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Introduction



Digital signatures

Alice Bob

Un email, 
un PDF, …

Who sends this 
document ?
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Digital signatures

Alice’s private key
Alice’s public key

Alice’s public key

Alice Bob
uses the private key 

to sign the digital document. 
uses the public key 

to verify the signature. 

Security Notion: Should be impossible to forge a valid signature 
without the corresponding private key.



Digital signatures

A problem which is very hard to solve

The solution of the above problem

Given , find non-trivial  
such that .
N (p, q)

N = pq
(p, q)

Example

Existing signature schemes 
will be broken by the future 

quantum computers.  

Problematic: build new signature schemes which would 
be secure even against quantum computers.
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How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

From an
identification scheme

Large(r) signatures

Short public key

Very hard 
to compute

I know the 
private key.

I am convinced.



Identification Scheme

• Completeness: Pr[verif ✓ | honest prover] = 1 

• Soundness: Pr[verif ✓ | malicious prover]   (e.g.  ) 

• Zero-knowledge: verifier learns nothing on          .

≤ ε 2−128

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier

I know           .

I am convinced.



Identification Scheme

Challenge 1 = Hash(m, Commitment)

Prover

Verifier

Challenge  = Hash(m, Response )n n − 1

⋮

I know           .

Transcript

Fiat-Shamir 
Transformation

m: message to sign 



MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007) 

• Turn a multiparty computation (MPC) into an identification scheme



-threshold Secret Sharing Scheme:(t, N )

s

[[s]]1 [[s]]2 [[s]]3 [[s]]N…

Share the secret    into  partss N

• Privacy: Revealing  shares leak no information about the secret  

• Reconstruction: The secret can be restored from any  shares.

t − 1 s

t

Multiparty Computation (MPC)



Additive Sharing Scheme (modulo ):p

• Sample  uniformly at random (modulo ) 

• Compute  as 

. 

Revealing  shares leaks no information about the secret .

[[s]]1, …, [[s]]N−1 p

[[s]]N

[[s]]N = s − [[s]]1 − … − [[s]]N−1 (mod p)

N − 1 s

Multiparty Computation (MPC)



Additive Sharing Scheme (modulo ):p

Example: I want to share  (modulo ) into 5 parts.835 1021

[[s]]1 = ? [[s]]2 = ? [[s]]3 = ? [[s]]4 = ? [[s]]5 = ?

• Sample  uniformly at random (modulo ) 

• Compute  as 

. 

Revealing  shares leaks no information about the secret .

[[s]]1, …, [[s]]N−1 p

[[s]]N

[[s]]N = s − [[s]]1 − … − [[s]]N−1 (mod p)

N − 1 s

Multiparty Computation (MPC)



Additive Sharing Scheme (modulo ):p

Example: I want to share  (modulo ) into 5 parts.835 1021

[[s]]1 = 325 [[s]]2 = 393 [[s]]3 = 847 [[s]]4 = 752 [[s]]5 = ?

• Sample  uniformly at random (modulo ) 

• Compute  as 

. 

Revealing  shares leaks no information about the secret .

[[s]]1, …, [[s]]N−1 p

[[s]]N

[[s]]N = s − [[s]]1 − … − [[s]]N−1 (mod p)

N − 1 s
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Additive Sharing Scheme (modulo ):p

Example: I want to share  (modulo ) into 5 parts.835 1021

[[s]]1 = 325 [[s]]2 = 393 [[s]]3 = 847 [[s]]4 = 752 [[s]]5 = 560

= 835 − 325 − 393 − 847 − 752

• Sample  uniformly at random (modulo ) 

• Compute  as 

. 

Revealing  shares leaks no information about the secret .

[[s]]1, …, [[s]]N−1 p

[[s]]N

[[s]]N = s − [[s]]1 − … − [[s]]N−1 (mod p)

N − 1 s

Multiparty Computation (MPC)



Additive Sharing Scheme (modulo ):p

Example: I want to share  (modulo ) into 5 parts.? 1021

[[s]]1 = 429 [[s]]2 = 19 [[s]]3 = 583 [[s]]4 = ? [[s]]5 = 822

• Sample  uniformly at random (modulo ) 

• Compute  as 

. 

