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Alice’s private key

O

Alice’s public key

O—x

Alice’s public key >
Alice Bob
uses the private key uses the public key
to sign the digital document. to verify the signature.

Security Notion: Should be impossible to forge a valid signature

without the corresponding private key.



Example

{ Given N, find non-trivial (p, q)

O=—=x A problem which is very hard to solve
such that N = pgq.

O=—x The solution of the above problem (P, q)

Existing signature schemes
will be broken by the future

quantum computers.

Problematic: build new signature schemes which would

be secure even against quantum computers.
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From an
identification scheme

| know the

’ L)rvate key.

| am convinced.
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Identification Scheme

| lknow O—=. |

v Commitment )

Challenge 1
Response 1 >
Challenge n
Response n S
Prover A Veritier Q==

[ | am convinced. ]

® Completeness: Priverif v | honest prover] = 1
® Soundness: Prlverif v | malicious prover] < ¢ (e.g. 128

® Zero-knowledge: verifier learns nothing on Q=—=.



Identification Scheme

| know Q=—x.

> Challenge 1 = Hash(m, Commitment)

> Challenge n = Hash(m, Responsen — 1)
Prover \
-

ranscript

Fiat-Shamir
Transformation Verifier Q=

m: message to sign



e [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

® Turn a multiparty computation (MPC) into an identification scheme

2—2
./ \
2

’ 3
\/
\L/




(t, N)-threshold Secret Sharing Scheme:

\)
/// N the secret s into N parts

[sll; [sll, (sl sl

® Privacy: Revealing t — 1 shares leak no information about the secret s

® Reconstruction: The secret can be restored from any ¢ shares.




Additive Sharing Scheme (modulo p):

e Sample [[s]l;, ..., [slly_; uniformly at random (modulo p)

o Compute [[s]ly as

[slly =s—=1[slly = ... = [slly-; (mod p).

Revealing N — 1 shares leaks no information about the secret s.
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Additive Sharing Scheme (modulo p):

e Sample [[s]l;, ..., [slly_; uniformly at random (modulo p)

o Compute [[s]ly as

[sly =s—[sll; —... = [[slly_; (mod p).

Revealing N — 1 shares leaks no information about the secret s.

Example: | want to share 835 (modulo 1021) into 5 parts.

[sT, = 325 [s1, = 393 [s]l; = 847 [sll, =752 [s]ls = 560

@— 325 — 393 — 847 — 752




Additive Sharing Scheme (modulo p):

e Sample [[s]l;, ..., [slly_; uniformly at random (modulo p)

o Compute [[s]ly as

[sly =s—[sll; —... = [[slly_; (mod p).

Revealing N — 1 shares leaks no information about the secret s.

Example: | want to share ? (modulo 1021) into 5 parts.

[s1, =429 [sl, = 19 [s]l; = 583 [sll, =7 [s]ls = 822



Additive Sharing Scheme (modulo p):

e Sample [[s]l;, ..., [slly_; uniformly at random (modulo p)

o Compute [[s]ly as

[sly =s—[sll; —... = [[slly_; (mod p).

Revealing N — 1 shares leaks no information about the secret s.

Example: | want to share ? (modulo 1021) into 5 parts.

[s1, =429 [sl, = 19 [s]l; = 583 [sll, =7 [s]ls = 822

Impossible to deduce the shared value!



Additive Sharing Scheme (modulo p):

e Sample [[s]l;, ..., [slly_; uniformly at random (modulo p)

o Compute [[s]ly as

[sly =s—[sll; —... = [[slly_; (mod p).

Revealing N — 1 shares leaks no information about the secret s.

Example: | want to share ? (modulo 1021) into 5 parts.

[s1, =429 [sl, = 19 [s]l; = 583 [s1l, = 231 [s]ls = 822

s=[sll; + ... + sy =42



Shamir's Sharing Scheme (modulo p):

e Samplery,...,r,_; uniformly at random (modulo p)

o Compute [[s]ly, ..., [[slly as
Vie {l,...,N}, [s]l; = PQ@)
—1
where P(X) :=s + Z 7 - X
j=1

Revealing t — 1 shares leaks no information about the secret s.

Revealing t shares enables to restore the secret s.



Shamir's Sharing Scheme (modulo p):

e Samplery,...,r,_; uniformly at random (modulo p)
o Compute [[s]ly, ..., [[slly as
Vie {l,...,N}, [s], = PQ@)

1—1
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j=1
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P="7 [s]l; = P(3) =7

[s1l, = P(4) = ?
[sls = P(5) =7



Shamir's Sharing Scheme (modulo p):

e Samplery,...,r,_; uniformly at random (modulo p)
o Compute [[s]ly, ..., [[slly as
Vie {l,...,N}, [s], = PQ@)

1—1
where P(X) := s + Z 7 - X/
j=1

Example: | want to share 835 (modulo 1021) into 5 parts, which ¢ = 3.
r = 644 IsT, = P(1) = ?
r, = 943 IsT, = P(2) = ?

P(X) =835+ 644 - X+ 943 - X? [s]; = P(3) =?

