Post-Quantum Signatures from Multiparty Computation: Recent Advances

Thibauld Feneuil

PQCrypto 2023

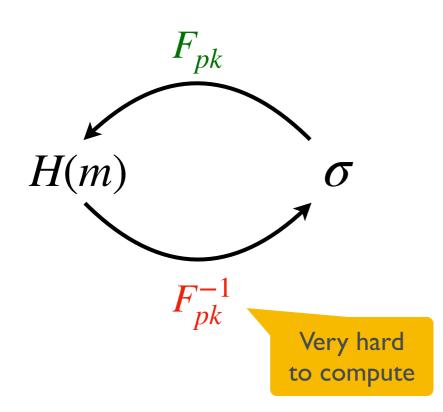
August 17, 2023, College Park (USA)

- Introduction
- MPC-in-the-Head: general principle
- From MPC-in-the-Head to signatures
- Optimisations and variants
- Related works
- Conclusion

Some figures used in the following slides have been realised by Matthieu Rivain (CryptoExperts).

How to build signature schemes?

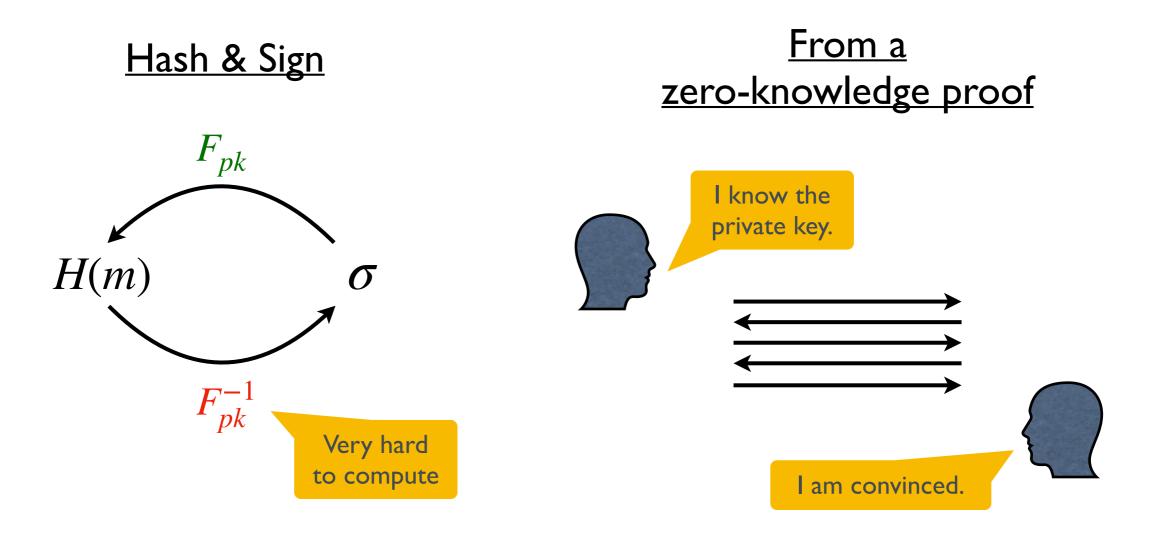
Hash & Sign



Short signatures

"Trapdoor" in the public key

How to build signature schemes?

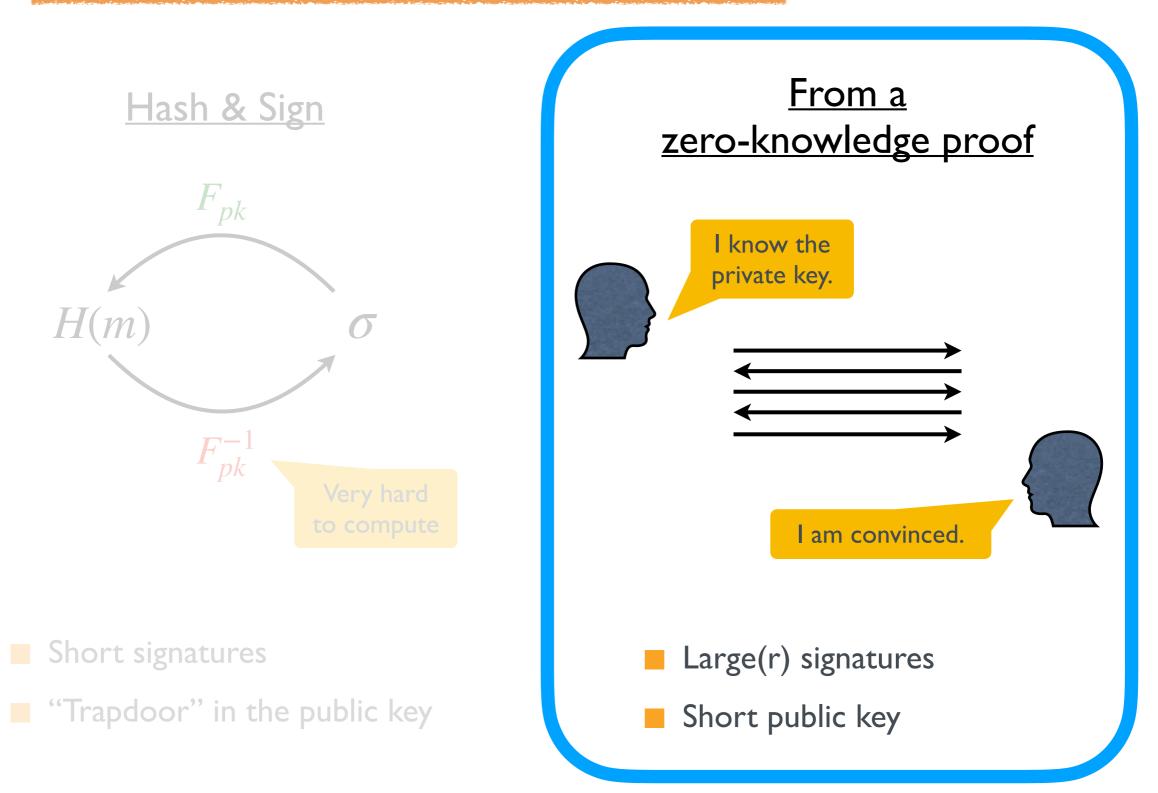


Short signatures

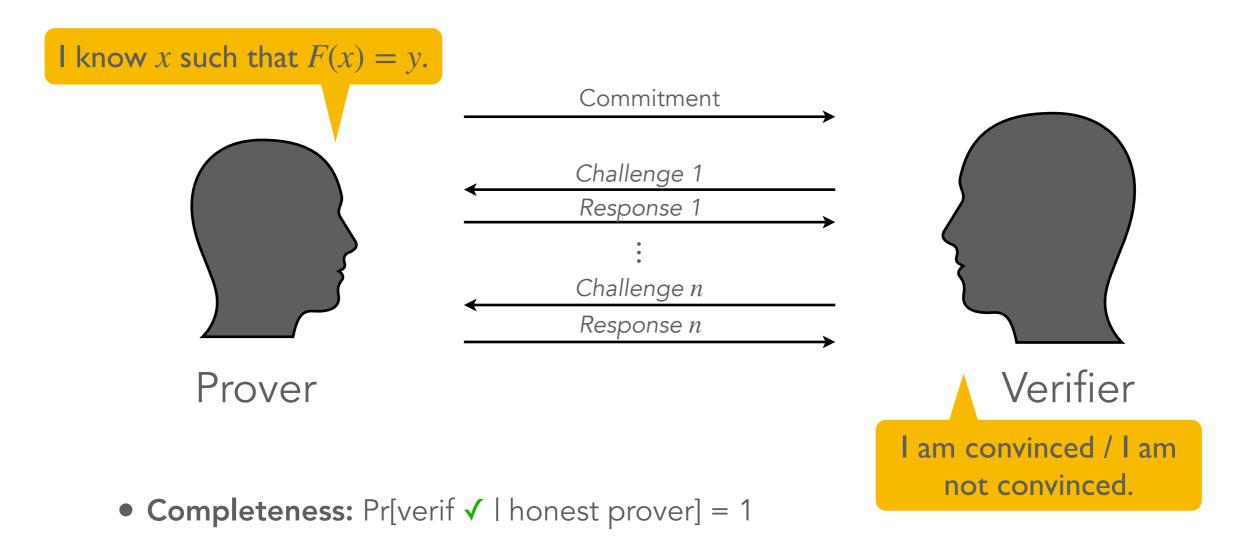
"'Trapdoor'' in the public key

- Large(r) signatures
- Short public key

How to build signature schemes?



