
Introduction to 
Zero-Knowledge Proofs

Thibauld Feneuil 

Winter Research School

February 20, 2024 — Rennes (France)

Speaker

• Thibauld Feneuil

• Cryptographer @ CryptoExperts

• PhD Defense in October 2023

• Main Research Area: MPC-in-the-Head paradigm,
post-quantum signatures

Speaker

Lectures
• 9h-10h30: Introduction to Zero-Knowledge Proofs

• 11h-12h30: Post-Quantum Signatures from Secure
Multiparty Computation

• Thibauld Feneuil

• Cryptographer @ CryptoExperts

• PhD Defense in October 2023

• Main Research Area: MPC-in-the-Head paradigm,
post-quantum signatures

Modern Cryptography

• Secure Communication

‣ Encryption for the confidentiality

‣ MAC / signatures for the authentication and
integrity

Modern Cryptography

• Secure Communication

‣ Encryption for the confidentiality

‣ MAC / signatures for the authentication and
integrity

• Secure Computation

‣ Multiparty Computation

‣ Homomorphic Encryption

‣ (Zero-Knowledge) Proof Systems

‣ …

Modern Cryptography

• Secure Communication

‣ Encryption for the confidentiality

‣ MAC / signatures for the authentication and
integrity

• Secure Computation

‣ Multiparty Computation

‣ Homomorphic Encryption

‣ (Zero-Knowledge) Proof Systems

‣ …

Definition and Properties

⋮

Prover Verifier

I am convinced / I am not
convinced.

I know such that

the output of is .

w
C(x, w) y

, and are publicC x y

⋮

Prover Verifier

• I know two non-trivial integers and such that .

• is not used

• is the couple

• is the multiplication algorithm

• is the value 15

p q p ⋅ q = 15
x
w (p, q)
C
y

I know such that

the output of is .

w
C(x, w) y

, and are publicC x y

⋮

Prover Verifier

• Given a graph , I know a 3-coloration of this graph.

• is the graph

• is the 3-coloration

• is the verification algorithm

• is the value “True”

G
x G
w
C
y

I know such that

the output of is .

w
C(x, w) y

, and are publicC x y

⋮

Prover Verifier

• I know the password of this encrypted file.

• is the encrypted file

• is the password

• is an algorithm checking if the password is valid

• is the value “True”

x
w
C
y

I know such that

the output of is .

w
C(x, w) y

, and are publicC x y

⋮

Prover Verifier

• I claim that the 100th term of the Fibonacci sequence is
.

• is the index 100

• is the algorithm for the Fibonacci sequence

• is the integer .

354224848179261915075
x
C
y 354224848179261915075

I claim that

the output of is .C(x) y

, and are publicC x y

⋮

Prover Verifier

• I claim that the product of the two matrices and is equal to
the matrix .

• is the two matrices and

• is the multiplication algorithm

• is the matrix

X Y
Z

x X Y
C
y Z

I claim that

the output of is .C(x) y

, and are publicC x y

⋮

Prover Verifier

• I claim that the number of occurrences of the word “mais” in the
book “A la Recherche du Temps Perdu” written by Marcel Proust is
8256.

• is the text of the book

• is the counting algorithm for the word “mais”.

• is the number 8256

x
C
y

I claim that

the output of is .C(x) y

, and are publicC x y

Prover Verifier

I know such that

the output of is .

w
C(x, w) y

⋮

• Completeness: if the prover is honest (i.e. if his claim is correct), the
verifier should be convinced at the end of the discussion.

• Soundness: if the prover is malicious (i.e. if his claim is invalid), the
verifier should not be convinced at the end of the discussion.

witness

Prover Verifier

I know such that

the output of is .

w
C(x, w) y

w

• Completeness: if the prover is honest (i.e. if his claim is correct), the
verifier should be convinced at the end of the discussion.

• Soundness: if the prover is malicious (i.e. if his claim is invalid), the
verifier should not be convinced at the end of the discussion.

Prover Verifier

I know such that

the output of is .

w
C(x, w) y

w

Sensitive data

Zero-Knowledge: the verifier should learn nothing about
the witness , not even a partial information.w

Prover Verifier

I know such that

the output of is .

w
C(x, w) y

??????

Zero-Knowledge: the verifier should learn nothing about
the witness , not even a partial information.w

Prover Verifier

Given a graph , I know a

3-coloration of this graph.