Revealing  shares leaks no information about the secret .

[[s]]1, …, [[s]]N−1 p

[[s]]N

[[s]]N = s − [[s]]1 − … − [[s]]N−1 (mod p)

N − 1 s

Multiparty Computation (MPC)



Additive Sharing Scheme (modulo ):p

Example: I want to share  (modulo ) into 5 parts.? 1021

[[s]]1 = 429 [[s]]2 = 19 [[s]]3 = 583 [[s]]4 = ? [[s]]5 = 822

• Sample  uniformly at random (modulo ) 

• Compute  as 

. 

Revealing  shares leaks no information about the secret .

[[s]]1, …, [[s]]N−1 p

[[s]]N

[[s]]N = s − [[s]]1 − … − [[s]]N−1 (mod p)

N − 1 s

Impossible to deduce the shared value!

Multiparty Computation (MPC)



Additive Sharing Scheme (modulo ):p

Example: I want to share  (modulo ) into 5 parts.? 1021

[[s]]1 = 429 [[s]]2 = 19 [[s]]3 = 583 [[s]]4 = 231 [[s]]5 = 822

• Sample  uniformly at random (modulo ) 

• Compute  as 

. 

Revealing  shares leaks no information about the secret .

[[s]]1, …, [[s]]N−1 p

[[s]]N

[[s]]N = s − [[s]]1 − … − [[s]]N−1 (mod p)

N − 1 s

s = [[s]]1 + … + [[s]]N = 42

Multiparty Computation (MPC)



Shamir's Sharing Scheme (modulo ):p

• Sample  uniformly at random (modulo ) 

• Compute  as 

 

where . 

Revealing  shares leaks no information about the secret . 

Revealing  shares enables to restore the secret .

r1, …, rt−1 p

[[s]]1, …, [[s]]N

∀i ∈ {1,…, N}, [[s]]i = P(i)

P(X ) := s +
t−1

∑
j=1

rj ⋅ Xj

t − 1 s

t s

Multiparty Computation (MPC)



Shamir's Sharing Scheme (modulo ):p

• Sample  uniformly at random (modulo ) 

• Compute  as 

 

where .

r1, …, rt−1 p

[[s]]1, …, [[s]]N

∀i ∈ {1,…, N}, [[s]]i = P(i)

P(X ) := s +
t−1

∑
j=1

rj ⋅ Xj

Example: I want to share  (modulo ) into 5 parts, which .835 1021 t = 3

r2 = ?
r1 = ?

P = ?

[[s]]1 = P(1) = ?
[[s]]2 = P(2) = ?
[[s]]3 = P(3) = ?

[[s]]4 = P(4) = ?
[[s]]5 = P(5) = ?

Multiparty Computation (MPC)



Shamir's Sharing Scheme (modulo ):p

• Sample  uniformly at random (modulo ) 

• Compute  as 

 

where .

r1, …, rt−1 p

[[s]]1, …, [[s]]N

∀i ∈ {1,…, N}, [[s]]i = P(i)

P(X ) := s +
t−1

∑
j=1

rj ⋅ Xj

Example: I want to share  (modulo ) into 5 parts, which .835 1021 t = 3

r2 = 943
r1 = 644

P(X ) = 835 + 644 ⋅ X + 943 ⋅ X2

[[s]]1 = P(1) = ?
[[s]]2 = P(2) = ?
[[s]]3 = P(3) = ?

[[s]]4 = P(4) = ?
[[s]]5 = P(5) = ?

