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Definition and Properties



⋮

Prover Verifier

I am convinced / I am not 
convinced.

I know  such that

the output of  is .

w
C(x, w) y

,  and  are publicC x y



⋮

Prover Verifier

• I know two non-trivial integers  and  such that .

•  is not used


•  is the couple 


•  is the multiplication algorithm


•  is the value 15

p q p ⋅ q = 15
x
w (p, q)
C
y

I know  such that

the output of  is .

w
C(x, w) y

,  and  are publicC x y



⋮

Prover Verifier

• Given a graph , I know a 3-coloration of this graph.

•  is the graph 


•  is the 3-coloration


•  is the verification algorithm


•  is the value “True”

G
x G
w
C
y

I know  such that

the output of  is .

w
C(x, w) y

,  and  are publicC x y



⋮

Prover Verifier

• I know the password of this encrypted file.

•  is the encrypted file


•  is the password


•  is an algorithm checking if the password is valid


•  is the value “True”

x
w
C
y

I know  such that

the output of  is .

w
C(x, w) y

,  and  are publicC x y



⋮

Prover Verifier

• I claim that the 100th term of the Fibonacci sequence is 
.


•  is the index 100 


•  is the algorithm for the Fibonacci sequence


•  is the integer .

354224848179261915075
x
C
y 354224848179261915075

I claim that

the output of  is .C(x) y

,  and  are publicC x y



⋮

Prover Verifier

• I claim that the product of the two matrices  and  is equal to 
the matrix . 

•  is the two matrices  and  


•  is the multiplication algorithm


•  is the matrix 

X Y
Z

x X Y
C
y Z

I claim that

the output of  is .C(x) y

,  and  are publicC x y



⋮

Prover Verifier

• I claim that the number of occurrences of the word “mais” in the 
book “A la Recherche du Temps Perdu” written by Marcel Proust is 
8256.


•  is the text of the book


•  is the counting algorithm for the word “mais”.


•  is the number 8256

x
C
y

I claim that

the output of  is .C(x) y

,  and  are publicC x y



Prover Verifier

I know  such that

the output of  is .

w
C(x, w) y

⋮

• Completeness: if the prover is honest (i.e. if his claim is correct), the 
verifier should be convinced at the end of the discussion.


• Soundness: if the prover is malicious (i.e. if his claim is invalid), the 
verifier should not be convinced at the end of the discussion.

witness
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I know  such that

the output of  is .
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• Completeness: if the prover is honest (i.e. if his claim is correct), the 
verifier should be convinced at the end of the discussion.


• Soundness: if the prover is malicious (i.e. if his claim is invalid), the 
verifier should not be convinced at the end of the discussion.



Prover Verifier

I know  such that

the output of  is .

w
C(x, w) y

w

Sensitive data

Zero-Knowledge: the verifier should learn nothing about 
the witness , not even a partial information.w



Prover Verifier

I know  such that

the output of  is .

w
C(x, w) y

??????

Zero-Knowledge: the verifier should learn nothing about 
the witness , not even a partial information.w



Prover Verifier

Given a graph , I know a

3-coloration of this graph.

G



Background: Commitment Scheme

• Binding: the opened value is ensured to be 
committed data .


• Hiding:           leaks no information about the 
committed data  (without            ).

x

x

Prover Verifier

x

(later, optionally…)

x

Opening
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3-coloration of this graph.
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Given a graph , I know a

3-coloration of this graph.

G

Reveal the nodes A and D.



Prover Verifier

Given a graph , I know a

3-coloration of this graph.

G

1

2

3

3 2

B

E

C

Reveal the nodes A and D.

Sounds good. Let us try 
again.
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Prover Verifier

A
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E D
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Given a graph , I know a

3-coloration of this graph.

G

Reveal the nodes B and E.
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Prover Verifier

Given a graph , I know a

3-coloration of this graph.

G

Reveal the nodes B and E.

Sounds good again. I am 
now convinced.

A

D

C6

4

5

5 4



Prover Verifier

Given a graph , I know a

3-coloration of this graph.

G

Reveal the nodes B and E.

Sounds good again. I am 
now convinced.

