Threshold Computation in the Head: More Efficient Signatures from MPCitH

Thibauld Feneuil

Journées NAC

February 29, 2024 — Paris (France)

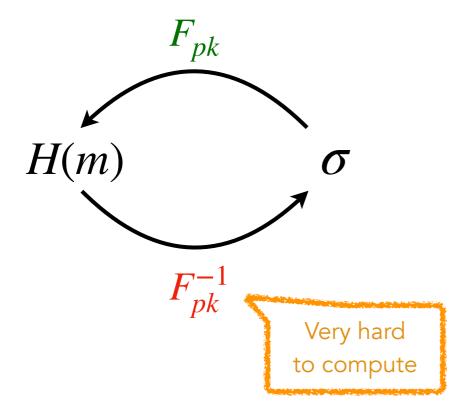
Table of Contents

- Introduction
- TC-in-the-Head: general principle
- Applications
- Conclusion

Introduction

How to build signature schemes?

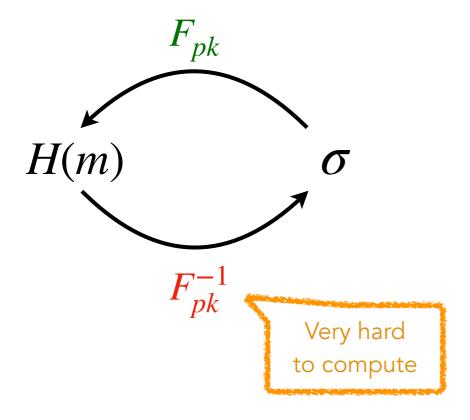
Hash & Sign



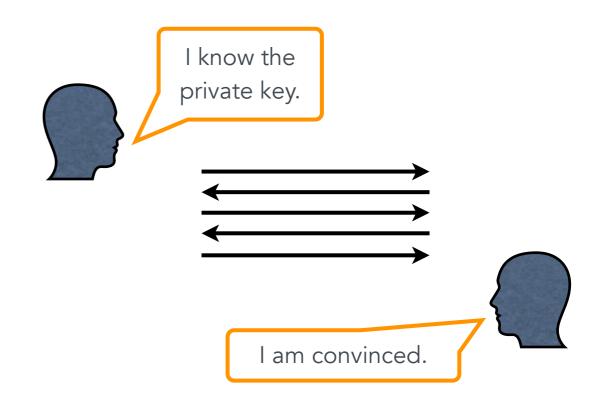
- Short signatures
- "Trapdoor" in the public key

How to build signature schemes?

Hash & Sign



From an identification scheme

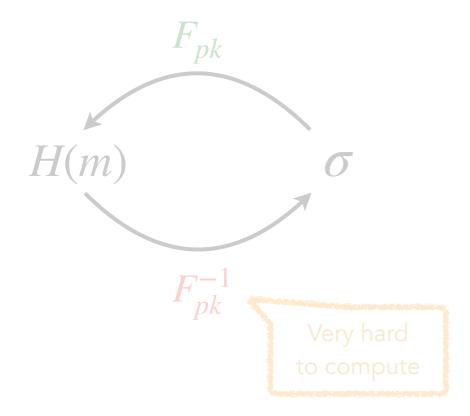


- Short signatures
- "Trapdoor" in the public key

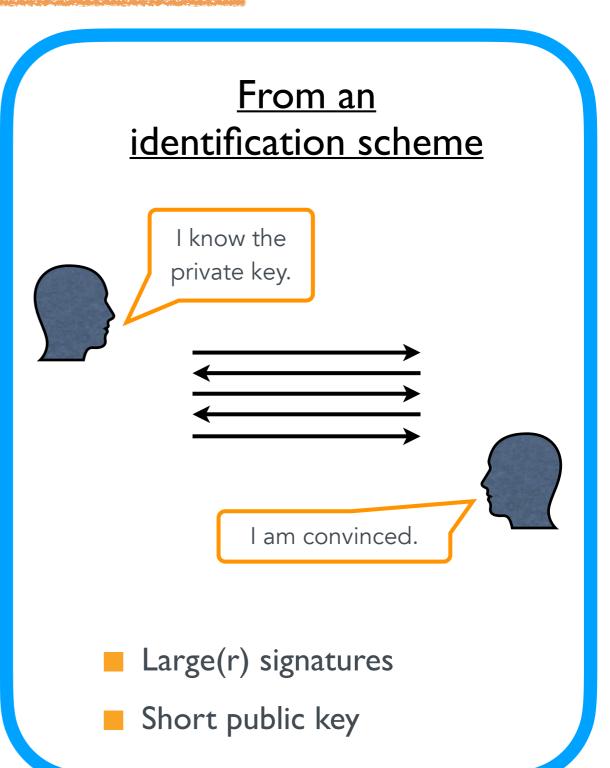
- Large(r) signatures
- Short public key

How to build signature schemes?

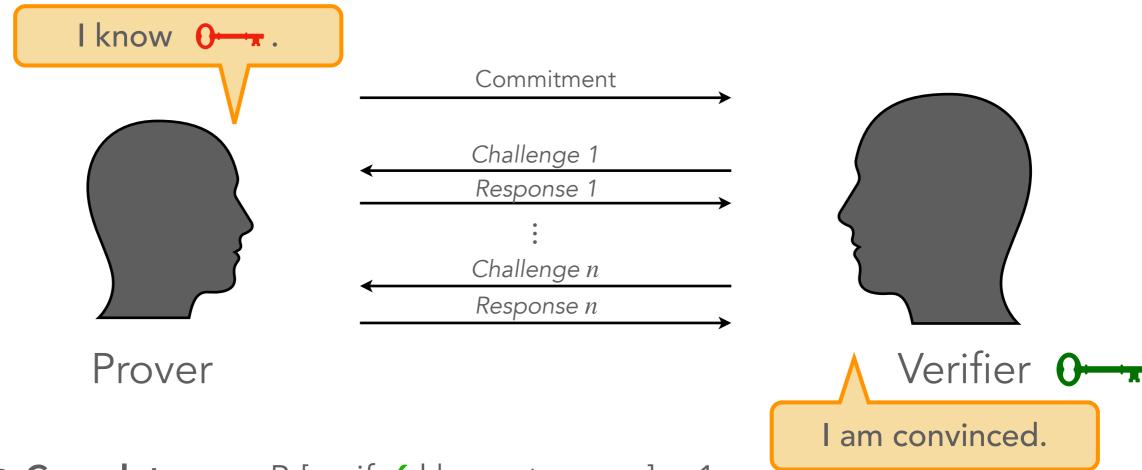
Hash & Sign



- Short signatures
- "Trapdoor" in the public key

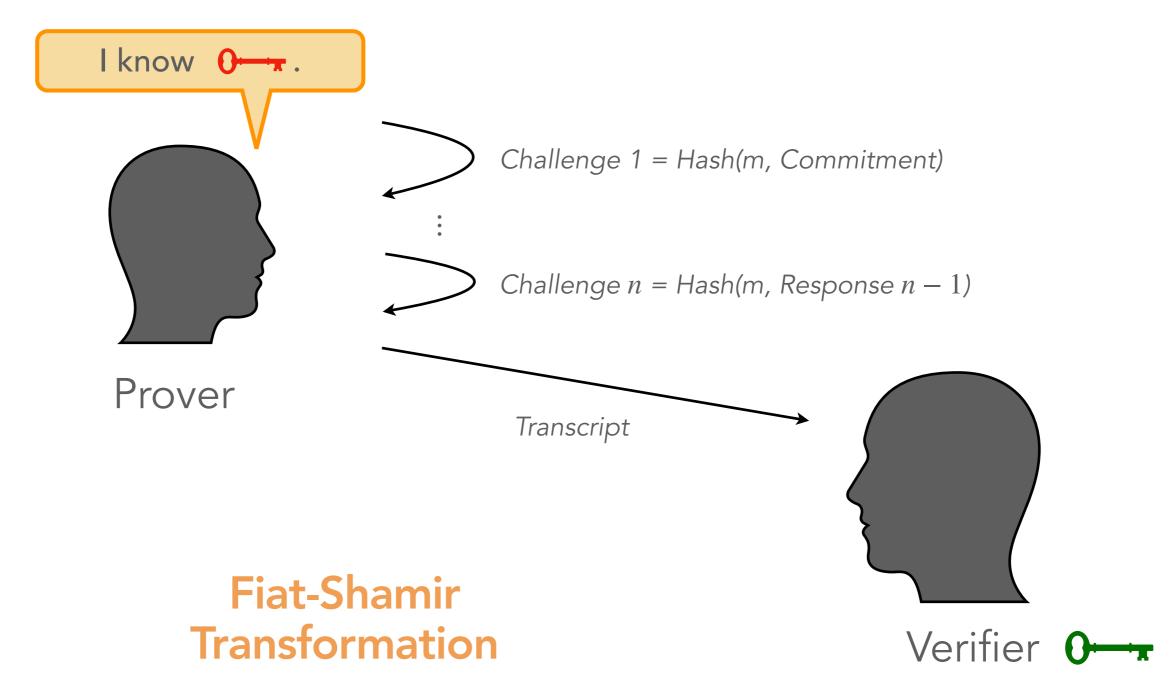


Identification Scheme



- Completeness: Pr[verif ✓ I honest prover] = 1
- Soundness: $Pr[verif \checkmark | malicious prover] \le \varepsilon$ (e.g. 2^{-128})
- Zero-knowledge: verifier learns nothing on 0—.

