Building MPCitH-based Signatures from MQ, MinRank and Rank SD

Thibauld Feneuil

ACNS'24
March 6, 2024 - Abu Dhabi (UAE)

How to build signature schemes?

Hash \& Sign

Short signatures
■ "Trapdoor" in the public key

From an identification scheme

- Large(r) signatures
- Short public key

How to build signature schemes?

Hash \& Sign

- Short signatures
- "Trapdoor" in the public key

- Large(r) signatures
- Short public key

MPC in the Head

- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn a multiparty computation (MPC) into an identification scheme

- Generic: can be apply to any cryptographic problem

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

$$
x
$$

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

MPC-in-the-Head transform

Zero-knowledge proof

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Input sharing $\llbracket x \rrbracket$ Joint evaluation of:
$g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}$

Signature scheme

signature

Zero-knowledge proof

Designing the MPC protocol

- We consider only broadcast communication [KKW18] and linear operations.
- To minimize the signature size, we need to
- Minimize the size of the input of the MPC protocol,
- Minimize the size of the broadcasted values.
- Relax the MPC functionality [BN20].
- If $F(x)=y$, the MPC protocol should always output Accept.
- If $F(x) \neq y$, the MPC protocol should output Reject with high probability.
[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)
[BN20] Baum, Nof: "Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography" (PKC 2020)

MPC protocol for MQ

Multivariate Quadratic Problem
From $\left(A_{1}, \ldots, A_{m}, b_{1}, \ldots, b_{m}, y_{1}, \ldots, y_{m}\right)$, find $x \in \mathbb{F}_{q}^{n}$ such that

$$
\forall i \leq m, \quad y_{i}=x^{T} A_{i} x+b_{i}^{T} x .
$$

The multi-party computation must check that the vector x satisfies

$$
\begin{aligned}
y_{1} & =x^{T} A_{1} x+b_{1}^{T} x \\
y_{1} & =x^{T} A_{1} x+b_{1}^{T} x \\
& \vdots \\
y_{m} & =x^{T} A_{m} x+b_{m}^{T} x
\end{aligned}
$$

MPC protocol for MQ

Multivariate Quadratic Problem
From $\left(A_{1}, \ldots, A_{m}, b_{1}, \ldots, b_{m}, y_{1}, \ldots, y_{m}\right)$, find $x \in \mathbb{F}_{q}^{n}$ such that

$$
\forall i \leq m, \quad y_{i}=x^{T} A_{i} x+b_{i}^{T} x .
$$

The multi-party computation must check that the vector x satisfies

$$
\sum_{i=1}^{m} \gamma_{i} \cdot\left(y_{i}-x^{T} A_{i} x-b_{i}^{T} x\right)=0
$$

where $\gamma_{1}, \ldots, \gamma_{m} \in \mathbb{F}_{\text {ext }}$ chosen by the verifier.
False positive rate:

$$
\frac{1}{\left|\mathbb{F}_{e x x}\right|}
$$

MPC protocol for MQ

Multivariate Quadratic Problem
From $\left(A_{1}, \ldots, A_{m}, b_{1}, \ldots, b_{m}, y_{1}, \ldots, y_{m}\right)$, find $x \in \mathbb{F}_{q}^{n}$ such that

$$
\forall i \leq m, \quad y_{i}=x^{T} A_{i} x+b_{i}^{T} x
$$

The multi-party computation must check that the vector x satisfies

$$
\sum_{i=1}^{m} \gamma_{i} \cdot\left(y_{i}-b_{i}^{T} x\right)=\left\langle x,\left(\sum_{i=1}^{m} \gamma_{i} \cdot A_{i}\right) x\right\rangle
$$

where $\gamma_{1}, \ldots, \gamma_{m} \in \mathbb{F}_{\text {ext }}$ chosen by the verifier.
False positive rate:

$$
\frac{1}{\left|\mathbb{F}_{e x x}\right|}
$$

MPC protocol for MQ

Multivariate Quadratic Problem
From $\left(A_{1}, \ldots, A_{m}, b_{1}, \ldots, b_{m}, y_{1}, \ldots, y_{m}\right)$, find $x \in \mathbb{F}_{q}^{n}$ such that