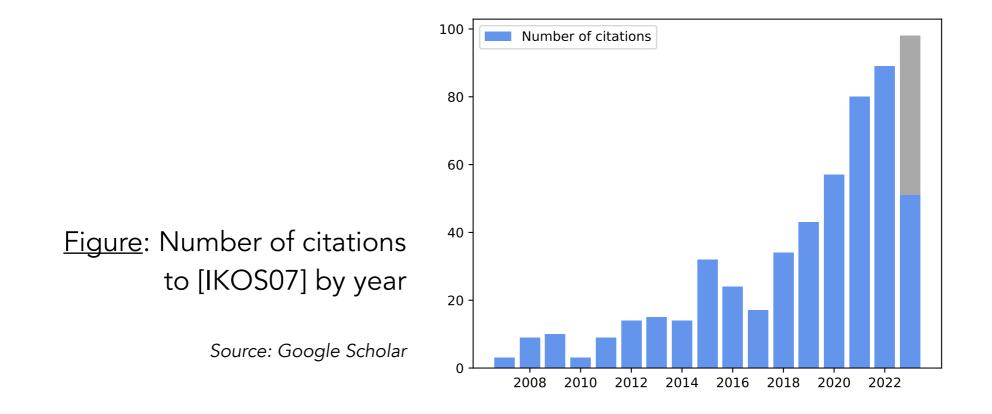
Proof of knowledge



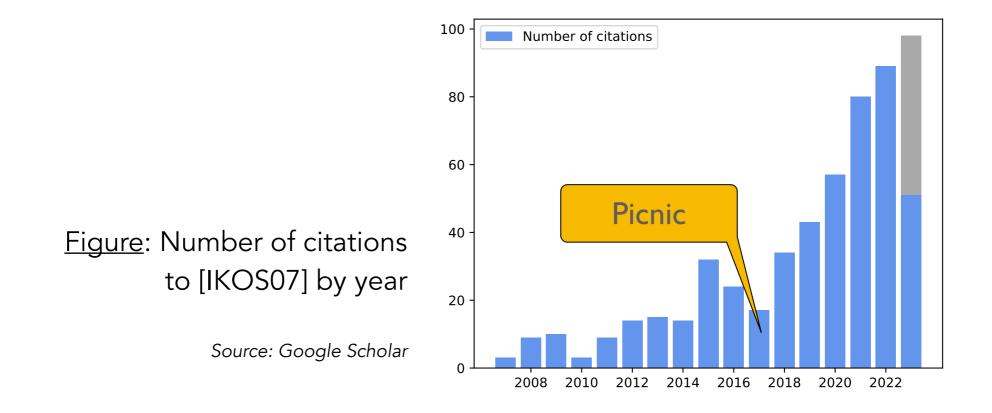
- Soundness: $\Pr[\operatorname{verif} \checkmark | \operatorname{malicious prover}] \le \varepsilon$ (e.g. 2^{-128})
- **Zero-knowledge:** verifier learns nothing on *x*

- **[IKOS07]** Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn an MPC protocol into a zero knowledge proof of knowledge
- Generic: can be apply to any cryptographic problem

- **[IKOS07]** Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn an MPC protocol into a zero knowledge proof of knowledge
- Generic: can be apply to any cryptographic problem

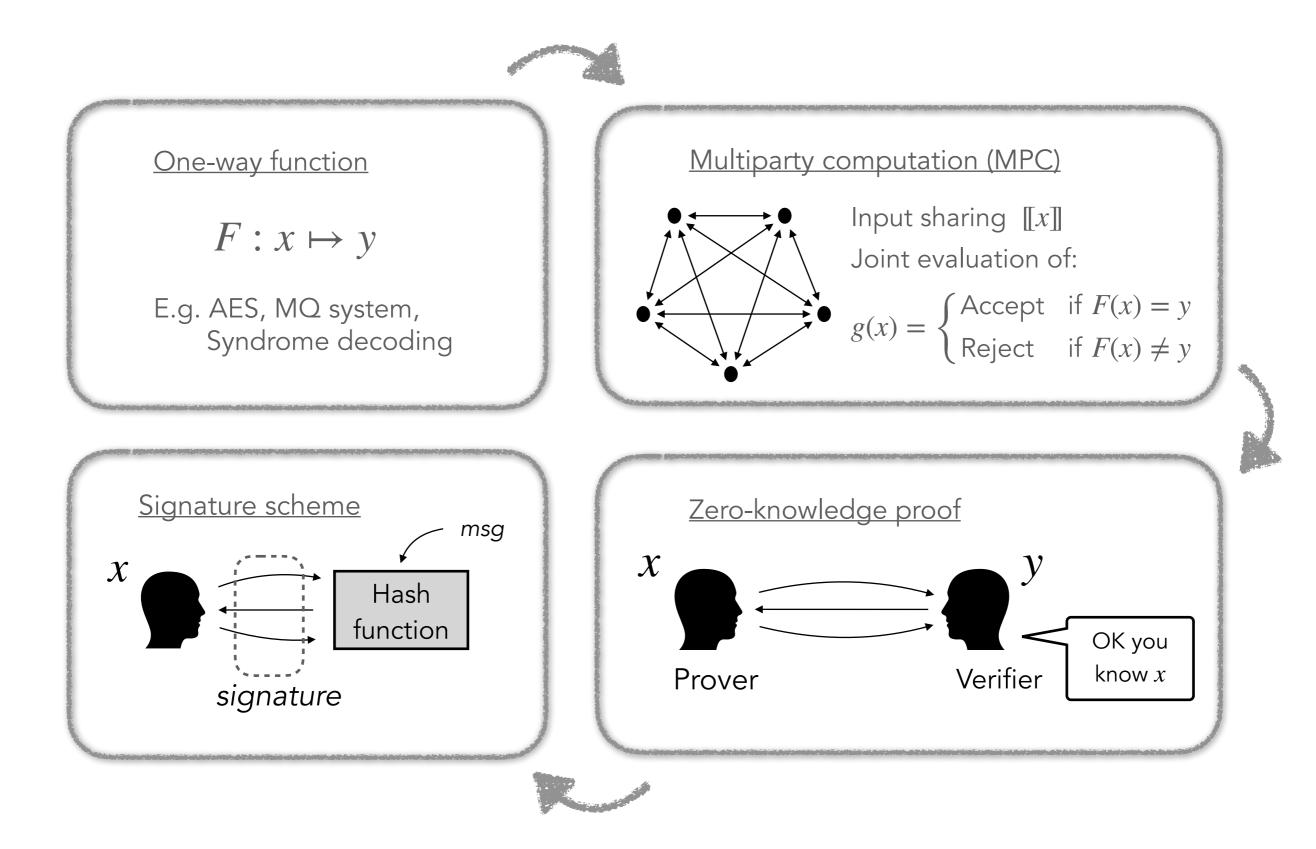


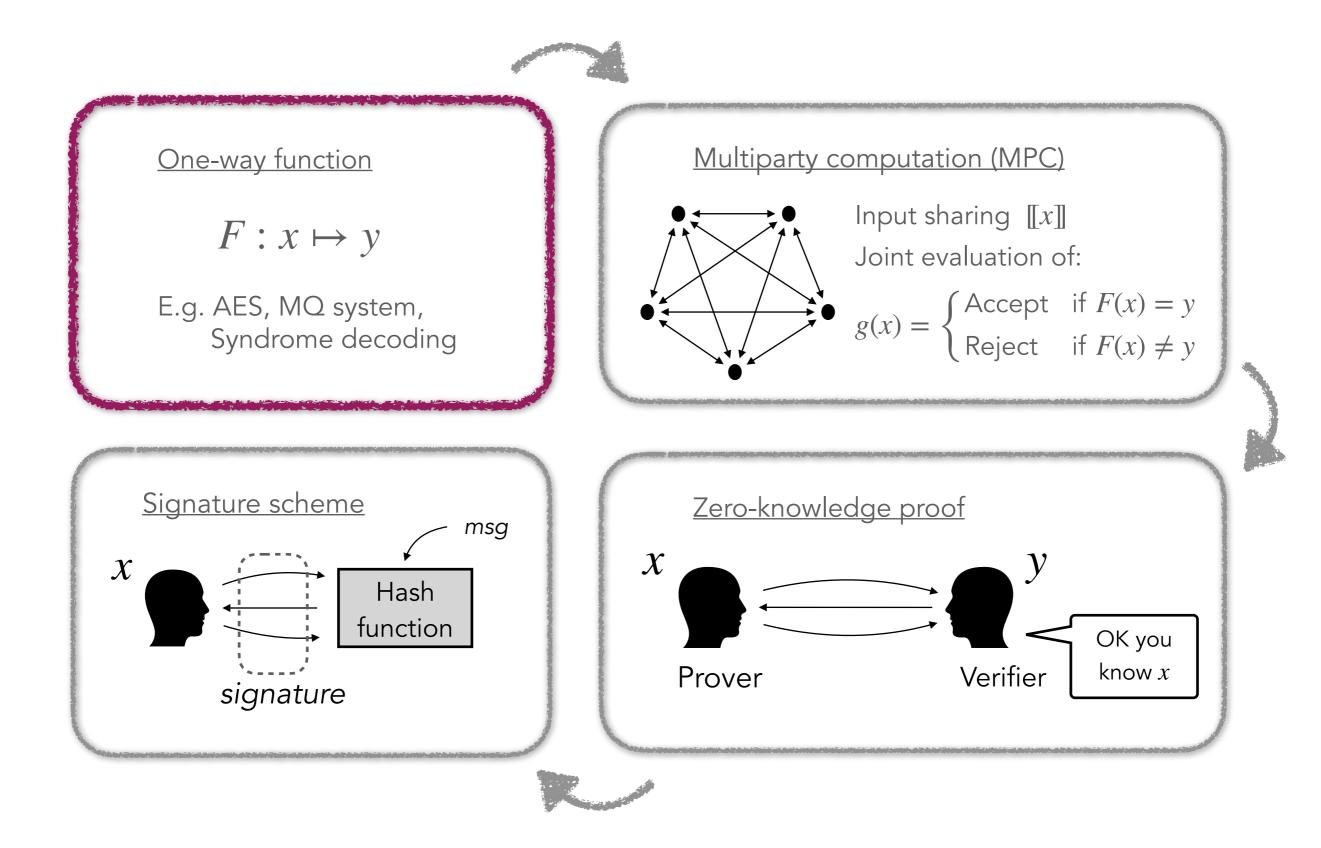
- **[IKOS07]** Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn an MPC protocol into a zero knowledge proof of knowledge
- Generic: can be apply to any cryptographic problem