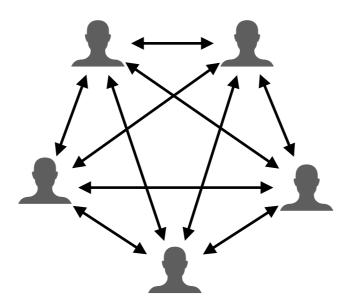
Identification Scheme



m: message to sign

MPC in the Head

- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn a multiparty computation (MPC) into an identification scheme

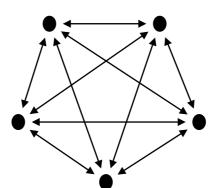


• Generic: can be apply to any cryptographic problem

$$F: x \mapsto y$$

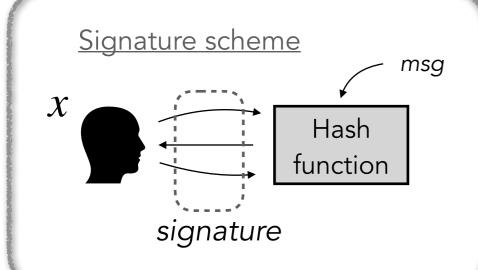
E.g. AES, MQ system, Syndrome decoding

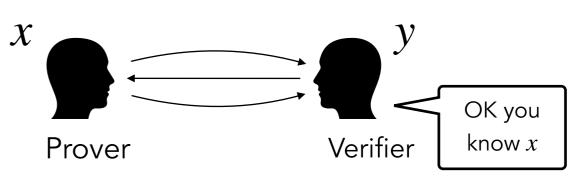
Multiparty computation (MPC)



Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

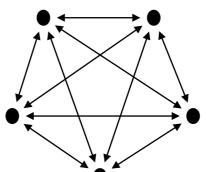




$$F: x \mapsto y$$

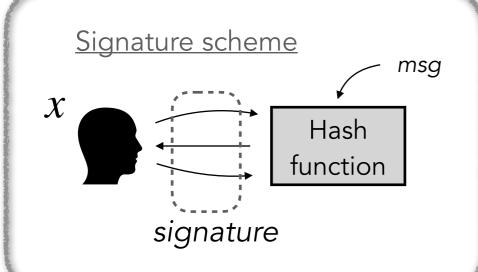
E.g. AES, MQ system, Syndrome decoding

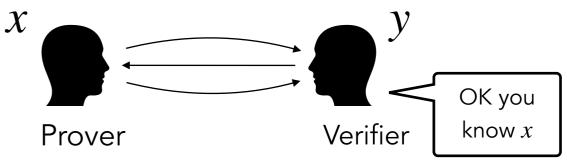
Multiparty computation (MPC)



Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

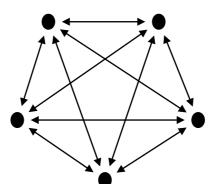




$$F: x \mapsto y$$

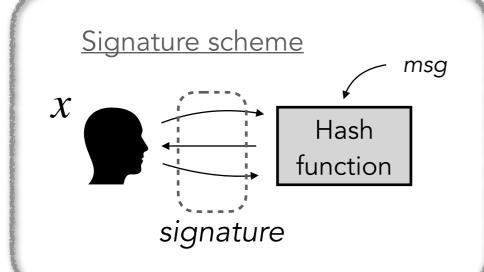
E.g. AES, MQ system, Syndrome decoding

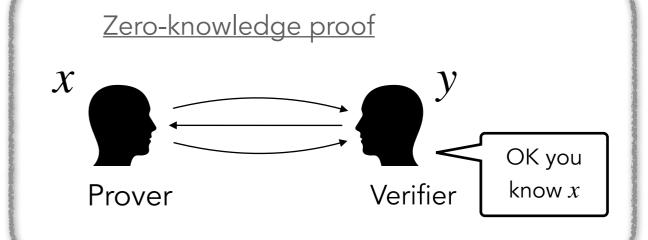
Multiparty computation (MPC)



Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

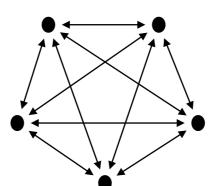




$$F: x \mapsto y$$

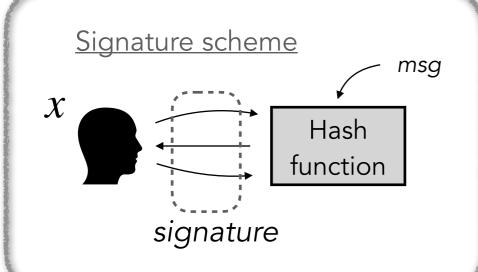
E.g. AES, MQ system, Syndrome decoding

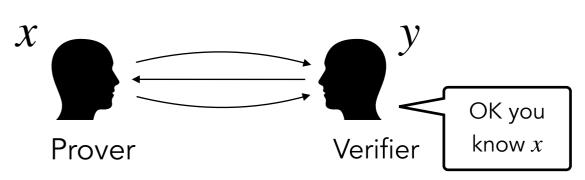
Multiparty computation (MPC)



Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

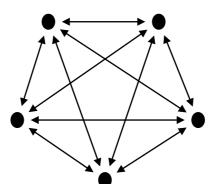




$$F: x \mapsto y$$

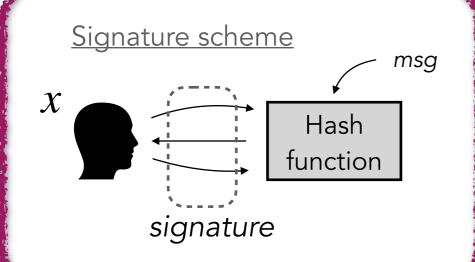
E.g. AES, MQ system, Syndrome decoding

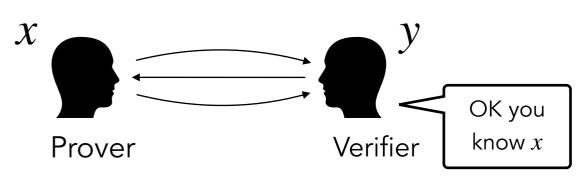
Multiparty computation (MPC)



Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$



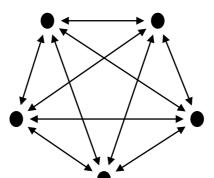


$$F: x \mapsto y$$

E.g. AES, MQ system, Syndrome decoding

X Hash function signature

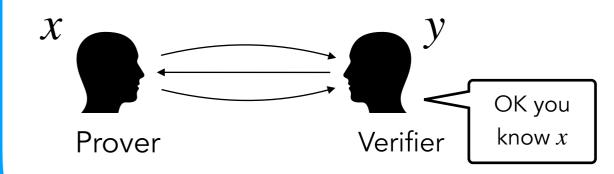
Multiparty computation (MPC)



Input sharing [x]Joint evaluation of:

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

MPC-in-the-Head transform

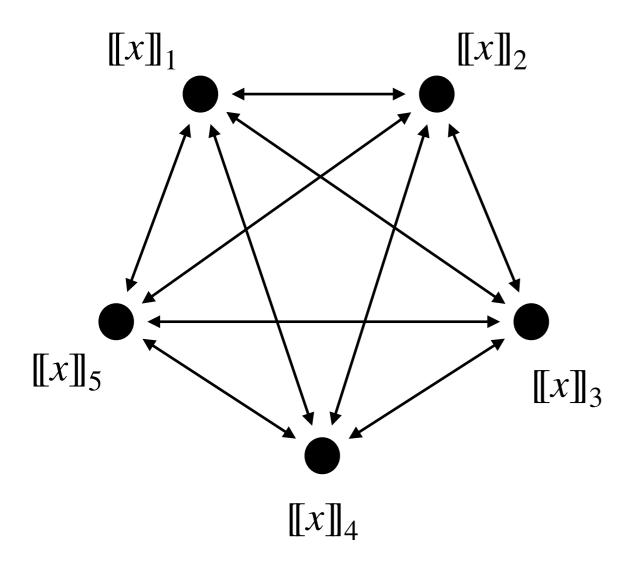


TCitH: general principle

TC: Threshold Computation

[FR23a] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (Asiacrypt 2023) [FR23b] Feneuil, Rivain: "Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments" (Eprint 2023/1573)