[slly = P(4) =7
[slls = P(5) =7



Shamir's Sharing Scheme (modulo p):

e Samplery,...,r,_; uniformly at random (modulo p)
o Compute [[s]ly, ..., [[slly as
Vie {l,...,N}, [s], = PQ@)

1—1
where P(X) := s + Z 7 - X/
j=1

Example: | want to share 835 (modulo 1021) into 5 parts, which ¢ = 3.
r = 644 IsT, = P(1) = 380
r, = 943 IsT, = P(2) = 790

P(X) = 835 + 644 - X + 943 - X2 [s1; = P(3) = 23

[s], = P(4) = 121
Lsls = P(5) = 63



Shamir's Sharing Scheme (modulo p):

e Samplery,...,r,_; uniformly at random (modulo p)
o Compute [[s]ly, ..., [[slly as
Vie {l,...,N}, [s], = PQ@)

1—1
where P(X) := s + Z 7 - X/
j=1

Example: | want to share ? (modulo 1021) into 5 parts, which ¢ = 3.

ry =" [sll, =P(1) =7
Py =17 [sl, = P(2) =63
P="7 [sll; = P(3) =7

[s], = P(4) = 2
[sls = P(5) = 311



Shamir's Sharing Scheme (modulo p):

e Samplery,...,r,_; uniformly at random (modulo p)

o Compute [[s]ly, ..., [[slly as

Vie {1,....N}, [s], = P()

1—1
where P(X) := s + Z 7 - X/
j=1

Example: | want to share ? (modulo 1021) into 5 parts, which ¢ = 3.

ry =" [sll, =P(1) =7

=P4) =7
r="7 [T, = P(2) = 63 H‘ _PES; L
P =2 [sTs = P3) = ? HeT

Impossible to deduce the shared value!



Shamir's Sharing Scheme (modulo p):

e Sample ry, ..

e Compute [s]l;, .-

. [Lslly as

., 7,_; uniformly at random (modulo p)

Vie {1,....N}, [s], = P()

1—1
where P(X) := s + Z 7 - X/
j=1

Example: | want to share ? (modulo 1021) into 5 parts, which ¢ = 3.

P(X) =

314

+574 - X +416 - X?

\

Isll, = P(1) = ?
Is], = P(2) = 63
Is1; = P(3) = 675

/Polynomial interpolation

[s], = P(4) = 2
[sls = P(5) = 311
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They jointly compute
y < C(s)



Input: [[a]l and [P]], a public constant ¢

e They can compute [[a + b]:

[a + b]l, <« [all; + &1,

la + b]]N <~ [[Cl]]N + [[b]]N




Input: [[a]l and [P]], a public constant ¢

e They can compute [[a + b]:

[a + b]l, <« [all; + &1,

la + b]]N <~ [[a]]N + [[b]]N

e They can compute [[a + c]:

la+cll; < [lall; + ¢
la + cll, « [lall,

la + C]]N <« [[a]]N




Input: [[a]l and [P]], a public constant ¢

e They can compute [[c - a]l:

lc-all, < c-lall

lc-aly < c-llaly




Input: [[a]l and [P]], a public constant ¢

e They can compute [[c - a]l:

lc-all, < c-lall

lc-aly < c-llaly

e They can compute [[a - b]l...

...but it is not trivial.

It requires communication
between the parties.




e Given a matrix H and a sharing [[x]] of
a vector x, they can compute [Hx].

e Given two sharings [[A]l, [B]] of two
matrices A and B, they can compute

[A - B].




Given a matrix H and a sharing [x] of
a vector x, they can compute [Hx].

Given two sharings [[A]l, [B]] of two
matrices A and B, they can compute

[A - B].

Given a sharing [[x]] of a value x, they
can check that x € {0,1} by computing
and revealing [x - (x — D]




Given a matrix H and a sharing [x] of
a vector x, they can compute [Hx].

Given two sharings [[A]l, [B]] of two
matrices A and B, they can compute

[A - B].

Given a sharing [[x]] of a value x, they
can check that x € {0,1} by computing
and revealing [x - (x — D]

Given a sharing [M ]| of a matrix M,
they can check that the rank of M is
smaller than a public constant r.




e [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

® Turn a multiparty computation (MPC) into an identification scheme

2—2
./ \
2

’ 3
\/
\L/

® Generic: can be apply to any cryptographic problem



PPN

One-way function Multiparty computation (MPC)

o Input sharing [[x]]
\ Joint evaluation of:

» Accept if F(x) =y
Reject it F(x) #y

F:x—y

E.g. AES, MQ system,
Syndrome decoding

Signature scheme

Zero-knowledge proof

X Yy
—
N
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Multiparty computation (MPC)

One-way function

o Input sharing [[x]]

m Joint evaluation of:
« ‘ Accept if F(x) =y

800 = {Reject it F(x) #y
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E.g. AES, MQ system,
Syndrome decoding
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One-way function Multiparty computation (MPC)

o Input sharing [[x]]

M Joint evaluation of:
®= ; Accept if F(x) =y "

800 = {Reject it F(x) #y ‘~

F:x—y

| E.g. AES, MQ system,
t Syndrome decoding

h&til —— P o . o

Signature scheme Zero-knowledge proof

/ msg

X
Hash i | -
function - _—
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F Prover Verifier | knowx
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One-way function

F:x—y

| E.g. AES, MQ system,
t Syndrome decoding

h&til —— P o . o

Signature scheme

/ msg
Hash
function

Multiparty computation (MPC)

o Input sharing [[x]]

| M Joint evaluation of:
F Accept if F(x) =

y |
\ \}n/ 8lx) = {Reject it F(x) #£y

- » - ’ e

Zero-knowledge proof

./_\.

OK you
Prover Verifier | knowx




One-way function Multiparty computation (MPC)

o Input sharing [[x]]

m Joint evaluation of:
« ‘ Accept if F(x) =y

800 = {Reject it F(x) #y

F:x—y

E.g. AES, MQ system,
Syndrome decoding

AN 9 i SO e e et

Signature scheme

Zero-knowledge proof

X Yy
—
N
. . OK you
Prover Verifier | knowx

/ msg
Hash
function

signature




One-way function Multiparty computation (MPC)

o o Input sharing [[x]]

L X |
Fx Y ‘: M Joint evaluation of:
E.g. AES, MQ system, ‘. ° ; Accept it F(x) =y

:\},‘/ - 800 = {Reject it F(x) #y

MPC-in-the-Head transform

Syndrome decoding

Signature scheme f Zero-knowledge proof

/ msg

: X y
Hash | -
function —_— OK you
| er

Prover Verifi know x




MPCitH: general principle



x =[xl + [IxIl, + ... + [IxIly

Jointly compute

Accept if F(x) =1y
gx) = {R | |
eject if F(x) #y

(N — 1) private: the views of any N — 1
parties provide no information on x

Semi-honest model: assuming that the
parties follow the steps of the protocol



e Jointly compute

Accept if F(x) =1y
g(x) = {R . .
eject if F(x) #y

[[x]]1 [[x]]z
e (N—1) private: the views of any N — 1

[all, / parties provide no information on x
[[05]]2

® Semi-honest model: assuming that the
Public parties follow the steps of the protocol

—

_—" domain ¥—__ ® Broadcast model
led
‘ ~ ’ »  Parties locally compute on their shares

[[-x]]S [[a]]4I [[x]]3 [x]] = [l
. » Parties broadcast [[a]] and recompute
o
[[X]]4 » Parties start again (now knowing a)

x =[xl + [IxIl, + ... + [IxIly



Prover Verifier




1) Generate and commit shares Com”([[x]],)

Lxll = (I, - [xTly) Com([Ix]ly)

Prover Verifier




(1) Generate and commit shares

[x]] = ([[x]]]’ ceey [[x]]N)

@ Run MPC in their head

[[x]h N /f [[X]]z
Lxly o I)—Q‘ IxI;

[[x]]4

Prover

Com”([[x]],)

CoilolopN( [x1ly)

send broadcast

Lally, ..., [ally

Verifier




(1) Generate and commit shares

[x]] = ([[x]]]’ ceey [[x]]N)

@ Run MPC in their head

[[x]h N /f [[X]]z
Lxly o I)—Q‘ IxI;

[[x]]4

Prover

Com”([[x]],)

CoilolopN( [x1ly)

send broadcast

Lally, ..., [ally

l'*

@ Choose a random party
i* <3 {1,... N}

Verifier




(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

[x1 X // [x1l,
.

ok
® !

@ Open parties {1,..., N}\{i*}

Prover

Com”([[x]],)

CoilolopN( [x1ly)

send broadcast

Lally, ..., [ally

l‘>l<

(IxT p)icei

@ Choose a random party
i* <3 {1,... N}

Verifier




(1) Generate and commit shares Com”1([[x],)

[xI = (Ix1y, -, [xDy) CoilolopN( [xIly)

@ Run MPC in their head

send broadcast

[xTl, [x1l,
// [[05]]1,---,[[05]]]\/
> | @ Choose a random party

Ly O - i* = {1 N
N >
ﬂ;% [* ® Check Vi # i*
(T ) - Commitments Com”i([[x]],)
X Pi)isti :
@ Open parties {1,..., N}\{i*} . > - MPC computation [lal; = ¢([x]];)

Check g(y, ) = Accept

Prover Verifier




MPCitH transform

1) Generate and commit shares Com”'([[x]];)
[xI = (Ix1y, ..., [xTy)
Com’~([[x]ly)
We have F(x) # y where >

x =[xl + ... + [xlly

Malicious Prover Verifier




1) Generate and commit shares
[[x]] — ([[x]]17 R [[x]]N)

We have F(x) # y where
x =[xl + ... + [xlly

@2 Run MPC in their head

[x X // [x1,

Il — Q. -
X
2

[[x]]4

Malicious Prover

Com”1([[x],)

CO;I.I.pN( [x]ly)

send broadcast

[ally, ..., [ally

Verifier




1) Generate and commit shares Com” ([[x],)
[xD = ([x1y, .-, [xTy)
CompN([[x]]N)

We have F(x) # y where >
x =[xl + ... + [xlly

Run MPC in their head
2 Rur ©intheirhes send broadcast

[x1l, [x1,
X // Loy, ... Ladly > @ Choose a random party

i* <% {1,...,N)
= =~ i*
- o—" Q. .
: )
2

ﬂxﬂ4

Malicious Prover Verifier




1) Generate and commit shares Com” ([[x],)
[xD = ([x1y, .-, [xTy)
CompN([[x]]N)

We have F(x) # y where g
x =[xl + ... + [xlly

Run MPC in their head
2 Run © Intheirhes send broadcast

[ally, ..., [ally

» | @ Choose a random party
i* <% {1,...,N)

¥

(IxTlis 2 st

@ Open parties {1,..., N}\ {i*}

Malicious Prover Verifier




D Generate and commit shares
[l = (LxDys - TxDp)
We have F(x) # y where
x =[xl + ... + [xlly

@ Run MPC in their head

@ Open parties {1,..., N}\ {i*}

Malicious Prover

Com”1([[x],)

COLI.I.pN( [x]ly)

send broadcast

[ally, ..., [ally

» | @ Choose a random party

l'>l<

i* <% {1,...,N}

([x1l;, pi)i;ﬁi*

® Check Vi # i*
- Commitments Com”i([[x],)

> - MPC computation [a]]; = ¢([[x],)
Check g(y, a) = Accept

Veritier
Q Cheating detected!