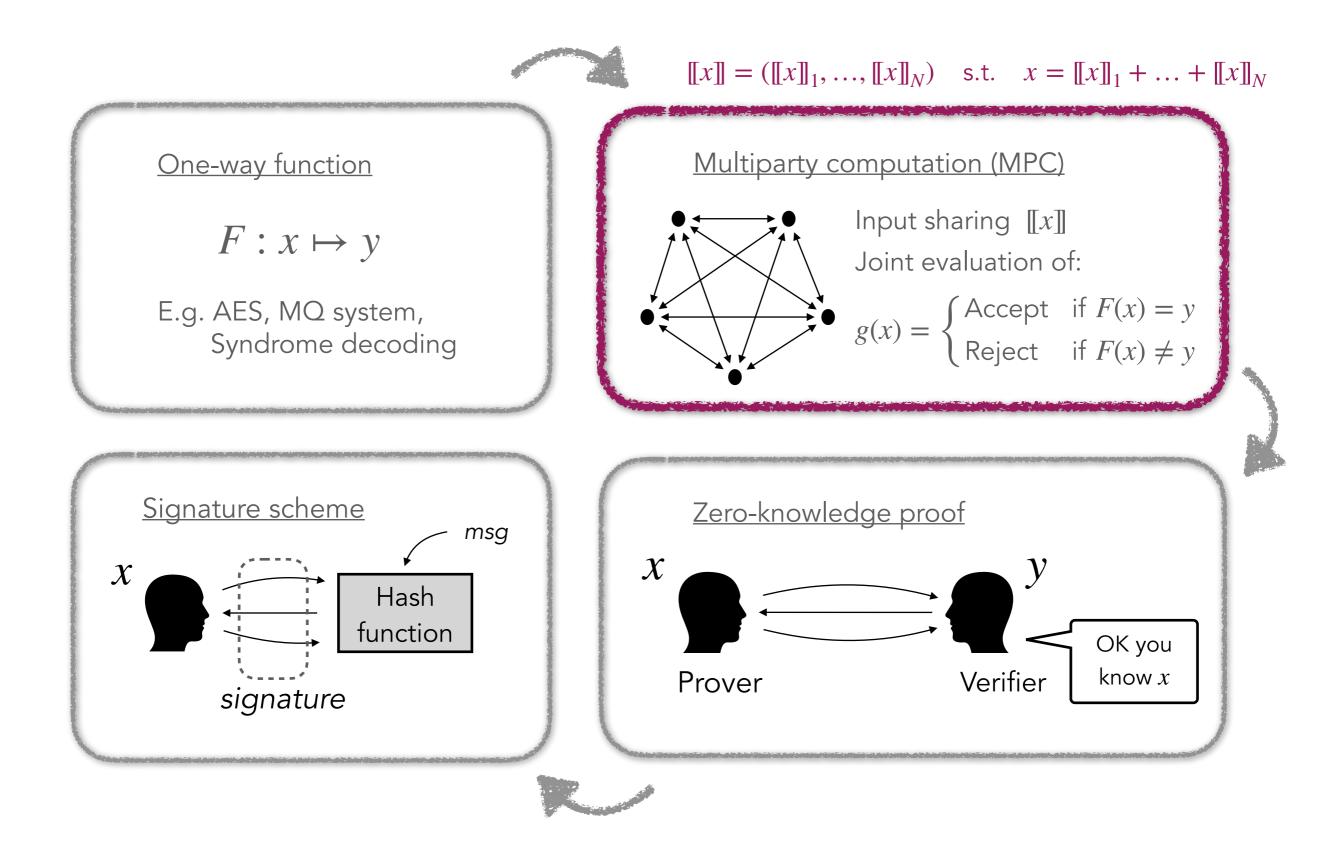


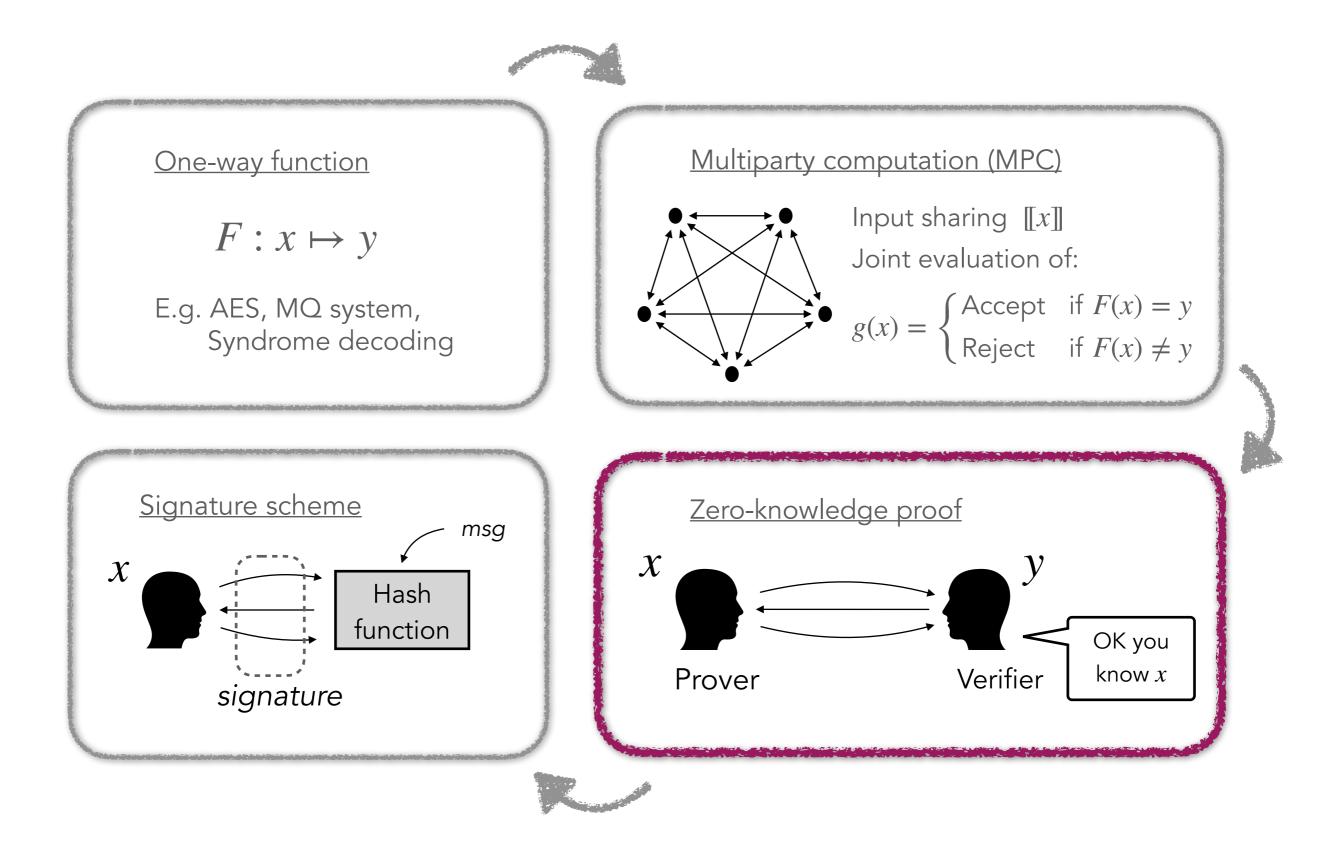
- **[IKOS07]** Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn an MPC protocol into a zero knowledge proof of knowledge
- **Generic**: can be apply to any cryptographic problem
- Convenient to build (candidate) **post-quantum signature** schemes
- **Picnic**: submission to NIST (2017)
- First round of recent NIST call: 8 MPCitH schemes / 40 submissions

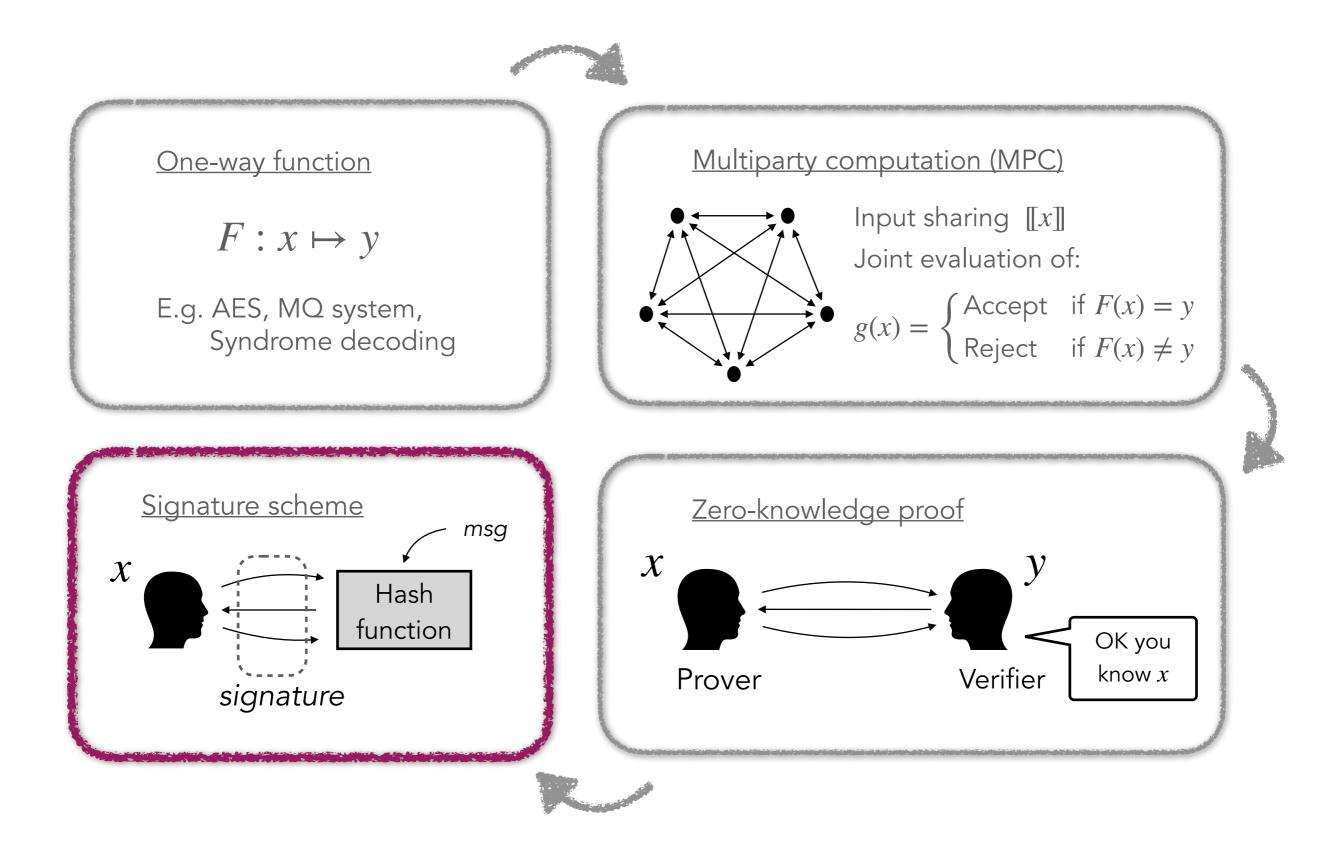
AIMer	MQOM
Biscuit	PERK
MIRA	RYDE
MiRitH	SDitH

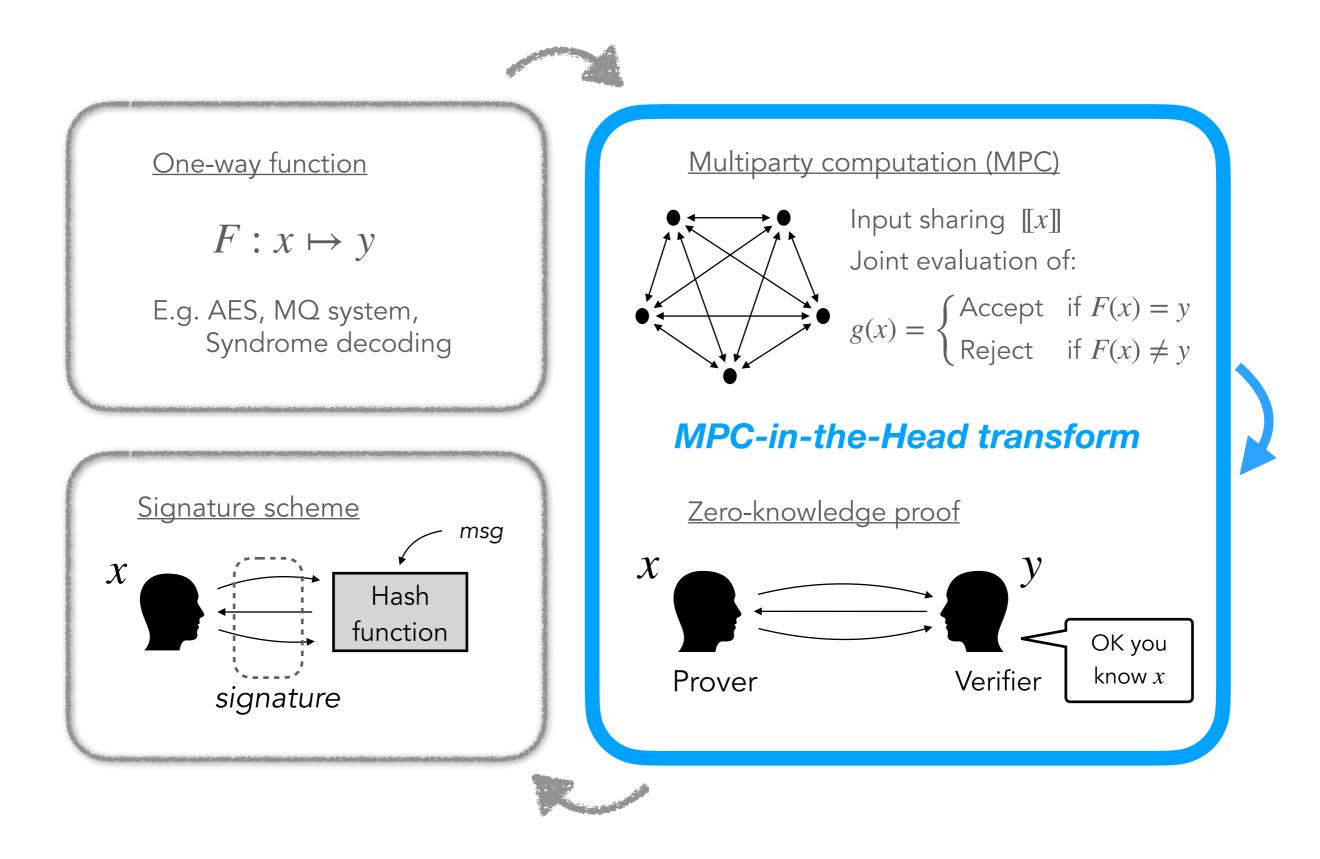






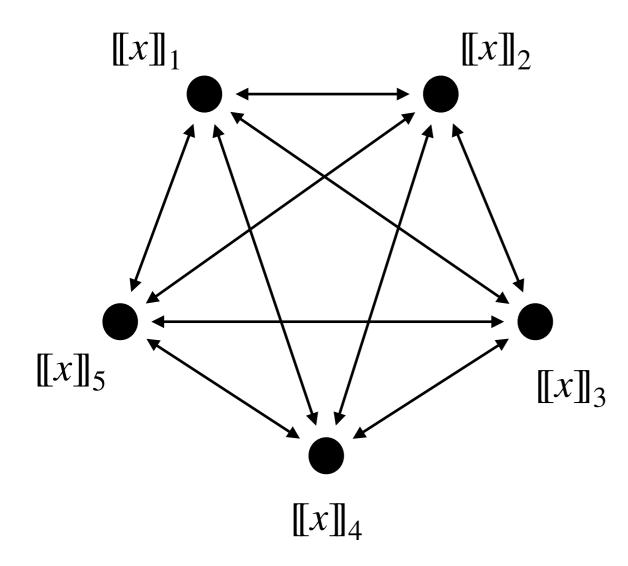






MPCitH: general principle

MPC model



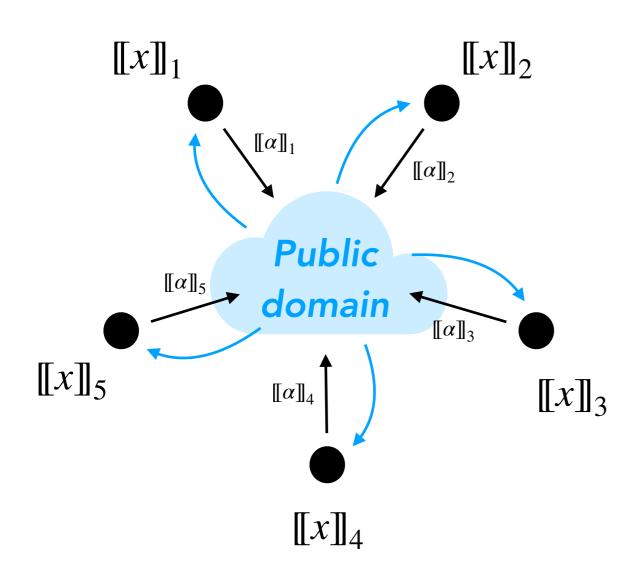
• Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- (N-1) private: the views of any N-1 parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol

 $x = [\![x]\!]_1 + [\![x]\!]_2 + \ldots + [\![x]\!]_N$

MPC model



 $x = [\![x]\!]_1 + [\![x]\!]_2 + \ldots + [\![x]\!]_N$

• Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

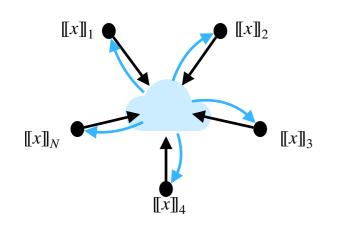
- (N-1) **private:** the views of any N-1 parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol
- Broadcast model
 - Parties locally compute on their shares $\llbracket x \rrbracket \mapsto \llbracket \alpha \rrbracket$
 - Parties broadcast [[α]] and recompute
 α
 - Parties start again (now knowing α)

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

$\operatorname{Com}^{\rho_1}([[x]]_1)$	
$\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$	
	• • •

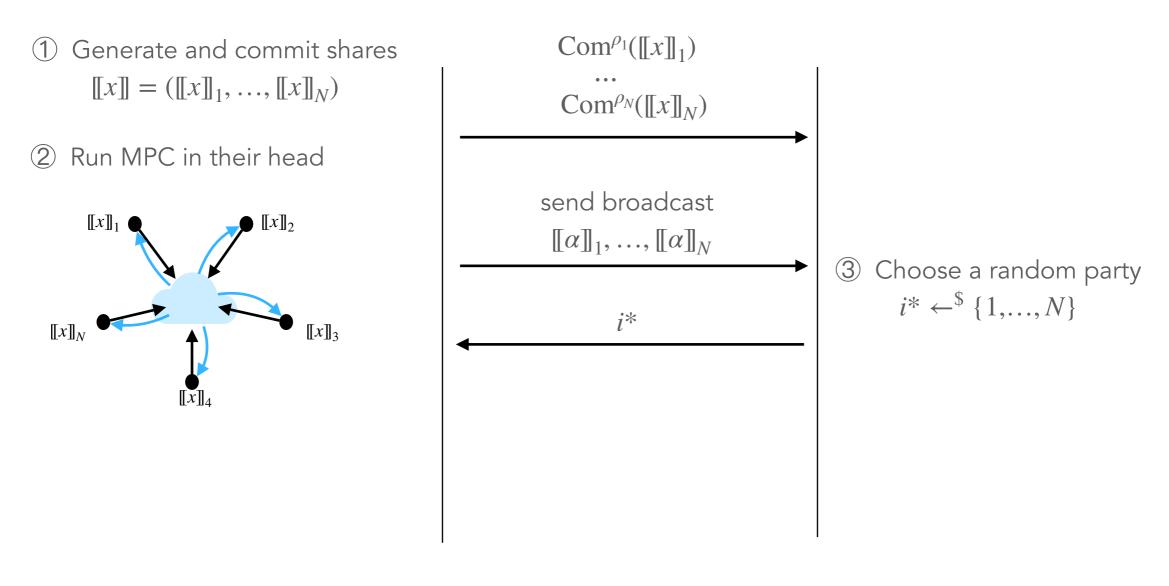
① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

② Run MPC in their head



$\operatorname{Com}^{\rho_1}([[x]]_1)$	
$\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$	
send broadcast $\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N$	

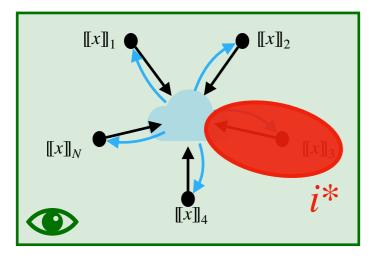
<u>Prover</u>



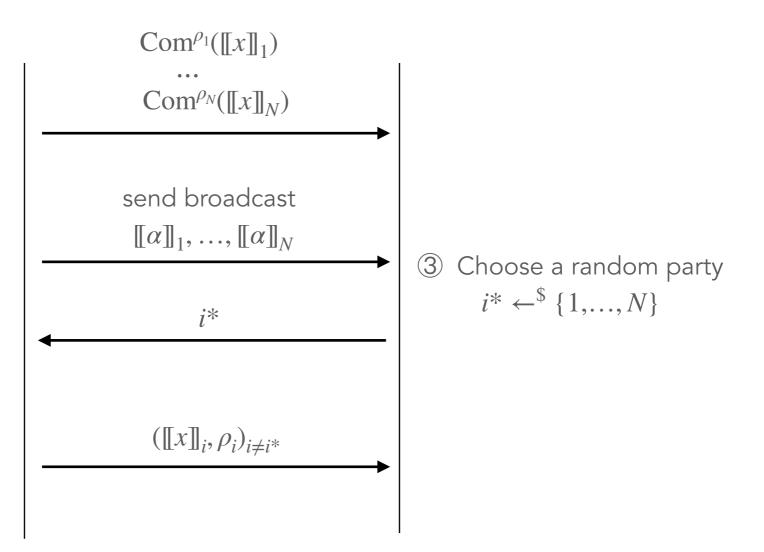
<u>Prover</u>

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

2 Run MPC in their head



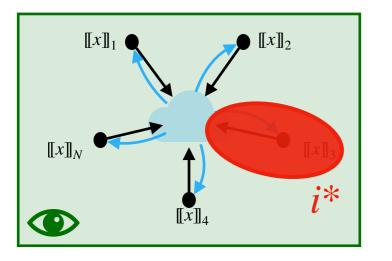
④ Open parties $\{1, ..., N\} \setminus \{i^*\}$



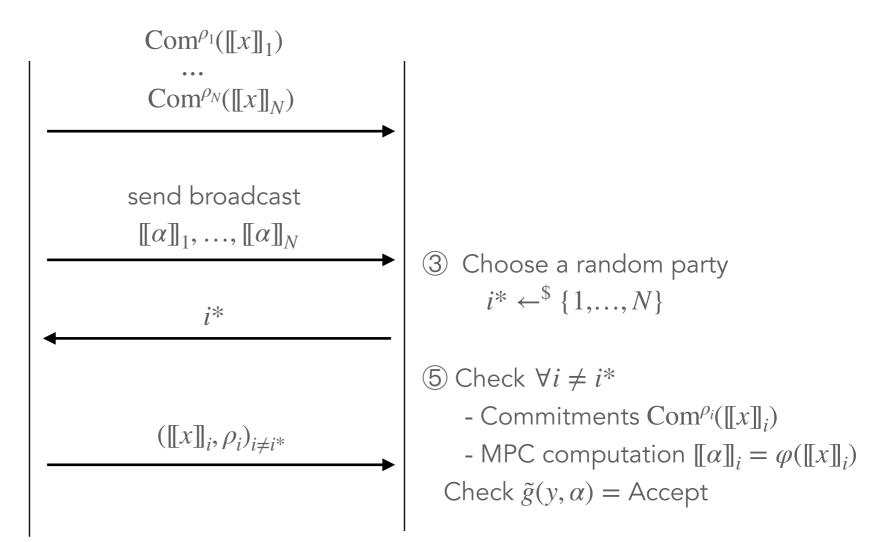
<u>Verifier</u>

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

2 Run MPC in their head



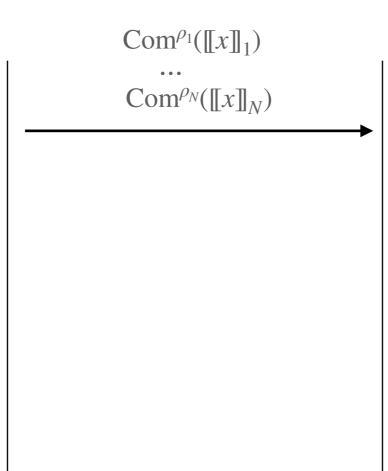
④ Open parties $\{1, ..., N\} \setminus \{i^*\}$

