
Post-Quantum Signatures from
Secure Multiparty Computation

Thibauld Feneuil

Winter Research School

February 20, 2024 — Rennes (France)

Table of Contents

• Introduction

• MPC-in-the-Head: general principle

• From MPC-in-the-Head to signatures

• Optimisation and variants

• Conclusion

Introduction

Digital signatures

Alice Bob

Un email,
un PDF, …

Who sends this
document ?

Digital signatures

Alice’s private key

Alice’s public key

Alice Bob

Digital signatures

Alice’s private key
Alice’s public key

Alice’s public key

Alice Bob

Digital signatures

Alice’s private key
Alice’s public key

Alice’s public key

Alice Bob
uses the private key

to sign the digital document.

Digital signatures

Alice’s private key
Alice’s public key

Alice’s public key

Alice Bob
uses the private key

to sign the digital document.

Digital signatures

Alice’s private key
Alice’s public key

Alice’s public key

Alice Bob
uses the private key

to sign the digital document.
uses the public key

to verify the signature.

Digital signatures

Alice’s private key
Alice’s public key

Alice’s public key

Alice Bob
uses the private key

to sign the digital document.
uses the public key

to verify the signature.

Security Notion: Should be impossible to forge a valid signature
without the corresponding private key.

Digital signatures

A problem which is very hard to solve

The solution of the above problem

Given , find non-trivial
such that .
N (p, q)

N = pq
(p, q)

Example

Existing signature schemes
will be broken by the future

quantum computers.

Problematic: build new signature schemes which would
be secure even against quantum computers.

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

Very hard
to compute

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

I know the
private key.

I am convinced.

Large(r) signatures

Short public key

Very hard
to compute

From an
identification scheme

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

From an
identification scheme

Large(r) signatures

Short public key

Very hard
to compute

I know the
private key.

I am convinced.

Identification Scheme

• Completeness: Pr[verif ✓ | honest prover] = 1

• Soundness: Pr[verif ✓ | malicious prover] (e.g.)

• Zero-knowledge: verifier learns nothing on .

≤ ε 2−128

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier

I know .

I am convinced.

Identification Scheme

Challenge 1 = Hash(m, Commitment)

Prover

Verifier

Challenge = Hash(m, Response)n n − 1

⋮

I know .

Transcript

Fiat-Shamir
Transformation

m: message to sign

MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:

“Zero-knowledge from secure multiparty computation” (STOC 2007)

• Turn a multiparty computation (MPC) into an identification scheme

-threshold Secret Sharing Scheme:(t, N)

s

[[s]]1 [[s]]2 [[s]]3 [[s]]N…

Share the secret into partss N

• Privacy: Revealing shares leak no information about the secret

• Reconstruction: The secret can be restored from any shares.

t − 1 s

t

Multiparty Computation (MPC)

Additive Sharing Scheme (modulo):p

• Sample uniformly at random (modulo)

• Compute as

.

Revealing shares leaks no information about the secret .

[[s]]1, …, [[s]]N−1 p

[[s]]N

[[s]]N = s − [[s]]1 − … − [[s]]N−1 (mod p)

N − 1 s

Multiparty Computation (MPC)

Additive Sharing Scheme (modulo):p

Example: I want to share (modulo) into 5 parts.835 1021

[[s]]1 = ? [[s]]2 = ? [[s]]3 = ? [[s]]4 = ? [[s]]5 = ?

• Sample uniformly at random (modulo)

• Compute as

.

Revealing shares leaks no information about the secret .

[[s]]1, …, [[s]]N−1 p

[[s]]N

[[s]]N = s − [[s]]1 − … − [[s]]N−1 (mod p)

N − 1 s

Multiparty Computation (MPC)

Additive Sharing Scheme (modulo):p

Example: I want to share (modulo) into 5 parts.835 1021

[[s]]1 = 325 [[s]]2 = 393 [[s]]3 = 847 [[s]]4 = 752 [[s]]5 = ?

• Sample uniformly at random (modulo)

• Compute as

.

Revealing shares leaks no information about the secret .

[[s]]1, …, [[s]]N−1 p

[[s]]N

[[s]]N = s − [[s]]1 − … − [[s]]N−1 (mod p)

N − 1 s

Multiparty Computation (MPC)

Additive Sharing Scheme (modulo):p

Example: I want to share (modulo) into 5 parts.835 1021

[[s]]1 = 325 [[s]]2 = 393 [[s]]3 = 847 [[s]]4 = 752 [[s]]5 = 560

= 835 − 325 − 393 − 847 − 752

• Sample uniformly at random (modulo)

• Compute as

.

Revealing shares leaks no information about the secret .

