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C, x andy are public
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| know w such that
the output of C(x, w) is y.

S

v

Prover

C, x andy are public

Verifier

| know two non-trivial integers p and g such thatp - g = 15.

X is not used
w is the couple (p, q)
C is the multiplication algorithm

y is the value 15
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| know w such that
the output of C(x, w) is y.

S

v

Prover

C, x andy are public

Verifier

e Given a graph G, | know a 3-coloration of this graph.

x is the graph G
w is the 3-coloration
C is the verification algorithm

y is the value “True”



C, x andy are public

| know w such that

the output of C(x, w) is y.

. S

v
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Prover Verifier

e | know the password of this encrypted file.
e xisthe encrypted file
e wisthe password
e (isan algorithm checking if the password is valid

e yisthe value “True”



C, x andy are public

| claim that
the output of C(x) is y.

v

Prover Verifier

e | claim that the 100t term of the Fibonacci sequence is
354224848179261915075.

e xistheindex 100
e (isthe algorithm for the Fibonacci sequence
e yisthe integer 354224848179261915075.



C, x andy are public

| claim that
the output of C(x) is y.
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Verifier

Prover

e | claim that the product of the two matrices X and Y is equal to
the matrix Z.
e xisthe two matrices X and Y
e (isthe multiplication algorithm

e Vyisthe matrix Z



C, x andy are public

| claim that
the output of C(x) is y.

v

>
<€
>
<€
>
Prover Verifier

e | claim that the number of occurrences of the word “mais” in the
book “A la Recherche du Temps Perdu” written by Marcel Proust is

3256.

e xisthe text of the book

e (isthe counting algorithm for the word “mais”.

* yisthe number 8256
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| know w such that

the output of C(x, w) is y.

. S

v

Prover Verifier

Completeness: if the prover is honest (i.e. if his claim is correct), the
verifier should be convinced at the end of the discussion.

Soundness: if the prover is malicious (i.e. it his claim is invalid), the
verifier should not be convinced at the end of the discussion.
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| know w such that
the output of C(x, w) is y.

. S

W
A >
Prover Verifier

Zero-Knowledge: the veritier should learn nothing about
the witness w, not even a partial information.
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Prover Verifier

Zero-Knowledge: the veritier should learn nothing about
the witness w, not even a partial information.
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3-coloration of this graph.

1

S

v

Prover

Verifier



€ =

&
>
.............................................)
(later, optionally...)
Prover Verifier

Binding: the opened value is ensured to be

committed data x.

~ 7

Hiding: 9 | leaks no information about the

committed data x (without e ).

Opening

X
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3-coloration of this graph.
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Commitment
Scheme
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Given a graph G, | know a
3-coloration of this graph.

. S

\/ Reveal the nodes B and E. L

\.
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Sounds good again. | am L

now convinced.

Prover Verifier

Completeness: «
Zero-Knowledge: V
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Given a graph G, | know a

3-coloration of this graph.

\ S

\/ [ Reveal the nodes D and E. L

Verifier

Malicious

Prover A




é R

Given a graph G, | know a
3-coloration of this graph.

. S

\/ Reveal the nodes D and E. L
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~

absolutely not convinced!

You try to fool me! | am L

Malicious

Verifier

Prover

1

Probability to catch a malicious prover >
nb edges




Probability € to fail to detect a malicious prover:

1
With 1 try: e £ 1 —
nb edges
| 2
With 2 tries: e < [ 1 —
nb edges

1 T
With ttries: e < | 1 —
nb edges



Probability € to fail to detect a malicious prover:

1
With 1 try: e £ 1 —
nb edges
| 2
With 2 tries: e < [ 1 —
nb edges
. . 1 '
With 7 tries: € < <1 — >
nb edges

For a graph with 100 edges
1 try: 99.00 % 100 tries: 36.60 %
2 tries: 98.01 % 458 tries: 1.00 %
3 tries: 97.03 % 1000 tries: 0.004 %
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the output of C(x, w) is y.

| know w such that

S

v

Prover Verifier

o Perfect

t Completeness:

e Statisti

Prob [veriﬁer convinced | prover honest] =1

Soundness %

cal Soundness: Error 4

Prob [verifier convinced | prover malicious] <e”



| know w such that
the output of C(x, w) is y.