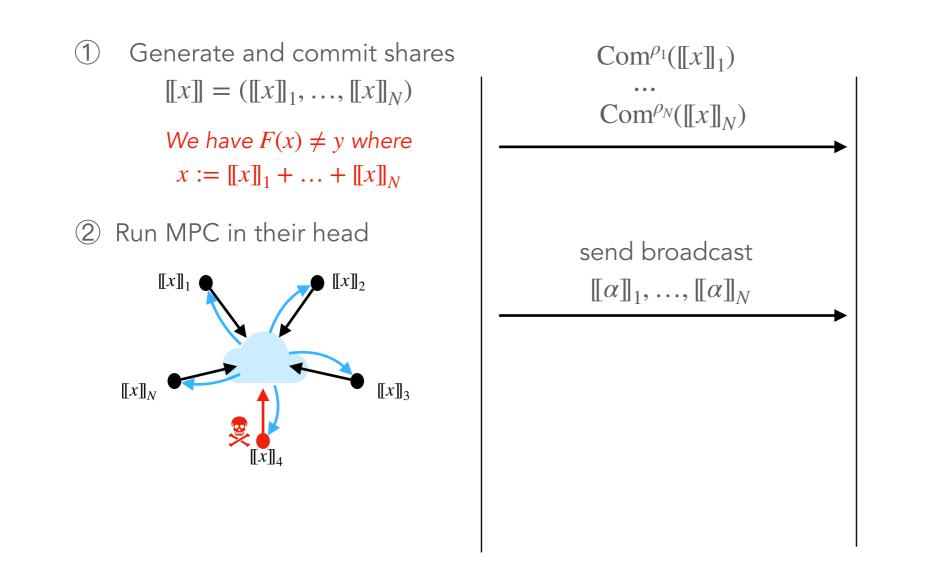


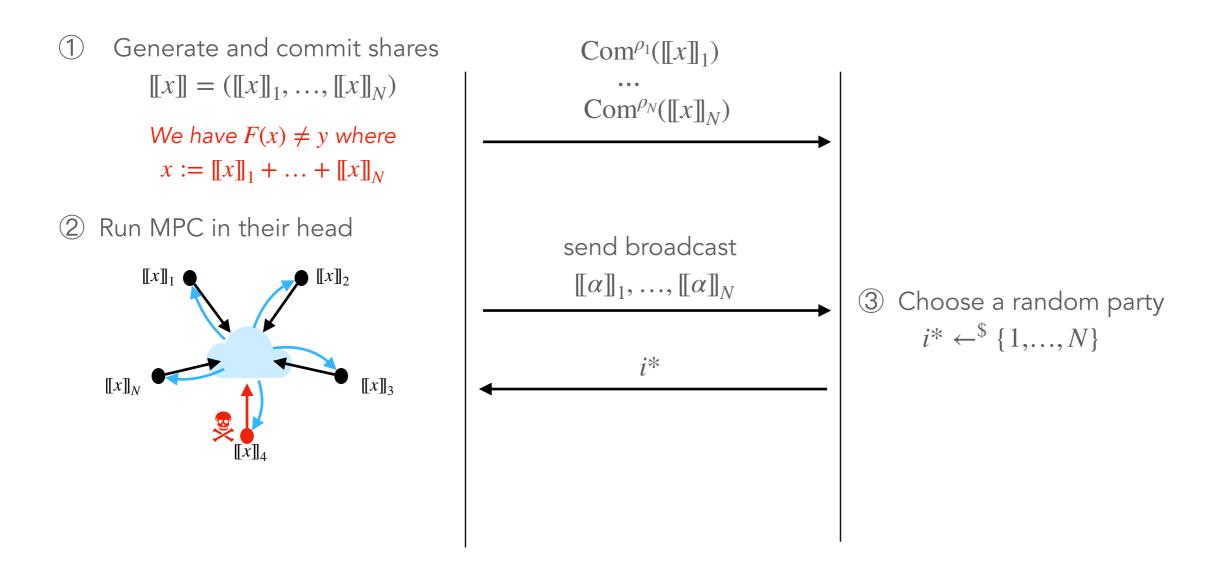
<u>Verifier</u>

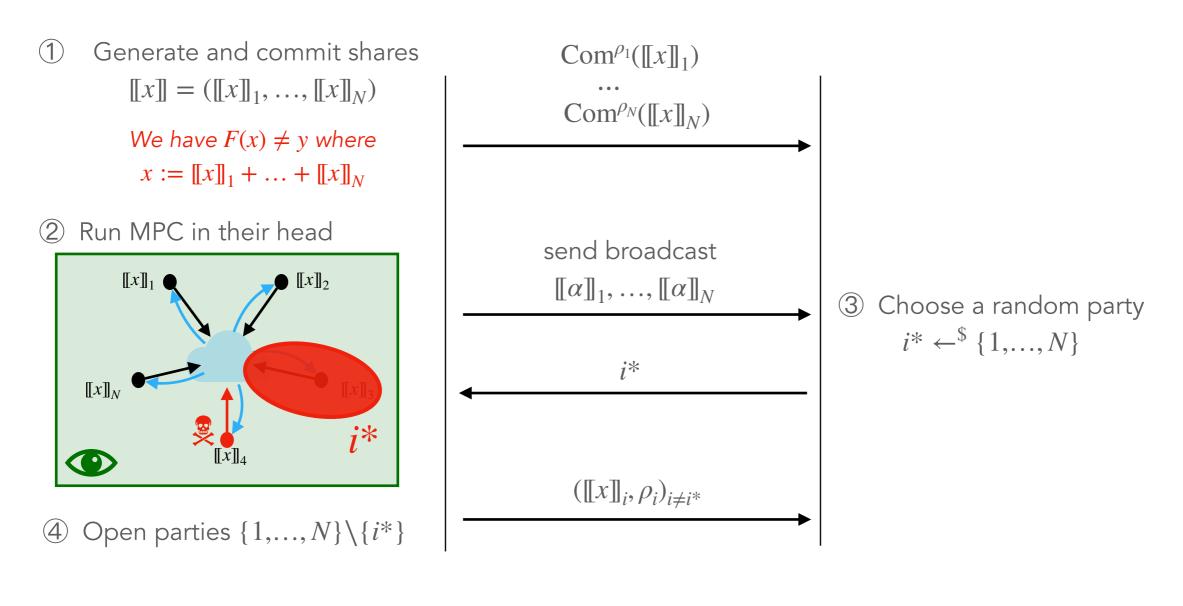
<u>Prover</u>

(1) Generate and commit shares $\llbracket x \rrbracket = (\llbracket x \rrbracket_1, \dots, \llbracket x \rrbracket_N)$ We have $F(x) \neq y$ where $x := \llbracket x \rrbracket_1 + \dots + \llbracket x \rrbracket_N$

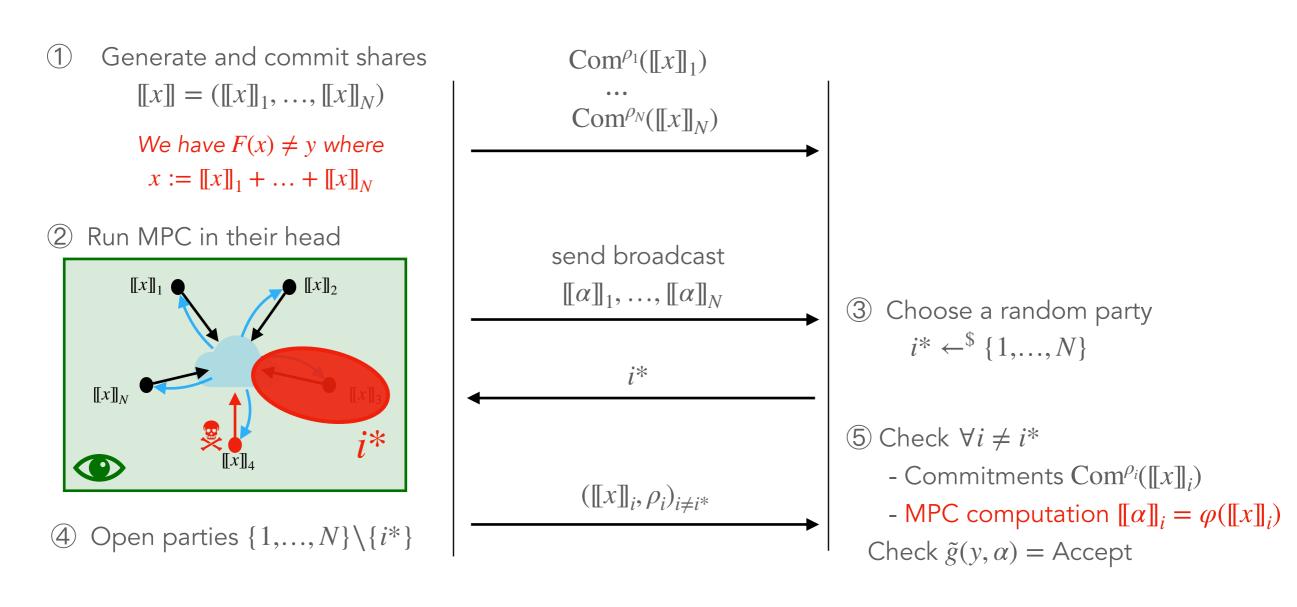






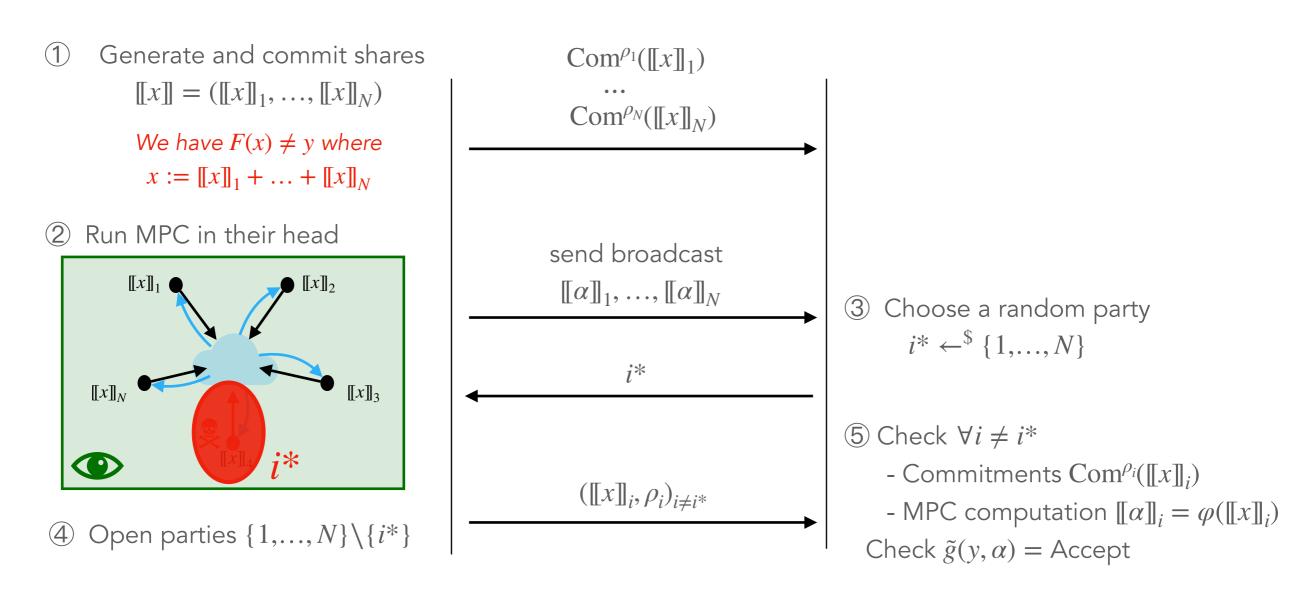


<u>Verifier</u>



Malicious Prover

<u>Verifier</u>



• **Zero-knowledge** \iff MPC protocol is (N-1)-private

- **Zero-knowledge** \iff MPC protocol is (N-1)-private
- Soundness:

 $\mathbb{P}(\text{malicious prover convinces the verifier}) = \mathbb{P}(\text{corrupted party remains hidden}) = \frac{1}{N}$