G

Background: Commitment Scheme

• Binding: the opened value is ensured to be
committed data .

• Hiding: leaks no information about the
committed data (without).

x

x

Prover Verifier

x

(later, optionally…)

x

Opening

Prover Verifier

Given a graph , I know a

3-coloration of this graph.

G

Prover Verifier

1

2

3

3 2

Given a graph , I know a

3-coloration of this graph.

G

Prover Verifier

1

2

3

3 2
Commitment

Scheme

Given a graph , I know a

3-coloration of this graph.

G

Prover Verifier

1

2

3

3 2

A

B

E D

C

Given a graph , I know a

3-coloration of this graph.

G

Reveal the nodes A and D.

Prover Verifier

Given a graph , I know a

3-coloration of this graph.

G

1

2

3

3 2

B

E

C

Reveal the nodes A and D.

Sounds good. Let us try
again.

Prover Verifier

6

4

5

5 4

Given a graph , I know a

3-coloration of this graph.

G

Prover Verifier

Given a graph , I know a

3-coloration of this graph.

G

6

4

5

5 4

Prover Verifier

A

B

E D

C

Given a graph , I know a

3-coloration of this graph.

G

Reveal the nodes B and E.

6

4

5

5 4

Prover Verifier

Given a graph , I know a

3-coloration of this graph.

G

Reveal the nodes B and E.

Sounds good again. I am
now convinced.

A

D

C6

4

5

5 4

Prover Verifier

Given a graph , I know a

3-coloration of this graph.

G

Reveal the nodes B and E.

Sounds good again. I am
now convinced.

A

D

C6

4

5

5 4
Completeness:

Zero-Knowledge:

Malicious

Prover

Verifier

3

1

1

2 2

Given a graph , I know a

3-coloration of this graph.

G

Malicious

Prover

Verifier

3

1

1

2 2

Given a graph , I know a

3-coloration of this graph.

G

Malicious

Prover

Verifier

3

1

1

2 2

Given a graph , I know a

3-coloration of this graph.

G

A

B

E D

C

Reveal the nodes C and E.

Malicious

Prover

Verifier

3

1

1

2 2

Given a graph , I know a

3-coloration of this graph.

G

A

B

D

Reveal the nodes C and E.

Sounds good. Let us try
again.

Malicious

Prover

Verifier

4

6

6

5 5

Given a graph , I know a

3-coloration of this graph.

G

Malicious

Prover

Verifier

4

6

6

5 5

Given a graph , I know a

3-coloration of this graph.

G

Malicious

Prover

Verifier

4

6

6

5 5

Given a graph , I know a

3-coloration of this graph.

G

A

B

E D

C

Reveal the nodes D and E.

Malicious

Prover

Verifier

4

6

6

5 5

Given a graph , I know a

3-coloration of this graph.

G

A

B

C

Reveal the nodes D and E.

You try to fool me! I am
absolutely not convinced!

Probability to catch a malicious prover ≥
1

nb edges

Probability to fail to detect a malicious prover:

With 1 try:

With 2 tries:

…

With tries:

ε

ε ≤ 1 −
1

nb edges

ε ≤ (1 −
1

nb edges)
2

τ ε ≤ (1 −
1

nb edges)
τ

Probability to fail to detect a malicious prover:

With 1 try:

With 2 tries:

…

With tries:

ε

ε ≤ 1 −
1

nb edges

ε ≤ (1 −
1

nb edges)
2

τ ε ≤ (1 −
1

nb edges)
τ

1 try: 99.00 %
2 tries: 98.01 %
3 tries: 97.03 %

100 tries: 36.60 %

1000 tries: 0.004 %
458 tries: 1.00 %

For a graph with 100 edges

Prover Verifier

I know such that

the output of is .

w
C(x, w) y

• Perfect Completeness:

• Statistical Soundness:

Prob [verifier convinced |prover honest] = 1

Prob [verifier convinced |prover malicious] ≤ ε

⋮

Soundness
Error

Prover Verifier

I know such that

the output of is .

w
C(x, w) y

• Perfect Completeness:

• Statistical Soundness:

Prob [verifier convinced |prover honest] = 1

Prob [verifier convinced |prover malicious] ≤ ε

⋮

Soundness
Error

Commitment

Challenge 1

Response 1

Challenge n
Response n

Prover Verifier

I claim that

the output of is .C(x) y

• I claim that the number of occurrences of the word “mais” in the
book “A la Recherche du Temps Perdu” written by Marcel Proust is
8256.