\/ Commitment

Challenge 1

Response 1

. S

Challénge n

Response n

Prover Verifier

e Perfect Completeness:

Prob [veriﬁer convinced | prover honest] =1

Soundness

e Statistical Soundness: ‘rrr P

Prob [verifier convinced | prover malicious] <e¢



| claim that
the output of C(x) is y.

v

Prover Verifier

e | claim that the number of occurrences of the word “mais” in the
book “A la Recherche du Temps Perdu” written by Marcel Proust is

3256.

e xisthe text of the book

e (isthe counting algorithm for the word “mais”.

* yisthe number 8256



| claim that

the output of C(x) is y.

S

V|

| agree.

Prover

Recomputing
C(x) o
&

Verifier

e | claim that the number of occurrences of the word “mais” in
the book “A la Recherche du Temps Perdu” written by Marcel

Proust is 8256.

e X is the text of the book
e (is the counting algorithm for the word “mais”.

e yisthe number 8256



| claim that
the output of C(x) is y.

L S

V o

Prover rd Verifier %,

e | claim that the number of occurrences of the word “mais” in

the book “A la Recherche du Temps Perdu” written by Marcel
Proust is 8256.

e xisthe text of the book

e (is the counting algorithm for the word “mais”.
e yisthe number 8256



| claim that

the output of C(x) is y.

L S

V o

Prover rd Veritier %,

Efficiency: the veritfier should be faster than the time
required to compute C(x).




| claim that the product of the

matrices X and Y is equal to Z.

L S

\/ Let's me check. &

Prover Verifier



Matrices X, Y, Z € [FZX”

Freivalds' Algorithm

* The verifier samples a vector r € |}
* The verifier computes

v« X(Yr)—"Zr.
e Accept the claimiffv =20

Completeness
v=X(YN—-Zr=XY=2)r =0 Verifier

—0



Matrices X, Y, Z € [FZX”

Freivalds' Algorithm

* The verifier samples a vector r € |}
* The verifier computes

v« X(Yr)—"Zr.
e Accept the claimiffv =20

Soundness
v=XYr)—Zr=XY—-2)r Verifier

~

£0



Matrices X, Y, Z € [FZX”

Freivalds' Algorithm

* The verifier samples a vector r € |}
* The verifier computes

v« X(Yr)—"Zr.
e Accept the claimiffv =20

Soundness

Verifier

v=| Mo T withmg  # 0

So,

vi=rem i+ ..o~ U

Prob[v=O|XY;éZ] ZProb[vi=O|XY;éZ] =l
q



| claim that the product of the

matrices X and Y is equal to Z.

\/ Let's me check. &
X(Yr)—Zr=07?

Sounds good. L

Prover Verifier

O(n2-37286) O(n?)



| claim that
the output of C(x) is y.
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Prover Verifier



| claim that
the output of C(x) is y.

v

Prover Verifier



| claim that
the output of C(x) is y.

Prover Verifier

Efficiency: the communication between the prover and
the veritier should be small.




Systems — Properties

e Completeness

e Soundness

Optional properties:

e Zero-Knowledge
e Efficient Verification

e Short communication



L

| know w such that

the output of C(x, w) is y.

\/ Commitment

Challenge 1

Response 1

Challenge n

Response n

Prover

/\ Veritier

[ | am convinced. ]




L

| know w such that
the output of C(x,w) is y.

Prover

Transcript =

" The hash outputs |
are hardly predictable |
. and look random. _/

Challenge 1= Hash(Commltment)

> Challenge n = Hash(Response n — 1)

Response 1

\ Response n

(Commltment\

/

Verifier
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Optional properties:

e Zero-Knowledge

e Efficient Verification
e Short communication
e Non-interactive

 Quantum-resilient (i.e. post-quantum)



Proof Systems — Properties

e Completeness

e Soundness

When both verification time and
communication is very small

compared to the size of C, we
say that the proof system is

succinct.

Optional properties:

e Zero-Knowledge

o Efficient Verification

e Short communication

e Non-interactive



Proof Systems — Properties
e Completeness

e Soundness

When both verification time and
communication is very small
compared to the size of C, we
say that the proof system is

Optional properties:

e Zero-Knowledge .
succinct.

o Efficient Verification

e Short communication

e Non-interactive

SNARK: Succinct Non-Interactive Arguments of Knowledge
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[GMR85] The Knowledge Complexity of Interactive Proof-Systems.
Goldwasser, Micali, Rackoff. 1885

Seminal article introducing the zero-knowledge proofs
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[BCCT11] From Extractable Collision Resistance to Succinct Non-Interactive
Arguments of Knowledge, and Back Again. Bitansky, Canetti, Chiesa, Tromer. 2011

Article that introduces the notion of zk-SNARK.
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[PGHR13] Pinocchio: Nearly Practical Verifiable
Computation. Parno, Gentry, Howell, Raykova. 2013

First practical SNARK for general computing.
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[Groth16] On the Size of Pairing-based Non-interactive
Arguments. Groth. 2016

Highly efficient zk-SNARK (still very used).



| prepare the proof
environment.

Third Trusted Party

Prover Verifier



| prepare the proof
environment.

Third Trusted Party

e Sample a random value r.

» Generate a structured reference string

srs < Procedure(r)

e Discard the toxic waste r.



| prepare the proof
environment.

Third Trusted Party

/\

Prover Verifier




Third Trusted Party

L

| know w such that
the output of C(x,w) is y.

S

v

Prover

-

/\ Verifier

| am convinced / | am not
convinced.




e Trusted Setup by Circuit:

the trusted set up works only
for the considered circuit C.

e Trusted Universal Setup:

the trusted set up needs to be initiated
only one (and will work for any circuit C).

e Transparent Setup:

no trusted set up is need.



P <4
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Timeline

N . o ,\/ Relying on setups by circuit.




[BBBPWM17] Bulletproofs: Short Proofs for Confidential Transactions
and More. Bunz, Bootle, Boneh, Poelstra, Wuille, Maxwell. 2017

One of the first efficient transparent proof systems
(no efficient verification)




[BBHR18] Scalable, transparent, and post-quantum secure

computational integrity. Ben-Sasson, Bentov, Horesh, Riabzev. 2018

One of the first efficient transparent
and post-quantum proof systems




[GWC19] Plonk: Permutations over Lagrange-bases for Oecumenical

Noninteractive arguments of Knowledge. Gabizon, Williamson, Ciobotaru. 2019

Practically-efficient proof system relying on universal setup




ZKP System | Publication year | Protocol | Transparent Universal Plausibly Post-Quantum Secure | Programming Paradigm

Pinocchiol®¢! | 2013 zk-SNARK No No No Procedural
Geppettol®’l | 2015 zk-SNARK No No No Procedural
TinyRAMI28l | 2013 zk-SNARK No No No Procedural
Buffet[3°] 2015 zk-SNARK No No No Procedural
ZoKrates*0l | 2018 zk-SNARK No No No Procedural
xJsnark41] 2018 zk-SNARK No No No Procedural
vRAM#2] 2018 zk-SNARG No Yes No Assembly
vnTinyRAM[#3] | 2014 zk-SNARK No Yes No Procedural
MIRAGE!“4l | 2020 zk-SNARK No Yes No Arithmetic Circuits
Sonicl45] 2019 zk-SNARK No Yes No Arithmetic Circuits
Marlinl46! 2020 zk-SNARK No Yes No Arithmetic Circuits
PLONKI[%7] 2019 zk-SNARK No Yes No Arithmetic Circuits
SuperSonic!“él | 2020 zk-SNARK Yes Yes No Arithmetic Circuits
Bulletproofs?4] | 2018 Bulletproofs Yes Yes No Arithmetic Circuits
Hyrax[4°] 2018 zk-SNARK Yes Yes No Arithmetic Circuits
Halol50] 2019 zk-SNARK Yes Yes No Arithmetic Circuits
Virgol®1] 2020 zk-SNARK Yes Yes Yes Arithmetic Circuits
Ligerol®2] 2017 zk-SNARK Yes Yes Yes Arithmetic Circuits
Auroral®3l 2019 zk-SNARK Yes Yes Yes Arithmetic Circuits
zk-STARK54 | 2019 zk-STARK Yes Yes Yes Assembly
Zilch!39] 2021 zk-STARK Yes Yes Yes Object-Oriented