Multiparty Computation (MPC)



Shamir's Sharing Scheme (modulo ):p

• Sample  uniformly at random (modulo ) 

• Compute  as 

 

where .

r1, …, rt−1 p

[[s]]1, …, [[s]]N

∀i ∈ {1,…, N}, [[s]]i = P(i)

P(X ) := s +
t−1

∑
j=1

rj ⋅ Xj

Example: I want to share  (modulo ) into 5 parts, which .835 1021 t = 3

[[s]]1 = P(1) = 380
[[s]]2 = P(2) = 790
[[s]]3 = P(3) = 23

[[s]]4 = P(4) = 121
[[s]]5 = P(5) = 63

r2 = 943
r1 = 644

P(X ) = 835 + 644 ⋅ X + 943 ⋅ X2

Multiparty Computation (MPC)



Shamir's Sharing Scheme (modulo ):p

• Sample  uniformly at random (modulo ) 

• Compute  as 

 

where .

r1, …, rt−1 p

[[s]]1, …, [[s]]N

∀i ∈ {1,…, N}, [[s]]i = P(i)

P(X ) := s +
t−1

∑
j=1

rj ⋅ Xj

Example: I want to share  (modulo ) into 5 parts, which .? 1021 t = 3

[[s]]1 = P(1) = ?
[[s]]2 = P(2) = 63
[[s]]3 = P(3) = ?

[[s]]4 = P(4) = ?
[[s]]5 = P(5) = 311

r2 = ?
r1 = ?

P = ?

Multiparty Computation (MPC)



Shamir's Sharing Scheme (modulo ):p

• Sample  uniformly at random (modulo ) 

• Compute  as 

 

where .

r1, …, rt−1 p

[[s]]1, …, [[s]]N

∀i ∈ {1,…, N}, [[s]]i = P(i)

P(X ) := s +
t−1

∑
j=1

rj ⋅ Xj

Example: I want to share  (modulo ) into 5 parts, which .? 1021 t = 3

[[s]]1 = P(1) = ?
[[s]]2 = P(2) = 63
[[s]]3 = P(3) = ?

[[s]]4 = P(4) = ?
[[s]]5 = P(5) = 311

r2 = ?
r1 = ?

P = ?

Impossible to deduce the shared value!

Multiparty Computation (MPC)



Shamir's Sharing Scheme (modulo ):p

• Sample  uniformly at random (modulo ) 

• Compute  as 

 

where .

r1, …, rt−1 p

[[s]]1, …, [[s]]N

∀i ∈ {1,…, N}, [[s]]i = P(i)

P(X ) := s +
t−1

∑
j=1

rj ⋅ Xj

Example: I want to share  (modulo ) into 5 parts, which .? 1021 t = 3

[[s]]1 = P(1) = ?
[[s]]2 = P(2) = 63
[[s]]3 = P(3) = 675

[[s]]4 = P(4) = ?
[[s]]5 = P(5) = 311

r2 = 416
r1 = 574

P(X ) = 314 + 574 ⋅ X + 416 ⋅ X2

Polynomial interpolation

Multiparty Computation (MPC)



Multiparty Computation (MPC)



[[s]]1 [[s]]2

[[s]]3

[[s]]4

[[s]]5

Multiparty Computation (MPC)



[[s]]1 [[s]]2

[[s]]3

[[s]]4

[[s]]5

They jointly compute 

y ← C(s)

Multiparty Computation (MPC)



Input:  and , a public constant  

• They can compute : 

 

[[a]] [[b]] c

[[a + b]]

[[a + b]]1 ← [[a]]1 + [[b]]1
⋮

[[a + b]]N ← [[a]]N + [[b]]N

Multiparty Computation (MPC)



Input:  and , a public constant  

• They can compute : 

 

• They can compute : 

[[a]] [[b]] c

[[a + b]]

[[a + b]]1 ← [[a]]1 + [[b]]1
⋮

[[a + b]]N ← [[a]]N + [[b]]N

[[a + c]]

[[a + c]]1 ← [[a]]1 + c
[[a + c]]2 ← [[a]]2

⋮
[[a + c]]N ← [[a]]N

Multiparty Computation (MPC)



Input:  and , a public constant  

• They can compute : 

 

[[a]] [[b]] c

[[c ⋅ a]]

[[c ⋅ a]]1 ← c ⋅ [[a]]1
⋮

[[c ⋅ a]]N ← c ⋅ [[a]]N

Multiparty Computation (MPC)



Input:  and , a public constant  

• They can compute : 

 

• They can compute … 

…but it is not trivial. 