• is the text of the book

• is the counting algorithm for the word “mais”.

• is the number 8256

x
C
y

Prover Verifier

• I claim that the number of occurrences of the word “mais” in
the book “A la Recherche du Temps Perdu” written by Marcel
Proust is 8256.

• is the text of the book

• is the counting algorithm for the word “mais”.

• is the number 8256

x
C
y

I claim that

the output of is .C(x) y

I agree.

Recomputing

C(x)

Prover Verifier

• I claim that the number of occurrences of the word “mais” in
the book “A la Recherche du Temps Perdu” written by Marcel
Proust is 8256.

• is the text of the book

• is the counting algorithm for the word “mais”.

• is the number 8256

x
C
y

I claim that

the output of is .C(x) y

I agree.

Recomputing

C(x)

Prover Verifier

I claim that

the output of is .C(x) y

I agree.

Recomputing

C(x)

Efficiency: the verifier should be faster than the time
required to compute .C(x)

Prover Verifier

I claim that the product of the
matrices and is equal to .X Y Z

Let’s me check.

Verifier

Matrices

Freivalds’ Algorithm

• The verifier samples a vector

• The verifier computes

.

• Accept the claim iff

Completeness

X, Y, Z ∈ 𝔽n×n
q

r ∈ 𝔽n
q

v ← X(Yr) − Zr
v = 0

v = X(Yr) − Zr = (XY − Z)

=0

r = 0

Verifier

Matrices

Freivalds’ Algorithm

• The verifier samples a vector

• The verifier computes

.

• Accept the claim iff

Soundness

X, Y, Z ∈ 𝔽n×n
q

r ∈ 𝔽n
q

v ← X(Yr) − Zr
v = 0

v = X(Yr) − Zr = (XY − Z)

≠0

r

Verifier

Matrices

Freivalds’ Algorithm

• The verifier samples a vector

• The verifier computes

.

• Accept the claim iff

Soundness

 with

So,

X, Y, Z ∈ 𝔽n×n
q

r ∈ 𝔽n
q

v ← X(Yr) − Zr
v = 0

v =
⋮

⋯ mi,j ⋯
⋮

⋮
rj

⋮
mi,j ≠ 0

vi = rj ⋅ mi,j + … ∼ 𝒰(𝔽q)

Prob [v = 0 ∣ XY ≠ Z] ≥ Prob [vi = 0 ∣ XY ≠ Z] =
1
q

Prover Verifier

I claim that the product of the
matrices and is equal to .X Y Z

Let’s me check.

Sounds good.

O(n2.37286) O(n2)

X(Yr) − Zr = 0 ?

Prover Verifier

I claim that

the output of is .C(x) y

y

⋮

Prover Verifier

I claim that

the output of is .C(x) y

⋮

Prover Verifier

I claim that

the output of is .C(x) y

Efficiency: the communication between the prover and
the verifier should be small.

Proof Systems — Properties

• Completeness

• Soundness

Optional properties:

• Zero-Knowledge

• Efficient Verification

• Short communication

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier
I am convinced.

I know such that

the output of is .

w
C(x, w) y

Challenge 1 = Hash(Commitment)

Prover

Verifier

Challenge = Hash(Response)n n − 1

⋮

Transcript =

Commitment
Response 1

⋮
Response n

Fiat-Shamir

Transformation

I know such that

the output of is .

w
C(x, w) y

The hash outputs
are hardly predictable

and look random.

Proof Systems — Properties

• Completeness

• Soundness

Optional properties:

• Zero-Knowledge

• Efficient Verification

• Short communication

• Non-interactive

Proof Systems — Properties

• Completeness

• Soundness

Optional properties:

• Zero-Knowledge

• Efficient Verification

• Short communication

• Non-interactive

• Quantum-resilient (i.e. post-quantum)

Proof Systems — Properties

• Completeness

• Soundness

Optional properties:

• Zero-Knowledge

• Efficient Verification

• Short communication

• Non-interactive

When both verification time and
communication is very small
compared to the size of , we
say that the proof system is

succinct.