[[s]]1, …, [[s]]N−1 p

[[s]]N

[[s]]N = s − [[s]]1 − … − [[s]]N−1 (mod p)

N − 1 s

Multiparty Computation (MPC)

Additive Sharing Scheme (modulo):p

Example: I want to share (modulo) into 5 parts.? 1021

[[s]]1 = 429 [[s]]2 = 19 [[s]]3 = 583 [[s]]4 = ? [[s]]5 = 822

• Sample uniformly at random (modulo)

• Compute as

.

Revealing shares leaks no information about the secret .

[[s]]1, …, [[s]]N−1 p

[[s]]N

[[s]]N = s − [[s]]1 − … − [[s]]N−1 (mod p)

N − 1 s

Multiparty Computation (MPC)

Additive Sharing Scheme (modulo):p

Example: I want to share (modulo) into 5 parts.? 1021

[[s]]1 = 429 [[s]]2 = 19 [[s]]3 = 583 [[s]]4 = ? [[s]]5 = 822

• Sample uniformly at random (modulo)

• Compute as

.

Revealing shares leaks no information about the secret .

[[s]]1, …, [[s]]N−1 p

[[s]]N

[[s]]N = s − [[s]]1 − … − [[s]]N−1 (mod p)

N − 1 s

Impossible to deduce the shared value!

Multiparty Computation (MPC)

Additive Sharing Scheme (modulo):p

Example: I want to share (modulo) into 5 parts.? 1021

[[s]]1 = 429 [[s]]2 = 19 [[s]]3 = 583 [[s]]4 = 231 [[s]]5 = 822

• Sample uniformly at random (modulo)

• Compute as

.

Revealing shares leaks no information about the secret .

[[s]]1, …, [[s]]N−1 p

[[s]]N

[[s]]N = s − [[s]]1 − … − [[s]]N−1 (mod p)

N − 1 s

s = [[s]]1 + … + [[s]]N = 42

Multiparty Computation (MPC)

Shamir's Sharing Scheme (modulo):p

• Sample uniformly at random (modulo)

• Compute as

where .

Revealing shares leaks no information about the secret .

Revealing shares enables to restore the secret .

r1, …, rt−1 p

[[s]]1, …, [[s]]N

∀i ∈ {1,…, N}, [[s]]i = P(i)

P(X) := s +
t−1

∑
j=1

rj ⋅ Xj

t − 1 s

t s

Multiparty Computation (MPC)

Shamir's Sharing Scheme (modulo):p

• Sample uniformly at random (modulo)

• Compute as

where .

r1, …, rt−1 p

[[s]]1, …, [[s]]N

∀i ∈ {1,…, N}, [[s]]i = P(i)

P(X) := s +
t−1

∑
j=1

rj ⋅ Xj

Example: I want to share (modulo) into 5 parts, which .835 1021 t = 3

r2 = ?
r1 = ?

P = ?

[[s]]1 = P(1) = ?
[[s]]2 = P(2) = ?
[[s]]3 = P(3) = ?

[[s]]4 = P(4) = ?
[[s]]5 = P(5) = ?

Multiparty Computation (MPC)

Shamir's Sharing Scheme (modulo):p

• Sample uniformly at random (modulo)

• Compute as

where .

r1, …, rt−1 p

[[s]]1, …, [[s]]N

∀i ∈ {1,…, N}, [[s]]i = P(i)

P(X) := s +
t−1

∑
j=1

rj ⋅ Xj

Example: I want to share (modulo) into 5 parts, which .835 1021 t = 3

r2 = 943
r1 = 644

P(X) = 835 + 644 ⋅ X + 943 ⋅ X2

[[s]]1 = P(1) = ?
[[s]]2 = P(2) = ?
[[s]]3 = P(3) = ?

[[s]]4 = P(4) = ?
[[s]]5 = P(5) = ?

Multiparty Computation (MPC)

Shamir's Sharing Scheme (modulo):p

• Sample uniformly at random (modulo)

• Compute as

where .

r1, …, rt−1 p

[[s]]1, …, [[s]]N

∀i ∈ {1,…, N}, [[s]]i = P(i)

P(X) := s +
t−1

∑
j=1

rj ⋅ Xj

Example: I want to share (modulo) into 5 parts, which .835 1021 t = 3

[[s]]1 = P(1) = 380
[[s]]2 = P(2) = 790
[[s]]3 = P(3) = 23

[[s]]4 = P(4) = 121
[[s]]5 = P(5) = 63

r2 = 943
r1 = 644

P(X) = 835 + 644 ⋅ X + 943 ⋅ X2

Multiparty Computation (MPC)

Shamir's Sharing Scheme (modulo):p

• Sample uniformly at random (modulo)

• Compute as

where .

r1, …, rt−1 p

[[s]]1, …, [[s]]N

∀i ∈ {1,…, N}, [[s]]i = P(i)

P(X) := s +
t−1

∑
j=1

rj ⋅ Xj

Example: I want to share (modulo) into 5 parts, which .? 1021 t = 3

[[s]]1 = P(1) = ?
[[s]]2 = P(2) = 63
[[s]]3 = P(3) = ?