MPC model



 $[\![x]\!]$ is a degree- ℓ Shamir's secret sharing of x

We set the degree- ℓ polynomial P such that

$$P(0) = x$$

$$P(e_1) \leftarrow_{\$} \mathbb{F}$$

$$P(e_2) \leftarrow_{\$} \mathbb{F}$$

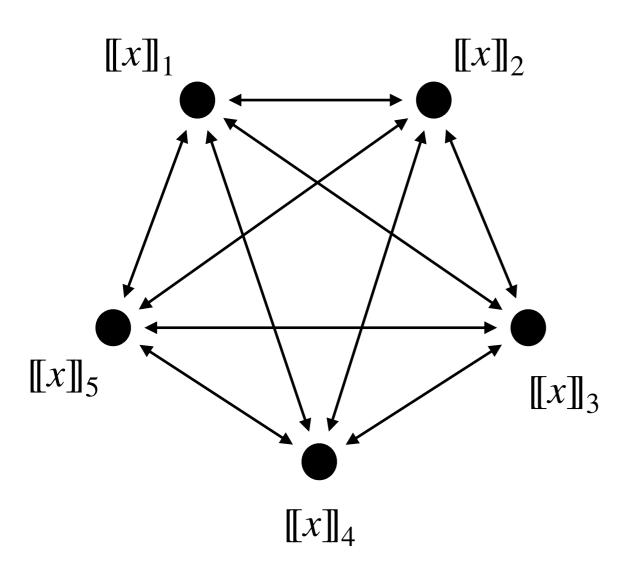
$$\cdots$$

$$P(e_{\ell}) \leftarrow_{\$} \mathbb{F}.$$

We define the shares as

$$\forall i \in \{1, ..., N\}, [[x]]_i = P(e_i).$$

MPC model



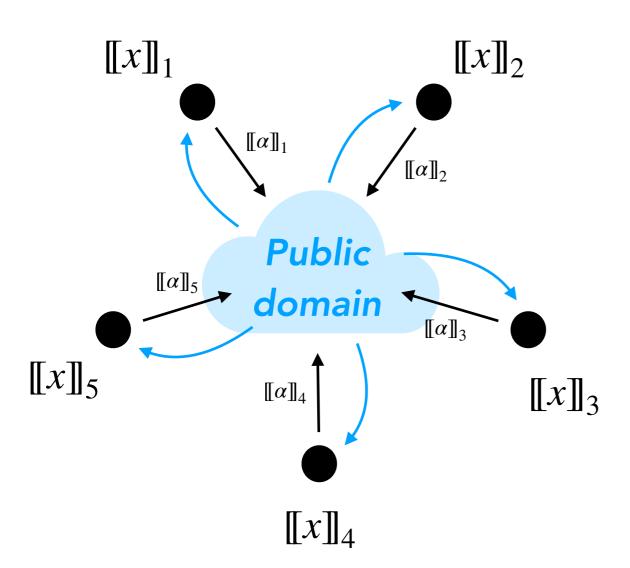
Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- ℓ -private: the views of any ℓ parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol

 $[\![x]\!]$ is a degree- ℓ Shamir's secret sharing of x

MPC model



Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- ℓ -private: the views of any ℓ parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol

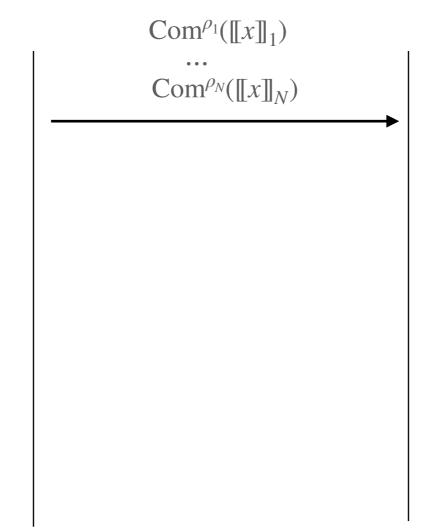
Broadcast model

- Parties locally compute on their shares $[x] \mapsto [\alpha]$
- Parties broadcast $[\![\alpha]\!]$ and recompute α
- Parties start again (now knowing α)

 $[\![x]\!]$ is a degree- ℓ Shamir's secret sharing of x

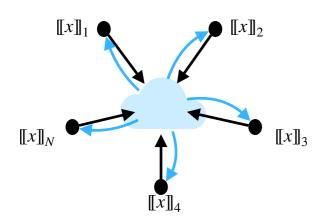
<u>Prover</u> <u>Verifier</u>

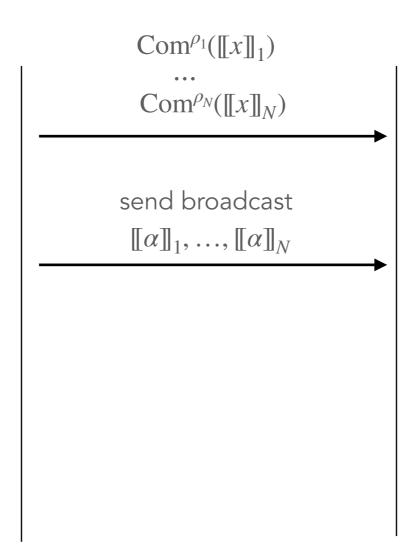
① Generate and commit shares $[\![x]\!] = ([\![x]\!]_1, \ldots, [\![x]\!]_N)$



<u>Prover</u> <u>Verifier</u>

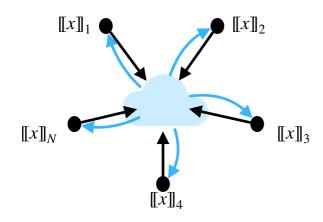
- ① Generate and commit shares $[\![x]\!] = ([\![x]\!]_1, \ldots, [\![x]\!]_N)$
- ② Run MPC in their head

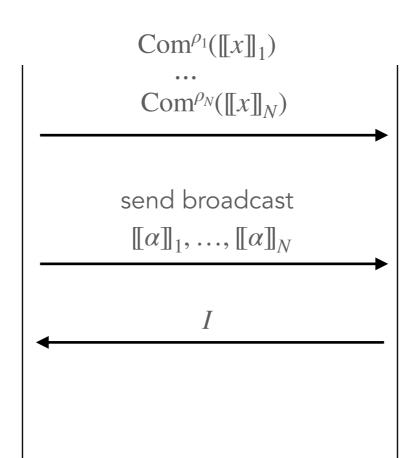




<u>Prover</u>

- ① Generate and commit shares $[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$
- 2 Run MPC in their head

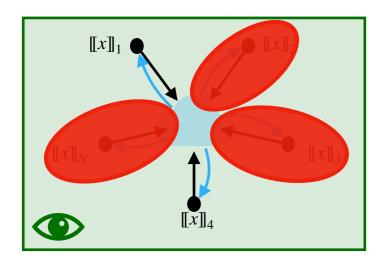




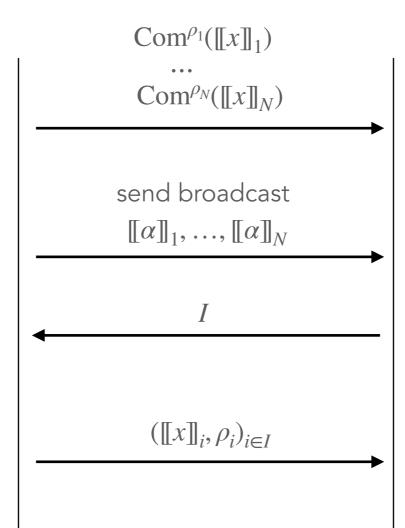
③ Choose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$.

<u>Prover</u>

- ① Generate and commit shares $[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$
- 2 Run MPC in their head



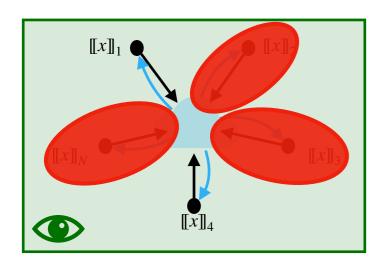
4 Open parties in I



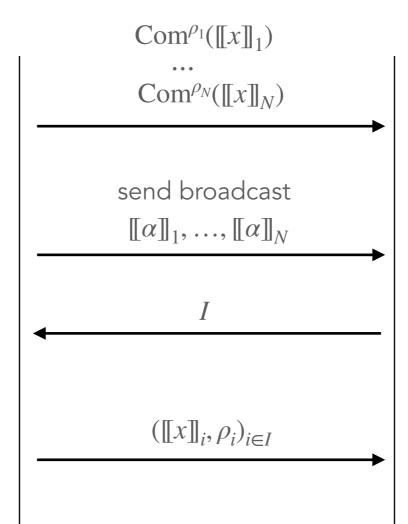
③ Choose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$.

<u>Prover</u>

- ① Generate and commit shares $[x] = ([x]_1, ..., [x]_N)$
- 2 Run MPC in their head



4 Open parties in I



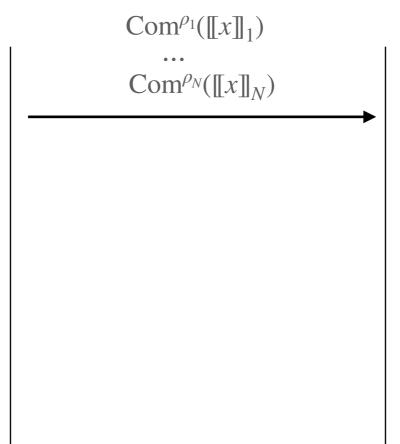
- ③ Choose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$.
- ⑤ Check $\forall i \in I$
 - Commitments $\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)$
 - MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$ Check $g(y,\alpha) = \mathsf{Accept}$

Prover

(1) Generate and commit shares

$$[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$$

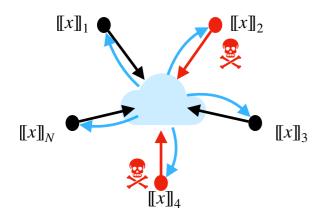
We have
$$F(x) \neq y$$
 where $x := [\![x]\!]_1 + ... + [\![x]\!]_N$

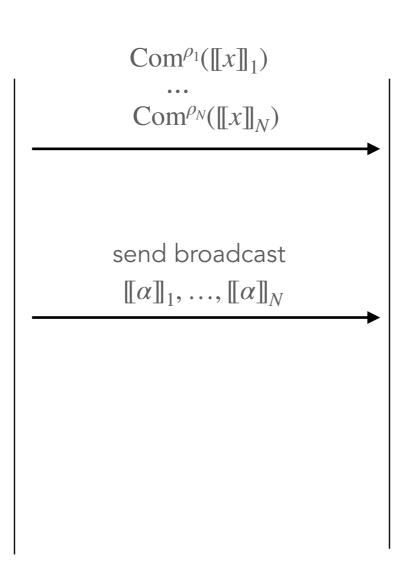


Generate and commit shares

$$[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$$
We have $F(x) \neq y$ where $x := [\![x]\!]_1 + ... + [\![x]\!]_N$

