Building MPCitH-based Signatures from MQ, MinRank and Rank SD

Thibauld Feneuil

ACNS'24

March 6, 2024 — Abu Dhabi (UAE)

How to build signature schemes?

Hash & Sign F_{pk} $H(m) \qquad \sigma$ F_{pk}^{-1} Very hard to compute

From an identification scheme

Short signatures

" "Trapdoor" in the public key

- Large(r) signatures
- Short public key

How to build signature schemes?

MPC in the Head

- **[IKOS07]** Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn a *multiparty computation* (MPC) into an identification scheme

• **Generic**: can be apply to any cryptographic problem

Designing the MPC protocol

- We consider only <u>broadcast communication</u> [KKW18] and <u>linear operations</u>.
- To minimize the signature size, we need to
 - Minimize the size of the input of the MPC protocol,
 - Minimize the size of the broadcasted values.
- Relax the MPC functionality [BN20].
 - If F(x) = y, the MPC protocol should always output Accept.
 - If $F(x) \neq y$, the MPC protocol should output Reject with high probability.

[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)

[BN20] Baum, Nof: "Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography" (PKC 2020)

Multivariate Quadratic Problem From $(A_1, ..., A_m, b_1, ..., b_m, y_1, ..., y_m)$, find $x \in \mathbb{F}_q^n$ such that $\forall i \leq m, y_i = x^T A_i x + b_i^T x.$

The multi-party computation must check that the vector **x** satisfies

$$y_{1} = \mathbf{x}^{T} A_{1} \mathbf{x} + b_{1}^{T} \mathbf{x}$$
$$y_{1} = \mathbf{x}^{T} A_{1} \mathbf{x} + b_{1}^{T} \mathbf{x}$$
$$\vdots$$
$$y_{m} = \mathbf{x}^{T} A_{m} \mathbf{x} + b_{m}^{T} \mathbf{x}$$

Multivariate Quadratic Problem From $(A_1, ..., A_m, b_1, ..., b_m, y_1, ..., y_m)$, find $x \in \mathbb{F}_q^n$ such that $\forall i \leq m, y_i = x^T A_i x + b_i^T x.$

The multi-party computation must check that the vector **x** satisfies

$$\sum_{i=1}^{m} \gamma_i \cdot \left(y_i - \mathbf{x}^T A_i \mathbf{x} - b_i^T \mathbf{x} \right) = 0$$

where $\gamma_1, \ldots, \gamma_m \in \mathbb{F}_{ext}$ chosen by the verifier.

False positive rate:

$$\frac{1}{|\mathbb{F}_{ext}|}$$

1

Multivariate Quadratic Problem From $(A_1, ..., A_m, b_1, ..., b_m, y_1, ..., y_m)$, find $x \in \mathbb{F}_q^n$ such that $\forall i \leq m, y_i = x^T A_i x + b_i^T x.$

The multi-party computation must check that the vector **x** satisfies

$$\sum_{i=1}^{m} \gamma_i \cdot \left(y_i - b_i^T \mathbf{x} \right) = \langle \mathbf{x}, \left(\sum_{i=1}^{m} \gamma_i \cdot A_i \right) \mathbf{x} \rangle$$

where $\gamma_1, \ldots, \gamma_m \in \mathbb{F}_{ext}$ chosen by the verifier.

False positive rate:

$$\frac{1}{|\mathbb{F}_{ext}|}$$

<u>Multivariate Quadratic Problem</u> From $(A_1, ..., A_m, b_1, ..., b_m, y_1, ..., y_m)$, find $\mathbf{x} \in \mathbb{F}_q^n$ such that $\forall i \leq m, \ y_i = \mathbf{x}^T A_i \mathbf{x} + b_i^T \mathbf{x}.$

The multi-party computation must check that the vector **x** satisfies

$$\sum_{i=1}^{m} \gamma_i \cdot (y_i - b_i^T x) = \langle x, \left(\sum_{i=1}^{m} \gamma_i \cdot A_i\right) x \rangle$$

where $\gamma_1, \dots, \gamma_m \in \mathbb{F}_{ext}$ chosen by the verifier.
False positive rate:
$$\frac{1}{|\mathbb{F}_{ext}|}$$
 Linear into the secret values

Signature Schemes from MQ

	Variant	Signature Size	PK Size	
[SSH11] (3 rounds)		28 502 B		
MQ-DSS [CHR+16]		41 444 B		
MudFish [Beu20]		14 640 B		
Mesquite [Wan22]	Fast	9 578 B	38 B	
	Short	8 609 B		
Our scheme	Fast	10 764 B		
	Short	9 064 B		

	Variant	Signature Size	PK Size
[SSH11] (3 rounds)		40 328 B	
MQ-DSS [CHR+16]		28 768 B	
MudFish [Beu20]	Fast	15 958 B	56 B
	Short	13 910 B	
Mesquite [Wan22]	Fast	11 339 B	
	Short	9 615 B	
Our scheme	Fast	8 488 B	
	Short	7 114 B	

q = 256m = 40n = 40

q = 4

m = 88

n = 88

MinRank Problem

From $(M_0, M_1, ..., M_k)$, find $x \in \mathbb{F}_q^k$ such that

$$\operatorname{rank}(M_0 + \sum_{i=1}^k x_i M_i) \le r.$$

Rank Syndrome Decoding Problem

From (H, y), find $\mathbf{x} \in \mathbb{F}_{q^m}^n$ such that

y = Hx and $rank(x) \le r$.