[[s]]4 = P(4) = ?
[[s]]5 = P(5) = 311

r2 = ?
r1 = ?

P = ?

Multiparty Computation (MPC)

Shamir's Sharing Scheme (modulo):p

• Sample uniformly at random (modulo)

• Compute as

where .

r1, …, rt−1 p

[[s]]1, …, [[s]]N

∀i ∈ {1,…, N}, [[s]]i = P(i)

P(X) := s +
t−1

∑
j=1

rj ⋅ Xj

Example: I want to share (modulo) into 5 parts, which .? 1021 t = 3

[[s]]1 = P(1) = ?
[[s]]2 = P(2) = 63
[[s]]3 = P(3) = ?

[[s]]4 = P(4) = ?
[[s]]5 = P(5) = 311

r2 = ?
r1 = ?

P = ?

Impossible to deduce the shared value!

Multiparty Computation (MPC)

Shamir's Sharing Scheme (modulo):p

• Sample uniformly at random (modulo)

• Compute as

where .

r1, …, rt−1 p

[[s]]1, …, [[s]]N

∀i ∈ {1,…, N}, [[s]]i = P(i)

P(X) := s +
t−1

∑
j=1

rj ⋅ Xj

Example: I want to share (modulo) into 5 parts, which .? 1021 t = 3

[[s]]1 = P(1) = ?
[[s]]2 = P(2) = 63
[[s]]3 = P(3) = 675

[[s]]4 = P(4) = ?
[[s]]5 = P(5) = 311

r2 = 416
r1 = 574

P(X) = 314 + 574 ⋅ X + 416 ⋅ X2

Polynomial interpolation

Multiparty Computation (MPC)

Multiparty Computation (MPC)

[[s]]1 [[s]]2

[[s]]3

[[s]]4

[[s]]5

Multiparty Computation (MPC)

[[s]]1 [[s]]2

[[s]]3

[[s]]4

[[s]]5

They jointly compute

y ← C(s)

Multiparty Computation (MPC)

Input: and , a public constant

• They can compute :

[[a]] [[b]] c

[[a + b]]

[[a + b]]1 ← [[a]]1 + [[b]]1
⋮

[[a + b]]N ← [[a]]N + [[b]]N

Multiparty Computation (MPC)

Input: and , a public constant

• They can compute :

• They can compute :

[[a]] [[b]] c

[[a + b]]

[[a + b]]1 ← [[a]]1 + [[b]]1
⋮

[[a + b]]N ← [[a]]N + [[b]]N

[[a + c]]

[[a + c]]1 ← [[a]]1 + c
[[a + c]]2 ← [[a]]2

⋮
[[a + c]]N ← [[a]]N

Multiparty Computation (MPC)

Input: and , a public constant

• They can compute :

[[a]] [[b]] c

[[c ⋅ a]]

[[c ⋅ a]]1 ← c ⋅ [[a]]1
⋮

[[c ⋅ a]]N ← c ⋅ [[a]]N

Multiparty Computation (MPC)

Input: and , a public constant

• They can compute :

• They can compute …

…but it is not trivial.

It requires communication
between the parties.

[[a]] [[b]] c

[[c ⋅ a]]

[[c ⋅ a]]1 ← c ⋅ [[a]]1
⋮

[[c ⋅ a]]N ← c ⋅ [[a]]N

[[a ⋅ b]]

Multiparty Computation (MPC)

Multiparty Computation (MPC)

• Given a matrix and a sharing of
a vector , they can compute .

• Given two sharings of two
matrices and , they can compute

.

H [[x]]
x [[Hx]]

[[A]], [[B]]
A B

[[A ⋅ B]]

Multiparty Computation (MPC)

• Given a matrix and a sharing of
a vector , they can compute .

• Given two sharings of two
matrices and , they can compute

.

• Given a sharing of a value , they
can check that by computing
and revealing .

H [[x]]
x [[Hx]]

[[A]], [[B]]
A B

[[A ⋅ B]]

[[x]] x
x ∈ {0,1}

[[x ⋅ (x − 1)]]

Multiparty Computation (MPC)

• Given a matrix and a sharing of
a vector , they can compute .

• Given two sharings of two
matrices and , they can compute

.

• Given a sharing of a value , they
can check that by computing
and revealing .

• Given a sharing of a matrix ,
they can check that the rank of is
smaller than a public constant .