A

D

C6

4

5

5 4
Completeness: 

Zero-Knowledge: 
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Malicious

Prover

Verifier

4

6

6

5 5

Given a graph , I know a

3-coloration of this graph.

G

A

B

C

Reveal the nodes D and E.

You try to fool me! I am 
absolutely not convinced!

Probability to catch a malicious prover ≥
1

nb edges



Probability  to fail to detect a malicious prover:


With 1 try: 


With 2 tries: 


…


With  tries: 

ε

ε ≤ 1 −
1

nb edges

ε ≤ (1 −
1

nb edges )
2

τ ε ≤ (1 −
1

nb edges )
τ



Probability  to fail to detect a malicious prover:


With 1 try: 


With 2 tries: 


…


With  tries: 

ε

ε ≤ 1 −
1

nb edges

ε ≤ (1 −
1

nb edges )
2

τ ε ≤ (1 −
1

nb edges )
τ

1 try: 99.00 %
2 tries: 98.01 %
3 tries: 97.03 %

100 tries: 36.60 %

1000 tries:   0.004 %
458 tries:   1.00 %

For a graph with 100 edges



Prover Verifier

I know  such that

the output of  is .

w
C(x, w) y

• Perfect Completeness:




• Statistical Soundness:


Prob [verifier convinced |prover honest] = 1

Prob [verifier convinced |prover malicious] ≤ ε

⋮

Soundness 
Error



Prover Verifier

I know  such that

the output of  is .

w
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• Perfect Completeness:




• Statistical Soundness:


Prob [verifier convinced |prover honest] = 1

Prob [verifier convinced |prover malicious] ≤ ε

⋮

Soundness 
Error

Commitment

Challenge 1

Response 1

Challenge n
Response n



Prover Verifier

I claim that

the output of  is .C(x) y

• I claim that the number of occurrences of the word “mais” in the 
book “A la Recherche du Temps Perdu” written by Marcel Proust is 
8256.


•  is the text of the book


•  is the counting algorithm for the word “mais”.


•  is the number 8256

x
C
y
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Recomputing

C(x)
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• I claim that the number of occurrences of the word “mais” in 
the book “A la Recherche du Temps Perdu” written by Marcel 
Proust is 8256.


•  is the text of the book

•  is the counting algorithm for the word “mais”.

•  is the number 8256
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C
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I agree.

Recomputing
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Prover Verifier

I claim that

the output of  is .C(x) y

I agree.

Recomputing

C(x)

Efficiency: the verifier should be faster than the time 
required to compute .C(x)



Prover Verifier

I claim that the product of the 
matrices  and  is equal to .X Y Z

Let’s me check.



Verifier

Matrices 


Freivalds’ Algorithm


• The verifier samples a vector 

• The verifier computes


.


• Accept the claim iff 


Completeness


X, Y, Z ∈ 𝔽n×n
q

r ∈ 𝔽n
q

v ← X(Yr) − Zr
v = 0

v = X(Yr) − Zr = (XY − Z)

=0

r = 0



Verifier

Matrices 


Freivalds’ Algorithm


• The verifier samples a vector 

• The verifier computes


.


• Accept the claim iff 


Soundness


X, Y, Z ∈ 𝔽n×n
q

r ∈ 𝔽n
q

v ← X(Yr) − Zr
v = 0

v = X(Yr) − Zr = (XY − Z)

≠0

r



Verifier

Matrices 


Freivalds’ Algorithm


• The verifier samples a vector 

• The verifier computes


.


• Accept the claim iff 


Soundness


 with 


So,





 

X, Y, Z ∈ 𝔽n×n
q

r ∈ 𝔽n
q

v ← X(Yr) − Zr
v = 0

v =
⋮

⋯ mi,j ⋯
⋮

⋮
rj

⋮
mi,j ≠ 0

vi = rj ⋅ mi,j + … ∼ 𝒰(𝔽q)

Prob [v = 0 ∣ XY ≠ Z] ≥ Prob [vi = 0 ∣ XY ≠ Z] =
1
q



Prover Verifier

I claim that the product of the 
matrices  and  is equal to .X Y Z

Let’s me check.

Sounds good.

O(n2.37286) O(n2)

X(Yr) − Zr = 0 ?