2 Run MPC in their head





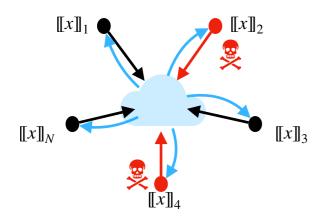
Generate and commit shares

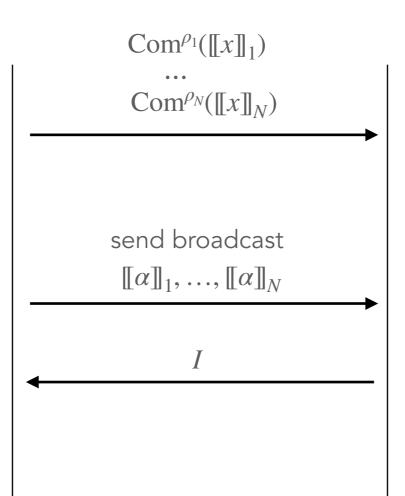
$$[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$$

We have $F(x) \neq y$ where

 $x := [\![x]\!]_1 + \dots + [\![x]\!]_N$

2 Run MPC in their head





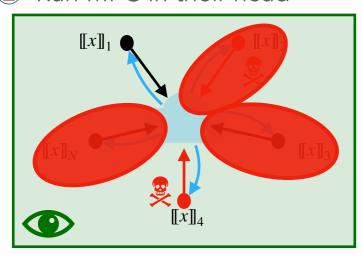
③ Choose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$.

1 Generate and commit shares

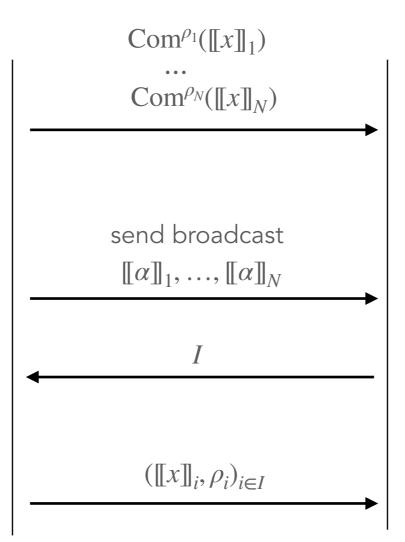
$$[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$$

We have $F(x) \neq y$ where $x := [\![x]\!]_1 + ... + [\![x]\!]_N$

2 Run MPC in their head



4 Open parties in I



③ Choose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$.

Malicious Prover

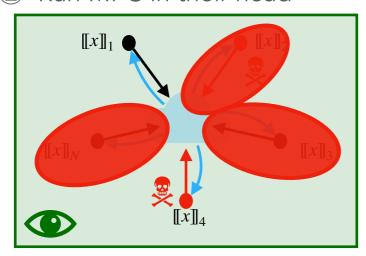
Verifier

Generate and commit shares

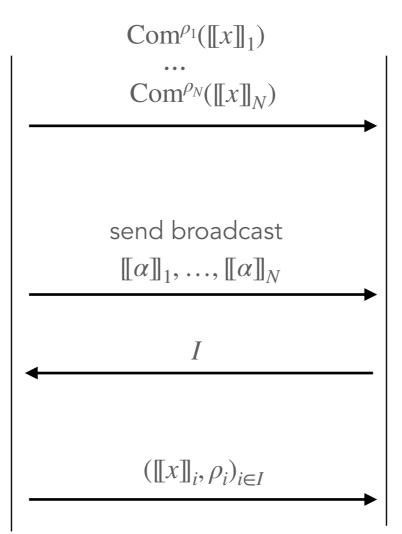
$$[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$$

We have $F(x) \neq y$ where $x := [\![x]\!]_1 + ... + [\![x]\!]_N$

2 Run MPC in their head



4 Open parties in I



- ③ Choose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$.
- ⑤ Check $\forall i \in I$
 - Commitments $Com^{\rho_i}(\llbracket x \rrbracket_i)$
 - MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$

Check $g(y, \alpha) = Accept$

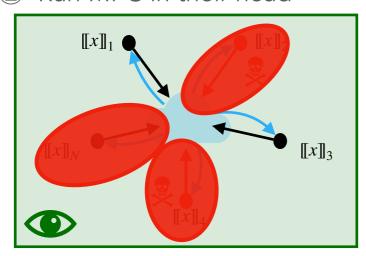
Malicious Prover

Generate and commit shares

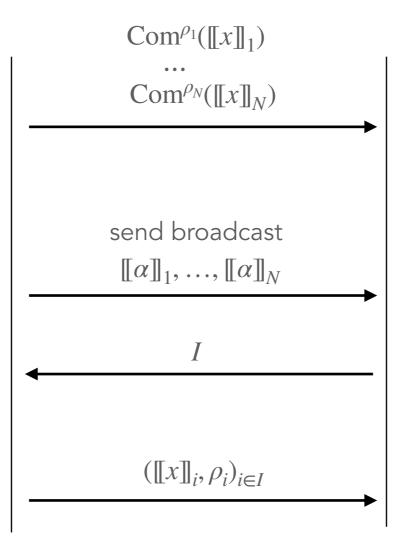
$$[\![x]\!] = ([\![x]\!]_1, ..., [\![x]\!]_N)$$

We have $F(x) \neq y$ where $x := [\![x]\!]_1 + ... + [\![x]\!]_N$

2 Run MPC in their head



4 Open parties in I



- ③ Choose a random set of parties $I \subseteq \{1,...,N\}$, s.t. $|I| = \ell$.
- ⑤ Check $\forall i \in I$
 - Commitments $Com^{\rho_i}([\![x]\!]_i)$
 - MPC computation $[\![\alpha]\!]_i = \varphi([\![x]\!]_i)$

Check $g(y, \alpha) = Accept$

Malicious Prover

Verifier

ullet Zero-knowledge \iff MPC protocol is ℓ -private

- **Zero-knowledge** \iff MPC protocol is ℓ -private
- Soundness: if the committed sharing is valid

 $\mathbb{P}(\text{malicious prover convinces the verifier})$

 $= \mathbb{P}(\text{all corrupted parties remain hidden})$

$$=\frac{\binom{d_{\alpha}}{\ell}}{\binom{N}{\ell}}$$

 d_{α} is the degree of the sharing $[\![\alpha]\!]$.

- **Zero-knowledge** \iff MPC protocol is ℓ -private
- Soundness: if the committed sharing is valid

 $\mathbb{P}(\text{malicious prover convinces the verifier})$

 $= \mathbb{P}(\text{all corrupted parties remain hidden})$

$$=\frac{\binom{d_{\alpha}}{\ell}}{\binom{N}{\ell}}$$

 d_{α} is the degree of the sharing $[\![\alpha]\!]$.

Parallel repetition

Protocol repeated τ times in parallel, soundness error $\left(\frac{\binom{d_{\alpha}}{\ell}}{\binom{N}{\ell}}\right)^{t}$

How to commit Shamir's secret sharing?

TCitH-GGM: Using a GGM tree

VS

TCitH-MT: Using a Merkle tree

TCitH-GGM: Using a Seed Tree

Step 1: Generate a <u>replicated secret sharing</u> [ISN89]:

$$r = r_1 + r_2 + \dots + r_N$$

- Party \mathcal{P}_1 : $r_2, r_3, ..., r_N$
- Party \mathcal{P}_2 : $r_1, r_3, ..., r_N$

. . .

- Party \mathcal{P}_2 : $r_1, r_2, ..., r_{N-1}$

[ISN89] Ito, Saito, Nishizeki: "Secret sharing scheme realizing general access structure" (Electronics and Communications in Japan 1989)

TCitH-GGM: Using a Seed Tree

Step 1: Generate a <u>replicated secret sharing</u> [ISN89]:

$$r = r_1 + r_2 + \dots + r_N$$

- Party \mathcal{P}_1 : $r_2, r_3, ..., r_N$
- Party \mathcal{P}_2 : $r_1, r_3, ..., r_N$

. . .

- Party \mathcal{P}_2 : $r_1, r_2, ..., r_{N-1}$

[CDI05] Cramer, Damgard, Ishai: "Share conversion, pseudorandom secret-sharing and applications to secure computation" (TCC 2005)

Step 2: Convert in a **Shamir's secret sharing** [CDI05]:

$$\llbracket x \rrbracket_i \leftarrow \sum_{j=1, j \neq i}^N r_j \cdot P_j(e_i)$$

where
$$P_j(X) := 1 - \frac{1}{e_j}X$$
.

TCitH-GGM: Using a Seed Tree

Step 1: Generate a <u>replicated secret sharing</u> [ISN89]:

$$r = r_1 + r_2 + \dots + r_N$$

- Party \mathcal{P}_1 : $r_2, r_3, ..., r_N$
- Party \mathcal{P}_2 : $r_1, r_3, ..., r_N$

. . .