• …

H [[x]]
x [[Hx]]

[[A]], [[B]]
A B

[[A ⋅ B]]

[[x]] x
x ∈ {0,1}

[[x ⋅ (x − 1)]]

[[M]] M
M

r

MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:

“Zero-knowledge from secure multiparty computation” (STOC 2007)

• Turn a multiparty computation (MPC) into an identification scheme

• Generic: can be apply to any cryptographic problem

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

MPC-in-the-Head transform

MPCitH: general principle

MPC model

[[x]]1

• Jointly compute

• private: the views of any
parties provide no information on

• Semi-honest model: assuming that the
parties follow the steps of the protocol

• Broadcast model

‣ Parties locally compute on their shares

‣ Parties broadcast and recompute

‣ Parties start again (now knowing)

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

x = [[x]]1 + [[x]]2 + … + [[x]]N

MPC model

[[x]]1

• Jointly compute

• private: the views of any
parties provide no information on

• Semi-honest model: assuming that the
parties follow the steps of the protocol

• Broadcast model

‣ Parties locally compute on their shares

‣ Parties broadcast and recompute

‣ Parties start again (now knowing)

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

Public
domain

[[α]]1
[[α]]2

[[α]]3

[[α]]4

[[α]]5

x = [[x]]1 + [[x]]2 + … + [[x]]N

MPCitH transform

Prover Verifier

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

i*

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N

② Run MPC in their head

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

② Run MPC in their head

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

② Run MPC in their head

④ Open parties {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

② Run MPC in their head

④ Open parties {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Cheating detected!

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares

We have where

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast
 [[α]]1, …, [[α]]N ③ Choose a random party

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

② Run MPC in their head

④ Open parties {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Seems OK.

MPCitH transform

• Zero-knowledge MPC protocol is -private⟺ (N − 1)

MPCitH transform

• Zero-knowledge MPC protocol is -private

• Soundness:

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

MPCitH transform

• Zero-knowledge MPC protocol is -private

• Soundness:

• Parallel repetition

Protocol repeated times in parallel, soundness error

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

τ (1
N)

τ

From MPC-in-the-Head to signatures

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

MPC-in-the Head transform

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

The problem of factorisation:

Very hard to invert !

(p, q) ↦ N := pq

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

The problem of factorisation:

Very hard to invert !

1.Build a MPC protocol that takes and
 and checks that .

2.Using the MPC-in-the-Head
transformation, we get a zero-knowledge
proof of knowledge for the factorisation
problem.

3.Using the Fiat-Shamir transformation, we
get a signature scheme relying on the
hardness to solve to factorize a composite
number.

(p, q) ↦ N := pq

[[p]]
[[q]] p ⋅ q = N

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

The problem of factorisation:

Very hard to invert !

1.Build a MPC protocol that takes and
 and checks that .

2.Using the MPC-in-the-Head
transformation, we get a zero-knowledge
proof of knowledge for the factorisation
problem.

3.Using the Fiat-Shamir transformation, we
get a signature scheme relying on the
hardness to solve to factorize a composite
number.

(p, q) ↦ N := pq

[[p]]
[[q]] p ⋅ q = N

Not secure against
quantum computers!

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Quantum-resilient hard problems:

• Lattice-based cryptography

• Code-based cryptography

• Multivariate cryptography

• Symmetric cryptography

• …

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

• Lattice-based cryptography

‣ The Short Integer Solution (SIS)
problem: from , find a vector
such that

.

‣ The Learning With Errors (LWE)
problem: from , find two
vectors such that

.

(A, t) s

t = As and ∥s∥ small

(A, t)
s, e

t = As + e and ∥e∥ smallQuantum-resilient hard problems:

• Lattice-based cryptography

• Code-based cryptography

• Multivariate cryptography

• Symmetric cryptography

• …

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

• Code-based cryptography

‣ The Syndrome Decoding (SD)
problem: from , find a vector
 such that

and has non-zero coordinates.

‣ The MinRank problem: from
matrices , find a linear
combination such that

has a rank smaller than some
public constant .

(H, y)
x

y = Ax

x w

k + 1
M0, …Mk

x

E := M0 +
k

∑
j=1

xjMj

r

Quantum-resilient hard problems:

• Lattice-based cryptography

• Code-based cryptography

• Multivariate cryptography

• Symmetric cryptography

• …

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

• Multivariate cryptography

‣ The Multivariate Quadratic (MQ)
problem: find a solution of the system
of quadratic equations

where and are the
coefficients of the system.

x
m

y1 = ∑i≤ j a1,i, j ⋅ xixj + ∑i b1,i ⋅ xi

⋮
ym = ∑i≤ j am,i, j ⋅ xixj + ∑i bm,i ⋅ xi

{ak,i, j} {bk,i}

Quantum-resilient hard problems:

• Lattice-based cryptography

• Code-based cryptography

• Multivariate cryptography

• Symmetric cryptography

• …

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

• Symmetric cryptography

‣ Hash functions.

‣ AES cipher: given , find an AES
key for which the ciphertext of is
:

‣ Any other cipher scheme.