$$
\forall i \leq m, \quad y_{i}=x^{T} A_{i} x+b_{i}^{T} x
$$

The multi-party computation must check that the vector x satisfies

$$
\sum_{i=1}^{m} \gamma_{i} \cdot\left(y_{i}-b_{i}^{T} x\right)=\left\langle x,\left(\sum_{i=1}^{m} \gamma_{i} \cdot A_{i}\right) x\right\rangle
$$

where $\gamma_{1}, \ldots, \gamma_{m} \in \mathbb{F}_{\text {ext }}$ chosen by the verifier.
False positive rate:

$$
\frac{1}{\left|\mathbb{F}_{e x t}\right|}
$$

Signature Schemes from MQ

$$
\begin{aligned}
q & =4 \\
m & =88 \\
n & =88
\end{aligned}
$$

	Variant	Signature Size	PK Size
[SSH11] (3 rounds)	-	28502 B	
MQ-DSS [CHR+16]	-	41444 B	
MudFish [Beu20]	-	14640 B	38 B
Mesquite [Wan22]	Fast	9578 B	
	Short	8609 B	
Our scheme	Fast	10764 B	
	Short	9064 B	

$q=256$
$m=40$
$n=40$

	Variant	Signature Size	PK Size
[SSH11] (3 rounds)	-	40328 B	56 B
MQ-DSS [CHR+16]	-	28768 B	
MudFish [Beu20]	Fast	15958 B	
	Short	13910 B	
Mesquite [Wan22]	Fast	11339 B	
	Short	9615 B	
Our scheme	Fast	8488 B	
	Short	7114 B	

MPC protocols for MinRank and Rank SD

MinRank Problem

From $\left(M_{0}, M_{1}, \ldots, M_{k}\right)$, find $x \in \mathbb{F}_{q}^{k}$ such that

$$
\operatorname{rank}\left(M_{0}+\sum_{i=1}^{k} x_{i} M_{i}\right) \leq r
$$

Rank Syndrome Decoding Problem
From (H, y), find $x \in \mathbb{F}_{q^{m}}^{n}$ such that

$$
y=H x \quad \text { and } \quad \operatorname{rank}(x) \leq r .
$$

MPC protocols for MinRank and Rank SD

MinRank Problem

From $\left(M_{0}, M_{1}, \ldots, M_{k}\right)$, find $x \in \mathbb{F}_{q}^{k}$ such that

$$
\operatorname{rank}\left(M_{0}+\sum_{i=1}^{k} x_{i} M_{i} \leq r\right.
$$

Rank Syndrome Decoding Problem

From (H, y), find $x \in \mathbb{F}_{q^{m}}^{n}$ such that

MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix $M \in \mathbb{F}_{q}^{m \times n}$ has a rank of at most r.

Rank Decomposition:
A matrix $M \in \mathbb{F}_{q}^{n \times m}$ has a rank of at most r
iff there exists $T \in \mathbb{F}_{q}^{n \times r}$ and $R \in \mathbb{F}_{q}^{r \times m}$ such that $M=T R$.

Inputs: M, T and R.

1. Check that $M=T R$

MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix $M \in \mathbb{F}_{q}^{m \times n}$ has a rank of at most r. Rewrite M as $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$.

Linearized Polynomials:
A matrix $M \in \mathbb{F}_{q}^{n \times m}$ has a rank of at most r
\Leftrightarrow there exists a linear subspace U of $\mathbb{F}_{q^{m}}$ of dimension r such that $\left\{x_{1}, \ldots, x_{n}\right\} \subset U$
\Leftrightarrow there exists a monic q-polynomial L_{U} of degree q^{r} such that x_{1}, \ldots, x_{n} are roots of L_{U}.

$$
L_{U}:=X^{q^{r}}+\sum_{i=0}^{r-1} \beta_{i} X^{q^{i}}
$$

MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix $M \in \mathbb{F}_{q}^{m \times n}$ has a rank of at most r. Rewrite M as $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$.

