
Building MPCitH-based Signatures
from MQ, MinRank and Rank SD

Thibauld Feneuil 

ACNS’24

March 6, 2024 — Abu Dhabi (UAE)

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

I know the
private key.

I am convinced.

Large(r) signatures

Short public key

Very hard 
to compute

From an
identification scheme

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

From an
identification scheme

Large(r) signatures

Short public key

Very hard 

I know the
private key.

I am convinced.

MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:

“Zero-knowledge from secure multiparty computation” (STOC 2007)

• Turn a multiparty computation (MPC) into an identification scheme

• Generic: can be apply to any cryptographic problem

One-way function

E.g. AES, MQ system,  
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing  
 

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,  
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing  
 

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,  
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing  
 

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,  
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing  
 

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,  
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing  
 

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,  
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing  
 

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

MPC-in-the-Head transform

One-way function

E.g. AES, MQ system,  
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing  
 

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

Designing the MPC protocol

• We consider only broadcast communication [KKW18] and
linear operations.

• To minimize the signature size, we need to

‣ Minimize the size of the input of the MPC protocol,

‣ Minimize the size of the broadcasted values.

• Relax the MPC functionality [BN20].

• If , the MPC protocol should always output Accept.

• If , the MPC protocol should output Reject with
high probability.

F(x) = y

F(x) ≠ y

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

[BN20] Baum, Nof: “Concretely-efficient zero-knowledge arguments for arithmetic circuits and their
application to lattice-based cryptography” (PKC 2020)

MPC protocol for MQ

The multi-party computation must check that the vector satisfies
x

y1 = xT A1x+bT
1 x

y1 = xT A1x+bT
1 x

⋮
ym = xT Amx+bT

mx

From , find such that

.

(A1, …, Am, b1, …, bm, y1, …, ym) x ∈ 𝔽 n
q

∀i ≤ m, yi = xT Aix+bT
i x

Multivariate Quadratic Problem

MPC protocol for MQ

The multi-party computation must check that the vector satisfies

where chosen by the verifier.

False positive rate:

x
m

∑
i=1

γi ⋅ (yi − xT Aix−bT
i x) = 0

γ1, …, γm ∈ 𝔽ext

1
|𝔽ext |

From , find such that

.

(A1, …, Am, b1, …, bm, y1, …, ym) x ∈ 𝔽 n
q

∀i ≤ m, yi = xT Aix+bT
i x

Multivariate Quadratic Problem

MPC protocol for MQ

The multi-party computation must check that the vector satisfies

where chosen by the verifier.

False positive rate:

x

m

∑
i=1

γi ⋅ (yi − bT
i x) = ⟨x, (

m

∑
i=1

γi ⋅ Ai) x⟩

γ1, …, γm ∈ 𝔽ext

1
|𝔽ext |

From , find such that

.

(A1, …, Am, b1, …, bm, y1, …, ym) x ∈ 𝔽 n
q

∀i ≤ m, yi = xT Aix+bT
i x

Multivariate Quadratic Problem

MPC protocol for MQ

The multi-party computation must check that the vector satisfies

where chosen by the verifier.

False positive rate:

x

m

∑
i=1

γi ⋅ (yi − bT
i x) = ⟨x, (

m

∑
i=1

γi ⋅ Ai) x⟩

γ1, …, γm ∈ 𝔽ext

1
|𝔽ext |

From , find such that

.

(A1, …, Am, b1, …, bm, y1, …, ym) x ∈ 𝔽 n
q

∀i ≤ m, yi = xT Aix+bT
i x

Multivariate Quadratic Problem

Linear into the secret values

Signature Schemes from MQ

Variant Signature Size PK Size

[SSH11] (3 rounds) — 28 502 B

38 B

MQ-DSS [CHR+16] — 41 444 B
MudFish [Beu20] — 14 640 B

Mesquite [Wan22] Fast 9 578 B
Short 8 609 B

Our scheme Fast 10 764 B
Short 9 064 B

Variant Signature Size PK Size

[SSH11] (3 rounds) — 40 328 B

56 B

MQ-DSS [CHR+16] — 28 768 B

MudFish [Beu20] Fast 15 958 B
Short 13 910 B

Mesquite [Wan22] Fast 11 339 B
Short 9 615 B

Our scheme Fast 8 488 B
Short 7 114 B

q = 4
m = 88
n = 88

q = 256
m = 40
n = 40

MPC protocols for MinRank and Rank SD

From , find such that

.

(M0, M1, …, Mk) x ∈ 𝔽k
q

rank(M0 +
k

∑
i=1

xiMi) ≤ r

MinRank Problem

From , find such that

 and .

(H, y) x ∈ 𝔽 n
qm

y = Hx rank(x) ≤ r

Rank Syndrome Decoding Problem

MPC protocols for MinRank and Rank SD

From , find such that

.

(M0, M1, …, Mk) x ∈ 𝔽k
q

rank(M0 +
k

∑
i=1

xiMi) ≤ r

MinRank Problem

From , find such that

 and .