(x, y)
k x

y

y = AESk(x)

Quantum-resilient hard problems:

• Lattice-based cryptography

• Code-based cryptography

• Multivariate cryptography

• Symmetric cryptography

• …

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Quantum-resilient hard problems:

• Lattice-based cryptography

• Code-based cryptography

• Multivariate cryptography

• Symmetric cryptography

• …

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Quantum-resilient hard problems:

• Lattice-based cryptography

• Code-based cryptography

• Multivariate cryptography

• Symmetric cryptography

• …

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

Should take [KZ20] attack into account (when there are more than 3 rounds)!
[KZ20] Kales, Zaverucha. “An attack on some signature schemes constructed from five-pass identification schemes” (CANS20)

Fiat-Shamir transform

20
07

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

Invention of the
MPC-in-the-Head

framework

LowMC

AES

Rain

32.1

12.1 12.3

6.6

30.9

13.0

9.7

5.0

6.8

Signature size
(in kilobytes)

SPHINCS+

Lo
ga

rit
hm

ic
 s

ca
le

SPHINCS+

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20
25

Signature size
(in kilobytes)

Lo
ga

rit
hm

ic
 s

ca
le

Syndrome Decoding Problem:
From a matrix and a vector , find such that

• ,
• has at most non-zero coordinates.

H y x
y = Hx
x w

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20
25

Signature size
(in kilobytes)

Lo
ga

rit
hm

ic
 s

ca
le

Binary field

37.4

31.7

SPHINCS+

Syndrome Decoding Problem:
From a matrix and a vector , find such that

• ,
• has at most non-zero coordinates.

H y x
y = Hx
x w

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20
25

Signature size
(in kilobytes)

Lo
ga

rit
hm

ic
 s

ca
le

Binary field

37.4

46.1

31.7

38.7 37.4

21.2

Medium-size field

SPHINCS+

Syndrome Decoding Problem:
From a matrix and a vector , find such that

• ,
• has at most non-zero coordinates.

H y x
y = Hx
x w

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20
25

Signature size
(in kilobytes)

Lo
ga

rit
hm

ic
 s

ca
le

Binary field

37.4

46.1

31.7

38.7 37.4

24.8

21.2

Medium-size field

22.5
Quasi-cyclic

SPHINCS+

Syndrome Decoding Problem:
From a matrix and a vector , find such that

• ,
• has at most non-zero coordinates.

H y x
y = Hx
x w

SPHINCS+

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20
25

Signature size
(in kilobytes)

Lo
ga

rit
hm

ic
 s

ca
le

Binary field

37.4

46.1

31.7

38.7 37.4

24.8

16.0

21.2

8.5

12.1

Medium-size field

22.5
Quasi-cyclic

MPC-in-the-HeadSyndrome Decoding Problem:
From a matrix and a vector , find such that

• ,
• has at most non-zero coordinates.

H y x
y = Hx
x w

[FJR22] Feneuil, Joux, Rivain: “Syndrome Decoding
in the Head: Shorter Signatures from Zero-
Knowledge Proofs” (ePrint 2022/188, Crypto 2022)

[FJR23] Feneuil, Joux, Rivain: “Shared Permutation
for Syndrome Decoding: New Zero-Knowledge
Protocol and Code-Based Signature” (ePrint
2021/1576, Journal DCC)

• Subset Sum Problem: KB KB

• Multivariate Quadratic Problem: KB

• MinRank Problem: KB

• Rank Syndrome Decoding Problem: KB

• Permuted Kernel Problem (or variant): KB

• …

≥ 100 ⇒ 19.1

6.3 − 7.3

≈ 5 − 6

≈ 5 − 6

≈ 6

Exploring other assumptions

MPCitH-based NIST Candidates

1st June 2023:
Deadline for the NIST call
for additional post-quantum signatures

MPCitH-based NIST Candidates

Assumption Size (in KB)

AIMer AIM (MPC-friendly one-way function) 4.2

Biscuit Structured MQ problem (PowAff2) 4.7

MIRA MinRank problem 5.6

MiRitH MinRank problem 5.7

RYDE Syndrome decoding problem in rank metric 6.0

PERK* Permuted Kernel problem (variant) 6.1

MQOM Unstructured MQ problem 6.3

SDitH Syndrome decoding problem in Hamming
metric

8.2

MPCitH-based NIST Candidates

‣ Medium signature sizes (4-10 KB)

‣ Small public keys

Figure extracted from PQ Signatures Zoo

https://pqshield.github.io/nist-sigs-zoo/

https://pqshield.github.io/nist-sigs-zoo/

Optimisations and variants

With SDitH-L1-gf251 as example.