- Party \mathcal{P}_2 : $r_1, r_2, ..., r_{N-1}$

[CDI05] Cramer, Damgard, Ishai: "Share conversion, pseudorandom secret-sharing and applications to secure computation" (TCC 2005)

Step 2: Convert in a **Shamir's secret sharing** [CDI05]:

$$\llbracket x \rrbracket_i \leftarrow \sum_{j=1, j \neq i}^N r_j \cdot P_j(e_i)$$

This process ensures that $[x]_i$'s are the evaluations of a degree-1 polynomial.

where
$$P_j(X) := 1 - \frac{1}{e_j}X$$
.

The obtained sharing is a 1-private Shamir's secret sharing of r.

TCitH-GGM: Using a Seed Tree

Step 1: Generate a <u>replicated secret sharing</u> [ISN89]:

$$r = r_1 + r_2 + \dots + r_N$$

- Party \mathcal{P}_1 : $r_2, r_3, ..., r_N$
- Party \mathcal{P}_2 : $r_1, r_3, ..., r_N$

. . .

- Party \mathcal{P}_2 : $r_1, r_2, ..., r_{N-1}$

[CDI05] Cramer, Damgard, Ishai: "Share conversion, pseudorandom secret-sharing and applications to secure computation" (TCC 2005)

Step 2: Convert in a **Shamir's secret sharing** [CDI05]:

$$\llbracket x \rrbracket_i \leftarrow \sum_{j=1, j \neq i}^N r_j \cdot P_j(e_i)$$

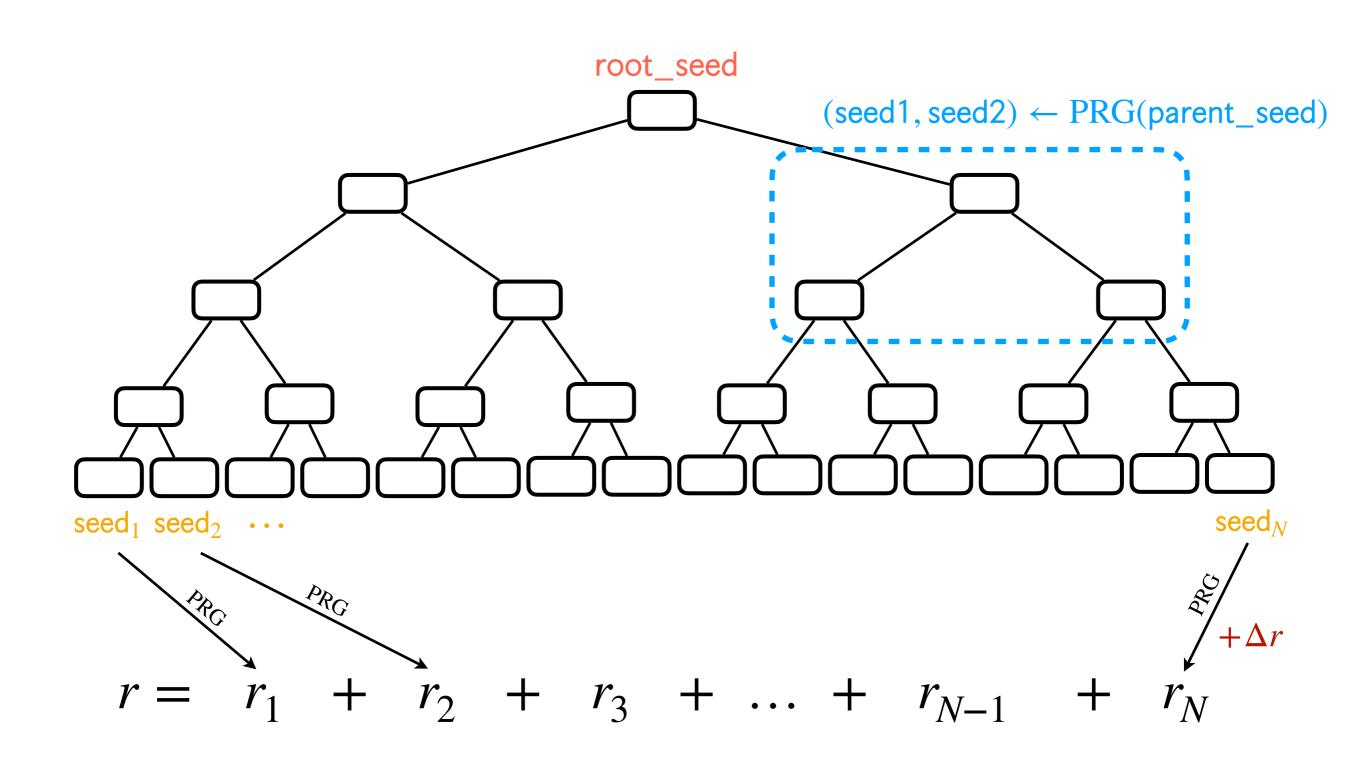
This process ensures that $[x]_i$'s are the evaluations of a degree-1 polynomial.

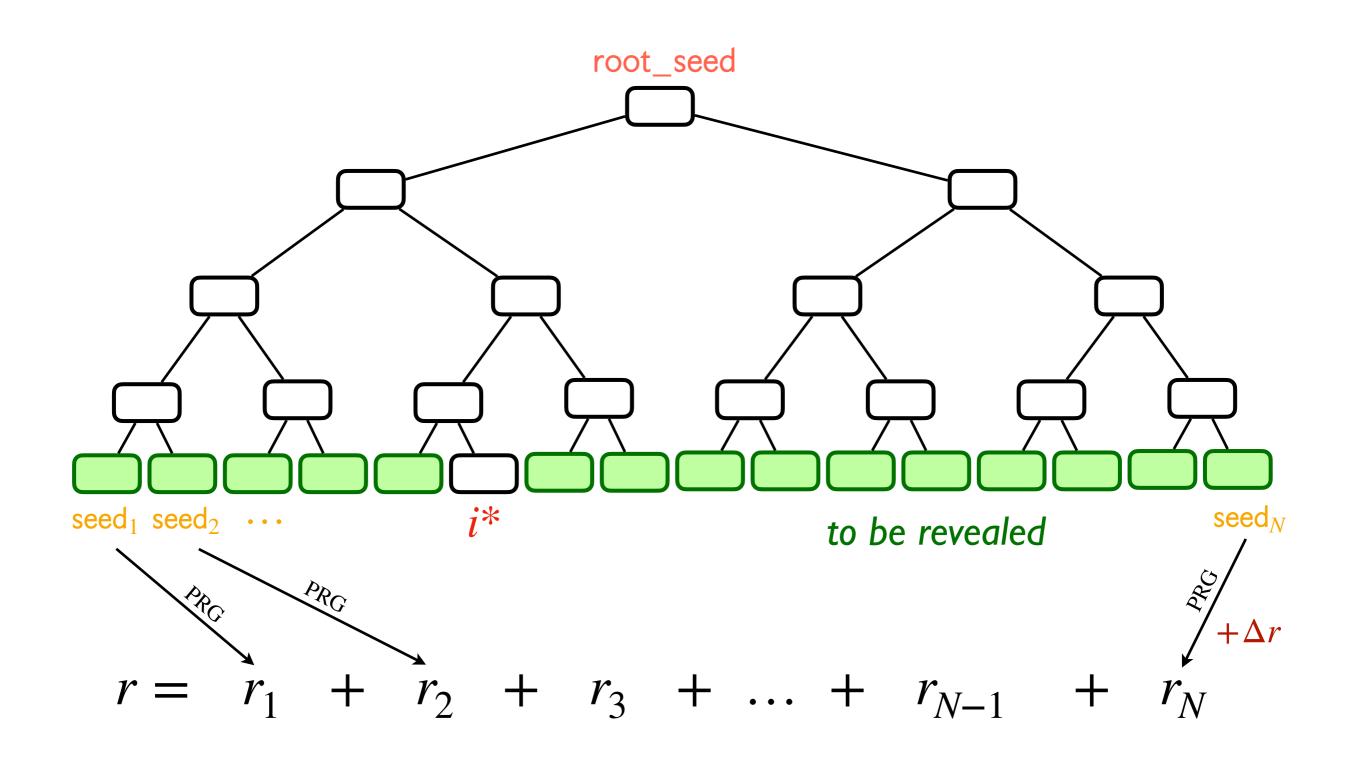
where
$$P_j(X) := 1 - \frac{1}{e_j}X$$
.

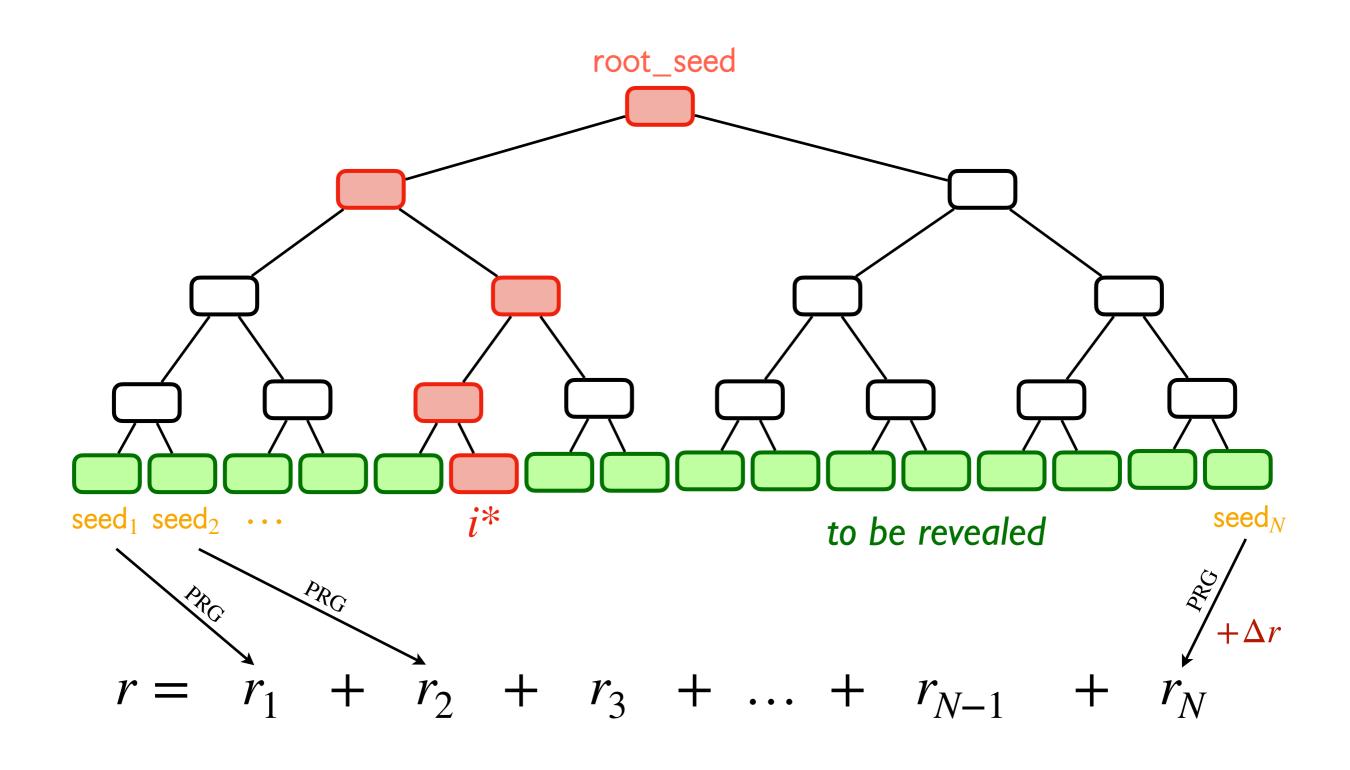
The obtained sharing is a 1-private Shamir's secret sharing of r.

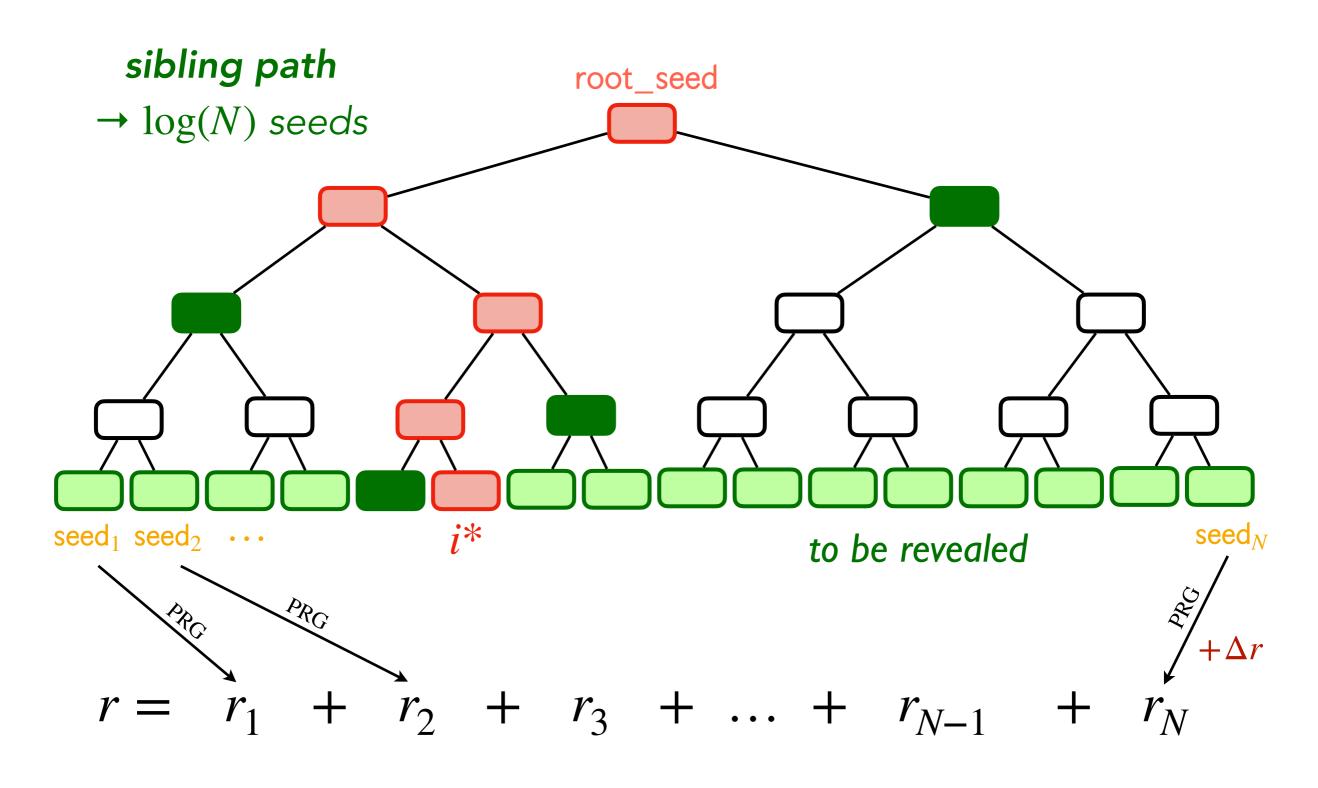
Can be generalized for any Shamir's secret sharing (of higher degree).

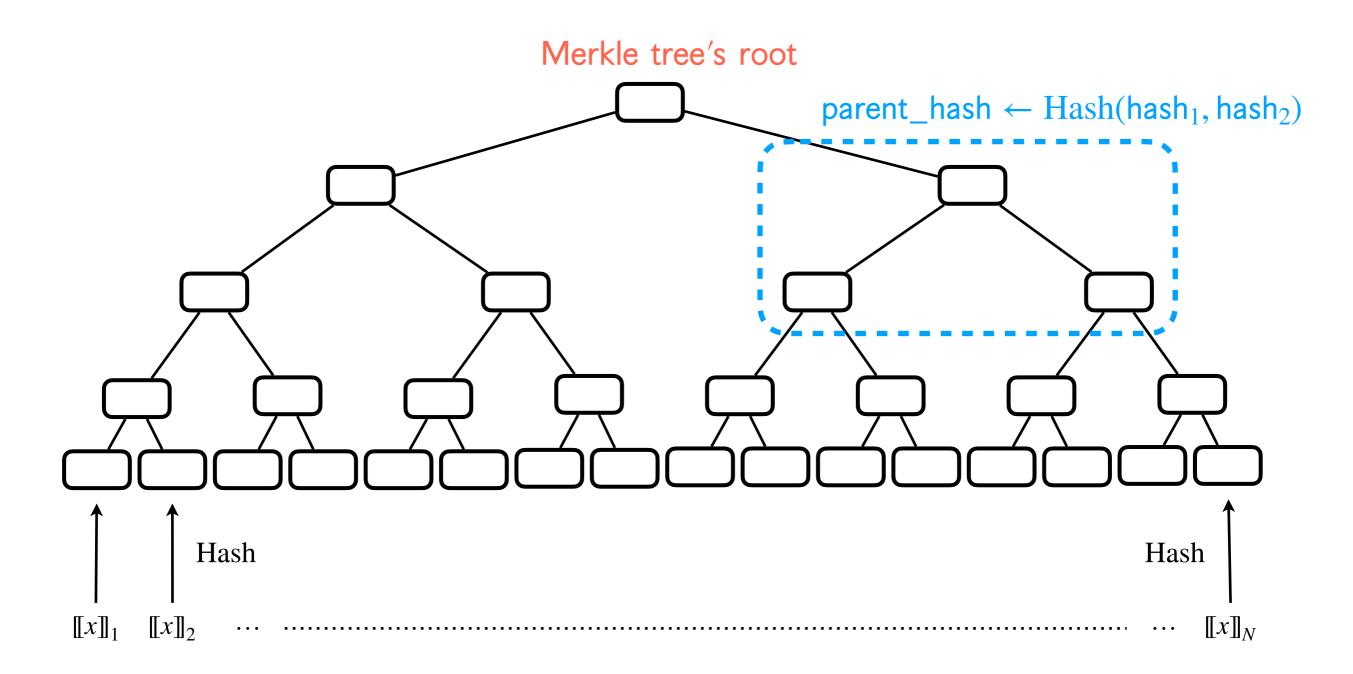
$$r = r_1 + r_2 + r_3 + \dots + r_{N-1} + r_N$$