Prover Verifier

I claim that

the output of  is .C(x) y

y



⋮

Prover Verifier

I claim that

the output of  is .C(x) y



⋮

Prover Verifier

I claim that

the output of  is .C(x) y

Efficiency: the communication between the prover and 
the verifier should be small.



Proof Systems — Properties

• Completeness


• Soundness


Optional properties:


• Zero-Knowledge


• Efficient Verification


• Short communication



Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier
I am convinced.

I know  such that

the output of  is .

w
C(x, w) y



Challenge 1 = Hash(Commitment)

Prover

Verifier

Challenge  = Hash(Response )n n − 1

⋮

Transcript = 

Commitment
Response 1

⋮
Response n

Fiat-Shamir

Transformation

I know  such that

the output of  is .

w
C(x, w) y

The hash outputs 
are hardly predictable 

and look random.
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• Efficient Verification


• Short communication


• Non-interactive


• Quantum-resilient (i.e. post-quantum)
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• Non-interactive

When both verification time and 
communication is very small 
compared to the size of , we 
say that the proof system is


succinct.

C



Proof Systems — Properties

• Completeness


• Soundness


Optional properties:


• Zero-Knowledge


• Efficient Verification


• Short communication


• Non-interactive

When both verification time and 
communication is very small 
compared to the size of , we 
say that the proof system is


succinct.

C

SNARK: Succinct Non-Interactive Arguments of Knowledge



State of the Art
of the SNARK Technology 
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[GMR85] The Knowledge Complexity of Interactive Proof-Systems. 
Goldwasser, Micali, Rackoff. 1885

Seminal article introducing the zero-knowledge proofs
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[BCCT11] From Extractable Collision Resistance to Succinct Non-Interactive 
Arguments of Knowledge, and Back Again. Bitansky, Canetti, Chiesa, Tromer. 2011

Article that introduces the notion of zk-SNARK.
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[PGHR13] Pinocchio: Nearly Practical Verifiable 
Computation. Parno, Gentry, Howell, Raykova. 2013

First practical SNARK for general computing.
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[Groth16] On the Size of Pairing-based Non-interactive 
Arguments. Groth. 2016

Highly efficient zk-SNARK (still very used).



I prepare the proof 
environment.Third Trusted Party

Prover Verifier



I prepare the proof 
environment.Third Trusted Party

• Sample a random value .


• Generate a structured reference string





• Discard the toxic waste . 

r

srs ← Procedure(r)

r



Prover Verifier

I prepare the proof 
environment.

srs srs

Third Trusted Party



Prover Verifier

I know  such that

the output of  is .

w
C(x, w) y

⋮

Third Trusted Party

I am convinced / I am not 
convinced.



Dealing with Trusted Setup

• Trusted Setup by Circuit:


the trusted set up works only

for the considered circuit .


• Trusted Universal Setup:


the trusted set up needs to be initiated

only one (and will work for any circuit ).


• Transparent Setup:


no trusted set up is need.


C

C



Timeline

GM
R8
5

BC
CT
11

Pi
no
cc
hi
o 
(P
GH
R1
3)

Gr
ot
h1
6 Relying on setups by circuit.



Timeline

GM
R8
5

BC
CT
11

Pi
no
cc
hi
o 
(P
GH
R1
3)

Gr
ot
h1
6

Bu
ll
et
pr
oo
fs
 (
BB
BP
WM
17
)

[BBBPWM17] Bulletproofs: Short Proofs for Confidential Transactions 
and More. Bünz, Bootle, Boneh, Poelstra, Wuille, Maxwell. 2017

One of the first efficient transparent proof systems 
(no efficient verification)
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[BBHR18] Scalable, transparent, and post-quantum secure 
computational integrity. Ben-Sasson, Bentov, Horesh, Riabzev. 2018

One of the first efficient transparent 

and post-quantum proof systems
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[GWC19] Plonk: Permutations over Lagrange-bases for Oecumenical 
Noninteractive arguments of Knowledge. Gabizon, Williamson, Ciobotaru. 2019

Practically-efficient proof system relying on universal setup



A (non-exhaustive) list of proof systems

Source: Wikipedia (page "Zero-knowledge Proof")
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A general SNARK framework

SNARK
Functional 

commitment 
schemes

Interactive 
oracle proof 

(IOP)
+=

• Commitment scheme: commit a hidden value that we can reveal later.