It requires communication 
between the parties. 

[[a]] [[b]] c

[[c ⋅ a]]

[[c ⋅ a]]1 ← c ⋅ [[a]]1
⋮

[[c ⋅ a]]N ← c ⋅ [[a]]N

[[a ⋅ b]]

Multiparty Computation (MPC)



Multiparty Computation (MPC)

• Given a matrix  and a sharing  of 
a vector , they can compute . 

• Given two sharings  of two 
matrices  and , they can compute 

. 

H [[x]]
x [[Hx]]

[[A]], [[B]]
A B

[[A ⋅ B]]



Multiparty Computation (MPC)

• Given a matrix  and a sharing  of 
a vector , they can compute . 

• Given two sharings  of two 
matrices  and , they can compute 

. 

• Given a sharing  of a value , they 
can check that  by computing 
and revealing . 

H [[x]]
x [[Hx]]

[[A]], [[B]]
A B

[[A ⋅ B]]

[[x]] x
x ∈ {0,1}

[[x ⋅ (x − 1)]]



Multiparty Computation (MPC)

• Given a matrix  and a sharing  of 
a vector , they can compute . 

• Given two sharings  of two 
matrices  and , they can compute 

. 

• Given a sharing  of a value , they 
can check that  by computing 
and revealing . 

• Given a sharing  of a matrix , 
they can check that the rank of  is 
smaller than a public constant . 

• …

H [[x]]
x [[Hx]]

[[A]], [[B]]
A B

[[A ⋅ B]]

[[x]] x
x ∈ {0,1}

[[x ⋅ (x − 1)]]

[[M]] M
M

r



MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007) 

• Turn a multiparty computation (MPC) into an identification scheme 

• Generic: can be apply to any cryptographic problem



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature
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One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature

MPC-in-the-Head transform



MPCitH: general principle



MPC model

[[x]]1

• Jointly compute 

 

•  private: the views of any  
parties provide no information on  

• Semi-honest model: assuming that the 
parties follow the steps of the protocol 

• Broadcast model 

‣ Parties locally compute on their shares 
 

‣ Parties broadcast  and recompute 
 

‣ Parties start again (now knowing )

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

x = [[x]]1 + [[x]]2 + … + [[x]]N



MPC model

[[x]]1

• Jointly compute 

 

•  private: the views of any  
parties provide no information on  

• Semi-honest model: assuming that the 
parties follow the steps of the protocol 

• Broadcast model 

‣ Parties locally compute on their shares 
 

‣ Parties broadcast  and recompute 
 

‣ Parties start again (now knowing )

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

Public 
domain

[[α]]1
[[α]]2

[[α]]3

[[α]]4

[[α]]5

x = [[x]]1 + [[x]]2 + … + [[x]]N



MPCitH transform

Prover Verifier



MPCitH transform

Prover Verifier

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)
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send broadcast 
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①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
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②  Run MPC in their head

send broadcast 
 [[α]]1, …, [[α]]N

③  Choose a random party 
i* ←$ {1,…, N}i*

④  Open parties  {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

i*



MPCitH transform

Prover Verifier

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

②  Run MPC in their head

send broadcast 
 [[α]]1, …, [[α]]N

③  Choose a random party 
i* ←$ {1,…, N}i*

④  Open parties  {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check  
      - Commitments  
      - MPC computation  
   Check 

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*



MPCitH transform

Malicious Prover Verifier

①  Generate and commit shares   
 

 

We have  where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)
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MPCitH transform

Malicious Prover Verifier

①  Generate and commit shares   
 

 

We have  where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast 
 [[α]]1, …, [[α]]N ③  Choose a random party 

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*
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MPCitH transform

Malicious Prover Verifier

①  Generate and commit shares   
 

 

We have  where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast 
 [[α]]1, …, [[α]]N ③  Choose a random party 

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

⑤ Check  
      - Commitments  
      - MPC computation  
   Check 

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

②  Run MPC in their head

④  Open parties  {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Cheating detected!