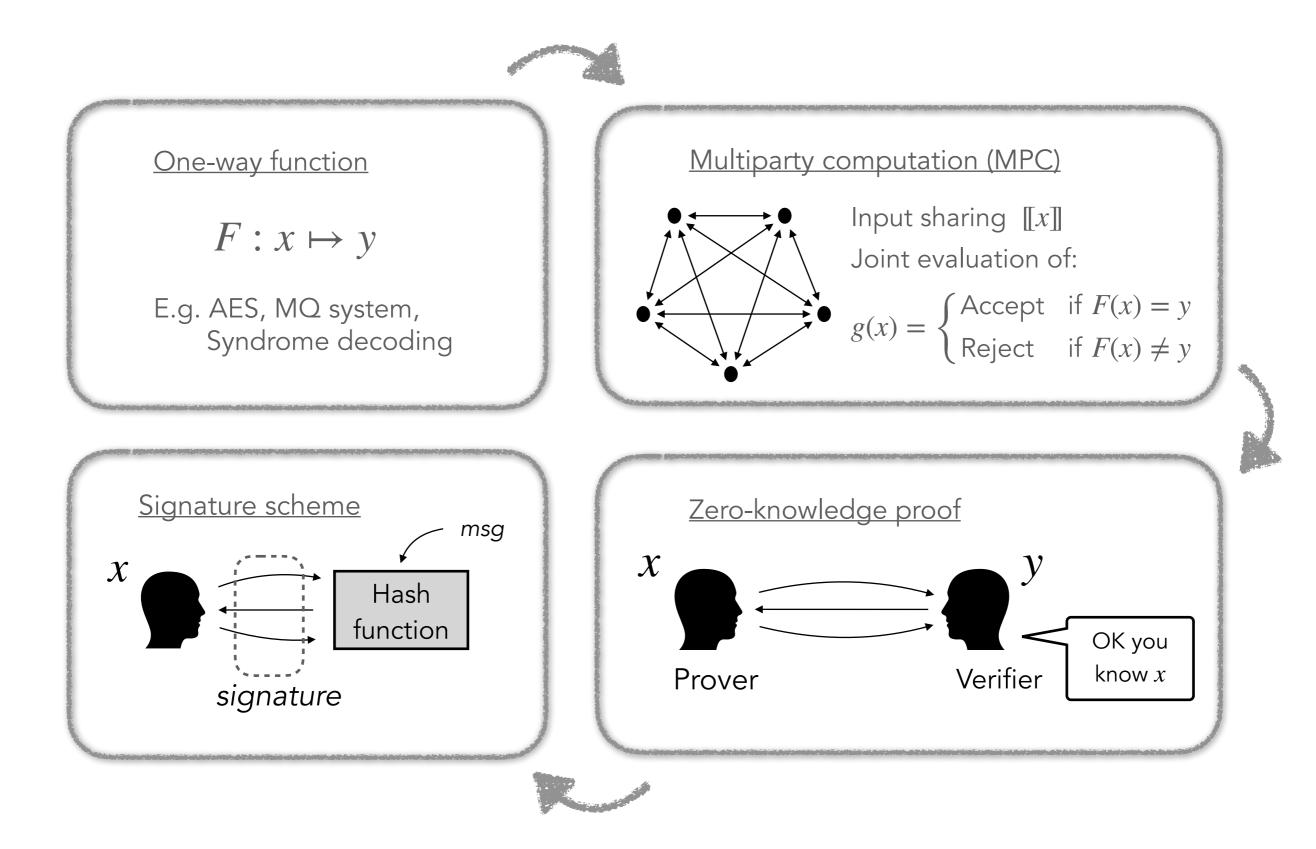
- **Zero-knowledge** \iff MPC protocol is (N-1)-private
- Soundness:

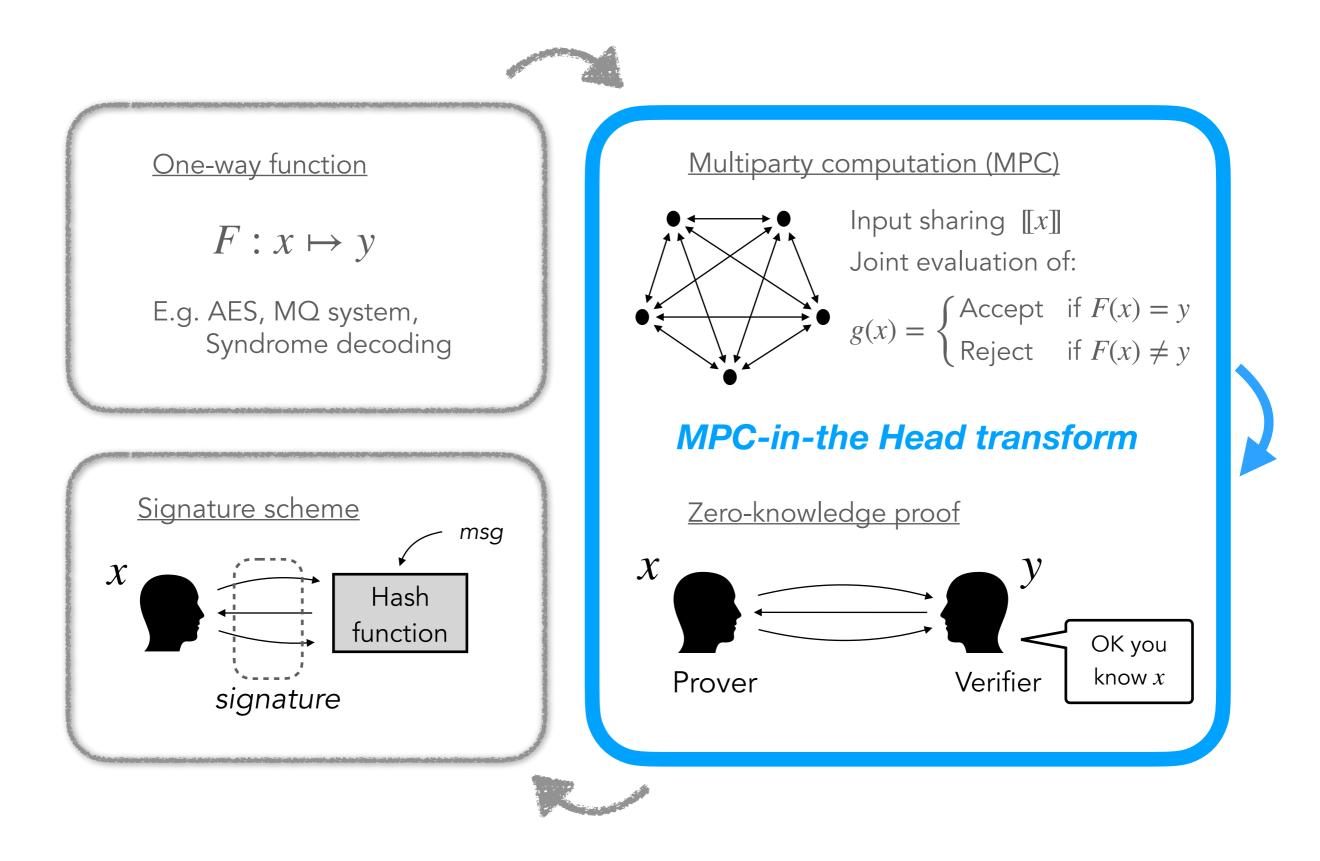
 $\mathbb{P}(\text{malicious prover convinces the verifier}) = \mathbb{P}(\text{corrupted party remains hidden}) = \frac{1}{N}$

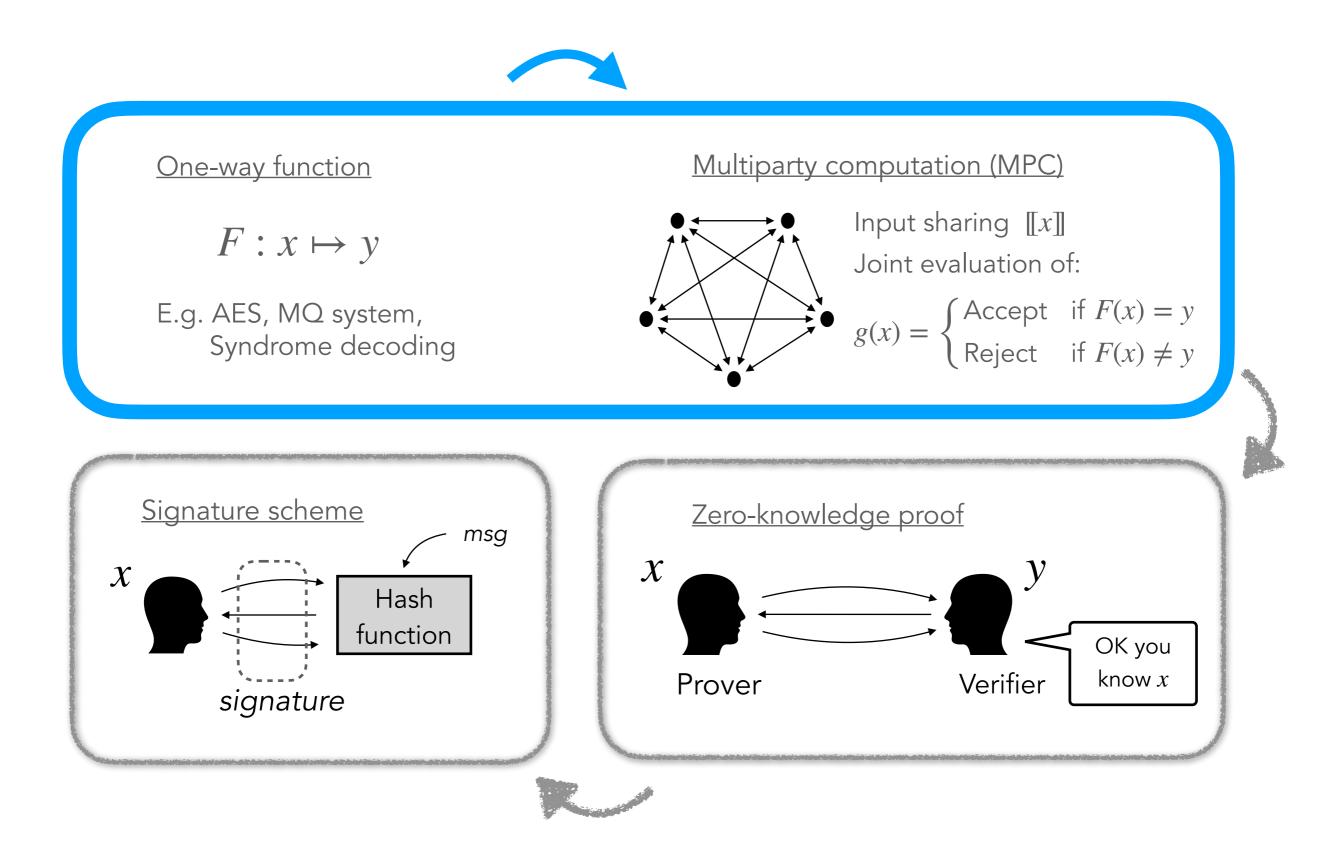
• Parallel repetition

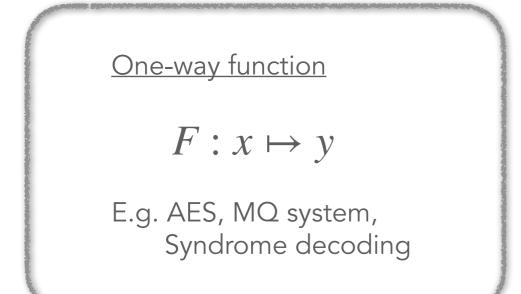
Protocol repeated τ times in parallel \rightarrow soundness error $\left(\frac{1}{N}\right)^{t}$

