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MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007)


• Turn a multiparty computation (MPC) into an identification scheme


• Generic: can be apply to any cryptographic problem
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Designing the MPC protocol

• We consider only broadcast communication [KKW18] and 
linear operations.


• To minimize the signature size, we need to


‣ Minimize the size of the input of the MPC protocol,


‣ Minimize the size of the broadcasted values.


• Relax the MPC functionality [BN20].


• If , the MPC protocol should always output Accept.


• If , the MPC protocol should output Reject with 
high probability.

F(x) = y

F(x) ≠ y

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to 
Post-Quantum Signatures” (CCS 2018)

[BN20] Baum, Nof: “Concretely-efficient zero-knowledge arguments for arithmetic circuits and their 
application to lattice-based cryptography” (PKC 2020)



MPC protocol for MQ
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Signature Schemes from MQ

Variant Signature Size PK Size

[SSH11] (3 rounds) — 28 502 B

38 B

MQ-DSS [CHR+16] — 41 444 B
MudFish [Beu20] — 14 640 B

Mesquite [Wan22] Fast 9 578 B
Short 8 609 B

Our scheme Fast 10 764 B
Short 9 064 B

Variant Signature Size PK Size

[SSH11] (3 rounds) — 40 328 B

56 B

MQ-DSS [CHR+16] — 28 768 B

MudFish [Beu20] Fast 15 958 B
Short 13 910 B

Mesquite [Wan22] Fast 11 339 B
Short 9 615 B

Our scheme Fast 8 488 B
Short 7 114 B






q = 4
m = 88
n = 88






q = 256
m = 40
n = 40



MPC protocols for MinRank and Rank SD

From , find  such that
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MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix   
has a rank of at most .


Rank Decomposition:


A matrix  has a rank of at most 


iff there exists  and  such that .


Inputs: ,  and .


1. Check that 

M ∈ 𝔽m×n
q

r

M ∈ 𝔽n×m
q r

T ∈ 𝔽n×r
q R ∈ 𝔽r×m

q M = TR

M T R

M = TR



MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix   
has a rank of at most . Rewrite  as 


Linearized Polynomials:


A matrix  has a rank of at most 


 there exists a linear subspace  of  of dimension 

such that 


 there exists a monic -polynomial  of degree 

such that  are roots of .

M ∈ 𝔽m×n
q

r M (x1, …, xn) ∈ 𝔽n
qm .

M ∈ 𝔽n×m
q r

⇔ U 𝔽qm r
{x1, …, xn} ⊂ U

⇔ q LU qr

x1, …, xn LU

LU := Xqr +
r−1

∑
i=0

βiXqi
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Inputs:  and .


We want to check that


.

M ∈ 𝔽m×n
q

r M (x1, …, xn) ∈ 𝔽n
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r−1

∑
i=0

βiXqi
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where  chosen by the verifier.
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Signature Schemes from MinRank










q = 16
m = 16
n = 16
k = 142

r = 4

Variant Signature Size PK Size

[Cou01] — 28 575 B

73 B

[SINY22] — 28 128 B

[BESV22] — 26 405 B

[BG22]
Fast 13 644 B

Short 10 937 B

[ARZV22]
Fast 10 116 B

Short 7 422 B

Our scheme 
(rank decomposition)

Fast 9 288 B

Short 7 122 B

Our scheme

(q-polynomials)

Fast 7 204 B

Short 5 518 B



Signature Schemes from RankSD










q = 2
m = 31
n = 30
k = 15
r = 9

Variant Signature Size PK Size

[Ste94] — 31 358 B

75 B

[Vér96] — 27 115 B

[FJR21]
— 19 328 B

— 14 181 B

[BG22]
Fast 15 982 B

Short 12 274 B

Our scheme 
(rank decomposition)

Fast 11 000 B

Short 8 543 B

Our scheme

(q-polynomials)

Fast 7 376 B

Short 5 899 B

Variant Signature Size PK Size

[BG22]
Fast 12 607 B

95 B
Short 10 126 B

[BG22]
Fast 9 392 B

410 B
Short 6 754 B

Ideal RSD

Ideal RSL



Conclusion

Fen24-MQ

Fen24-RankSD

(q-polynomials)

Fen24-MinRank

(q-polynomials)

Fen24-MinRank

(rank-decomposition)

MQOM

RYDE

MIRA

MiRitHARZV23

• Many ideas used in the current NIST candidates:

More advanced 
innerproduct checking

[ARZV23] Adj, Rivera-Zamarripa,Verbel: “MinRank in the Head: 
Short Signatures from Zero-Knowledge Proofs” (AfricaCrypt 2023)

+ small optimisation
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Thank you for your attention !