NIST Category I

Field GF(251)

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Naive MPCitH transformation

Size ≈ τ ⋅ (N ⋅ 2λ + N ⋅ |α | + (N − 1) ⋅ |x |)

Size of a
commitment digest

Size of the MPC input (per party)

Size of the broadcast (per party)

Number of repetitions to achieve the desired security level

τ ≈
λ

log2 N

Naive MPCitH transformation

SDitH-L1-gf251:
the input of the MPC protocol is around 323 bytes,
The broadcast value of the MPC protocol is around 36 bytes.

x
α

Size ≈ τ ⋅ (N ⋅ 2λ + N ⋅ |α | + (N − 1) ⋅ |x |)

Size of a
commitment digest

Size of the MPC input (per party)

Size of the broadcast (per party)

Number of repetitions to achieve the desired security level

τ ≈
λ

log2 N

Naive MPCitH transformation

SDitH-L1-gf251:
the input of the MPC protocol is around 323 bytes,
The broadcast value of the MPC protocol is around 36 bytes

x
α

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

MPCitH transform

Prover

Verifier

① Generate and commit shares

 Compute
[[x]] = ([[x]]1, …, [[x]]N)

∀i, comi = Comρi([[x]]i)

② Run MPC in their head

h2 = Hash([[α]]1, …, [[α]]N)
③ Choose a random party

i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}

([[x]]i, ρi)i≠i*

⑤ Compute
 - Commitments
 - MPC computation
 Check
 Check
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept
h1 = Hash(com1, …, comN)
h2 = Hash([[α]]1, …, [[α]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*
(comi*, [[α]]i*)

h1 = Hash(𝖼𝗈𝗆1, …, 𝖼𝗈𝗆N)

MPCitH transform

Prover

Verifier

① Generate and commit shares

 Compute
[[x]] = ([[x]]1, …, [[x]]N)

∀i, comi = Comρi([[x]]i)

② Run MPC in their head

h2 = Hash([[α]]1, …, [[α]]N)
③ Choose a random party

i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}

([[x]]i, ρi)i≠i*

⑤ Compute
 - Commitments
 - MPC computation
 Check
 Check
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g̃(y, α) = Accept
h1 = Hash(com1, …, comN)
h2 = Hash([[α]]1, …, [[α]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*
(comi*, [[α]]i*)

h1 = Hash(𝖼𝗈𝗆1, …, 𝖼𝗈𝗆N)

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

seed1 seed2 seed3 seedN−1 seedN

+ΔxPR
G

PR
G

PR
G

PR
G

PR
G

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

+Δx
PRG

PRG PR
G

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

(𝗌𝖾𝖾𝖽𝟣, 𝗌𝖾𝖾𝖽𝟤) ← PRG(𝗉𝖺𝗋𝖾𝗇𝗍_𝗌𝖾𝖾𝖽)

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

+Δx
PRG

PRG PR
G

to be revealedi*

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

+Δx
PRG

PRG PR
G

to be revealedi*

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

x = [[x]]1 + [[x]]2 + [[x]]3 + … + [[x]]N−1 + [[x]]N

𝗌𝖾𝖾𝖽1 𝗌𝖾𝖾𝖽2 𝗌𝖾𝖾𝖽N…

𝗋𝗈𝗈𝗍_𝗌𝖾𝖾𝖽

+Δx
PRG

PRG PR
G

to be revealedi*

sibling path
→ seedslog(N)

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

Using a Seed Tree

Traditional MPCitH transformation

Size ≈ τ ⋅ (|Δx | + |α | + λ ⋅ log2 N + 2λ)

Path in the seed (GGM) treeSize of the auxiliary value

Size of the broadcast (of the hidden party)

Number of repetitions to achieve the desired security level

τ ≈
λ

log2 N

Commitment
of the hidden party

Traditional MPCitH transformation

SDitH-L1-gf251:
the input of the MPC protocol is around 323 bytes,
The broadcast value of the MPC protocol is around 36 bytes.

x
α

Traditional MPCitH transformation

Running times @3.80Ghz

Signing algorithm Verification algorithm

Traditional MPCitH transformation

Running times @3.80Ghz

Signing algorithm Verification algorithm

Symmetric
MPC Emulation
Misc

Signing algorithm

Traditional MPCitH transformation

9 %

63 %

28 %

Symmetric
MPC Emulation
Misc

for partiesN := 256
Signing time

 parties256

Running times @3.80Ghz (ms)19

The Hypercube Technique
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of the SDitH”
(Eurocrypt 2023)

Traditional: party emulations per repetitionN

Hypercube: party emulations per repetition1 + log2 N

N = 256

1 + log2 N = 9

Signing algorithm Verification algorithm

Running times @3.80Ghz

Before

The Hypercube Technique

Signing algorithm Verification algorithm

Running times @3.80Ghz

The Hypercube Technique

Symmetric
Packing
MPC Emulation
Misc

Signing algorithm

6 %

12 %

13 %

69 %

Symmetric
Packing
MPC Emulation
Misc

for partiesN := 256
Signing time

 parties256

Running times @3.80Ghz (ms)7

The Hypercube Technique

The Threshold Approach (Original)

In the threshold approach, we used an low-threshold sharing scheme.
For example, the Shamir’s -secret sharing scheme.

