m = 40
n =40

Variant Signature Size PK Size
[SSH11] (3 rounds) — 28 502 B
MQ-DSS [CHR+16] — 41 444 B
MudFish [Beu20] — 14 640 B

38 B
Mesquite [Wan22] Fast TA
Short 8 609 B
Our scherme Fast 10 764 B
Short 9 064 B

Variant Signature Size PK Size
[SSH11] (3 rounds) - 40 328 B
MQ-DSS [CHR+16] — 28 768 B
MudFish [Beu20] SFhaSt 15 358 5

Mesquite [Wan22] ast

Short 92615B
Our scheme Fast 8 488 B
Short 7 114 B




protocols for MinRank and Rank 5D

! MinRank Problem
| From (Mg, M, ....M)), find x € [F’; such that

k
rank(M,, + Z x;M;) <.
i=1

’,' Rank Syndrome Decoding Problem

From (H, y), find x € [, such that

y = Hx and rank(x) < r.




protocols for MinRank and Rank 5D

MinRank Problem
From (My, My, ...,M,), find x € [F’; such that

. Rank Syndrome Decoding Problem

From (H, y), find x € [, such that

and

= Linear into the secret values



MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix M € /™"
has a rank of at most r.

Rank Decomposition:

A matrix M € [F’q’lxm has a rank of at most r

iff there exists T € [F’;X” and R € [ngm such that M = TR.

Inputs: M, T"and R.
1. Check that M = TR



The multi-party computation must check that the matrix M € /™"

has a rank of at most r. Rewrite M as (xy, ..., X,) € I]:Zm.

Linearized Polynomials:

A matrix M € [FZX’" has a rank of at most r

& there exists a linear subspace U of [ of dimension r
such that {x,...,x,} CU

& there exists a monic g-polynomial L;; of degree g’

such that x,, ..., x, are roots of L;,.

r—1
Ly =X+ pX9
i=0



MPC protocols for MinRank and Rank 5D

The multi-party computation must check that the matrix M € /™"

has a rank of at most r. Rewrite M as (xy, ..., x,) € Fpu.

r—1
Inputs: M and L, := X9 + Z B.Xe.
i=0

We want to check that

Li(x)) = Ly(xy) = ... = Ly(x,) = 0.



MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix M € /™"

has a rank of at most r. Rewrite M as (xy, ..., x,) € [F’;m.
r—1 .
Inputs: M and L, := X9 + Z B.Xe.
i=0
We want to check that
n
0= Z Vi - Ly(x)
i=1

where ¥y, ...,7,, € F, .. chosen by the verifier.

ext
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MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix M € /™"

has a rank of at most r. Rewrite M as (xy, ..., x,) € Fpu.

r—1
Inputs: M and L, := X9 + Z B.Xe.

_Linear into the secret values
i=0

We want to check that

where yy, ..., 7, € F,., chosen by the verifier.
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g =16
m=16
n=16
k=142
r=4

Variant Signature Size PK Size
[CouO1] — 28 575 B
[SINY?22] — 28 128 B
IBESVZ22] — 26 405 B
Fast 13644 B
[BG22]
Short 10 937 B
Fast 10116 B /3B
[ARZV22]
Short /] 422 B
Our scheme Fast 9 288 B
(rank decomposition) Short 7122 B
Our scheme Fast 7 204 B
(9-polynomials) Short 5518 B




q=72
m = 31
n = 30
k=15
r=9
ldeal RSD
ldeal RSL

Variant Signature Size PK Size
[Ste94] — 31 358 B
[Vér96] — 27 115 B
— 19 328 B
[FJR21]
— 14181 B
Fast 15982 B
BG22] = 75 B
Short 12274 B
Our scheme Fast 11 000 B
(rank decomposition) Short 8 543 B
Our scheme Fast /376 B
(q-polynomials) Short 5899 B
Variant Signature Size PK Size
Fast 12 607 B
[BG22] 95 B
Short 10 126 B
Fast 9392B
IBG22] 410 B
Short 6/54B




e Many ideas used in the current NIST candidates:

More advanced
innerproduct checking

Fen24-MQ >  MQOM
Fen24-RankSD > RYDE
(9-polynomials) + small optimisation

Fen24-MinRank

24-Min| >  MIRA
g-polynomials)

Fen24-MinRank

(rank-decomposition)
ARZV23 l »  MiRitH

[ARZV23] Adj, Rivera-Zamarripa,Verbel: “MinRank in the Head:
Short Signatures from Zero-Knowledge Proofs” (AfricaCrypt 2023)
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