MPCitH transform

Malicious Prover Verifier

①  Generate and commit shares   
 

 

We have  where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast 
 [[α]]1, …, [[α]]N ③  Choose a random party 

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

⑤ Check  
      - Commitments  
      - MPC computation  
   Check 

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

②  Run MPC in their head

④  Open parties  {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Seems OK.
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MPCitH transform

• Zero-knowledge       MPC protocol is -private 

• Soundness: 

 

• Parallel repetition  

Protocol repeated  times in parallel, soundness error 

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

τ ( 1
N )

τ



From MPC-in-the-Head to signatures



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature
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E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

The problem of factorisation: 

 

Very hard to invert ! 

1.Build a MPC protocol that takes  and 
 and checks that . 

2.Using the MPC-in-the-Head 
transformation, we get a zero-knowledge 
proof of knowledge for the factorisation 
problem. 

3.Using the Fiat-Shamir transformation, we 
get a signature scheme relying on the 
hardness to solve to factorize a composite 
number.

(p, q) ↦ N := pq

[[p]]
[[q]] p ⋅ q = N



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

The problem of factorisation: 

 

Very hard to invert ! 

1.Build a MPC protocol that takes  and 
 and checks that . 

2.Using the MPC-in-the-Head 
transformation, we get a zero-knowledge 
proof of knowledge for the factorisation 
problem. 

3.Using the Fiat-Shamir transformation, we 
get a signature scheme relying on the 
hardness to solve to factorize a composite 
number.

(p, q) ↦ N := pq

[[p]]
[[q]] p ⋅ q = N

Not secure against 
quantum computers!
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One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

• Lattice-based cryptography 

‣ The Short Integer Solution (SIS) 
problem: from , find a vector  
such that 

. 

‣ The Learning With Errors (LWE) 
problem: from , find two 
vectors  such that 

. 

(A, t) s

t = As and ∥s∥ small

(A, t)
s, e

t = As + e and ∥e∥ smallQuantum-resilient hard problems: 

• Lattice-based cryptography 

• Code-based cryptography 

• Multivariate cryptography 

• Symmetric cryptography 

• …



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

• Code-based cryptography 

‣ The Syndrome Decoding (SD) 
problem: from , find a vector 
 such that 

 

and  has  non-zero coordinates. 

‣ The MinRank problem: from  
matrices , find a linear 
combination  such that 

 

has a rank smaller than some 
public constant .

(H, y)
x

y = Ax

x w

k + 1
M0, …Mk

x

E := M0 +
k

∑
j=1

xjMj

r

Quantum-resilient hard problems: 

• Lattice-based cryptography 

• Code-based cryptography 

• Multivariate cryptography 

• Symmetric cryptography 

• …



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

• Multivariate cryptography 

‣ The Multivariate Quadratic (MQ) 
problem: find a solution  of the system 
of  quadratic equations 

 

where  and  are the 
coefficients of the system. 

x
m

y1 = ∑i≤ j a1,i, j ⋅ xixj + ∑i b1,i ⋅ xi

⋮
ym = ∑i≤ j am,i, j ⋅ xixj + ∑i bm,i ⋅ xi

{ak,i, j} {bk,i}

Quantum-resilient hard problems: 

• Lattice-based cryptography 

• Code-based cryptography 

• Multivariate cryptography 

• Symmetric cryptography 

• …



One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

• Symmetric cryptography 

‣ Hash functions. 

‣ AES cipher: given , find an AES 
key  for which the ciphertext of  is 
: 

 

‣ Any other cipher scheme.