(H, y) x ∈ 𝔽 n
qm

y = Hx rank(x) ≤ r

Rank Syndrome Decoding Problem

Linear into the secret values

MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix
has a rank of at most .

Rank Decomposition:

A matrix has a rank of at most

iff there exists and such that .

Inputs: , and .

1. Check that

M ∈ 𝔽m×n
q

r

M ∈ 𝔽n×m
q r

T ∈ 𝔽n×r
q R ∈ 𝔽r×m

q M = TR

M T R

M = TR

MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix
has a rank of at most . Rewrite as

Linearized Polynomials:

A matrix has a rank of at most

 there exists a linear subspace of of dimension

such that

 there exists a monic -polynomial of degree

such that are roots of .

M ∈ 𝔽m×n
q

r M (x1, …, xn) ∈ 𝔽n
qm .

M ∈ 𝔽n×m
q r

⇔ U 𝔽qm r
{x1, …, xn} ⊂ U

⇔ q LU qr

x1, …, xn LU

LU := Xqr +
r−1

∑
i=0

βiXqi

MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix
has a rank of at most . Rewrite as

Inputs: and .

We want to check that

.

M ∈ 𝔽m×n
q

r M (x1, …, xn) ∈ 𝔽n
qm .

M LU := Xqr +
r−1

∑
i=0

βiXqi

LU(x1) = LU(x2) = … = LU(xn) = 0

MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix
has a rank of at most . Rewrite as

Inputs: and .

We want to check that

where chosen by the verifier.

M ∈ 𝔽m×n
q

r M (x1, …, xn) ∈ 𝔽n
qm .

M LU := Xqr +
r−1

∑
i=0

βiXqi

0 =
n

∑
j=1

γj ⋅ LU(xj)

γ1, …, γm ∈ 𝔽ext

MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix
has a rank of at most . Rewrite as

Inputs: and .

We want to check that

where chosen by the verifier.

M ∈ 𝔽m×n
q

r M (x1, …, xn) ∈ 𝔽n
qm .

M LU := Xqr +
r−1

∑
i=0

βiXqi

−
n

∑
j=1

γj ⋅ xqr

j = ⟨β,

∑n
j=1 γj ⋅ xq0

j

⋮
∑n

j=1 γj ⋅ xqr−1

j

⟩

γ1, …, γm ∈ 𝔽ext

MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix
has a rank of at most . Rewrite as

Inputs: and .

We want to check that

where chosen by the verifier.

M ∈ 𝔽m×n
q

r M (x1, …, xn) ∈ 𝔽n
qm .

M LU := Xqr +
r−1

∑
i=0

βiXqi

−
n

∑
j=1

γj ⋅ xqr

j = ⟨β,

∑n
j=1 γj ⋅ xq0

j

⋮
∑n

j=1 γj ⋅ xqr−1

j

⟩

γ1, …, γm ∈ 𝔽ext

Linear into the secret values

Signature Schemes from MinRank

q = 16
m = 16
n = 16
k = 142

r = 4

Variant Signature Size PK Size

[Cou01] — 28 575 B

73 B

[SINY22] — 28 128 B

[BESV22] — 26 405 B

[BG22]
Fast 13 644 B

Short 10 937 B

[ARZV22]
Fast 10 116 B

Short 7 422 B

Our scheme 
(rank decomposition)

Fast 9 288 B

Short 7 122 B

Our scheme

(q-polynomials)

Fast 7 204 B

Short 5 518 B

Signature Schemes from RankSD

q = 2
m = 31
n = 30
k = 15
r = 9

Variant Signature Size PK Size

[Ste94] — 31 358 B

75 B

[Vér96] — 27 115 B

[FJR21]
— 19 328 B

— 14 181 B

[BG22]
Fast 15 982 B

Short 12 274 B

Our scheme 
(rank decomposition)

Fast 11 000 B

Short 8 543 B

Our scheme

(q-polynomials)

Fast 7 376 B

Short 5 899 B

Variant Signature Size PK Size

[BG22]
Fast 12 607 B

95 B
Short 10 126 B

[BG22]
Fast 9 392 B

410 B
Short 6 754 B

Ideal RSD

Ideal RSL

Conclusion

Fen24-MQ

Fen24-RankSD

(q-polynomials)

Fen24-MinRank

(q-polynomials)

Fen24-MinRank

(rank-decomposition)

MQOM

RYDE

MIRA

MiRitHARZV23

• Many ideas used in the current NIST candidates:

More advanced
innerproduct checking

[ARZV23] Adj, Rivera-Zamarripa,Verbel: “MinRank in the Head:
Short Signatures from Zero-Knowledge Proofs” (AfricaCrypt 2023)

+ small optimisation

Conclusion

Fen24-MQ

Fen24-RankSD

(q-polynomials)

Fen24-MinRank

(q-polynomials)

Fen24-MinRank

(rank-decomposition)

MQOM

RYDE

MIRA

MiRitHARZV23

• Many ideas used in the current NIST candidates:

More advanced
innerproduct checking

+ small optimisation

Thank you for your attention !