1) Generate and commit shares
[[x]] — ([[x]]la R [[x]]N)

We have F(x) # y where
x =[xl + ... + [xlly

@ Run MPC in their head

[xl X // [x1,

[x]]N ‘-.—/'/ Q [[x]]3

l’>l<

<

@ Open parties {1,..., N}\ {i*}

Malicious Prover

Com”1([[x],)

COLI.I.pN( [x]ly)

send broadcast

[ally, ..., [ally

l'>l<

([x1l;, pi)i;ﬁi*

@ Choose a random party
i* <% {1,...,N}

® Check Vi # i*
- Commitments Com”i([[x],)

- MPC computation [a]]; = ¢([[x],)
Check g(y, a) = Accept

Verifier

Q Seems OK.




MPCitH transform

® Zero-knowledge <<= MPC protocol is (N — 1)-private



MPCitH transform

e Zero-knowledge <= MPC protocolis (N — 1)-private

® Soundness:

P(malicious prover convinces the veritier)

= P(corrupted party remains hidden)
1

N



MPCitH transform

e Zero-knowledge <= MPC protocolis (N — 1)-private

® Soundness:

P(malicious prover convinces the veritier)

= P(corrupted party remains hidden)
1

N

® Parallel repetition

1 T
Protocol repeated 7 times in parallel, soundness error (N)
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One-way function Multiparty computation (MPC)

o Input sharing [[x]]
\ Joint evaluation of:

» Accept if F(x) =y
Reject it F(x) #y

F:x—y

E.g. AES, MQ system,
Syndrome decoding

Signature scheme

Zero-knowledge proof
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—
N
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One-way function Multiparty computation (MPC)

o o Input sharing [[x]]

L X |
Fx Y ‘: M Joint evaluation of:
E.g. AES, MQ system, ‘. ° ; Accept it F(x) =y

:\},‘/ - 800 = {Reject it F(x) #y

MPC-in-the Head transform

Syndrome decoding

Signature scheme f Zero-knowledge proof

/ msg

: X y
Hash | -
function —_— OK you
| er

Prover Verifi know x




One-way function

F:x—y

E.g. AES, MQ system,
Syndrome decoding

Signature scheme

/ msg
Hash
function

Multiparty computation (MPC)

Input sharing [[x]]

Joint evaluation of:

X Yy
—
N
' . OK you
Prover Verifier | knowx

Reject it F(x) #y

{Accept if F(x) =y

Zero-knowledge proof




One-way function

F:x—y

E.g. AES, MQ system,
Syndrome decoding




The problem of factorisation:

: N :=
One-way function (p.q) = Pq

Very hard to invert !

F:x—y

E.g. AES, MQ system,
Syndrome decoding




One-way function

F:x—y

E.g. AES, MQ system,
Syndrome decoding

The problem of factorisation:

(p,q) = N :=pq

Very hard to invert !

1.Build a MPC protocol that takes [p]l and
[g]l and checks thatp - g = N.

2.Using the MPC-in-the-Head
transformation, we get a zero-knowledge
proof of knowledge for the factorisation
problem.

3.Using the Fiat-Shamir transformation, we
get a signature scheme relying on the
hardness to solve to factorize a composite
number.



One-way function

F:x—y

E.g. AES, MQ system,
Syndrome decoding

Not secure against
quantum computers!

- roblem of factorisation:

(p,q) = N :=pq

Very hard tyinvert !

1.Build a MPC p‘col takes [[p]] and
[q] and checks thyt# - g = N.

2.Using the MPC-jfA-the-Nead
transformatiopf we get agero-knowledge
proof of kngfiledge for th&factorisation
problem. /# )

3.Using#£he Fiat-Shamir transformagon, we
get £ signature scheme relying on Yae
hafdness to solve to factorize a compysite
Humber. )



One-way function

F:x—y

E.g. AES, MQ system,
Syndrome decoding

Quantum-resilient hard problems:

e [attice-based cryptography
e Code-based cryptography
* Multivariate cryptography

e Symmetric cryptography



One-way function

F:x—y

E.g. AES, MQ system,
Syndrome decoding

Quantum-resilient hard problems:

e Lattice-based cryptography
e Code-based cryptography

* Multivariate cryptography

e Symmetric cryptography

e Lattice-based cryptography

>

The Short Integer Solution (SIS)

problem: from (A, 7), find a vector s
such that

t =As and |[|s]|| small.
The Learning With Errors (LWE)

problem: from (A, 7), find two
vectors s, e such that

t=As+e and |le|l small.



e Code-based cryptography

One-way function > The Syndrome Decoding (SD)
“ problem: from (H,y), find a vector
F:x— y | x such that
E.g. AES, MQ system, ‘. y =Ax

Syndrome decoding and x has w non-zero coordinates.

> The MinRank problem: from k + 1

matrices M, ...M,, find a linear
Quantum-resilient hard problems: combination x such that

e [attice-based cryptography k
e Code-based cryptography =
e Multivariate cryptography has a rank smaller than some

e Symmetric cryptography public constant 7.



One-way function

F:x—y

E.g. AES, MQ system,
Syndrome decoding

Quantum-resilient hard problems:

e [attice-based cryptography
e Code-based cryptography
e Multivariate cryptography
e Symmetric cryptography

e Multivariate cryptography

>

The Multivariate Quadratic (MQ)
problem: find a solution x of the system
of m quadratic equations

-

— _ _a...x.x.+2_b..x.
V1 ZZS] 1,i,j i”Yj W 1

Ym = Z,-Sj i XX+ 2Dy e X,

"
where {¢g;; ;} and {b;} are the
coefficients of the system.



e Symmetric cryptography

One-way function > Hash functions.
F:xe y » AES cipher: given (x,y), find an AES
key k for which the ciphertext of x is
E.g. AES, MQ system, : y:

Syndrome decoding
y = AES,(x)

> Any other cipher scheme.

Quantum-resilient hard problems:

e [attice-based cryptography
e Code-based cryptography
* Multivariate cryptography
e Symmetric cryptography



One-way function Multiparty computation (MPC)

! ,' o ) Input sharing [[x]]
L X |
Fix Y M Joint evaluation of:
E.g. AES, MQ system, I 0 L — Accept if F(x)=y |
Syndrome decoding | | \k/ W) = Reject if F(x)#y |

Quantum-resilient hard problems:

e [attice-based cryptography
e Code-based cryptography
* Multivariate cryptography

e Symmetric cryptography



One-way function Multiparty computation (MPC)

o Input sharing [[x]]

M Joint evaluation of:
« ‘ Accept if F(x) =y

{Reject it F(x) #y

- S b —

F:x—y

E.g. AES, MQ system,
Syndrome decoding

PPN

Quantum-resilient hard problemes: Zero-knowledae proof

X Yy
—
N
. . OK you
Prover Verifier | knowx

e [attice-based cryptography
e Code-based cryptography

e Multivariate cryptography

e Symmetric cryptography




PPN

One-way function Multiparty computation (MPC)

o Input sharing [[x]]
\ Joint evaluation of:

» Accept if F(x) =y
Reject it F(x) #y

F:x—y

E.g. AES, MQ system,
Syndrome decoding

Signature scheme

Zero-knowledge proof

X Yy
—
N
. . OK you
Prover Verifier | knowx

Gl e P min i SRRt e e o e = O L e T e Sl b

/ msg
Hash
function




One-way function Multiparty computation (MPC)

o Input sharing [[x]]

M Joint evaluation of:
« ; Accept if F(x) =y

{Reject it F(x) #y

” R R S RS S S I

F:x—y

E.g. AES, MQ system,
Syndrome decoding

Signature scheme Zero-knowledge proof

/ msg

X Y
= e e
1 \_/V
function OK you
Prover Verifier | knowx

signature

Fiat-Shamir transform V

Should take [KZ20] attack into account (when there are more than 3 rounds)!

[KZ20] Kales, Zaverucha. “An attack on some signature schemes constructed from five-pass identification schemes” (CANS20)




Signature size
(in kilobytes)
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Signature size
(in kilobytes)

Logarithmic scale

SPHINCS*

Syndrome Decoding Problem:
From a matrix H and a vector y, find x such that

[ y = Hx,
e x has at most W non-zero coordinates.




Signature size
(in kilobytes)

37.4 +
31.7
Binary field
E
=
S
g
SPHINCS*

Syndrome Decoding Problem:
From a matrix H and a vector y, find x such that

[ y = Hx’
e x has at most W non-zero coordinates.




Signature size +

SN T 38.7 Medium-size field
(m kl|0b)’teS) + + .................... 37.4+
37.4 + ...........
31.7 .
Binary field T
+21.2

2Q

S

R

£

=

S,

S

SPHINCS+

Syndrome Decoding Problem:
From a matrix H and a vector y, find x such that

[ y = Hx’
e x has at most W non-zero coordinates.




Signature size +

SN T 38.7 Medium-size field
('n kllOb)’teS) + + ....................... 37.4+
37.4 + ...........
31.7 .
24.8 e
Binary field + Quasmyclnc‘#zz ’
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K
=
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Syndrome Decoding Problem:
From a matrix H and a vector y, find x such that

[ y = Hx’
e x has at most W non-zero coordinates.




Signature size +
(in kilobytes)

37.4 +
31.7
Binary field
E
=
S
g
SPHINCS*

Medium-size field
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a
"
a
"
a
]

[FIR23] Feneuil, Joux, Rivain: “Shared Permutation
for Syndrome Decoding: New Zero-Knowledge
Protocol and Code-Based Signature” (ePrint
2021/1576, Journal DCC)
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[FJR22] Feneuil, Joux, Rivain: “Syndrome Decoding
in the Head: Shorter Signatures from Zero-
Knowledge Proofs” (ePrint 2022/188, Crypto 2022)

Syndrome Decoding Problem:
From a matrix H and a vector y, find x such that

[ y = Hx’
e x has at most W non-zero coordinates.

MPC-in-the-Head




Exploring other assumptions

® Subset Sum Problem: > 100 KB = 19.1 KB

® Multivariate Quadratic Problem: 6.3 — 7.3 KB

e MinRank Problem: ~ 5 —6 KB

e Rank Syndrome Decoding Problem: ~ 5 — 6 KB

® Permuted Kernel Problem (or variant): ~ 6 KB



VPG based ST Candicate

1st June 2023:

Deadline for the NIST call
for additional post-quantum signatures




Assumption Size (in KB)
AlMer AIM (MPC-friendly one-way function) 4.2
Biscuit Structured MQ problem (PowAft2) 4.7
MIRA MinRank problem 5.6
MiRitH MinRank problem 5.7
RYDE Syndrome decoding problem in rank metric 6.0
PERK* Permuted Kernel problem (variant) 6.1
MQOM Unstructured MQ problem 6.3
SDitH Syndrome decoding problem in Hamming 8.2




VPG based IS T Candidates

Figure extracted from PQ Signatures Zoo

+ Signature size (bytes) https://pgshield.github.io/nist-sigs-zoo/
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Public key size (bytes) =

» Medium signature sizes (4-10 KB)
> Small public keys


https://pqshield.github.io/nist-sigs-zoo/

Field GF(251)

—

With SDitH-L1-gf251 as example.

NIST Category | —J



(1) Generate and commit shares Com”1([[x],)

[xI = (Ix1y, -, [xDy) CoilolopN( [xIly)

@ Run MPC in their head

send broadcast

[xTl, [x1l,
// [[05]]1,---,[[05]]]\/
> | @ Choose a random party

Ly O - i* = {1 N
N >
ﬂ;% [* ® Check Vi # i*
(T ) - Commitments Com”i([[x]],)
X Pi)isti :
@ Open parties {1,..., N}\{i*} . > - MPC computation [lal; = ¢([x]];)

Check g(y, ) = Accept

Prover Verifier




Naive MPCitH transformation

Size of the broadcast (per party)
Size of a l Size of the MPC input (per party)

commitment digest \ (

Sizezr-(N-2}L+N-|a|+(N—1)-|x|)

Number of repetitions to achieve the desired security level

A
- log, N

T



Naive

Size of the broadcast (per party)
Size of a l Size of the MPC input (per party)

commitment digest \ (

Sizex7- (N-2A+N-|a|+N-1)-|x]|)

Number of repetitions to achieve the desired security level

A
- log, N

T

SDitH-L1-gf251:
the input x of the MPC protocol is around 323 bytes,
The broadcast value a of the MPC protocol is around 36 bytes.



Naive

200

175 ~

150 -
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~
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1

Proof Size (in kB)
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o
]

N
92}
1

21 2I2 2I3 24
Number N of parties
SDitH-L1-gf251:
the input x of the MPC protocol is around 323 bytes,
The broadcast value a of the MPC protocol is around 36 bytes



(1) Generate and commit shares Com”1([[x],)

[xI = (Ix1y, -, [xDy) CoilolopN( [xIly)

@ Run MPC in their head

send broadcast

[xTl, [x1l,
// [[05]]1,---,[[05]]]\/
> | @ Choose a random party

Ly O - i* = {1 N
N >
ﬂ;% [* ® Check Vi # i*
(T ) - Commitments Com”i([[x]],)
X Pi)isti :
@ Open parties {1,..., N}\{i*} . > - MPC computation [lal; = ¢([x]];)

Check g(y, ) = Accept

Prover Verifier




1) Generate and commit shares

[xDl = (IxIl;s - -, DxTiy)
Compute
Vi, com; = Com”i([[x]];)

@ Run MPC in their head

[T, X // [x1l,

~
:

@ [x1,

@ Open parties {1,..., N}\ {i*}

[x1l N

l'>l<

Prover

h, = Hash(comy, ..., comy)

>

h, = Hash([[a]l;, ..., [a]ly)

l‘>l<

>

(IxTl;, p)icei (com;x, [[all;+)

>

@ Choose a random party
i* <3 {1,... N}

® Compute Vi # i*
- Commitments Com”i([[x]],)
- MPC computation [[a]]; = ¢([[x],)
Check g(y, o) = Accept
Check h; = Hash(comy, ..., comy)
Check h, = Hash([[e]l;, -, [a]ly)

Verifier




1) Generate and commit shares

[xDl = (IxIl;s - -, DxTiy)
Compute
Vi, com; = Com”i([[x]];)

@ Run MPC in their head

[T, X // [x1l,

~
:

@ [x1,

@ Open parties {1,..., N}\ {i*}

[x1l N

l'>l<

Prover

h, = Hash(comy, ..., comy)

>

h, = Hash([[a]l;, ..., [a]ly)

l'>l<

>

(IxTl;, p)icei (comx, [[all;+)

>

@ Choose a random party
i* <3 {1,... N}

® Compute Vi # i*
- Commitments Com”i([[x]],)
- MPC computation [[a]]; = ¢([[x],)
Check g(y, o) = Accept
Check h; = Hash(comy, ..., comy)
Check h, = Hash([[e]l;, - .., [a]ly)

Verifier




[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

x= [lxlly + [Ixll, + lIxls + ... + lUxly—; + Ixly



[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

seed, seed, seed, seedy_; seedy
@) &) @) &) @)
X x X x 2l + Ax

x= [lxlly + [Ixll, + lIxls + ... + lUxly—; + Ixly



[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to

Post-Quantum Signatures” (CCS 2018)
/ \ltseedﬁ «— PRG(parent_seed)
T FErEEEEEERREEEE= N
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x= |Ixll;, + Uxll, + Uxls + ... + [xly_; + [xly



[KKW18] Katz, Kolesnikov, Wang: “

Post-Quantum Signatures” (CCS 2018)
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[KKW18] Katz, Kolesnikov, Wang: “

Post-Quantum Signatures” (CCS 2018)
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Improved Non-Interactive Zero Knowledge with Applications to
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sibling path

x= lIxll; + lUxll, + lIxl; +

[KKW18] Katz, Kolesnikov, Wang: “Improved Non-Interactive Zero Knowledge with Applications to
Post-Quantum Signatures” (CCS 2018)

root_seed

— log(N) seeds /

M

l'>X<

g

a

a

a

to be revealed

+ [[x]]N_l + [[x]]N



Traditional MPCitH transformation

Size of the broadcast (of the hidden party)

Size of the auxiliary value

N

Path in the seed (GGM) tree

-/

Size ~ T - (|Ax|+|a|+/l-10g2N+2/1)

& Commitment

of the hidden party

Number of repetitions to achieve the desired security level

A
- logy N

T



Traditional

16

14 -
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N
1

l—\
o
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Proof Size (in kB)

23 2I5 2I7 2I9 2I11
Number N of parties

SDitH-L1-gf251:
the input x of the MPC protocol is around 323 bytes,
The broadcast value a of the MPC protocol is around 36 bytes.



Traditional
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Signing algorithm
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Signing algorithm
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TheA H per“cu\b‘e Technlque

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hilsing, Joseph, Yue: “The Return of the SDitH"
(Eurocrypt 2023)

Traditional: N party emulations per repetition
N =256

v
Hypercube: 1 + log, N party emulations per repetition

l +1log, N=9
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The Hypercube Technique

Signing algorithm
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Signing algorithm
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The Threshold Approach (Original)

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head"
(ePrint 2022/1407)

In the threshold approach, we used an low-threshold sharing scheme.
For example, the Shamir's (£ + 1,N)-secret sharing scheme.

To share a value x,

® sample r,, 7, ..., r, uniformly at random,
1-12 % y

£
" build the polynomial P(X) = x + Z r - X%,
k=0
m Set the share [x]]; < P(e;), where e, is publicly known.



(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

[x N // [x1,

[Ty .('/ I)Q x5
ﬂx]]4

@ Open parties in [

Prover

Com”([[x]],)

CO;I.{pN( [x1ly)

send broadcast

Lally, ..., [ally

(Ixl;s 29 ier

@) Choose a random set of parties
IC{l,...N}, st |I|=7.

® Check Vie I
- Commitments Com”i([[x]],)

- MPC computation [[a]]; = ¢([[x],)
Check g(y, ) = Accept

Verifier




(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

[[x]]l X / [[x]]2

|Ix]]4

@ Open parties in [

Prover

__ Threshold LSSS = cannot

Com”([[x]],)

Cogl.pN ([LxIly)
_—

send broadcast

Lally, ..., [ally

(x1;, Picr

generate shares from seeds

@ Choose a random set of parties
IC{l,..,N},st. |I|=7.

® Check Vi e I
- Commitments Com”i([[x]],)
- MPC computation [[a]]; = ¢([x],)
Check g(y, ) = Accept

Verifier




(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

[x X // [x1,

Lxlly o I)—Q. I

ﬂx]]4

@ Open parties in [

Prover

Merkle
root

send broadcast

Lally, ..., [ally

(IxTI; iel

/

authentication path

@ Choose a random set of parties
IC{l,..,N},st. |I|=7.

® Check Vi e I
- Commitments Com”i([[x]].)

- MPC computation [[a]]; = ¢([[x],)
Check g(y, ) = Accept

Verifier




[a] is redundant

(D Generate and commit shares Merkle _— = ¢ + 1 shares fully
[x] = (IxIys - [[x]]N) root

determine the sharing

@ Run MPC in their head

[x X // [x1,

send broadcast

Lally, ..., [ally

@ Choose a random set of parties

IC{l,...N}, st |I|=7.
[x]N"//'I)—Q‘mg « 1 C{ bost |
&, ®) Check Vi e I
- Commitments Com”i([[x]],)
([[x]]iiel MPC - _
@ Open parties in I > - computation [[a]l; = @([[x],)
/ Check g(y, ) = Accept

authentication path

Prover Verifier




[a] is redundant

(D Generate and commit shares Merkle _— = ¢ + 1 shares fully
[x] = (IxIys - [[x]]N) root

determine the sharing

= only 7 + 1 party
computations required

@ Run MPC in their head

[x X // [x1,

send broadcast

Lally, ..., [ally

@ Choose a random set of parties

IC{l,...N}, st |I|=7.
[x]N"//'I)—Q‘mg « 1 C{ bost |
&, ®) Check Vi e I
- Commitments Com”i([[x]],)
([[x]]iiel MPC - _
@ Open parties in I > - computation [[a]l; = @([[x],)
/ Check g(y, ) = Accept

authentication path

Prover Verifier




VPG Transtorm with Threshold 1555

[a] is redundant

(D Generate and commit shares Merkle _— = ¢ + 1 shares fully
[x] = (IxIys - [[x]]N) root

determine the sharing
= only £ + 1 party

@ Run MPC in their head

14 '
@

O

computations required

send broadcast

Lally, ..., [ally

®) Check Vi e I

- Commitments Com”i([[x]],)

Lauth;).
([[x]]lzel - MPC computation [[a]l; = ¢([[x]];)

/ Check g(y, ) = Accept
authentication path

@ Open parties in [

Prover

£ parties opened Veritier

instead of N — 1




VPG Transtorm with Threshold 1555

(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

Merkle
root

@ Run MPC in their head

send broadcast

Lally, ..., [ally

@

®

([[x]]iiel

@ Open parties in [

Prover

£ parties opened
instead of N — 1

authentication path

/

[a] is redundant
= £ + 1 shares fully

determine the sharing

= only 7 + 1 party
computations required

®) Check Vi e I

- Commitments Com”i([[x]].)

- MPC computation [[a]]; = ¢([[x],)

Check g(y, ) = Accept

only £ party
computations required



Threshold Approach (Original)

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head"
(ePrint 2022/1407)

Traditional: N party emulations per repetition
N =256

\4
Threshold: 1 + ¢ party emulations per repetition

1+7=2




Additive sharing

Threshold LSSS

+ hypercube technique with =1
S d i_|_ <1_i> l_|_ (N_l)
oundness error ~ TP N NP T
rover 1 +log, N >
# party computations 2
Verifier
# party computations log, N 1
Sharing Generation Seed tree Merkle tree
and Commitment A-log N 24 - log N




Additive sharing
+ hypercube technique

Threshold LSSS
with 2 =1

Soundness error

1, W=D

N 2

Prover
# party computations I+ logz N
Verifier
# party computations IOgZ N
Sharing Generation Seed tree Merkle tree
and Commitment A-log N 2]+ log N

Much cheaper
emulation




Additive sharing Threshold LSSS
+ hypercube technique with =1
o L (1-0) 1L -
oundness error p N YRLANET
Prover 1 +loos N )
# party computations &2
Verifier
# party computations log, N I
Sharing Generation Seed tree Merkle tree
and Commitment A-log N 24 -log N

Fast verification

algorithm




Additive sharing Threshold LSSS
+ hypercube technique with =1
1 N <1 1 > 1
Soundness error ~ TP N ~ P
Prover 1 +loos N
# party computations &2
Verifier
# party computations log, N
Sharing Generation Seed tree Merkle tree
and Commitment A-log N 24 -log N

Larger proof transcripts



Additive sharing
+ hypercube technique

Soundness error

Require N < | |

Threshold LSSS
with =1

Prover
# party computations I'+log, N 2
Verifier
# party computations log, N 1
Sharing Generation Seed tree Merkle tree
and Commitment A-log N 24 - log N
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Signing algorithm
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(2022)

1 + log, N parties

No communication
penalty

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hilsing, Joseph, Yue: “The Return of
the SDitH" (ePrint 2022/1645, Eurocrypt 2023)
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2018 Emulation : N parties
Hypercube
Tech nique Shamir’s secret
(2022) sharings
1 + log, N parties
No communication Threshold
It
penailty Approach 1 + ¢ parties
(2022)

Increase of the
communication

Fast verification

Shamir's secret sharing: to share a value s,

£
" Build a random degree-# polynomial P(X) := s + Z rij.
j=1
m Set the ith share [[s]]; as [[s]l, := P(e;), where e; # 0.

[FR22] Feneuil, Rivain: “Threshold Linear Secret Sharing to the Rescue of MPC-in-
the-Head" (ePrint 2022/1407, Asiacrypt 2023)
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[FR23] Feneuil, Rivain: “Threshold Computation in the Head: Improved Framework
for Post-Quantum Signatures and Zero-Knowledge Arguments” (ePrint 2023/1573)
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GGM Seed Tree
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NIST submissions: o
Running times 1+ 7 parties
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(N = 256) No communication

penalty

[FR23] Feneuil, Rivain: “Threshold Computation in the Head: Improved Framework
for Post-Quantum Signatures and Zero-Knowledge Arguments” (ePrint 2023/1573)
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for Post-Quantum Signatures and Zero-Knowledge Arguments” (ePrint 2023/1573)



Extended TCitH: some applications

[FR23] Feneuil, Rivain: “Threshold Computation in the Head: Improved Framework
for Post-Quantum Signatures and Zero-Knowledge Arguments” (ePrint 2023/1573)
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Extended TCitH: some applications

® More efficient signature schemes

® Unstructured multivariate quadratic (MQ) problem over [Fys;
e MQOM: 6.5 KB
e FExtended TCitH: 4.2 KB

® Shorter post-quantum ring signature schemes
e [Fxtended TCitH with MQ: 5.8 KB in around 8 ms, for 4000 users
e Fxtended TCitH with SD: 10.30 KB in around 10 ms, for 4000 users

[FR23] Feneuil, Rivain: “Threshold Computation in the Head: Improved Framework
for Post-Quantum Signatures and Zero-Knowledge Arguments” (ePrint 2023/1573)
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The MPC-in-the-Head framework is an active research field

= Invented in 2007
= More and more popular since 2016 (first practical scheme)
= Picnic: MPCitH-based signature in the first NIST call
» 2016-2024: shorter proof sizes
= In 2016, the signature sizes was larger than 30 KB
= Currently, the signature sizes are around 3-7 KB
s 2022-2024: faster schemes
» Before 2022, we needed to emulate all the MPC parties
= Currently, we just need to emulate a small value of parties

= The computational bottleneck are becoming the symmetric part
of the scheme, but some works are trying to mitigate it.



A versatile tool to build signature schemes:
= 7/ NIST submissions relying on it in the new NIST call
» Very competitive when focusing on minimizing
Signature size + Public key size
» Medium signature sizes (4-10 kilobytes)
» Short public key (< 200 bytes)
= Transversal among the hardness assumptions

= Can be convenient to build advanced signature schemes



Conclusion

W A versatile tool to build signature schemes:

= 7/ NIST submissions relying on it in the new NIST call
» Very competitive when focusing on minimizing
Signature size + Public key size
» Medium signature sizes (4-10 kilobytes)
» Short public key (< 200 bytes)
= Transversal among the hardness assumptions

= Can be convenient to build advanced signature schemes

Thank you for your attention !