Source: Wikipedia (page "Zero-knowledge Proof")
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commitment
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; Functional Interactive
SNARK — commitment e oracle proof
schemes B/ (IOP)
.. : .

e Commitment scheme: commit a hidden value that we can reveal later.

Too simple to build efficient SNARK system.



1 Functional Interactive
SNARK = commitment + oracle proof
E schemes B/ (IOP)
o :

e Commitment scheme: commit a hidden value that we can reveal later.

e Functional commitment scheme: commit a hidden function f for which we

can reveal some {f(x;)}; later.



A general SNARK framework

; Functional Interactive
SNARK — commitment e oracle proof
- schemes B/ (IOP)

Algorithm that describe how can get an
efficient proof system from a generic
functional commitment scheme (i.e. oracle)




A general SNARK framework

; Functional Interactive
SNARK — commitment e oracle proof
schemes =“" (IOP)
. Yo/ .
=

When there is a trusted setup, it is usually
because of the functional commitment
scheme.



A general SNARK

5 Functional Interactive
SNARK = commitment + oracle proof
E schemes B/ (IOP)

:| :

Phase 1/2: Committing procedure

e We fix a wet of functions # = {f: X —» Y}.

e The prover commits a given function f € F:

comy < Com”(f).

* The prover sends the commitment com; to the verifier.



A general SNARK framework

; Functional Interactive
SNARK — commitment e oracle proof
- schemes B/ (IOP)

» : .

Commitment schemes

o usually rely on some
Phase 1/2: Committing procedure Y

randomness p to hide
the committed data.

* We fixa wet of functions # = {f: X — }

e The prover commits a given functioff f € F:

com; < Com” ).

* The prover sends the commitment com; to the verifier.



; Functional Interactive
SNARK — commitment e oracle proof
‘ schemes & (IOP)

» : .

Phase 2/2: Veritying procedure
e The verifier sends some x € X to the prover.
e The prover replies with proof 7 together with some y € Y.
e The verifier uses the proof x to verify that f(x) = yand f € &.

e The verifier accept the claim iff the proof z is valid.
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SNARK

Polynomial

Commitment
Schemes (PCS)
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schemes &

L&

Interactive

oracle proof
(IOP)

Multilinear Vector
Commitment Commitment
Schemes (MCS) Schemes (VCS)

Inner product
argument (IPA)




A general SNARK

; Functional Interactive

SNARK = commitment + oracle proof

‘ schemes & (IOP)
:
=
Polynomial Multilinear Vector

: : . Inner product

Commitment Commitment Commitment argument (IPA)
Schemes (PCS) Schemes (MCS) Schemes (VCS) 9

The set F is all the univariate polynomials of degree less or equal to d in a specitic

field:

KZG and FRI are famous polynomial commitment schemes.

F = F9X]




A general SNARK

SNARK

Functional
commitment

Polynomial

Commitment
Schemes (PCS)

The set & is all the multivariate polynomia

For example:

schemes &

Multilinear
Commitment

Schemes (MCS)

LY

Interactive

oracle proof
(IOP)

Vector

Commitment
Schemes (VCS)

Inner product
argument (IPA)

s of degree at most 1:

F=FlX,...X]

or




1 Functional Interactive
SNARK = commitment + oracle proof
‘ schemes & (IOP)
o7 )
=
Polynomial Multilinear Vector
. : , Inner product
Commitment Commitment Commitment argument (IPA)
Schemes (PCS) Schemes (MCS) Schemes (VCS) 9

The set F is all the functions that are represented by vectors: we commit to a
vector a dimension d.