Too simple to build efficient SNARK system.



A general SNARK framework

SNARK
Functional 

commitment 
schemes

Interactive 
oracle proof 

(IOP)
+=

• Commitment scheme: commit a hidden value that we can reveal later.


• Functional commitment scheme: commit a hidden function  for which we 
can reveal some  later.

f
{f(xi)}i



A general SNARK framework

SNARK
Functional 

commitment 
schemes

Interactive 
oracle proof 

(IOP)
+=

Algorithm that describe how can get an 
efficient proof system from a generic 

functional commitment scheme (i.e. oracle)



A general SNARK framework

SNARK
Functional 

commitment 
schemes

Interactive 
oracle proof 

(IOP)
+=

When there is a trusted setup, it is usually 
because of the functional commitment 

scheme.



A general SNARK framework

SNARK
Functional 

commitment 
schemes

Interactive 
oracle proof 

(IOP)
+=

Phase 1/2: Committing procedure


• We fix a wet of functions .


• The prover commits a given function :


.


• The prover sends the commitment   to the verifier.

ℱ = {f : X → Y}

f ∈ ℱ

comf ← Comρ( f )

comf



A general SNARK framework

SNARK
Functional 

commitment 
schemes

Interactive 
oracle proof 

(IOP)
+=

Phase 1/2: Committing procedure


• We fix a wet of functions .


• The prover commits a given function :


.


• The prover sends the commitment   to the verifier.

ℱ = {f : X → Y}

f ∈ ℱ

comf ← Comρ( f )

comf

Commitment schemes 
usually rely on some 

randomness  to hide 
the committed data.

ρ



A general SNARK framework

SNARK
Functional 

commitment 
schemes

Interactive 
oracle proof 

(IOP)
+=

Phase 2/2: Verifying procedure


• The verifier sends some  to the prover.


• The prover replies with proof  together with some .


• The verifier uses the proof  to verify that  and .


• The verifier accept the claim iff the proof  is valid.

x ∈ X

π y ∈ Y

π f(x) = y f ∈ ℱ

π



A general SNARK framework

SNARK
Functional 

commitment 
schemes

Interactive 
oracle proof 

(IOP)
+=

Polynomial 
Commitment 

Schemes (PCS)

Multilinear 
Commitment 

Schemes (MCS)

Vector 
Commitment 

Schemes (VCS)

Inner product 
argument (IPA)



A general SNARK framework

SNARK
Functional 

commitment 
schemes

Interactive 
oracle proof 

(IOP)
+=

Polynomial 
Commitment 

Schemes (PCS)

Multilinear 
Commitment 

Schemes (MCS)

Vector 
Commitment 

Schemes (VCS)

Inner product 
argument (IPA)

The set  is all the univariate polynomials of degree less or equal to  in a specific 
field:





KZG and FRI are famous polynomial commitment schemes.

ℱ d

ℱ = 𝔽≤d[X]



A general SNARK framework

SNARK
Functional 

commitment 
schemes

Interactive 
oracle proof 

(IOP)
+=

Polynomial 
Commitment 

Schemes (PCS)

Multilinear 
Commitment 

Schemes (MCS)

Vector 
Commitment 

Schemes (VCS)

Inner product 
argument (IPA)

The set  is all the multivariate polynomials of degree at most 1:




For example:


        or       

ℱ
ℱ = 𝔽≤1[X1, …, Xn]

f1(X1, X2, X3) = 5 + 3X2 + X3 f2(X1, X2, X3) = X1 + X2 + X3



A general SNARK framework

SNARK
Functional 

commitment 
schemes

Interactive 
oracle proof 

(IOP)
+=

Polynomial 
Commitment 

Schemes (PCS)

Multilinear 
Commitment 

Schemes (MCS)

Vector 
Commitment 

Schemes (VCS)

Inner product 
argument (IPA)

The set  is all the functions that are represented by vectors: we commit to a 
vector a dimension .





Such a commitment scheme simply commits to a vector and enables us to reveal only 
few coordinates (and not the entire vector).