C

Proof Systems — Properties

• Completeness

• Soundness

Optional properties:

• Zero-Knowledge

• Efficient Verification

• Short communication

• Non-interactive

When both verification time and
communication is very small
compared to the size of , we
say that the proof system is

succinct.

C

SNARK: Succinct Non-Interactive Arguments of Knowledge

State of the Art
of the SNARK Technology

Timeline

GM
R8
5

BC
CT
11

Pi
no
cc
hi
o
(P
GH
R1
3)

Gr
ot
h1
6

Timeline

GM
R8
5

BC
CT
11

Pi
no
cc
hi
o
(P
GH
R1
3)

Gr
ot
h1
6

[GMR85] The Knowledge Complexity of Interactive Proof-Systems.
Goldwasser, Micali, Rackoff. 1885

Seminal article introducing the zero-knowledge proofs

Timeline

GM
R8
5

BC
CT
11

Pi
no
cc
hi
o
(P
GH
R1
3)

Gr
ot
h1
6

[BCCT11] From Extractable Collision Resistance to Succinct Non-Interactive
Arguments of Knowledge, and Back Again. Bitansky, Canetti, Chiesa, Tromer. 2011

Article that introduces the notion of zk-SNARK.

Timeline

GM
R8
5

BC
CT
11

Pi
no
cc
hi
o
(P
GH
R1
3)

Gr
ot
h1
6

[PGHR13] Pinocchio: Nearly Practical Verifiable
Computation. Parno, Gentry, Howell, Raykova. 2013

First practical SNARK for general computing.

Timeline

GM
R8
5

BC
CT
11

Pi
no
cc
hi
o
(P
GH
R1
3)

Gr
ot
h1
6

[Groth16] On the Size of Pairing-based Non-interactive
Arguments. Groth. 2016

Highly efficient zk-SNARK (still very used).

I prepare the proof
environment.Third Trusted Party

Prover Verifier

I prepare the proof
environment.Third Trusted Party

• Sample a random value .

• Generate a structured reference string

• Discard the toxic waste .

r

srs ← Procedure(r)

r

Prover Verifier

I prepare the proof
environment.

srs srs

Third Trusted Party

Prover Verifier

I know such that

the output of is .

w
C(x, w) y

⋮

Third Trusted Party

I am convinced / I am not
convinced.

Dealing with Trusted Setup

• Trusted Setup by Circuit:

the trusted set up works only

for the considered circuit .

• Trusted Universal Setup:

the trusted set up needs to be initiated

only one (and will work for any circuit).

• Transparent Setup:

no trusted set up is need.

C

C

Timeline

GM
R8
5

BC
CT
11

Pi
no
cc
hi
o
(P
GH
R1
3)

Gr
ot
h1
6 Relying on setups by circuit.

Timeline

GM
R8
5

BC
CT
11

Pi
no
cc
hi
o
(P
GH
R1
3)

Gr
ot
h1
6

Bu
ll
et
pr
oo
fs
 (
BB
BP
WM
17
)

[BBBPWM17] Bulletproofs: Short Proofs for Confidential Transactions
and More. Bünz, Bootle, Boneh, Poelstra, Wuille, Maxwell. 2017

One of the first efficient transparent proof systems 
(no efficient verification)

Timeline

GM
R8
5

BC
CT
11

Pi
no
cc
hi
o
(P
GH
R1
3)

Gr
ot
h1
6

Bu
ll
et
pr
oo
fs
 (
BB
BP
WM
17
)

zk
-S
TA
RK
s
(B
BH
R1
8)

[BBHR18] Scalable, transparent, and post-quantum secure
computational integrity. Ben-Sasson, Bentov, Horesh, Riabzev. 2018

One of the first efficient transparent

and post-quantum proof systems

Timeline

GM
R8
5

BC
CT
11

Pi
no
cc
hi
o
(P
GH
R1
3)

Gr
ot
h1
6

Bu
ll
et
pr
oo
fs
 (
BB
BP
WM
17
)

zk
-S
TA
RK
s
(B
BH
R1
8)

Pl
on
k
(G
WC
19
)

[GWC19] Plonk: Permutations over Lagrange-bases for Oecumenical
Noninteractive arguments of Knowledge. Gabizon, Williamson, Ciobotaru. 2019

Practically-efficient proof system relying on universal setup

A (non-exhaustive) list of proof systems

Source: Wikipedia (page "Zero-knowledge Proof")

A general SNARK framework

SNARK
Functional

commitment
schemes

Interactive
oracle proof

(IOP)
+=

A general SNARK framework

SNARK
Functional

commitment
schemes

Interactive
oracle proof

(IOP)
+=

• Commitment scheme: commit a hidden value that we can reveal later.

