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Identification Scheme

| lknow O—=. |

v Commitment )

Challenge 1
Response 1 >
Challenge n
Response n S
Prover A Veritier Q==

[ | am convinced. ]

® Completeness: Priverif v | honest prover] = 1
® Soundness: Prlverif v | malicious prover] < ¢ (e.g. 128

® Zero-knowledge: verifier learns nothing on Q=—=.



Identification Scheme

| know Q=—x.

> Challenge 1 = Hash(m, Commitment)

> Challenge n = Hash(m, Responsen — 1)
Prover \
-

ranscript

Fiat-Shamir
Transformation Verifier Q=

m: message to sign



e [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

® Turn a multiparty computation (MPC) into an identification scheme
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® Generic: can be apply to any cryptographic problem
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One-way function Multiparty computation (MPC)

o o Input sharing [[x]]

L X |
Fx Y ‘: M Joint evaluation of:
E.g. AES, MQ system, ‘. ° ; Accept it F(x) =y

:\},‘/ - 800 = {Reject it F(x) #y
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TC: Threshold Computation

[FR23b] Feneuil, Rivain: “Threshold Computation in
the Head: Improved Framework for Post-Quantum

Signatures and Zero-Knowledge Arguments” (Eprint
2023/1573)

[FR23a] Feneuil, Rivain: “Threshold Linear Secret
Sharing to the Rescue of MPC-in-the-Head”
(Asiacrypt 2023)



We set the degree-¢ polynomial P

such that
P0) =
. g - ‘ 0)=x
[[.X]]S \ / [[X]]3 P(e;) < I
‘ P(e,) < I
[[X]]4 We define the shares as

Vie {1,...,N}, [x], = P(e).
[x]] is a degree-£ Shamir's secret sharing of x
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Jointly compute

[ Accept it F(x) =y
800 = {Reject it F(x) £y

Z-private: the views of any £ parties
provide no information on x

Semi-honest model: assuming that the
parties follow the steps of the protocol



e Jointly compute

Accept if F(x) =1y
g(x) = {R . .
eject if F(x) #y

[x1l; L1,
® /-private: the views of any £ parties

[l / provide no information on x
[[05]]2

® Semi-honest model: assuming that the
Public parties follow the steps of the protocol

—

_—" domain ¥—__ ® Broadcast model
led
‘ ~ ’ »  Parties locally compute on their shares

[[.X]]5 [[a]]4I [[x]]3 [x]] = [l
. » Parties broadcast [[a]] and recompute
o
[[X]]4 » Parties start again (now knowing a)

[x]] is a degree-£ Shamir's secret sharing of x
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1) Generate and commit shares Com”([[x]],)

Lxll = (I, - [xTly) Com([Ix]ly)

Prover Verifier




(1) Generate and commit shares

[x]] = ([[x]]]’ ceey [[x]]N)
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(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)
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@ Choose a random set of parties
[C{l,...,N}, st |I|=7.

® Check Vie I
- Commitments Com”i([[x]],)

- MPC computation [[a]]; = ¢([[x],)
Check g(y, ) = Accept

Verifier




TCitH transform
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We have F(x) # y where >
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1) Generate and commit shares
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We have F(x) # y where
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send broadcast
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> | @ Choose a random set of parties
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® Check Vi e I
- Commitments Com”i([[x],)

> - MPC computation [a]]; = ¢([[x],)
Check g(y, a) = Accept

Veritier
Q Cheating detected!




1) Generate and commit shares
[[x]] — ([[x]]17 R [[x]]N)

We have F(x) # y where
x =[xl + ... + [xlly

@ Run MPC in their head

[x1l, X

<

@ Open parties in [

Malicious Prover

Com”1([[x],)

CO;I.I.pN( [x1y)

send broadcast

[ally, ..., [ally

(Ix1;, p)ier

@ Choose a random set of parties
[C{l,...,N}, st |I|=7.

® Check Vi e I
- Commitments Com”i([[x],)

- MPC computation [a]]; = ¢([[x],)
Check g(y, a) = Accept

Verifier

Q Seems OK.
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® Zero-knowledge <= MPC protocol is £-private



TCitH transform

® Zero-knowledge <= MPC protocol is £-private

® Soundness: if the committed sharing is valid

P(malicious prover convinces the verifier)

= P(all corrupted parties remain hidden)
da
()
(%)
¢

d, is the degree of the sharing [a]].