ℱ
d

ℱ = {f ⃗u : i ↦ ui, ⃗u := (u1, …, ud)}



A general SNARK framework

SNARK
Functional 

commitment 
schemes

Interactive 
oracle proof 

(IOP)
+=

Polynomial 
Commitment 

Schemes (PCS)

Multilinear 
Commitment 

Schemes (MCS)

Vector 
Commitment 

Schemes (VCS)

Inner product 
argument (IPA)

The set  is all the functions that are represented by vectors: we commit to a 
vector a dimension .





Such a commitment scheme simply commits to a vector and enables us to reveal only 
linear combinations of the coordinates.

ℱ
d

ℱ = {f ⃗u : ⃗v ↦ ⟨ ⃗u, ⃗v⟩}
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Computation C
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Plonk-ish
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Arithmetisation
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System
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+



Arithmetisation

Computation C

R1CS


AIR


Plonk-ish


CCS


…

Arithmetisation
Generic proof 

system

R1CS (Rank-1 Constraint Systems):


I know  such that the output of  is .


  I know  such that .

w C(x, w) y

⟹ w̄ (Aw̄) ∘ (Bw̄) = Cw̄

Constraint 
System

Functional 
commitment 

schemes

Interactive 
oracle proof 

(IOP)

+



Applications



Authentication

Alice Bob

I am Alice.

I am convinced.

Password



Authentication

Alice Bob

Password

Bob

Password

Eve

I am Alice.

I am Alice.

I am convinced.

I am convinced.

Eavesdropping…



Authentication

Alice Bob

I am Alice, the owner of the 
private key which corresponds 

to that public key. I am convinced.

Zero-Knowledge proof

of knowledge for the private key. 



Authentication

Alice Bob

I am Alice, the owner of the 
private key which corresponds 

to that public key. I am convinced.

Eve

Eavesdropping…

Get no information about the 
private key because of the 
zero-knowledge property.  



Authentication

Alice Bob

I am Alice, the owner of the 
private key which corresponds 

to that public key. I am convinced.

Identification

Scheme



Authentication

Alice Bob

I am Alice, the owner of the 
private key which corresponds 

to that public key. I am convinced.

Identification

Scheme

Signature

Scheme

Can be transformed into

(Fiat-Shamir transformation)



Computation Delegation

Cloud

Computer
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Computing

y ← C(x)
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Computation Delegation

Cloud

Computer

C, x

Computing

y ← C(x)

y, π

Proof that the

computation has


been honestly

Performed  



Computation Delegation (Blockchain)

ETH state New

ETH state

Transaction 1
Transaction 2

Transaction n

…

Should check the validity 
of each transaction

It scales linearly into the 
number of transactions

 It costs a lot of gaz.⟹



Computation Delegation (Blockchain)

ETH state New

ETH state

Should need check the validity 
of each validity proof

Much faster and cheaper

Proof  that all

the  transactions are valid

π
n



Fighting Disinformation

How to verify where and 
when a photography was taken?


The Coalition for Content Provenance and Authenticity 
(C2PA) proposed a standard to verify image provenance 

that relies on digital signatures. 


Cameras would “digitally sign” each photo taken along 
with a series of assertions about the photo (e.g., location, 

timestamp).



Fighting Disinformation

Cameras would “digitally sign” each photo taken along 
with a series of assertions about the photo (e.g., location, 

timestamp).


But in practice, the photos are often cropped, 
resized (etc.) before publishing. The photo 

signature would not be valid anymore.


When modifying a photo, we can produce a proof that the 
resulting photo corresponds to the original signed photos 

with a list of edits.



Conclusion



Proof Systems:


Main properties: 


Completeness & Soundness


Additional optional properties:


Zero-Knowledge, Efficient Verification,


Short Communication, Non-interactive, Quantum-Resilient


SNARK: Succinct Non-interactive Argument of Knowledge


Introduced in 2011


Different setups: trusted setup by circuit, universal trusted setup, 
transparent setup


SNARK = Functional Commitment Scheme + Interactive Oracle Proof

Conclusion



Applications of proof systems:


Authentication (identification scheme)


Computation Delegation


Many use cases in blockchain


Disinformation Fight


E-voting


…

Conclusion

Thank you for your attention !