Inputs: M and $L_{U}:=X^{q^{r}}+\sum_{i=0}^{r-1} \beta_{i} X^{q^{i}}$.
We want to check that

$$
L_{U}\left(x_{1}\right)=L_{U}\left(x_{2}\right)=\ldots=L_{U}\left(x_{n}\right)=0 .
$$

MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix $M \in \mathbb{F}_{q}^{m \times n}$ has a rank of at most r. Rewrite M as $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$.

Inputs: M and $L_{U}:=X^{q^{r}}+\sum_{i=0}^{r-1} \beta_{i} X^{q^{i}}$.
We want to check that

$$
0=\sum_{j=1}^{n} \gamma_{j} \cdot L_{U}\left(x_{j}\right)
$$

where $\gamma_{1}, \ldots, \gamma_{m} \in \mathbb{F}_{\text {ext }}$ chosen by the verifier.

MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix $M \in \mathbb{F}_{q}^{m \times n}$ has a rank of at most r. Rewrite M as $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$.

Inputs: M and $L_{U}:=X^{q^{r}}+\sum_{i=0}^{r-1} \beta_{i} X^{q^{i}}$.
We want to check that

$$
-\sum_{j=1}^{n} \gamma_{j} \cdot x_{j}^{q^{r}}=\left\langle\beta,\left(\begin{array}{c}
\sum_{j=1}^{n} \gamma_{j} \cdot x_{j}^{q^{0}} \\
\vdots \\
\sum_{j=1}^{n} \gamma_{j} \cdot x_{j}^{q^{r-1}}
\end{array}\right)\right\rangle
$$

where $\gamma_{1}, \ldots, \gamma_{m} \in \mathbb{F}_{\text {ext }}$ chosen by the verifier.

MPC protocols for MinRank and Rank SD

The multi-party computation must check that the matrix $M \in \mathbb{F}_{q}^{m \times n}$ has a rank of at most r. Rewrite M as $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$.

Inputs: M and $L_{U}:=X^{q^{r}}+\sum_{i=0}^{r-1} \beta_{i} X^{q^{i}}$.
Linear into the secret values

We want to check that

$$
\left\langle\beta,\left(\begin{array}{c}
\sum_{j=1}^{n} \gamma_{j} \cdot x_{j}^{q^{0}} \\
\vdots \\
\sum_{j=1}^{n} \gamma_{j} \cdot x_{j}^{q^{r-1}}
\end{array}\right)\right.
$$

where $\gamma_{1}, \ldots, \gamma_{m} \in \mathbb{F}_{\text {ext }}$ chosen by the verifier.

Signature Schemes from MinRank

		Variant	Signature Size	PK Size
$\begin{gathered} q=16 \\ m=16 \\ n=16 \\ k=142 \\ r=4 \end{gathered}$	[Cou01]	-	28575 B	73 B
	[SINY22]	-	28128 B	
	[BESV22]	-	26405 B	
		Fast	13644 B	
	[BG22]	Short	10937 B	
	[ARZV22]	Fast	10116 B	
	[ARZV22]	Short	7422 B	
	Our scheme	Fast	9288 B	
	(rank decomposition)	Short	7122 B	
	Our scheme	Fast	7204 B	
	(q-polynomials)	Short	5518 B	

Signature Schemes from RankSD

Ideal RSD		Variant	Signature Size	PK Size
	[BG22]	Fast	12607 B	95 B
		Short	10126 B	
Ideal RSL	[BG22]	Fast	9392 B	410 B
		Short	6754 B	

Conclusion

- Many ideas used in the current NIST candidates:

$\underset{\text { (q-polynomials) }}{\text { Fen24-RankSD }} \xrightarrow[+ \text { small optimisation }]{\longrightarrow}$ RYDE

- Many ideas used in the current NIST candidates:

Fen24-MinRank

MIRA
(q-polynomials)

Fen24-MinRank
(rank-decomposition)

Thank you for your attention!