To share a value ,
sample uniformly at random,

build the polynomial ,

Set the share , where is publicly known.

(ℓ + 1,N)

x
r1, r2, …, rℓ

P(X) = x +
ℓ

∑
k=0

rk ⋅ Xk

[[x]]i ← P(ei) ei

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(ePrint 2022/1407)

MPCitH Transform with Threshold LSSS

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

Threshold LSSS cannot
generate shares from seeds

⇒

MPCitH Transform with Threshold LSSS

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④ Open parties in I

Merkle
root

authentication path

MPCitH Transform with Threshold LSSS

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④ Open parties in I

Merkle
root

authentication path

 is redundant
 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

MPCitH Transform with Threshold LSSS

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④ Open parties in I

Merkle
root

authentication path

 only party
computations required

⇒ ℓ + 1

 is redundant
 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

MPCitH Transform with Threshold LSSS

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④ Open parties in I

Merkle
root

authentication path

 only party
computations required

⇒ ℓ + 1

 parties opened
instead of
ℓ

N − 1

 is redundant
 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

MPCitH Transform with Threshold LSSS

Prover

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Choose a random set of parties
, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④ Open parties in I

Merkle
root

authentication path

 only party
computations required

⇒ ℓ + 1

 parties opened
instead of
ℓ

N − 1

 is redundant
 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

only party
computations required

ℓ

MPCitH Transform with Threshold LSSS

Traditional: party emulations per repetitionN

Threshold: party emulations per repetition1 + ℓ

N = 256

1 + ℓ = 2

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head”
(ePrint 2022/1407)

The Threshold Approach (Original)

The Threshold Approach (Original)

Additive sharing
+ hypercube technique

Threshold LSSS
with

Soundness error

Prover
party computations

Verifier
party computations

Sharing Generation
and Commitment

Seed tree Merkle tree

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

1 + log2 N

log2 N

Additive sharing
+ hypercube technique

Threshold LSSS
with

Soundness error

Prover
party computations

Verifier
party computations

Sharing Generation
and Commitment

Seed tree Merkle tree

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

Much cheaper
emulation

1 + log2 N

log2 N

The Threshold Approach (Original)

Additive sharing
+ hypercube technique

Threshold LSSS
with

Soundness error

Prover
party computations

Verifier
party computations

Sharing Generation
and Commitment

Seed tree Merkle tree

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

Fast verification
algorithm

1 + log2 N

log2 N

The Threshold Approach (Original)

Additive sharing
+ hypercube technique

Threshold LSSS
with

Soundness error

Prover
party computations

Verifier
party computations

Sharing Generation
and Commitment

Seed tree Merkle tree

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

Larger proof transcripts

1 + log2 N

log2 N

The Threshold Approach (Original)

The Threshold Approach (Original)

Additive sharing
+ hypercube technique

Threshold LSSS
with

Soundness error

Prover
party computations

Verifier
party computations

Sharing Generation
and Commitment

Seed tree Merkle tree

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

Require N ≤ |𝔽 |

1 + log2 N

log2 N

Signing algorithm Verification algorithm

Running times @3.80Ghz

Before

The Threshold Approach (Original)

Signing algorithm Verification algorithm

Running times @3.80Ghz

The Threshold Approach (Original)

Signing algorithm

Running times @3.80Ghz

5 %
6 %

20 %

69 %

Symmetric
Share Computing
MPC Emulation
Misc

for partiesN := 251
Signing time

(ms)1.6

 parties251

The Threshold Approach (Original)

Running times @3.80Ghz

4 %

46 % 50 %

Symmetric
MPC Emulation
Misc

for partiesN := 251
Verification time

(ms)0.2

Verification algorithm

 parties251

The Threshold Approach (Original)

Traditional
Transformation

Emulation : partiesN(2018)

Traditional
Transformation

Hypercube
Technique

Emulation : partiesN

 parties1 + log2 N
No communication

penalty

(2018)

(2022)

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: “The Return of
the SDitH” (ePrint 2022/1645, Eurocrypt 2023)

Traditional
Transformation

Hypercube
Technique

Threshold
Approach

Emulation : partiesN

 parties1 + log2 N

 parties1 + ℓ
Increase of the
communication

No communication
penalty

(2018)

(2022)

(2022)

Shamir’s secret
sharings

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-
the-Head” (ePrint 2022/1407, Asiacrypt 2023)

Shamir’s secret sharing: to share a value ,

Build a random degree- polynomial .