The multi-party computation must check that the matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r.

Rank Decomposition:

A matrix $M \in \mathbb{F}_q^{n \times m}$ has a rank of at most riff there exists $T \in \mathbb{F}_q^{n \times r}$ and $R \in \mathbb{F}_q^{r \times m}$ such that M = TR.

Inputs: M, T and R.

1. Check that M = TR

The multi-party computation must check that the matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r. Rewrite M as $(x_1, ..., x_n) \in \mathbb{F}_{q^m}^n$.

Linearized Polynomials:

A matrix $M \in \mathbb{F}_q^{n \times m}$ has a rank of at most r \Leftrightarrow there exists a linear subspace U of \mathbb{F}_{q^m} of dimension rsuch that $\{x_1, ..., x_n\} \subset U$ \Leftrightarrow there exists a monic q-polynomial L_U of degree q^r such that $x_1, ..., x_n$ are roots of L_U .

$$L_U := X^{q^r} + \sum_{i=0}^{r-1} \beta_i X^{q^i}$$

The multi-party computation must check that the matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r. Rewrite M as $(x_1, \dots, x_n) \in \mathbb{F}_{q^m}^n$.

Inputs: **M** and
$$L_U := X^{q^r} + \sum_{i=0}^{r-1} \beta_i X^{q^i}$$
.

We want to check that

$$L_U(x_1) = L_U(x_2) = \dots = L_U(x_n) = 0.$$

The multi-party computation must check that the matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r. Rewrite M as $(x_1, ..., x_n) \in \mathbb{F}_{q^m}^n$.

Inputs:
$$\boldsymbol{M}$$
 and $\boldsymbol{L}_{\boldsymbol{U}} := X^{q^r} + \sum_{i=0}^{r-1} \boldsymbol{\beta}_i X^{q^i}$.

We want to check that

$$0 = \sum_{j=1}^{n} \gamma_j \cdot \boldsymbol{L}_{\boldsymbol{U}}(\boldsymbol{x}_j)$$

where $\gamma_1, \ldots, \gamma_m \in \mathbb{F}_{ext}$ chosen by the verifier.

The multi-party computation must check that the matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r. Rewrite M as $(x_1, ..., x_n) \in \mathbb{F}_{q^m}^n$.

Inputs:
$$\boldsymbol{M}$$
 and $\boldsymbol{L}_{\boldsymbol{U}} := X^{q^r} + \sum_{i=0}^{r-1} \boldsymbol{\beta}_i X^{q^i}$.

We want to check that

$$-\sum_{j=1}^{n} \gamma_{j} \cdot \mathbf{x}_{j}^{q^{r}} = \langle \boldsymbol{\beta}, \begin{pmatrix} \sum_{j=1}^{n} \gamma_{j} \cdot \mathbf{x}_{j}^{q^{0}} \\ \vdots \\ \sum_{j=1}^{n} \gamma_{j} \cdot \mathbf{x}_{j}^{q^{r-1}} \end{pmatrix} \rangle$$

where $\gamma_1, \ldots, \gamma_m \in \mathbb{F}_{ext}$ chosen by the verifier.

The multi-party computation must check that the matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r. Rewrite M as $(x_1, ..., x_n) \in \mathbb{F}_{q^m}^n$.

where $\gamma_1, \ldots, \gamma_m \in \mathbb{F}_{ext}$ chosen by the verifier.

Signature Schemes from MinRank

	Variant	Signature Size	PK Size	
[Cou01]		28 575 B		
[SINY22]		28 128 B		
[BESV22]		26 405 B		
[BG22]	Fast	13 644 B		
	Short	10 937 B		
[ARZV22]	Fast	10 116 B	73 B	
	Short	7 422 B		
Our scheme	Fast	9 288 B		
(rank decomposition)	Short	7 122 B		
Our scheme (q-polynomials)	Fast	7 204 B		
	Short	5 518 B		

q = 16 m = 16 n = 16 k = 142r = 4

Signature Schemes from RankSD

		Variant	Signature Size	PK Size
q = 2 m = 31 n = 30 k = 15 r = 9	[Ste94]		31 358 B	
	[Vér96]		27 115 B	- 75 B
	[FJR21]		19 328 B	
			14 181 B	
	[BG22]	Fast	15 982 B	
		Short	12 274 B	
	Our scheme	Fast	11 000 B	
	(rank decomposition)	Short	8 543 B	
	Our scheme	Fast	7 376 B	
	(q-polynomials)	Short	5 899 B	

		Variant	Signature Size	PK Size
Ideal RSD	[BG22]	Fast	12 607 B	95 B
		Short	10 126 B	
Ideal RSL	[BG22]	Fast	9 392 B	410 B
		Short	6 754 B	

• Many ideas used in the current NIST candidates:

[ARZV23] Adj, Rivera-Zamarripa, Verbel: "MinRank in the Head: Short Signatures from Zero-Knowledge Proofs" (AfricaCrypt 2023)

• Many ideas used in the current NIST candidates:

