Post-Quantum Signatures from Secure Multiparty Computation

Thibauld Feneuil

Winter Research School
February 20, 2024 - Rennes (France)

Table of Contents

- Introduction
- MPC-in-the-Head: general principle
- From MPC-in-the-Head to signatures
- Optimisation and variants
- Conclusion

Introduction

Digital signatures

Digital signatures

Digital signatures

Digital signatures

Alice's private key

Alice's public key

Alice

Alice's public key
$0-\boldsymbol{T}$
uses the private key
to sign the digital document.

Digital signatures

uses the private key
to sign the digital document.

Digital signatures

Digital signatures

Security Notion: Should be impossible to forge a valid signature without the corresponding private key.

Digital signatures

$0 \longrightarrow$ A problem which is very hard to solve $0-\boldsymbol{T}$ The solution of the above problem

Examp
Given N, find non-trivial (p, q)
such that $N=p q$.
(p, q)

Existing signature schemes
will be broken by the future quantum computers.

Problematic: build new signature schemes which would be secure even against quantum computers.

How to build signature schemes?

Hash \& Sign

Short signatures
■ "Trapdoor" in the public key

How to build signature schemes?

Hash \& Sign

Short signatures
■ "Trapdoor" in the public key

From an identification scheme

- Large(r) signatures
- Short public key

How to build signature schemes?

Hash \& Sign

- Short signatures
- "Trapdoor" in the public key

- Large(r) signatures
- Short public key

Identification Scheme
 ```mmenim```

- Soundness: $\operatorname{Pr[verif} \checkmark \mid$ malicious prover] $\leq \varepsilon$ (e.g. 2^{-128})
- Zero-knowledge: verifier learns nothing on 0 -

Identification Scheme

m: message to sign

MPC in the Head

- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn a multiparty computation (MPC) into an identification scheme

Multiparty Computation (MPC)

(t, N)-threshold Secret Sharing Scheme:

- Privacy: Revealing $t-1$ shares leak no information about the secret s
- Reconstruction: The secret can be restored from any t shares.

Multiparty Computation (MPC)

Additive Sharing Scheme (modulo p):

- Sample $\llbracket s \rrbracket_{1}, \ldots, \llbracket s \rrbracket_{N-1}$ uniformly at random (modulo p)
- Compute $\llbracket s \rrbracket_{N}$ as

$$
\llbracket s \rrbracket_{N}=s-\llbracket s \rrbracket_{1}-\ldots-\llbracket s \rrbracket_{N-1}(\bmod p) .
$$

Revealing $N-1$ shares leaks no information about the secret s.

Multiparty Computation (MPC)

Additive Sharing Scheme (modulo p):

- Sample $\llbracket s \rrbracket_{1}, \ldots, \llbracket s \rrbracket_{N-1}$ uniformly at random (modulo p)
- Compute $\llbracket s \rrbracket_{N}$ as

$$
\llbracket s \rrbracket_{N}=s-\llbracket s \rrbracket_{1}-\ldots-\llbracket s \rrbracket_{N-1}(\bmod p) .
$$

Revealing $N-1$ shares leaks no information about the secret s.

Example: I want to share 835 (modulo 1021) into 5 parts.
$\llbracket s \rrbracket_{1}=$?
$\llbracket s \rrbracket_{2}=$?
$\llbracket s \|_{3}=$?
$\llbracket s \|_{4}=$?
$\llbracket s \rrbracket_{5}=$?

Multiparty Computation (MPC)

Additive Sharing Scheme (modulo p):

- Sample $\llbracket s \rrbracket_{1}, \ldots, \llbracket s \rrbracket_{N-1}$ uniformly at random (modulo p)
- Compute $\llbracket s \rrbracket_{N}$ as

$$
\llbracket s \rrbracket_{N}=s-\llbracket s \rrbracket_{1}-\ldots-\llbracket s \rrbracket_{N-1}(\bmod p) .
$$

Revealing $N-1$ shares leaks no information about the secret s.

Example: I want to share 835 (modulo 1021) into 5 parts.

$$
\llbracket s \rrbracket_{1}=325 \quad \llbracket s \rrbracket_{2}=393 \quad \llbracket s \rrbracket_{3}=847 \quad \llbracket s \rrbracket_{4}=752 \quad \llbracket s \rrbracket_{5}=?
$$

Multiparty Computation (MPC)

Additive Sharing Scheme (modulo p):

- Sample $\llbracket s \rrbracket_{1}, \ldots, \llbracket s \rrbracket_{N-1}$ uniformly at random (modulo p)
- Compute $\llbracket s \rrbracket_{N}$ as

$$
\llbracket s \rrbracket_{N}=s-\llbracket s \rrbracket_{1}-\ldots-\llbracket s \rrbracket_{N-1}(\bmod p) .
$$

Revealing $N-1$ shares leaks no information about the secret s.

Example: I want to share 835 (modulo 1021) into 5 parts.

$$
\llbracket s \rrbracket_{1}=325 \quad \llbracket s \rrbracket_{2}=393 \quad \llbracket s \rrbracket_{3}=847 \quad \llbracket s \rrbracket_{4}=752 \quad \llbracket s \rrbracket_{5}=560
$$

Multiparty Computation (MPC)

Additive Sharing Scheme (modulo p):

- Sample $\llbracket s \rrbracket_{1}, \ldots, \llbracket s \rrbracket_{N-1}$ uniformly at random (modulo p)
- Compute $\llbracket s \rrbracket_{N}$ as

$$
\llbracket s \rrbracket_{N}=s-\llbracket s \rrbracket_{1}-\ldots-\llbracket s \rrbracket_{N-1}(\bmod p) .
$$

Revealing $N-1$ shares leaks no information about the secret s.

Example: I want to share ? (modulo 1021) into 5 parts.

$$
\llbracket s \rrbracket_{1}=429 \quad \llbracket s \rrbracket_{2}=19 \quad \llbracket s \rrbracket_{3}=583 \quad \llbracket s \rrbracket_{4}=? \quad \quad \llbracket s \rrbracket_{5}=822
$$

Multiparty Computation (MPC)

Additive Sharing Scheme (modulo p):

- Sample $\llbracket s \rrbracket_{1}, \ldots, \llbracket s \rrbracket_{N-1}$ uniformly at random (modulo p)
- Compute $\llbracket s \rrbracket_{N}$ as

$$
\llbracket s \rrbracket_{N}=s-\llbracket s \rrbracket_{1}-\ldots-\llbracket s \rrbracket_{N-1}(\bmod p) .
$$

Revealing $N-1$ shares leaks no information about the secret s.

Example: I want to share ? (modulo 1021) into 5 parts.

$$
\llbracket s \rrbracket_{1}=429 \quad \llbracket s \rrbracket_{2}=19 \quad \llbracket s \rrbracket_{3}=583 \quad \llbracket s \rrbracket_{4}=? \quad \llbracket s \rrbracket_{5}=822
$$

Impossible to deduce the shared value!

Multiparty Computation (MPC)

Additive Sharing Scheme (modulo p):

- Sample $\llbracket s \rrbracket_{1}, \ldots, \llbracket s \rrbracket_{N-1}$ uniformly at random (modulo p)
- Compute $\llbracket s \rrbracket_{N}$ as

$$
\llbracket s \rrbracket_{N}=s-\llbracket s \rrbracket_{1}-\ldots-\llbracket s \rrbracket_{N-1}(\bmod p) .
$$

Revealing $N-1$ shares leaks no information about the secret s.

Example: I want to share ? (modulo 1021) into 5 parts.

$$
\begin{gathered}
\llbracket s \rrbracket_{1}=429 \quad \llbracket s \rrbracket_{2}=19 \quad \llbracket s \rrbracket_{3}=583 \quad \llbracket s \rrbracket_{4}=231 \quad \llbracket s \rrbracket_{5}=822 \\
s=\llbracket s \rrbracket_{1}+\ldots+\llbracket s \rrbracket_{N}=42
\end{gathered}
$$

Multiparty Computation (MPC)

Shamir's Sharing Scheme (modulo p):

- Sample r_{1}, \ldots, r_{t-1} uniformly at random (modulo p)
- Compute $\llbracket s \rrbracket_{1}, \ldots, \llbracket s \rrbracket_{N}$ as

$$
\begin{gathered}
\forall i \in\{1, \ldots, N\}, \llbracket s \rrbracket_{i}=P(i) \\
\text { where } P(X):=s+\sum_{j=1}^{t-1} r_{j} \cdot X^{j}
\end{gathered}
$$

Revealing $t-1$ shares leaks no information about the secret s.
Revealing t shares enables to restore the secret s.

Multiparty Computation (MPC)

Shamir's Sharing Scheme (modulo p):

- Sample r_{1}, \ldots, r_{t-1} uniformly at random (modulo p)
- Compute $\llbracket s \rrbracket_{1}, \ldots, \llbracket s \rrbracket_{N}$ as

$$
\begin{aligned}
& \forall i \in\{1, \ldots, N\}, \llbracket s \rrbracket_{i}=P(i) \\
& \text { where } P(X):=s+\sum_{j=1}^{t-1} r_{j} \cdot X^{j} .
\end{aligned}
$$

Example: I want to share 835 (modulo 1021) into 5 parts, which $t=3$.

$$
\begin{array}{lll}
r_{1}=? & \llbracket s \rrbracket_{1}=P(1)=? & \llbracket s \|_{4}=P(4)=? \\
r_{2}=? & \llbracket s \|_{2}=P(2)=? & \llbracket s \|_{4} \\
P=? & \llbracket s \|_{3}=P(3)=? & \llbracket s \|_{5}=P(5)=?
\end{array}
$$

Multiparty Computation (MPC)

Shamir's Sharing Scheme (modulo p):

- Sample r_{1}, \ldots, r_{t-1} uniformly at random (modulo p)
- Compute $\llbracket s \rrbracket_{1}, \ldots, \llbracket s \rrbracket_{N}$ as

$$
\begin{aligned}
& \forall i \in\{1, \ldots, N\}, \llbracket s \rrbracket_{i}=P(i) \\
& \text { where } P(X):=s+\sum_{j=1}^{t-1} r_{j} \cdot X^{j} .
\end{aligned}
$$

Example: I want to share 835 (modulo 1021) into 5 parts, which $t=3$.

$$
\begin{array}{cll}
r_{1}=644 & \llbracket s \rrbracket_{1}=P(1)=? & \llbracket s \rrbracket_{4}=P(4)=? \\
r_{2}=943 & \llbracket s \rrbracket_{2}=P(2)=? & \llbracket s \rrbracket_{5}=P(5)=? \\
P(X)=835+644 \cdot X+943 \cdot X^{2} & \llbracket s \rrbracket_{3}=P(3)=? &
\end{array}
$$

Multiparty Computation (MPC)

Shamir's Sharing Scheme (modulo p):

- Sample r_{1}, \ldots, r_{t-1} uniformly at random (modulo p)
- Compute $\llbracket s \rrbracket_{1}, \ldots, \llbracket s \rrbracket_{N}$ as

$$
\begin{aligned}
& \forall i \in\{1, \ldots, N\}, \llbracket s \rrbracket_{i}=P(i) \\
& \text { where } P(X):=s+\sum_{j=1}^{t-1} r_{j} \cdot X^{j} .
\end{aligned}
$$

Example: I want to share 835 (modulo 1021) into 5 parts, which $t=3$.

$$
\begin{array}{cll}
r_{1}=644 & \llbracket s \rrbracket_{1}=P(1)=380 & \llbracket s \rrbracket_{4}=P(4)=121 \\
r_{2}=943 & \llbracket s \rrbracket_{2}=P(2)=790 & \llbracket s \rrbracket_{5}=P(5)=63 \\
P(X)=835+644 \cdot X+943 \cdot X^{2} & \llbracket s \|_{3}=P(3)=23 &
\end{array}
$$

Multiparty Computation (MPC)

Shamir's Sharing Scheme (modulo p):

- Sample r_{1}, \ldots, r_{t-1} uniformly at random (modulo p)
- Compute $\llbracket s \rrbracket_{1}, \ldots, \llbracket s \rrbracket_{N}$ as

$$
\begin{aligned}
& \forall i \in\{1, \ldots, N\}, \llbracket s \rrbracket_{i}=P(i) \\
& \text { where } P(X):=s+\sum_{j=1}^{t-1} r_{j} \cdot X^{j} .
\end{aligned}
$$

Example: I want to share ? (modulo 1021) into 5 parts, which $t=3$.
$r_{1}=$?
$r_{2}=$?

$$
\llbracket s \|_{4}=P(4)=?
$$

$P=$?

$$
P=?
$$

$$
\begin{aligned}
& \llbracket s \rrbracket_{1}=P(1)=? \\
& \llbracket s \|_{2}=P(2)=63 \\
& \llbracket s \|_{3}=P(3)=?
\end{aligned}
$$

$$
\llbracket s \|_{5}=P(5)=311
$$

Multiparty Computation (MPC)

Shamir's Sharing Scheme (modulo p):

- Sample r_{1}, \ldots, r_{t-1} uniformly at random (modulo p)
- Compute $\llbracket s \rrbracket_{1}, \ldots, \llbracket s \rrbracket_{N}$ as

$$
\begin{gathered}
\forall i \in\{1, \ldots, N\}, \llbracket s \rrbracket_{i}=P(i) \\
\text { where } P(X):=s+\sum_{j=1}^{t-1} r_{j} \cdot X^{j}
\end{gathered}
$$

Example: I want to share? (modulo 1021) into 5 parts, which $t=3$.
$r_{1}=$?
$r_{2}=$?
$P=$?

$$
\begin{aligned}
& \llbracket s \rrbracket_{1}=P(1)=? \\
& \llbracket s \rrbracket_{2}=P(2)=63 \\
& \llbracket s \rrbracket_{3}=P(3)=?
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket s \rrbracket_{4}=P(4)=? \\
& \llbracket s \rrbracket_{5}=P(5)=311
\end{aligned}
$$

Impossible to deduce the shared value!

Multiparty Computation (MPC)

Shamir's Sharing Scheme (modulo p):

- Sample r_{1}, \ldots, r_{t-1} uniformly at random (modulo p)
- Compute $\llbracket s \rrbracket_{1}, \ldots, \llbracket s \rrbracket_{N}$ as

$$
\begin{gathered}
\forall i \in\{1, \ldots, N\}, \llbracket s \rrbracket_{i}=P(i) \\
\text { where } P(X):=s+\sum_{j=1}^{t-1} r_{j} \cdot X^{j}
\end{gathered}
$$

Example: I want to share ? (modulo 1021) into 5 parts, which $t=3$.

$$
\begin{aligned}
& r_{1}=574 \quad \llbracket s \rrbracket_{1}=P(1)=\text { ? } \\
& r_{2}=416 \\
& P(X)=314+574 \cdot X+416 \cdot X^{2} \\
& \llbracket s \rrbracket_{2}=P(2)=63 \\
& \llbracket s \rrbracket_{3}=P(3)=675 \\
& \llbracket s \rrbracket_{4}=P(4)=\text { ? } \\
& \llbracket s \rrbracket_{5}=P(5)=311
\end{aligned}
$$

Multiparty Computation (MPC)

$$
l^{1} 12
$$

Multiparty Computation (MPC)

Multiparty Computation (MPC)

Multiparty Computation (MPC)

Input: $\llbracket a \rrbracket$ and $\llbracket b \rrbracket$, a public constant c

- They can compute $\llbracket a+b \rrbracket$:

$$
\begin{gathered}
\llbracket a+b \rrbracket_{1} \leftarrow \llbracket a \rrbracket_{1}+\llbracket b \rrbracket_{1} \\
\vdots \\
\llbracket a+b \rrbracket_{N} \leftarrow \llbracket a \rrbracket_{N}+\llbracket b \rrbracket_{N}
\end{gathered}
$$

Multiparty Computation (MPC)

Input: $\llbracket a \rrbracket$ and $\llbracket b \rrbracket$, a public constant c

- They can compute $\llbracket a+b \rrbracket$:

$$
\begin{gathered}
\llbracket a+b \rrbracket_{1} \leftarrow \llbracket a \rrbracket_{1}+\llbracket b \rrbracket_{1} \\
\vdots \\
\llbracket a+b \rrbracket_{N} \leftarrow \llbracket a \rrbracket_{N}+\llbracket b \rrbracket_{N}
\end{gathered}
$$

- They can compute $\llbracket a+c \rrbracket$:

$$
\begin{gathered}
\llbracket a+c \rrbracket_{1} \leftarrow \llbracket a \rrbracket_{1}+c \\
\llbracket a+c \rrbracket_{2} \leftarrow \llbracket a \rrbracket_{2} \\
\vdots \\
\llbracket a+c \rrbracket_{N} \leftarrow \llbracket a \rrbracket_{N}
\end{gathered}
$$

Multiparty Computation (MPC)

Input: $\llbracket a \rrbracket$ and $\llbracket b \rrbracket$, a public constant c

- They can compute $\llbracket c \cdot a \rrbracket$:

$$
\begin{gathered}
\llbracket c \cdot a \rrbracket_{1} \leftarrow c \cdot \llbracket a \rrbracket_{1} \\
\vdots \\
\llbracket c \cdot a \rrbracket_{N} \leftarrow c \cdot \llbracket a \rrbracket_{N}
\end{gathered}
$$

Multiparty Computation (MPC)

Input: $\llbracket a \rrbracket$ and $\llbracket b \rrbracket$, a public constant c

- They can compute $\llbracket c \cdot a \rrbracket$:

$$
\begin{gathered}
\llbracket c \cdot a \rrbracket_{1} \leftarrow c \cdot \llbracket a \rrbracket_{1} \\
\vdots \\
\llbracket c \cdot a \rrbracket_{N} \leftarrow c \cdot \llbracket a \rrbracket_{N}
\end{gathered}
$$

- They can compute $\llbracket a \cdot b \rrbracket \ldots$
...but it is not trivial.
It requires communication between the parties.

Multiparty Computation (MPC)

- Given a matrix H and a sharing $\llbracket x \rrbracket$ of a vector x, they can compute $\llbracket H x \rrbracket$.
- Given two sharings $\llbracket A \rrbracket$, $\llbracket B \rrbracket$ of two matrices A and B, they can compute $\llbracket A \cdot B \rrbracket$.

Multiparty Computation (MPC)

- Given a matrix H and a sharing $\llbracket x \rrbracket$ of a vector x, they can compute $\llbracket H x \rrbracket$.
- Given two sharings $\llbracket A \rrbracket, \llbracket B \rrbracket$ of two matrices A and B, they can compute $\llbracket A \cdot B \rrbracket$.
- Given a sharing $\llbracket x \rrbracket$ of a value x, they can check that $x \in\{0,1\}$ by computing and revealing $\llbracket x \cdot(x-1) \rrbracket$.

Multiparty Computation (MPC)

- Given a matrix H and a sharing $\llbracket x \rrbracket$ of a vector x, they can compute $\llbracket H x \rrbracket$.
- Given two sharings $\llbracket A \rrbracket, \llbracket B \rrbracket$ of two matrices A and B, they can compute $\llbracket A \cdot B \rrbracket$.
- Given a sharing $\llbracket x \rrbracket$ of a value x, they can check that $x \in\{0,1\}$ by computing and revealing $\llbracket x \cdot(x-1) \rrbracket$.
- Given a sharing $\llbracket M \rrbracket$ of a matrix M, they can check that the rank of M is smaller than a public constant r.

MPC in the Head

- [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn a multiparty computation (MPC) into an identification scheme

- Generic: can be apply to any cryptographic problem

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

$$
x
$$

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

MPC-in-the-Head transform

Zero-knowledge proof

MPCitH: general principle

MPC model

- Jointly compute

$$
g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}
$$

- ($N-1$) private: the views of any $N-1$ parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol

$$
x=\llbracket x \rrbracket_{1}+\llbracket x \rrbracket_{2}+\ldots+\llbracket x \rrbracket_{N}
$$

MPC model

- Jointly compute

$$
g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}
$$

- ($N-1$) private: the views of any $N-1$ parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol
- Broadcast model
- Parties locally compute on their shares $\llbracket x \rrbracket \mapsto \llbracket \alpha \rrbracket$
- Parties broadcast $\llbracket \alpha \rrbracket$ and recompute α
- Parties start again (now knowing α)

$$
x=\llbracket x \rrbracket_{1}+\llbracket x \rrbracket_{2}+\ldots+\llbracket x \rrbracket_{N}
$$

MPCitH transform

Prover
Verifier

MPCitH transform

(1)

Generate and commit shares $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$

Prover
Verifier

MPCitH transform

Prover

Verifier

MPCitH transform

Prover

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties $\{1, \ldots, N\} \backslash\left\{i^{*}\right\}$

Prover

Verifier

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties $\{1, \ldots, N\} \backslash\left\{i^{*}\right\}$

Prover

MPCitH transform

(1) Generate and commit shares $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$ We have $F(x) \neq y$ where $x:=\llbracket x \rrbracket_{1}+\ldots+\llbracket x \rrbracket_{N}$

Verifier

MPCitH transform

(1) Generate and commit shares $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$ We have $F(x) \neq y$ where $x:=\llbracket x \rrbracket_{1}+\ldots+\llbracket x \rrbracket_{N}$
(2) Run MPC in their head

Malicious Prover

Verifier

MPCitH transform

(1) Generate and commit shares $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$ We have $F(x) \neq y$ where $x:=\llbracket x \rrbracket_{1}+\ldots+\llbracket x \rrbracket_{N}$
(2) Run MPC in their head

Malicious Prover
Verifier

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

We have $F(x) \neq y$ where

$$
x:=\llbracket x \rrbracket_{1}+\ldots+\llbracket x \rrbracket_{N}
$$

(2) Run MPC in their head

(4) Open parties $\{1, \ldots, N\} \backslash\left\{i^{*}\right\}$

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

We have $F(x) \neq y$ where

$$
x:=\llbracket x \rrbracket_{1}+\ldots+\llbracket x \rrbracket_{N}
$$

(2) Run MPC in their head

(4) Open parties $\{1, \ldots, N\} \backslash\left\{i^{*}\right\}$

Verifier

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

We have $F(x) \neq y$ where

$$
x:=\llbracket x \rrbracket_{1}+\ldots+\llbracket x \rrbracket_{N}
$$

(2) Run MPC in their head

(4) Open parties $\{1, \ldots, N\} \backslash\left\{i^{*}\right\}$

Malicious Prover

Verifier

Seems OK.

MPCitH transform

- Zero-knowledge \Longleftrightarrow MPC protocol is $(N-1)$-private

MPCitH transform

- Zero-knowledge \Longleftrightarrow MPC protocol is $(N-1)$-private
- Soundness:
\mathbb{P} (malicious prover convinces the verifier)

$$
\begin{aligned}
& =\mathbb{P}(\text { corrupted party remains hidden }) \\
& =\frac{1}{N}
\end{aligned}
$$

MPCitH transform

- Zero-knowledge \Longleftrightarrow MPC protocol is $(N-1)$-private
- Soundness:

$$
\begin{aligned}
& \mathbb{P}(\text { malicious prover convinces the verifier }) \\
&=\mathbb{P}(\text { corrupted party remains hidden }) \\
&=\frac{1}{N}
\end{aligned}
$$

- Parallel repetition

Protocol repeated τ times in parallel, soundness error $\left(\frac{1}{N}\right)^{\tau}$

From MPC-in-the-Head to signatures

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

MPC-in-the Head transform
Zero-knowledge proof

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Input sharing $\llbracket x \rrbracket$ Joint evaluation of:
$g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}$

Signature scheme

signature

Zero-knowledge proof

One-way function
$F: x \mapsto y$
E.g. AES, MO system, Syndrome decoding

The problem of factorisation:

One-way function
$F: x \mapsto y$
E.g. AES, MO system, Syndrome decoding

$$
(p, q) \mapsto N:=p q
$$

Very hard to invert !

The problem of factorisation:

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

$$
(p, q) \mapsto N:=p q
$$

Very hard to invert !

1. Build a MPC protocol that takes $\llbracket p \rrbracket$ and $\llbracket q \rrbracket$ and checks that $p \cdot q=N$.
2.Using the MPC-in-the-Head transformation, we get a zero-knowledge proof of knowledge for the factorisation problem.
2. Using the Fiat-Shamir transformation, we get a signature scheme relying on the hardness to solve to factorize a composite number.

Not secure against quantum computers!

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Quantum-resilient hard problems:

- Lattice-based cryptography
- Code-based cryptography
- Multivariate cryptography
- Symmetric cryptography
- ...

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Quantum-resilient hard problems:

- Lattice-based cryptography
- Code-based cryptography
- Multivariate cryptography
- Symmetric cryptography
- ...
- Lattice-based cryptography
- The Short Integer Solution (SIS) problem: from (A, t), find a vector s such that

$$
t=A s \quad \text { and } \quad\|s\| \text { small. }
$$

- The Learning With Errors (LWE) problem: from (A, t), find two vectors s, e such that

$$
t=A s+e \quad \text { and } \quad\|e\| \text { small. }
$$

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Quantum-resilient hard problems:

- Lattice-based cryptography
- Code-based cryptography
- Multivariate cryptography
- Symmetric cryptography
- Code-based cryptography
- The Syndrome Decoding (SD) problem: from (H, y), find a vector x such that

$$
y=A x
$$

and x has w non-zero coordinates.

- The MinRank problem: from $k+1$ matrices $M_{0}, \ldots M_{k}$, find a linear combination x such that

$$
E:=M_{0}+\sum_{j=1}^{k} x_{j} M_{j}
$$

has a rank smaller than some public constant r.

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Quantum-resilient hard problems:

- Lattice-based cryptography
- Code-based cryptography
- Multivariate cryptography
- Symmetric cryptography
- ...
- Multivariate cryptography
- The Multivariate Quadratic (MQ) problem: find a solution x of the system of m quadratic equations

$$
\left\{\begin{aligned}
y_{1} & =\sum_{i \leq j} a_{1, i, j} \cdot x_{i} x_{j}+\sum_{i} b_{1, i} \cdot x_{i} \\
& \vdots \\
y_{m} & =\sum_{i \leq j} a_{m, i, j} \cdot x_{i} x_{j}+\sum_{i} b_{m, i} \cdot x_{i}
\end{aligned}\right.
$$

where $\left\{a_{k, i, j}\right\}$ and $\left\{b_{k, i}\right\}$ are the coefficients of the system.

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

- Symmetric cryptography
- Hash functions.
- AES cipher: given (x, y), find an AES key k for which the ciphertext of x is y :

$$
y=\operatorname{AES}_{k}(x)
$$

- Any other cipher scheme.

Quantum-resilient hard problems:

- Lattice-based cryptography
- Code-based cryptography
- Multivariate cryptography
- Symmetric cryptography
- ...

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Input sharing $\llbracket x \rrbracket$ Joint evaluation of:
$g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}$

Quantum-resilient hard problems:

- Lattice-based cryptography
- Code-based cryptography
- Multivariate cryptography
- Symmetric cryptography
- ...

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Quantum-resilient hard problems:

- Lattice-based cryptography
- Code-based cryptography
- Multivariate cryptography
- Symmetric cryptography

Multiparty computation (MPC)

Input sharing $\llbracket x \rrbracket$ Joint evaluation of:

$$
g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}
$$

Zero-knowledge proof

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Zero-knowledge proof

One-way function

$$
F: x \mapsto y
$$

E.g. AES, MO system, Syndrome decoding

Multiparty computation (MPC)

Input sharing $\llbracket x \rrbracket$ Joint evaluation of:

$$
g(x)= \begin{cases}\text { Accept } & \text { if } F(x)=y \\ \text { Reject } & \text { if } F(x) \neq y\end{cases}
$$

Signature scheme

Zero-knowledge proof

Fiat-Shamir transform

Should take [KZ20] attack into account (when there are more than 3 rounds)!
[KZ20] Kales, Zaverucha. "An attack on some signature schemes constructed from five-pass identification schemes" (CANS20)

Signature size
(in kilobytes)

Invention of the
MPC-in-the-Head framework

2

Signature size
(in kilobytes)

Syndrome Decoding Problem:

From a matrix H and a vector y, find x such that

- $y=H x$,
- x has at most w non-zero coordinates.

Signature size
(in kilobytes)

Syndrome Decoding Problem:

From a matrix H and a vector y, find x such that

- $y=H x$,
- x has at most w non-zero coordinates.

Syndrome Decoding Problem:

From a matrix H and a vector y, find x such that

- $y=H x$,
- x has at most w non-zero coordinates.

Syndrome Decoding Problem:

From a matrix H and a vector y, find x such that

- $y=H x$,
- x has at most w non-zero coordinates.
2^{00}

Exploring other assumptions

- Subset Sum Problem: $\geq 100 \mathrm{~KB} \Rightarrow 19.1 \mathrm{~KB}$
- Multivariate Quadratic Problem: 6.3-7.3 KB
- MinRank Problem: $\approx 5-6 \mathrm{~KB}$
- Rank Syndrome Decoding Problem: $\approx 5-6 \mathrm{~KB}$
- Permuted Kernel Problem (or variant): $\approx 6 \mathrm{~KB}$
- ...

MPCitH-based NIST Candidates

1st June 2023:
Deadline for the NIST call
for additional post-quantum signatures

MPCitH-based NIST Candidates

	Assumption	Size (in KB)
AIMer	AIM (MPC-friendly one-way function)	4.2
Biscuit	Structured MQ problem (PowAff2)	4.7
MIRA	MinRank problem	5.6
MiRitH	MinRank problem	5.7
RYDE	Syndrome decoding problem in rank metric	6.0
PERK *	Permuted Kernel problem (variant)	6.1
MQOM	Unstructured MQ problem	6.3
SDitH	Syndrome decoding problem in Hamming	8.2

MPCitH-based NIST Candidates

- Medium signature sizes (4-10 KB)
- Small public keys

Optimisations and variants

With SDitH-LI-gf251 as example.

NIST Category I

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties $\{1, \ldots, N\} \backslash\left\{i^{*}\right\}$

Prover

Naive MPCitH transformation

Size of the broadcast (per party)

Size $\approx \tau \cdot(N \cdot 2 \lambda+N \cdot|\alpha|+(N-1) \cdot|x|)$

Number of repetitions to achieve the desired security level

$$
\tau \approx \frac{\lambda}{\log _{2} N}
$$

Naive MPCitH transformation

Naive MPCitH transformation

SDitH-L1-gf251:
the input x of the MPC protocol is around $\mathbf{3 2 3}$ bytes, The broadcast value α of the MPC protocol is around 36 bytes

MPCitH transform

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties $\{1, \ldots, N\} \backslash\left\{i^{*}\right\}$

Prover

MPCitH transform

(1) Generate and commit shares
$\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$
Compute
$\forall i, \operatorname{com}_{i}=\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)$
(2) Run MPC in their head

(4) Open parties $\{1, \ldots, N\} \backslash\left\{i^{*}\right\}$

Prover

Verifier

MPCitH transform

(1) Generate and commit shares
$\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$
Compute
$\forall i, \operatorname{com}_{i}=\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)$
(2) Run MPC in their head

(4) Open parties $\{1, \ldots, N\} \backslash\left\{i^{*}\right\}$

Prover

Verifier

Using a Seed Tree

[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)

$$
x=\llbracket x \rrbracket_{1}+\llbracket x \rrbracket_{2}+\llbracket x \rrbracket_{3}+\ldots+\llbracket x \rrbracket_{N-1}+\llbracket x \rrbracket_{N}
$$

Using a Seed Tree

[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)

Using a Seed Tree

[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures" (CCS 2018)

Using a Seed Tree

[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures" (CCS 2018)

Using a Seed Tree

[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures" (CCS 2018)

Using a Seed Tree

[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures" (CCS 2018)

Traditional MPCitH transformation

Size $\approx \tau \cdot\left(|\Delta x|+|\alpha|+\lambda \cdot \log _{2} N+2 \lambda\right)$

Traditional MPCitH transformation

SDitH-L1-gf251:
the input x of the MPC protocol is around $\mathbf{3 2 3}$ bytes, The broadcast value α of the MPC protocol is around 36 bytes.

Traditional MPCitH transformation

Traditional MPCitH transformation

Traditional MPCitH transformation

The Hypercube Technique

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

Traditional: N party emulations per repetition

$$
\quad N=256
$$

Hypercube: $1+\log _{2} N$ party emulations per repetition

$$
1+\log _{2} N=9
$$

The Hypercube Technique

The Hypercube Technique

The Hypercube Technique

Signing algorithm

Symmetric

The Threshold Approach (Original)

[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (ePrint 2022/1407)

In the threshold approach, we used an low-threshold sharing scheme. For example, the Shamir's $(\ell+1, N)$-secret sharing scheme.

To share a value x,

- sample $r_{1}, r_{2}, \ldots, r_{\ell}$ uniformly at random,
- build the polynomial $P(X)=x+\sum_{k=0}^{\ell} r_{k} \cdot X^{k}$,
- Set the share $\llbracket x \rrbracket_{i} \leftarrow P\left(e_{i}\right)$, where e_{i} is publicly known.

MPCitH Transform with Threshold LSSS

(1) Generate and commit shares

(4) Open parties in I

Prover

Verifier

MPCitH Transform with Threshold LSSS

Prover

Verifier

MPCitH Transform with Threshold LSSS

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties in I

(3) Choose a random set of parties $I \subseteq\{1, \ldots, N\}$, s.t. $|I|=\ell$.
(5) Check $\forall i \in I$

- Commitments $\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)$
- MPC computation $\llbracket \alpha \rrbracket_{i}=\varphi\left(\llbracket x \rrbracket_{i}\right)$ Check $g(y, \alpha)=$ Accept

Prover

Verifier

MPCitH Transform with Threshold LSSS

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties in I

Prover
Verifier

MPCitH Transform with Threshold LSSS

(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

(2) Run MPC in their head

(4) Open parties in I

Prover
Verifier

MPCitH Transform with Threshold LSSS

(1) Generate and commit shares $\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)$
(2) Run MPC in their head

(4) Open parties in I

Prover

(5) Check $\forall i \in I$

- Commitments $\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)$
- MPC computation $\llbracket \alpha \rrbracket_{i}=\varphi\left(\llbracket x \rrbracket_{i}\right)$

Check $g(y, \alpha)=$ Accept

Verifier

MPCitH Transform with Threshold LSSS

$\llbracket \alpha \rrbracket$ is redundant
(1) Generate and commit shares
(2) Run MPC in their head
(4) Open parties in I

Prover
(1) Generate and commit shares

$$
\llbracket x \rrbracket=\left(\llbracket x \rrbracket_{1}, \ldots, \llbracket x \rrbracket_{N}\right)
$$

$$
\text { instead of } N-1
$$

$\Rightarrow \ell+1$ shares fully determine the sharing \Rightarrow only $\ell+1$ party computations required
(3) Choose a random set of parties $I \subseteq\{1, \ldots, N\}$, s.t. $|I|=\ell$.
(5) Check $\forall i \in I$

- Commitments $\operatorname{Com}^{\rho_{i}}\left(\llbracket x \rrbracket_{i}\right)$
- MPC computation $\llbracket \alpha \rrbracket_{i}=\varphi\left(\llbracket x \rrbracket_{i}\right)$

Check $g(y, \alpha)=$ Accept

only ℓ party
computations required

The Threshold Approach (Original)

[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (ePrint 2022/1407)

Traditional: N party emulations per repetition

$$
1
$$

$$
N=256
$$

Threshold: $1+\ell$ party emulations per repetition

$$
1+\ell=2
$$

The Threshold Approach (Original)

	Additive sharing +hypercube technique	Threshold LSSS with $\ell=1$
Soundness error	$\frac{1}{N}+p \cdot\left(1-\frac{1}{N}\right)$	$\frac{1}{N}+p \cdot \frac{(N-1)}{2}$
Prover \# party computations	$1+\log _{2} N$	2
Verifier \# party computations	$\log _{2} N$	1
Sharing Generation and Commitment	Seed tree $\lambda \cdot \log N$	Merkle tree $2 \lambda \cdot \log N$

The Threshold Approach (Original)

	Additive sharing +hypercube technique	Threshold LSSS with $\ell=1$
Soundness error	$\frac{1}{N}+p \cdot\left(1-\frac{1}{N}\right)$	$\frac{1}{N}+p \cdot \frac{(N-1)}{2}$
Prover \# party computations	$1+\log _{2} N$	2
Verifier \# party computations	$\log _{2} N$	1
Sharing Generation and Commitment	Seed tree $\lambda \cdot \log N$	Merkle tree $2 \lambda \cdot \log N$

Much cheaper emulation

The Threshold Approach (Original)

	Additive sharing +hypercube technique	Threshold LSSS with $\ell=1$
Soundness error	$\frac{1}{N}+p \cdot\left(1-\frac{1}{N}\right)$	$\frac{1}{N}+p \cdot \frac{(N-1)}{2}$
Prover \# party computations	$1+\log _{2} N$	2
Verifier \# party computations	$\log _{2} N$	1
Sharing Generation and Commitment	Seed tree $\lambda \cdot \log N$	Merkle tree $2 \lambda \cdot \log N$

The Threshold Approach (Original)

The Threshold Approach (Original)

Require $N \leq|\mathbb{F}|$

	Additive sharing +hypercube technique	Threshold LSSS with $\ell=1$
Soundness error	$\frac{1}{N}+p \cdot\left(1-\frac{1}{N}\right)$	$\frac{1}{N}+p \cdot \frac{(N-1)}{2}$
Prover \# party computations	$1+\log _{2} N$	2
Verifier	$\log _{2} N$	1
Sharing Generation and Commitment	Seed tree $\lambda \cdot \log N$	Merkle tree $2 \lambda \cdot \log N$

The Threshold Approach (Original)

The Threshold Approach (Original)

The Threshold Approach (Original)

The Threshold Approach (Original)

Running times@3.80Ghz

Traditional Transformation

(2018) Emulation: N parties

Traditional Transformation Hypercube Technique
(2018) Emulation: N parties (2022)
$1+\log _{2} N$ parties
No communication penalty

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (ePrint 2022/1645, Eurocrypt 2023)

Shamir's secret sharing: to share a value s,

- Build a random degree- ℓ polynomial $P(X):=s+\sum_{j=1}^{\ell} r_{j} X^{j}$.
- Set the $i^{\text {th }}$ share $\llbracket s \rrbracket_{i}$ as $\llbracket s \rrbracket_{i}:=P\left(e_{i}\right)$, where $e_{i} \neq 0$.
[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (ePrint 2022/1407, Asiacrypt 2023)

Traditional Transformation

Hypercube Technique

(2022)
$1+\log _{2} N$ parties
No communication penalty

[FR23] Feneuil, Rivain: "Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments" (ePrint 2023/1573)

Traditional Transformation

Hypercube Technique

(2022)

$$
1+\log _{2} N \text { parties }
$$

No communication penalty

$$
(N=256)
$$

[FR23] Feneuil, Rivain: "Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments" (ePrint 2023/1573)

Traditional Transformation

Hypercube Technique

(2022)
$1+\log _{2} N$ parties
No communication penalty

[FR23] Feneuil, Rivain: "Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments" (ePrint 2023/1573)

Extended TCitH: some applications

[FR23] Feneuil, Rivain: "Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments" (ePrint 2023/1573)

Extended TCitH: some applications

- More efficient signature schemes
- Unstructured multivariate quadratic (MQ) problem over \mathbb{F}_{251}
- MOOM: 6.5 KB
- Extended TCitH: 4.2 KB
[FR23] Feneuil, Rivain: "Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments" (ePrint 2023/1573)

Extended TCitH: some applications

- More efficient signature schemes
- Unstructured multivariate quadratic (MQ) problem over \mathbb{F}_{251}
- MOOM: 6.5 KB
- Extended TCitH: 4.2 KB
- Shorter post-quantum ring signature schemes
- Extended TCitH with MQ: 5.8 KB in around 8 ms , for 4000 users
- Extended TCitH with SD: 10.30 KB in around 10 ms , for 4000 users
[FR23] Feneuil, Rivain: "Threshold Computation in the Head: Improved Framework for Post-Quantum Signatures and Zero-Knowledge Arguments" (ePrint 2023/1573)

Conclusion

Conclusion

The MPC-in-the-Head framework is an active research field

- Invented in 2007
- More and more popular since 2016 (first practical scheme)
- Picnic: MPCitH-based signature in the first NIST call

Conclusion

\square The MPC-in-the-Head framework is an active research field

- Invented in 2007
- More and more popular since 2016 (first practical scheme)
- Picnic: MPCitH-based signature in the first NIST call
- 2016-2024: shorter proof sizes
- In 2016, the signature sizes was larger than 30 KB
- Currently, the signature sizes are around 3-7 KB

Conclusion

\square The MPC-in-the-Head framework is an active research field

- Invented in 2007
- More and more popular since 2016 (first practical scheme)
- Picnic: MPCitH-based signature in the first NIST call
- 2016-2024: shorter proof sizes
- In 2016, the signature sizes was larger than 30 KB
- Currently, the signature sizes are around 3-7 KB
- 2022-2024: faster schemes
- Before 2022, we needed to emulate all the MPC parties
- Currently, we just need to emulate a small value of parties
- The computational bottleneck are becoming the symmetric part of the scheme, but some works are trying to mitigate it.

Conclusion

\square A versatile tool to build signature schemes:

- 7 NIST submissions relying on it in the new NIST call
- Very competitive when focusing on minimizing

Signature size + Public key size

- Medium signature sizes (4-10 kilobytes)
- Short public key (≤ 200 bytes)
- Transversal among the hardness assumptions
- Can be convenient to build advanced signature schemes

Conclusion

\square A versatile tool to build signature schemes:

- 7 NIST submissions relying on it in the new NIST call
- Very competitive when focusing on minimizing

Signature size + Public key size

- Medium signature sizes (4-10 kilobytes)
- Short public key (≤ 200 bytes)
- Transversal among the hardness assumptions
- Can be convenient to build advanced signature schemes

Thank you for your attention!