(x, y)
k x

y

y = AESk(x)

Quantum-resilient hard problems: 

• Lattice-based cryptography 

• Code-based cryptography 

• Multivariate cryptography 

• Symmetric cryptography 

• …
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One-way function 

         

E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of: 

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature

Should take [KZ20] attack into account (when there are more than 3 rounds)!
[KZ20] Kales, Zaverucha. “An attack on some signature schemes constructed from five-pass identification schemes” (CANS20)

Fiat-Shamir transform
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MPC-in-the-HeadSyndrome Decoding Problem:
From a matrix  and a vector , find  such that

• ,
•  has at most  non-zero coordinates.

H y x
y = Hx
x w

[FJR22] Feneuil, Joux, Rivain: “Syndrome Decoding 
in the Head: Shorter Signatures from Zero-
Knowledge Proofs” (ePrint 2022/188, Crypto 2022)

[FJR23] Feneuil, Joux, Rivain: “Shared Permutation 
for Syndrome Decoding: New Zero-Knowledge 
Protocol and Code-Based Signature” (ePrint 
2021/1576, Journal DCC)



• Subset Sum Problem:  KB   KB 

• Multivariate Quadratic Problem:  KB 

• MinRank Problem:  KB 

• Rank Syndrome Decoding Problem:  KB 

• Permuted Kernel Problem (or variant):  KB 

• …

≥ 100 ⇒ 19.1

6.3 − 7.3

≈ 5 − 6

≈ 5 − 6

≈ 6

Exploring other assumptions



MPCitH-based NIST Candidates

1st June 2023: 
Deadline for the NIST call 
for additional post-quantum signatures



MPCitH-based NIST Candidates

Assumption Size (in KB)

AIMer AIM (MPC-friendly one-way function) 4.2

Biscuit Structured MQ problem (PowAff2) 4.7

MIRA MinRank problem 5.6

MiRitH MinRank problem 5.7

RYDE Syndrome decoding problem in rank metric 6.0

PERK* Permuted Kernel problem (variant) 6.1

MQOM Unstructured MQ problem 6.3

SDitH Syndrome decoding problem in Hamming 
metric

8.2



MPCitH-based NIST Candidates

‣ Medium signature sizes (4-10 KB) 

‣ Small public keys

Figure extracted from PQ Signatures Zoo 

https://pqshield.github.io/nist-sigs-zoo/

https://pqshield.github.io/nist-sigs-zoo/


Optimisations and variants

With SDitH-L1-gf251 as example.

NIST Category I

Field GF(251)



MPCitH transform

Prover Verifier

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

②  Run MPC in their head

send broadcast 
 [[α]]1, …, [[α]]N

③  Choose a random party 
i* ←$ {1,…, N}i*

④  Open parties  {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check  
      - Commitments  
      - MPC computation  
   Check 

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*



Naive MPCitH transformation

Size ≈ τ ⋅ (N ⋅ 2λ + N ⋅ |α | + (N − 1) ⋅ |x |)

Size of a 
commitment digest

Size of the MPC input (per party)

Size of the broadcast (per party)

Number of repetitions to achieve the desired security level

τ ≈
λ

log2 N



Naive MPCitH transformation

SDitH-L1-gf251:
the input  of the MPC protocol is around 323 bytes,
The broadcast value  of the MPC protocol is around 36 bytes.

x
α
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Number of repetitions to achieve the desired security level

τ ≈
λ

log2 N



Naive MPCitH transformation

SDitH-L1-gf251:
the input  of the MPC protocol is around 323 bytes,
The broadcast value  of the MPC protocol is around 36 bytes

x
α



MPCitH transform

Prover Verifier

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)
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send broadcast 
 [[α]]1, …, [[α]]N
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i* ←$ {1,…, N}i*
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   Check 
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MPCitH transform

Prover

Verifier

①  Generate and commit shares   
 

 Compute 
[[x]] = ([[x]]1, …, [[x]]N)

∀i, comi = Comρi([[x]]i)