Too simple to build efficient SNARK system.

A general SNARK framework

SNARK
Functional

commitment
schemes

Interactive
oracle proof

(IOP)
+=

• Commitment scheme: commit a hidden value that we can reveal later.

• Functional commitment scheme: commit a hidden function for which we
can reveal some later.

f
{f(xi)}i

A general SNARK framework

SNARK
Functional

commitment
schemes

Interactive
oracle proof

(IOP)
+=

Algorithm that describe how can get an
efficient proof system from a generic

functional commitment scheme (i.e. oracle)

A general SNARK framework

SNARK
Functional

commitment
schemes

Interactive
oracle proof

(IOP)
+=

When there is a trusted setup, it is usually
because of the functional commitment

scheme.

A general SNARK framework

SNARK
Functional

commitment
schemes

Interactive
oracle proof

(IOP)
+=

Phase 1/2: Committing procedure

• We fix a wet of functions .

• The prover commits a given function :

.

• The prover sends the commitment to the verifier.

ℱ = {f : X → Y}

f ∈ ℱ

comf ← Comρ(f)

comf

A general SNARK framework

SNARK
Functional

commitment
schemes

Interactive
oracle proof

(IOP)
+=

Phase 1/2: Committing procedure

• We fix a wet of functions .

• The prover commits a given function :

.

• The prover sends the commitment to the verifier.

ℱ = {f : X → Y}

f ∈ ℱ

comf ← Comρ(f)

comf

Commitment schemes
usually rely on some

randomness to hide
the committed data.

ρ

A general SNARK framework

SNARK
Functional

commitment
schemes

Interactive
oracle proof

(IOP)
+=

Phase 2/2: Verifying procedure

• The verifier sends some to the prover.

• The prover replies with proof together with some .

• The verifier uses the proof to verify that and .

• The verifier accept the claim iff the proof is valid.

x ∈ X

π y ∈ Y

π f(x) = y f ∈ ℱ

π

A general SNARK framework

SNARK
Functional

commitment
schemes

Interactive
oracle proof

(IOP)
+=

Polynomial
Commitment

Schemes (PCS)

Multilinear
Commitment

Schemes (MCS)

Vector
Commitment

Schemes (VCS)

Inner product
argument (IPA)

A general SNARK framework

SNARK
Functional

commitment
schemes

Interactive
oracle proof

(IOP)
+=

Polynomial
Commitment

Schemes (PCS)

Multilinear
Commitment

Schemes (MCS)

Vector
Commitment

Schemes (VCS)

Inner product
argument (IPA)

The set is all the univariate polynomials of degree less or equal to in a specific
field:

KZG and FRI are famous polynomial commitment schemes.

ℱ d

ℱ = 𝔽≤d[X]

A general SNARK framework

SNARK
Functional

commitment
schemes

Interactive
oracle proof

(IOP)
+=

Polynomial
Commitment

Schemes (PCS)

Multilinear
Commitment

Schemes (MCS)

Vector
Commitment

Schemes (VCS)

Inner product
argument (IPA)

The set is all the multivariate polynomials of degree at most 1:

For example:

 or

ℱ
ℱ = 𝔽≤1[X1, …, Xn]

f1(X1, X2, X3) = 5 + 3X2 + X3 f2(X1, X2, X3) = X1 + X2 + X3

A general SNARK framework

SNARK
Functional

commitment
schemes

Interactive
oracle proof

(IOP)
+=

Polynomial
Commitment

Schemes (PCS)

Multilinear
Commitment

Schemes (MCS)

Vector
Commitment

Schemes (VCS)

Inner product
argument (IPA)

The set is all the functions that are represented by vectors: we commit to a
vector a dimension .

Such a commitment scheme simply commits to a vector and enables us to reveal only
few coordinates (and not the entire vector).