TCitH transform

® Zero-knowledge <= MPC protocol is £-private

® Soundness: if the committed sharing is valid

P(malicious prover convinces the verifier)

= P(all corrupted parties remain hidden)
da
()
(%)
¢

d, is the degree of the sharing [a]].

® Parallel repetition

Protocol repeated 7 times in parallel, soundness error




How to commit Shamir’s secret sharing?

TCitH-GGM: Using a GGM tree

VS

TCitH-MT: Using a Merkle tree




Step 1: Generate a replicated secret sharing [ISN89]:

7‘=7‘1+7'2+...+7'N

- Party P: 1y, 13, Ty
- Partyyz: Fis73s cees Iy

- Partygjz 1’1,1’2, ...,I’N_l

[ISN89] Ito, Saito, Nishizeki: “Secret sharing scheme realizing general
access structure” (Electronics and Communications in Japan 1989)



Step 1: Generate a replicated secret sharing [ISN89]:

7‘=7‘1+7'2+...+7'N

- Partygl 7’2,1’3,...,I’N
— Partygz: Fis73s cees Iy
[CDIOS5] Cramer, Damgard, Ishai: “Share conversion,

pseudorandom secret-sharing and applications to
secure computation” (TCC 2005)

- Partyg)z 1’1,1’2, ...,I’N_l

Step 2: Convert in a Shamir's secret sharing [CDIO5]:
N
[x); « ). 1 Pye)

j=Lj#

1
where Pj(X) =1-—X.

¢



Step 1: Generate a replicated secret sharing [ISN89]:
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evaluations of a degree-1 polynomial. /

The obtained sharing is a 1-private

Shamir’s secret sharing of r.



Step 1: Generate a replicated secret sharing [ISN89]:

7‘=7‘1+7‘2+...+7‘N

- Party@l 1”2,7'3,...,I’N
— Partygz: Fis73s cees Iy
[CDIOS5] Cramer, Damgard, Ishai: “Share conversion,

pseudorandom secret-sharing and applications to
secure computation” (TCC 2005)

- Partygz 1’1,7'2, ...,I’N_l

Step 2: Convert in a Shamir's secret sharing [CDIO5]:
N
LX) « D 7+ Pe)

J=Lj#
This process ensures that [x]],'s are the where Pj(X) =1-—X.
%
evaluations of a degree-1 polynomial.
The obtained sharing is a 1-private Can be generalized for any Shamir’s

Shamir’s secret sharing of r. secret sharing (of higher degree).
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[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

seed, seed, seed, seedy_; seedy
@) &) @) &) @)
X x X x 2l Ay

rn + 1, + r3 t+ ...t Iy T Iy



[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to

Post-Quantum Signatures” (CCS 2018)
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[KKW18] Katz, Kolesnikov, Wang: “

Post-Quantum Signatures” (CCS 2018)
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[KKW18] Katz, Kolesnikov, Wang: “
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[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

sibling path root_seed
— log(NV) seeds /:

to be revealed

— 7‘1 ~+ 7‘2 —+ 1”3 + ... + FN_l —+ rN



TCitH-MT: Using a Merkle tree
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Com pute
h = Merkle([[x],, ..., [x]ly) "

Prover Verifier




TCitH-MT: Merkle tree

Compute
h = Merkle([[x]l, ..., [x]ly) "

Prover Verifier

How to be sure that the committed shares
[ J [ J ’ [ J
correspond to a valid Shamir’s secret sharing?



Compute
h = Merkle([[x]l;, ..., [x]y)

Compute [[£] = Z Y- [[xj]]
J

Prover

}/1’ .

csVn

[l -

Choose random vy, ...,7, € F

Check that all [£].'s form
a valid Shamir's secret sharing

Verifier




TCitH-MT: Merkle tree

Compute
h = Merkle([[x]l;, ..., [x]y)

‘I-IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Repeat 77 times (in parallel)

Compute €1 = )7~ %]
J

’.lllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘

Prover

h

>

fFEEEEEEEEEEEEEEEEEEEEEEEEEEENEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE )

Vis -2 7n

<

[y, -

Choose random vy, ...,7, € F

Check that all [£]]'s form
a valid Shamir's secret sharing

Verifier
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Compute

h = Merkle([[x]l;, ..., [x]y)

Compute [[&] = Z iE
J

Prover
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TCitH-MT: Using a Merkle tree

Compute
h = Merkle([[x]l;, ..., [x]y)

L 2
= Repeat 5 times (in parallel)

Vis -2 7n

[l -

Compute [[£] = 2 Y- [[xj]]
J

Prover

ﬂxﬂ1 Exﬂz

[ED; # D v Ix],
J

Check that all [£]].'s form
a valid Shamir's secret sharing

[€0,= D 7+ Ix],;
J



LT Vierkde tree

Compute
h = Merkle([[x]l;, ..., [x]y)

h

>

‘I-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.

Repeat 77 times (in parallel)

Vis -2 7n

<

’.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘

Prover

We can prove that

Prob [{[[x]]i}ieE does not form a valid sharing] <

Compute  [E] = ) 7;- [x] [, ..
J

Choose random vy, ..

Y, €F

Check that all [£]]'s form
a valid Shamir's secret sharing

Verifier

d,+1
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||

where E = {i: [{]; = Z y; - [x;1l; for all repetitions}.
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VPG based BT Candidates

Can rely on the TCitH Framework using the same MPC protocol:

- Number of opened parties: £ = 1
- Linear MPC protocol: d, =d, = ¢

- Rely on seed trees

Same soundness error

Same communication cost



Additive MPCitH

TCitH (GGM tree)

Size (in KB) | Traditional | Hypercube | Threshold | Saving
AlMer 4.2 4.53 3.22 3.22 -0 %
Biscuit 4.8 17.71 4.65 4.24 -16 %
MIRA 5.6 384.26 20.11 9.89 51 %

MiRitH-la 5.7 54.15 6.60 5.42 -18 %
MiRitH-1b 6.3 89.50 8.66 6.66 -23 %
MQOM-31 6.3 96.41 11.27 8.74 21 %

MQOM-251 6.6 44 .11 /.56 5.97 21 %

RYDE 6.0 12.41 4.65 4.65 -0 %
SDitH-256 8.2 7/8.37 /.23 5.31 27 %
SDitH-251 8.2 19.15 /.53 6.44 -14 %

# Party Emulations (per repetition): N I+log, N 1+ [ logo N }

log, | F|




Shorter MPCitH-based Signatures

Rely on the TCitH Framework using share-wise multiplication:
- Number of opened parties: £ = 1
- Quadratic (or higher degree) MPC protocol: d, > d,, = €

- Rely on seed trees

To compute [[a - b]| from [a]] and [P]]:

Vi, [la- bl < (b1, - [b],

(no need for communication between parties)



Original Size Our Variant Saving

Biscuit 4758 B 4048 B -15%
MIRA 5640 B 5340 B -5 %
MiRitH-la 56658 4 694 B -17 %
MiRitH-1b 6298 B 5245 B -17 %
MQOM-31 6328 B 4027 B -37 %
MQOM-251 65/5B 4257 B -35%
RYDE 5956 B 5281B -11 %
SDitH 8241 B / 335 B 27 %
Former Size TCitH-GGM Saving

MQ over GF(4) 8 609 B 3 858B -55 %
SD over GF(2) 11160 B / 354 B -34 %
6-split SD over GF(2) 12 066 B 6974 B -42 %




Shorter MPCitH-based Signatures

Due to the MPC protocol
(818 bytes)

Due to the sharing
commitment (with GGM trees)

(3040 bytes)

Lower bound: > 2048 bytes

Size of the signature

relying on MQ over [, with 256 parties.



Other applications

e [Efficient ring signatures from any one-way function

® Zero-knowledge arguments for arithmetic circuits

Can rely on packed secret sharings.

® [Exact zero-knowledge arguments for lattices

Rely on packed secret sharings.
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Conclusion

m New generation of MPCitH-based proof systems:
s VOLE-in-the-Head
s TC-in-the-Head

m Post-quantum signatures:
= Signature sizes below 5 KB while keeping conservative assumption

= Bottleneck (computational and communication): symmetric parts

W Advanced signatures:
= Ring signatures from one-way function

s What's next?

Thank you for your attention !