②  Run MPC in their head

h2 = Hash([[α]]1, …, [[α]]N)
③  Choose a random party 

i* ←$ {1,…, N}i*

④  Open parties  {1,…, N}∖{i*}

([[x]]i, ρi)i≠i*

⑤ Compute  
      - Commitments  
      - MPC computation  
   Check  
   Check  
   Check 

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept
h1 = Hash(com1, …, comN)
h2 = Hash([[α]]1, …, [[α]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*
(comi*, [[α]]i*)

h1 = Hash(𝖼𝗈𝗆1, …, 𝖼𝗈𝗆N)



MPCitH transform

Prover

Verifier

①  Generate and commit shares   
 

 Compute 
[[x]] = ([[x]]1, …, [[x]]N)

∀i, comi = Comρi([[x]]i)

②  Run MPC in their head

h2 = Hash([[α]]1, …, [[α]]N)
③  Choose a random party 

i* ←$ {1,…, N}i*

④  Open parties  {1,…, N}∖{i*}

([[x]]i, ρi)i≠i*

⑤ Compute  
      - Commitments  
      - MPC computation  
   Check  
   Check  
   Check 

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept
h1 = Hash(com1, …, comN)
h2 = Hash([[α]]1, …, [[α]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*
(comi*, [[α]]i*)

h1 = Hash(𝖼𝗈𝗆1, …, 𝖼𝗈𝗆N)



x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to 
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree



x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

seed1 seed2 seed3 seedN−1 seedN

+ΔxPR
G

PR
G

PR
G

PR
G

PR
G

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to 
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree
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G

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to 
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤) ← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)
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Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree
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x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…
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PRG PR
G

to be revealedi*

sibling path 
→  seedslog(N)

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to 
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree



Traditional MPCitH transformation

Size ≈ τ ⋅ ( |Δx | + |α | + λ ⋅ log2 N + 2λ)

Path in the seed (GGM) treeSize of the auxiliary value

Size of the broadcast (of the hidden party)

Number of repetitions to achieve the desired security level

τ ≈
λ

log2 N

Commitment 
of the hidden party



Traditional MPCitH transformation

SDitH-L1-gf251:
the input  of the MPC protocol is around 323 bytes,
The broadcast value  of the MPC protocol is around 36 bytes.

x
α



Traditional MPCitH transformation

Running times @3.80Ghz

Signing algorithm Verification algorithm



Traditional MPCitH transformation

Running times @3.80Ghz
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Misc



Signing algorithm

Traditional MPCitH transformation

9 %

63 %

28 %

Symmetric
MPC Emulation
Misc

for  partiesN := 256
Signing time

 parties256

Running times @3.80Ghz (  ms)19



The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH” 
(Eurocrypt 2023)

Traditional:  party emulations per repetitionN

Hypercube:  party emulations per repetition1 + log2 N

N = 256

1 + log2 N = 9



Signing algorithm Verification algorithm

Running times @3.80Ghz

Before

The Hypercube Technique



Signing algorithm Verification algorithm

Running times @3.80Ghz

The Hypercube Technique

Symmetric
Packing
MPC Emulation
Misc



Signing algorithm

6 %

12 %

13 %

69 %

Symmetric
Packing
MPC Emulation
Misc

for  partiesN := 256
Signing time

 parties256

Running times @3.80Ghz (  ms)7

The Hypercube Technique



The Threshold Approach (Original)

In the threshold approach, we used an low-threshold sharing scheme. 
For example, the Shamir’s -secret sharing scheme. 

To share a value , 
sample  uniformly at random, 

build the polynomial , 

Set the share , where  is publicly known. 