Set the th share as , where .

s

ℓ P(X) := s +
ℓ

∑
j=1

rjXj

i [[s]]i [[s]]i := P(ei) ei ≠ 0

Fast verification

Traditional
Transformation

Hypercube
Technique

TCitH-MT
Merkle Tree

Emulation : partiesN

 parties1 + log2 N

 parties1 + ℓ

TCitH-GGM
GGM Seed Tree

 parties1 + ℓ

Increase of the
communication

No communication
penalty

No communication
penalty

Threshold Computation in the Head (TCitH
)

(2018)

(2022)

(2022)

(2023)

Shamir’s secret
sharings

[FR23] Feneuil, Rivain: “Threshold Computation in the Head: Improved Framework
for Post-Quantum Signatures and Zero-Knowledge Arguments” (ePrint 2023/1573)

Fast verification

Traditional
Transformation

Hypercube
Technique

TCitH-MT
Merkle Tree

Emulation : partiesN

 parties1 + log2 N

 parties1 + ℓ

TCitH-GGM
GGM Seed Tree

 parties1 + ℓ

Increase of the
communication

No communication
penalty

No communication
penalty

Threshold Computation in the Head (TCitH
)

(2018)

(2022)

(2022)

(2023)

Shamir’s secret
sharings

[FR23] Feneuil, Rivain: “Threshold Computation in the Head: Improved Framework
for Post-Quantum Signatures and Zero-Knowledge Arguments” (ePrint 2023/1573)

NIST submissions:
Running times

between 3-10 ms

Fast verification

(N = 256)

Traditional
Transformation

Hypercube
Technique

TCitH-MT
Merkle Tree

Emulation : partiesN

 parties1 + log2 N

 parties1 + ℓ

TCitH-GGM
GGM Seed Tree

 parties1 + ℓ

Increase of the
communication

No communication
penalty

No communication
penalty

Threshold Computation in the Head (TCitH
)

(2018)

(2022)

(2022)

(2023)

Shamir’s secret
sharings

Exte
nded

Small degradation
of the soundness

error

Fast verification

[FR23] Feneuil, Rivain: “Threshold Computation in the Head: Improved Framework
for Post-Quantum Signatures and Zero-Knowledge Arguments” (ePrint 2023/1573)

Extended TCitH: some applications

[FR23] Feneuil, Rivain: “Threshold Computation in the Head: Improved Framework
for Post-Quantum Signatures and Zero-Knowledge Arguments” (ePrint 2023/1573)

• More efficient signature schemes

• Unstructured multivariate quadratic (MQ) problem over

• MQOM: 6.5 KB

• Extended TCitH: 4.2 KB

𝔽251

Extended TCitH: some applications

[FR23] Feneuil, Rivain: “Threshold Computation in the Head: Improved Framework
for Post-Quantum Signatures and Zero-Knowledge Arguments” (ePrint 2023/1573)

• More efficient signature schemes

• Unstructured multivariate quadratic (MQ) problem over

• MQOM: 6.5 KB

• Extended TCitH: 4.2 KB

𝔽251

Extended TCitH: some applications

[FR23] Feneuil, Rivain: “Threshold Computation in the Head: Improved Framework
for Post-Quantum Signatures and Zero-Knowledge Arguments” (ePrint 2023/1573)

• Shorter post-quantum ring signature schemes

• Extended TCitH with MQ: 5.8 KB in around 8 ms, for 4000 users

• Extended TCitH with SD: 10.30 KB in around 10 ms, for 4000 users

Conclusion

The MPC-in-the-Head framework is an active research field

Invented in 2007

More and more popular since 2016 (first practical scheme)

Picnic: MPCitH-based signature in the first NIST call

Conclusion

The MPC-in-the-Head framework is an active research field

Invented in 2007

More and more popular since 2016 (first practical scheme)

Picnic: MPCitH-based signature in the first NIST call

2016-2024: shorter proof sizes

In 2016, the signature sizes was larger than 30 KB

Currently, the signature sizes are around 3–7 KB

Conclusion

The MPC-in-the-Head framework is an active research field

Invented in 2007

More and more popular since 2016 (first practical scheme)

Picnic: MPCitH-based signature in the first NIST call

2016-2024: shorter proof sizes

In 2016, the signature sizes was larger than 30 KB

Currently, the signature sizes are around 3–7 KB

2022-2024: faster schemes

Before 2022, we needed to emulate all the MPC parties

Currently, we just need to emulate a small value of parties

The computational bottleneck are becoming the symmetric part
of the scheme, but some works are trying to mitigate it.

Conclusion

A versatile tool to build signature schemes:

7 NIST submissions relying on it in the new NIST call

Very competitive when focusing on minimizing

Signature size + Public key size

‣ Medium signature sizes (4-10 kilobytes)

‣ Short public key (200 bytes)

Transversal among the hardness assumptions

Can be convenient to build advanced signature schemes

≤

Conclusion

A versatile tool to build signature schemes:

7 NIST submissions relying on it in the new NIST call

Very competitive when focusing on minimizing

Signature size + Public key size

‣ Medium signature sizes (4-10 kilobytes)

‣ Short public key (200 bytes)

Transversal among the hardness assumptions

Can be convenient to build advanced signature schemes

≤

Conclusion

Thank you for your attention !