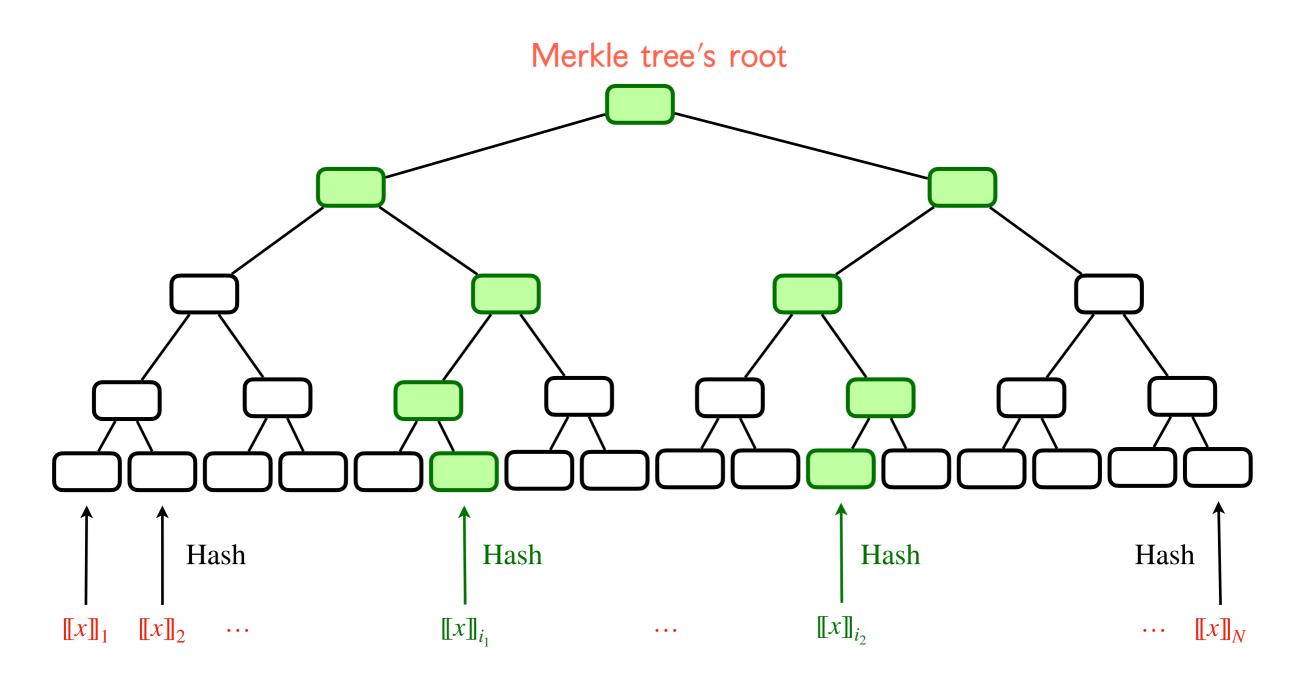


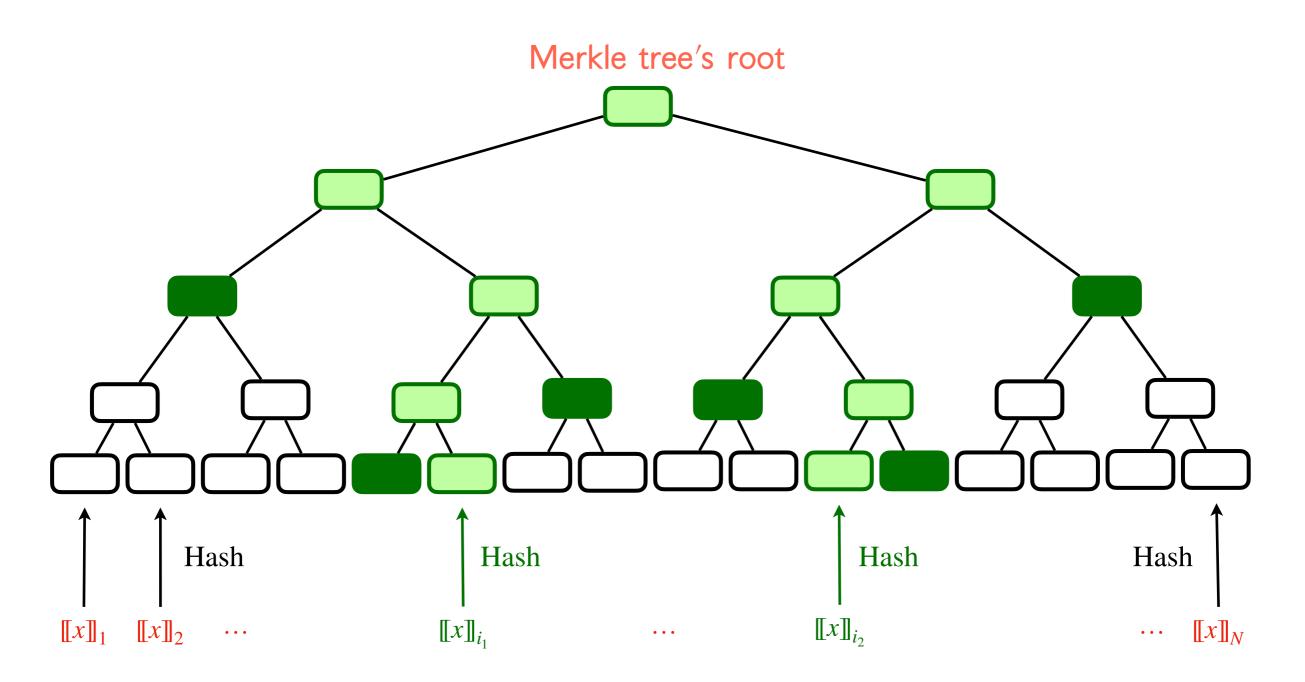






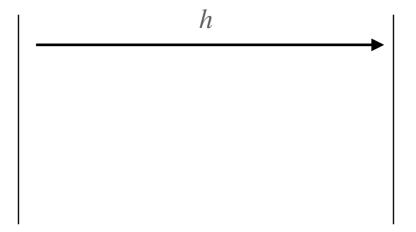




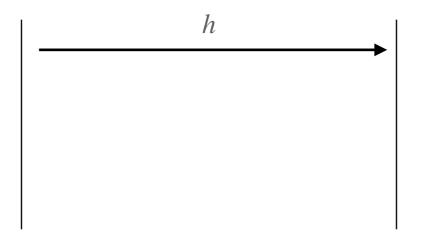


Compute

 $h = \text{Merkle}([[x]]_1, ..., [[x]]_N)$



 $h = Merkle([[x]]_1, ..., [[x]]_N)$



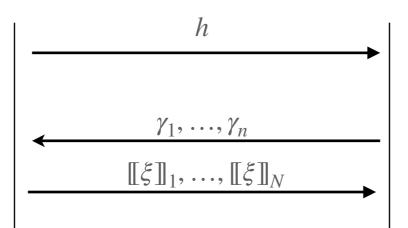
<u>Prover</u> <u>Verifier</u>

How to be sure that the committed shares correspond to a valid Shamir's secret sharing?

Compute

$$h = Merkle([[x]]_1, ..., [[x]]_N)$$

Compute
$$[\![\xi]\!] = \sum_{j} \gamma_{j} \cdot [\![x_{j}]\!]$$

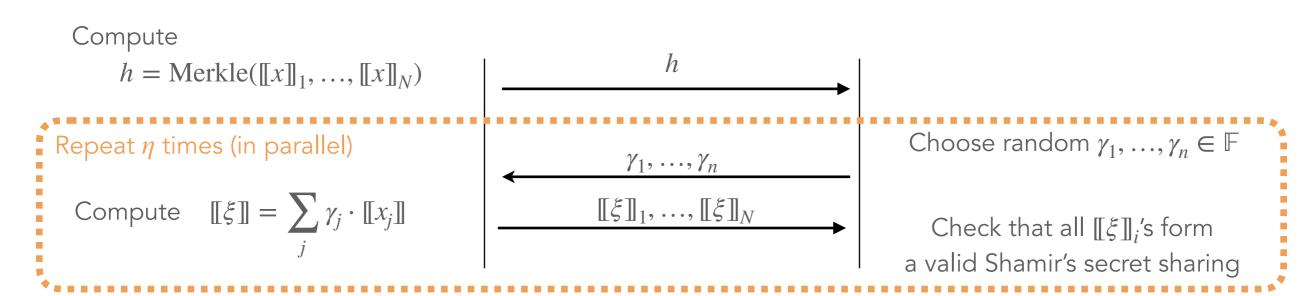


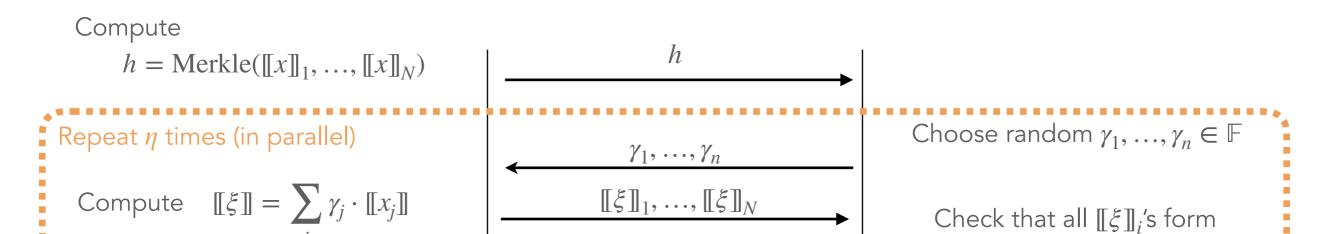
Choose random $\gamma_1,...,\gamma_n \in \mathbb{F}$