(ℓ + 1,N)

x
r1, r2, …, rℓ

P(X) = x +
ℓ

∑
k=0

rk ⋅ Xk

[[x]]i ← P(ei) ei

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head” 
(ePrint 2022/1407)



MPCitH Transform with Threshold LSSS

Prover Verifier

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

②  Run MPC in their head

send broadcast 
 [[α]]1, …, [[α]]N

③  Choose a random set of parties 
, s.t. .I ⊆ {1,…, N} | I | = ℓI

④  Open parties in  I
([[x]]i, ρi)i∈I

⑤ Check  
      - Commitments  
      - MPC computation  
   Check 

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N



Prover Verifier

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

②  Run MPC in their head

send broadcast 
 [[α]]1, …, [[α]]N

③  Choose a random set of parties 
, s.t. .I ⊆ {1,…, N} | I | = ℓI

④  Open parties in  I
([[x]]i, ρi)i∈I

⑤ Check  
      - Commitments  
      - MPC computation  
   Check 

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2
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Traditional:  party emulations per repetitionN

Threshold:  party emulations per repetition1 + ℓ

N = 256

1 + ℓ = 2

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head” 
(ePrint 2022/1407)

The Threshold Approach (Original)
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Additive sharing 
+ hypercube technique
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with 
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Verifier 
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1
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1
N ) 1

N
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(N − 1)
2

ℓ = 1

1 + log2 N

log2 N
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Signing algorithm

Running times @3.80Ghz

5 %
6 %

20 %

69 %

Symmetric
Share Computing
MPC Emulation
Misc

for  partiesN := 251
Signing time

(  ms)1.6

 parties251

The Threshold Approach (Original)



Running times @3.80Ghz

4 %

46 % 50 %
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MPC Emulation
Misc

for  partiesN := 251
Verification time

(  ms)0.2

Verification algorithm

 parties251

The Threshold Approach (Original)
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Traditional 
Transformation

Hypercube 
Technique

Emulation :  partiesN

 parties1 + log2 N
No communication 

penalty

(2018)

(2022)

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of 
the SDitH” (ePrint 2022/1645, Eurocrypt 2023)



Traditional 
Transformation

Hypercube 
Technique

Threshold 
Approach

Emulation :  partiesN

 parties1 + log2 N

 parties1 + ℓ
Increase of the 
communication

No communication 
penalty

(2018)

(2022)

(2022)

Shamir’s secret 
sharings

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-
the-Head” (ePrint 2022/1407, Asiacrypt 2023)

Shamir’s secret sharing: to share a value , 

Build a random degree-  polynomial . 

Set the th share  as , where .

s

ℓ P(X ) := s +
ℓ

∑
j=1

rjXj

i [[s]]i [[s]]i := P(ei) ei ≠ 0

Fast verification
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Extended TCitH: some applications

[FR23] Feneuil, Rivain: “Threshold Computation in the Head: Improved Framework 
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• More efficient signature schemes 

• Unstructured multivariate quadratic (MQ) problem over  

• MQOM: 6.5 KB 

• Extended TCitH: 4.2 KB
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Extended TCitH: some applications

[FR23] Feneuil, Rivain: “Threshold Computation in the Head: Improved Framework 
for Post-Quantum Signatures and Zero-Knowledge Arguments” (ePrint 2023/1573)

• Shorter post-quantum ring signature schemes 

• Extended TCitH with MQ: 5.8 KB in around 8 ms, for 4000 users 

• Extended TCitH with SD: 10.30 KB in around 10 ms, for 4000 users
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The MPC-in-the-Head framework is an active research field 

Invented in 2007 

More and more popular since 2016 (first practical scheme) 

Picnic: MPCitH-based signature in the first NIST call 

2016-2024: shorter proof sizes 

In 2016, the signature sizes was larger than 30 KB 

Currently, the signature sizes are around 3–7 KB 

2022-2024: faster schemes 

Before 2022, we needed to emulate all the MPC parties 

Currently, we just need to emulate a small value of parties 

The computational bottleneck are becoming the symmetric part 
of the scheme, but some works are trying to mitigate it.

Conclusion



A versatile tool to build signature schemes: 

7 NIST submissions relying on it in the new NIST call 

Very competitive when focusing on minimizing 

Signature size + Public key size 

‣ Medium signature sizes (4-10 kilobytes) 

‣ Short public key (  200 bytes) 

Transversal among the hardness assumptions 

Can be convenient to build advanced signature schemes
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Conclusion

Thank you for your attention !