ℱ
d

ℱ = {f ⃗u : i ↦ ui, ⃗u := (u1, …, ud)}

A general SNARK framework

SNARK
Functional

commitment
schemes

Interactive
oracle proof

(IOP)
+=

Polynomial
Commitment

Schemes (PCS)

Multilinear
Commitment

Schemes (MCS)

Vector
Commitment

Schemes (VCS)

Inner product
argument (IPA)

The set is all the functions that are represented by vectors: we commit to a
vector a dimension .

Such a commitment scheme simply commits to a vector and enables us to reveal only
linear combinations of the coordinates.

ℱ
d

ℱ = {f ⃗u : ⃗v ↦ ⟨ ⃗u, ⃗v⟩}

Arithmetisation

Computation C

R1CS

AIR

Plonk-ish

CCS

…

Arithmetisation
Generic proof

system

Constraint 
System

Functional
commitment

schemes

Interactive
oracle proof

(IOP)

+

Arithmetisation

Computation C

R1CS

AIR

Plonk-ish

CCS

…

Arithmetisation
Generic proof

system

R1CS (Rank-1 Constraint Systems):

I know such that the output of is .

 I know such that .

w C(x, w) y

⟹ w̄ (Aw̄) ∘ (Bw̄) = Cw̄

Constraint 
System

Functional
commitment

schemes

Interactive
oracle proof

(IOP)

+

Applications

Authentication

Alice Bob

I am Alice.

I am convinced.

Password

Authentication

Alice Bob

Password

Bob

Password

Eve

I am Alice.

I am Alice.

I am convinced.

I am convinced.

Eavesdropping…

Authentication

Alice Bob

I am Alice, the owner of the
private key which corresponds

to that public key. I am convinced.

Zero-Knowledge proof

of knowledge for the private key.

Authentication

Alice Bob

I am Alice, the owner of the
private key which corresponds

to that public key. I am convinced.

Eve

Eavesdropping…

Get no information about the
private key because of the
zero-knowledge property.

Authentication

Alice Bob

I am Alice, the owner of the
private key which corresponds

to that public key. I am convinced.

Identification

Scheme

Authentication

Alice Bob

I am Alice, the owner of the
private key which corresponds

to that public key. I am convinced.

Identification

Scheme

Signature

Scheme

Can be transformed into

(Fiat-Shamir transformation)

Computation Delegation

Cloud

Computer

Computation Delegation

Cloud

Computer

C, x

Computation Delegation

Cloud

Computer

C, x

Computing

y ← C(x)

y

Computation Delegation

Cloud

Computer

C, x

Computing

y ← C(x)

y, π

Proof that the

computation has

been honestly

Performed

Computation Delegation (Blockchain)

ETH state New

ETH state

Transaction 1
Transaction 2

Transaction n

…

Should check the validity
of each transaction

It scales linearly into the
number of transactions

 It costs a lot of gaz.⟹

Computation Delegation (Blockchain)

ETH state New

ETH state

Should need check the validity
of each validity proof

Much faster and cheaper

Proof that all

the transactions are valid

π
n

Fighting Disinformation

How to verify where and 
when a photography was taken?

The Coalition for Content Provenance and Authenticity
(C2PA) proposed a standard to verify image provenance

that relies on digital signatures.

Cameras would “digitally sign” each photo taken along
with a series of assertions about the photo (e.g., location,

timestamp).

Fighting Disinformation

Cameras would “digitally sign” each photo taken along
with a series of assertions about the photo (e.g., location,

timestamp).

But in practice, the photos are often cropped,
resized (etc.) before publishing. The photo

signature would not be valid anymore.

When modifying a photo, we can produce a proof that the
resulting photo corresponds to the original signed photos

with a list of edits.

Conclusion

Proof Systems:

Main properties:

Completeness & Soundness

Additional optional properties:

Zero-Knowledge, Efficient Verification,

Short Communication, Non-interactive, Quantum-Resilient

SNARK: Succinct Non-interactive Argument of Knowledge

Introduced in 2011

Different setups: trusted setup by circuit, universal trusted setup,
transparent setup

SNARK = Functional Commitment Scheme + Interactive Oracle Proof

Conclusion

Applications of proof systems:

Authentication (identification scheme)

Computation Delegation

Many use cases in blockchain

Disinformation Fight

E-voting

…

Conclusion

Thank you for your attention !