Such a commitment scheme simply commits to a vector and enables us to reveal only
few coordinates (and not the entire vector).



1 Functional Interactive
SNARK = commitment + oracle proof
schemes & (IOP)
Yor
=
Polynomial Multilinear Vector
, , , Inner product
Commitment Commitment Commitment argument (IPA)
Schemes (PCS) Schemes (MCS) Schemes (VCS) 9

The set F is all the functions that are represented by vectors: we commit to a

vector a dimension d.

F={f:: v (u,v)}

Such a commitment scheme simply commits to a vector and enables us to reveal only
linear combinations of the coordinates.
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>

Constraint
System

R1CS
AIR
Plonk-ish
CCS

Generic proof
system

Functional
commitment
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+

Interactive
oracle proof

(IOP)




Arithmetisation

Computation C

Arithmetisation

>

Constraint
System

R1CS
AIR
Plonk-ish
CCS

Generic proof
system

Functional
commitment
schemes

R1CS (Rank-1 Constraint Systems):

| know w such that the output of C(x, w) is y.

+

Interactive
oracle proof

(IOP)

—> | know w such that (Aw) o (Bw) = Cw.







Authentication

| am Alice.

v

Password

Alice /\ Bob
[ | am convinced. }




Auth_en}ication

| am Alice. | am convinced.

v v

Password

Bob

Alice

/' Eavesdropping...

Password

Eve A /\ Bob

| am Alice. | am convinced.




Authentication

~

| am Alice, the owner of the
private key which corresponds
to that public key.

~

v

| am convinced.

v

Alice

Bob

Zero-Knowledge proof
of knowledge for the private key.



Authentication

o Y
| am Alice, the owner of the

private key which corresponds

to that public key. | am convinced.
VoA
>
Alice Bob
Eavesdropping...

Get no information about the

private key because of the
Eve zero-knowledge property.



Authentication

o Y
| am Alice, the owner of the

private key which corresponds

to that public key. | am convinced.
V >
<
>
Alice Bob

|dentification
Scheme



e

| am Alice, the owner of the
private key which corresponds

~

to that public key. | am convinced.
v >
<
>
Alice Bob
|dentification

Scheme

Can be transformed into

(Fiat-Shamir transformation) | Slgnatur e

Scheme
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Computing
y < Cx)

Cloud %Q

foo

C,x y

\

Computer m




Computing
y < Cx)

Cloud QQ

C,x

Proof that the

™ computation has
Computer m been honestly
Performed




Should check the validity |
of each transaction New

ETH state

ETH state

1t scales linearly into the
number of transactions

—> It costs a lot of gaz.



Proof iz that all

the n transactions are valid ‘

v

V\’
V\ —
\_/

Should need check the validity
of each validity proof New

ETH state

ETH state

Much faster and cheaper



How to verify where and
when a photography was taken?

The Coalition for Content Provenance and Authenticity
(C2PA) proposed a standard to verify image provenance
that relies on digital signatures.

Cameras would “digitally sign” each photo taken along
with a series of assertions about the photo (e.g., location,
timestamp).



Cameras would “digitally sign” each photo taken along
with a series of assertions about the photo (e.g., location,
timestamp).

But in practice, the photos are often cropped,
resized (etc.) before publishing. The photo
signature would not be valid anymore.

When moditying a photo, we can produce a proof that the
resulting photo corresponds to the original signed photos
with a list of edits.






Proof Systems:

m Main properties:
Completeness & Soundness
= Additional optional properties:

Zero-Knowledge, Efficient Verification,

Short Communication, Non-interactive, Quantum-Resilient

SNARK: Succinct Non-interactive Argument of Knowledge
m Introduced in 2011

m Different setups: trusted setup by circuit, universal trusted setup,
transparent setup

m SNARK = Functional Commitment Scheme + Interactive Oracle Proof



Conclusion

m Applications of proof systems:
= Authentication (identification scheme)
= Computation Delegation
= Many use cases in blockchain
s Disinformation Fight
= E-voting

Thank you for your attention !