Check that all $[\![\xi]\!]_i$'s form a valid Shamir's secret sharing

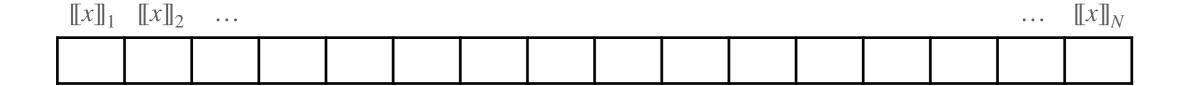
<u>Prover</u>

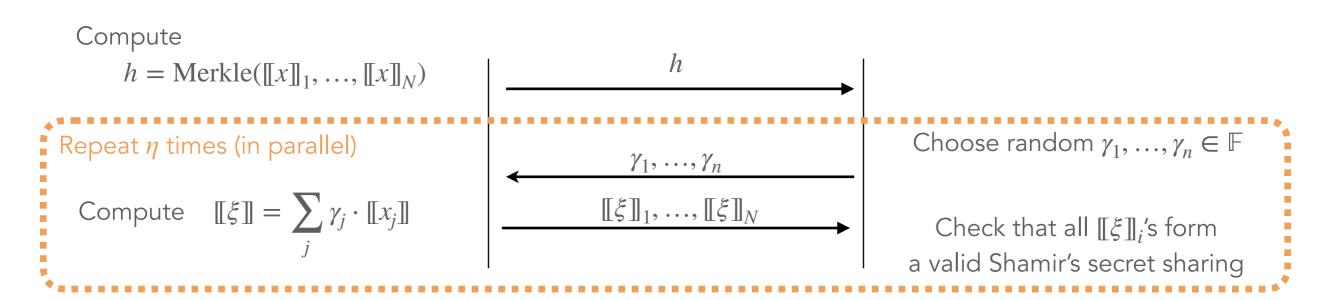
<u>Verifier</u>

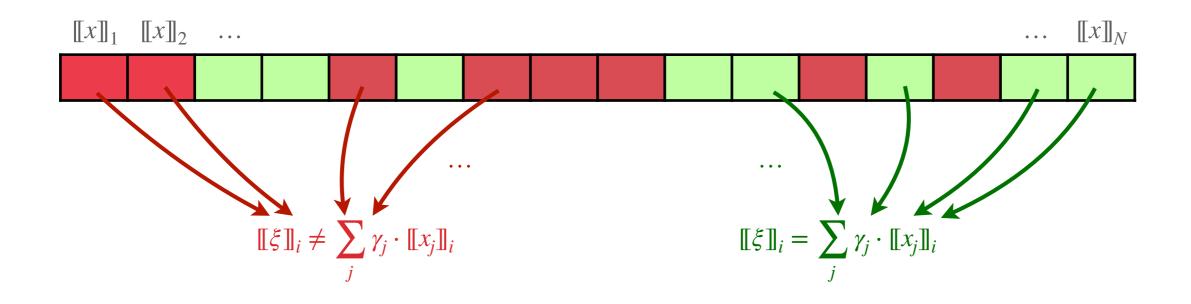




a valid Shamir's secret sharing





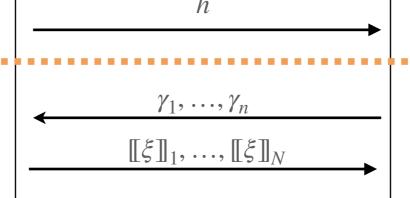


Compute

$$h = Merkle([[x]]_1, ..., [[x]]_N)$$

Repeat η times (in parallel)

Compute
$$[\![\xi]\!] = \sum_{j} \gamma_{j} \cdot [\![x_{j}]\!]$$



Choose random $\gamma_1, ..., \gamma_n \in \mathbb{F}$

Check that all $[\![\xi]\!]_i$'s form a valid Shamir's secret sharing

<u>Prover</u>

Verifier

We can prove that

Prob
$$[\{[[x]]_i\}_{i\in E}$$
 does not form a valid sharing $] \leq \frac{\binom{N}{d_w+1}^2}{|\mathbb{F}|^{\eta}}$

where
$$E = \{i : [\![\xi]\!]_i = \sum_j \gamma_j \cdot [\![x_j]\!]_i \text{ for all repetitions}\}.$$

Applications of the TCitH Framework

MPCitH-based NIST Candidates

Can rely on the TCitH Framework using the same MPC protocol:

- Number of opened parties: $\ell=1$
- Linear MPC protocol: $d_{\alpha}=d_{w}=\ell$
- Rely on seed trees

Same soundness error
Same communication cost

MPCitH-based NIST Candidates

		Additive MPCitH		TCitH (GGM tree)	
	Size (in KB)	Traditional	Hypercube	Threshold	Saving
AlMer	4.2	4.53	3.22	3.22	-0 %
Biscuit	4.8	17.71	4.65	4.24	-16 %
MIRA	5.6	384.26	20.11	9.89	-51 %
MiRitH-la	5.7	54.15	6.60	5.42	-18 %
MiRitH-Ib	6.3	89.50	8.66	6.66	-23 %
MQOM-31	6.3	96.41	11.27	8.74	-21 %
MQOM-251	6.6	44.11	7.56	5.97	-21 %
RYDE	6.0	12.41	4.65	4.65	-0 %
SDitH-256	8.2	78.37	7.23	5.31	-27 %
SDitH-251	8.2	19.15	7.53	6.44	-14 %

Party Emulations (per repetition): N $1 + \log_2 N$ $1 + \left\lceil \frac{\log_2 N}{\log_2 |\mathbb{F}|} \right\rceil$

Shorter MPCitH-based Signatures

Rely on the TCitH Framework using share-wise multiplication:

- Number of opened parties: $\ell=1$
- Quadratic (or higher degree) MPC protocol: $d_{\alpha} > d_{w} = \ell$
- Rely on seed trees

To compute $[a \cdot b]$ from [a] and [b]:

$$\forall i, \ [a \cdot b]_i \leftarrow [b]_i \cdot [b]_i$$

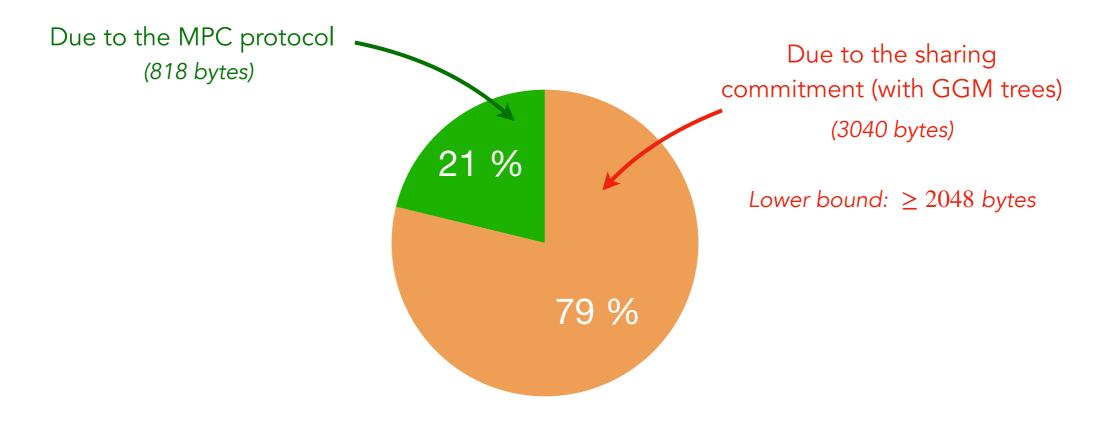
(no need for communication between parties)

Shorter MPCitH-based Signatures

	Original Size	Our Variant	Saving
Biscuit	4758 B	4 048 B	-15 %
MIRA	5 640 B	5 340 B	-5 %
MiRitH-la	5 665 B	4 694 B	-17 %
MiRitH-Ib	6 298 B	5 245 B	-17 %
MQOM-31	6 328 B	4 027 B	-37 %
MQOM-251	6 575 B	4 257 B	-35 %
RYDE	5 956 B	5 281 B	-11 %
SDitH	8 241 B	7 335 B	-27 %

	Former Size	TCitH-GGM	Saving
MQ over GF(4)	8 609 B	3 858 B	-55 %
SD over GF(2)	11 160 B	7 354 B	-34 %
6-split SD over GF(2)	12 066 B	6 974 B	-42 %

Shorter MPCitH-based Signatures



Size of the signature relying on MQ over \mathbb{F}_4 , with 256 parties.

Other applications

- Efficient ring signatures from any one-way function
- Zero-knowledge arguments for arithmetic circuits
 Can rely on packed secret sharings.
- Exact zero-knowledge arguments for lattices Rely on packed secret sharings.

• ...

- New generation of MPCitH-based proof systems:
 - VOLE-in-the-Head
 - TC-in-the-Head

- New generation of MPCitH-based proof systems:
 - VOLE-in-the-Head
 - TC-in-the-Head
- Post-quantum signatures:
 - Signature sizes below 5 KB while keeping conservative assumption
 - Bottleneck (computational and communication): symmetric parts

- New generation of MPCitH-based proof systems:
 - VOLE-in-the-Head
 - TC-in-the-Head
- Post-quantum signatures:
 - Signature sizes below 5 KB while keeping conservative assumption
 - Bottleneck (computational and communication): symmetric parts
- Advanced signatures:
 - Ring signatures from one-way function
 - What's next?

- New generation of MPCitH-based proof systems:
 - VOLE-in-the-Head
 - TC-in-the-Head
- Post-quantum signatures:
 - Signature sizes below 5 KB while keeping conservative assumption
 - Bottleneck (computational and communication): symmetric parts
- Advanced signatures:
 - Ring signatures from one-way function
 - What's next?

Thank you for your attention!