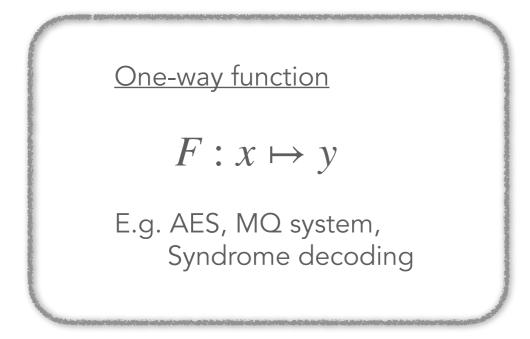
From MPC-in-the-Head to signatures



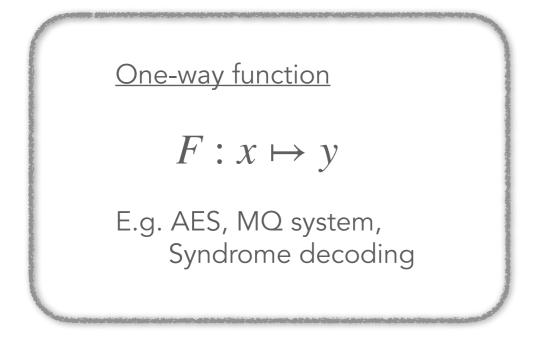








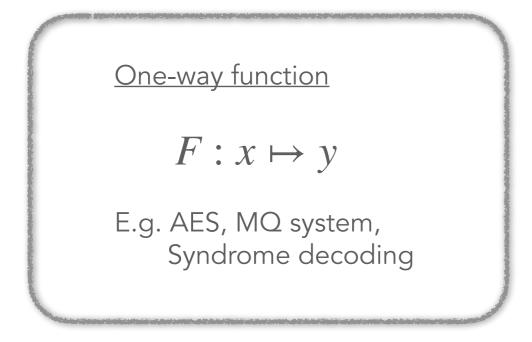
- Rely on <u>standard symmetric primitives</u>
 - AES: BBQ (2019), Banquet (2021), Limbo-Sign (2021), Helium+AES (2022)



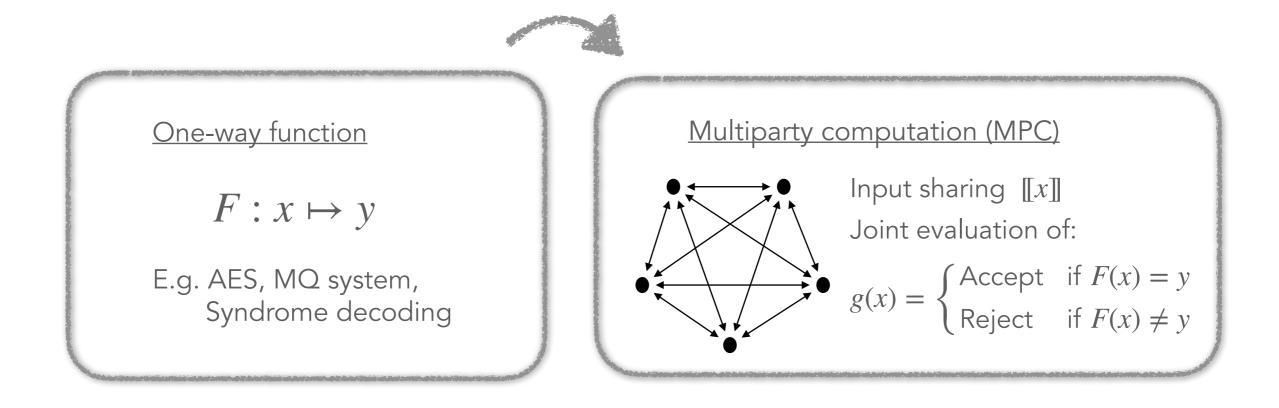
Rely on <u>standard symmetric primitives</u>

Rely on <u>MPC-friendly symmetric primitives</u>

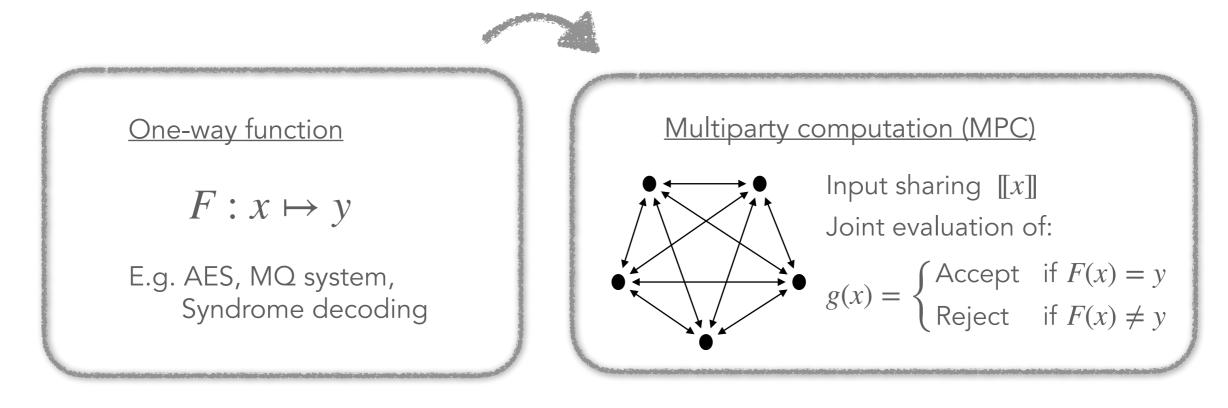
- LowMC: Picnic1 (2017), Picnic2 (2018), Picnic3 (2020)
- Rain: Rainier (2021), BN++Rain (2022)
- AIM: AIMer (2022)



- Rely on <u>standard symmetric primitives</u>
- Rely on <u>MPC-friendly symmetric primitives</u>
- Rely on well-known hard problems (non-exhaustive list)
 - Syndrome Decoding: SDitH (2022), RYDE (2023)
 - MinRank: *MiRitH* (2022), *MIRA* (2023)
 - Multivariate Quadratic: MQOM (2023), Biscuit (2023)
 - Permuted Kernel: PERK (2023)

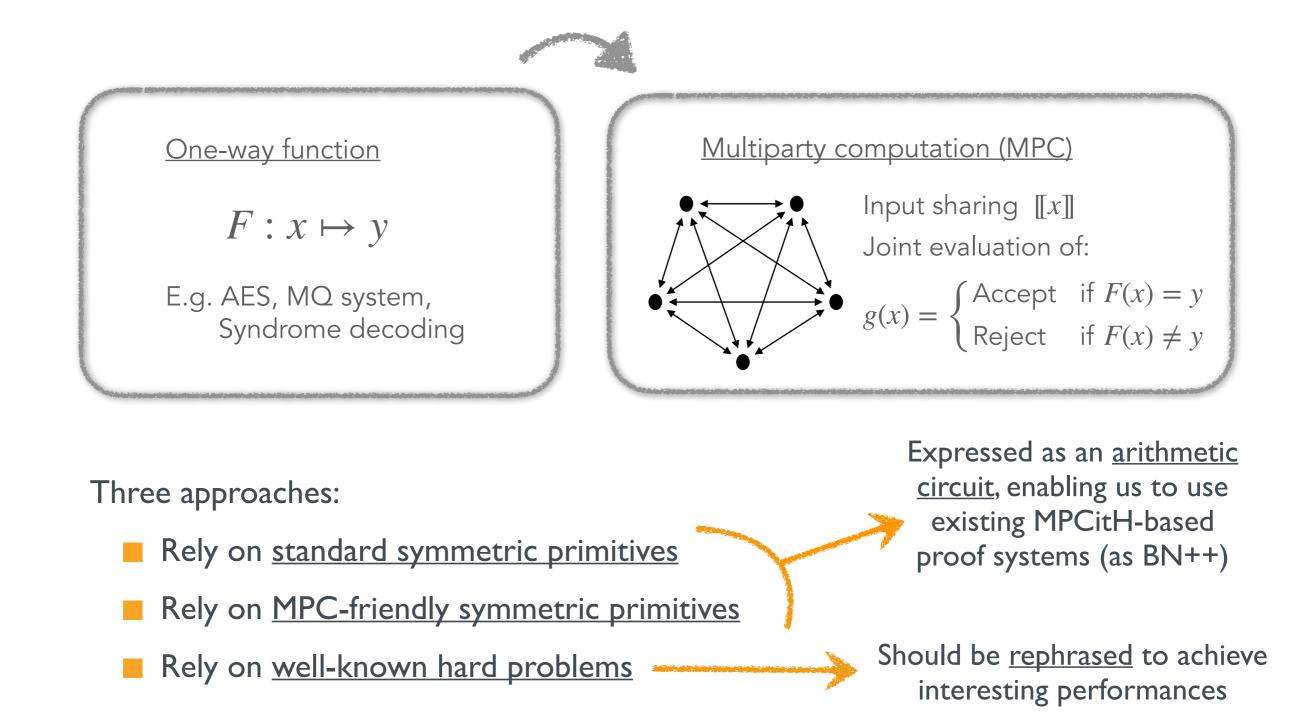


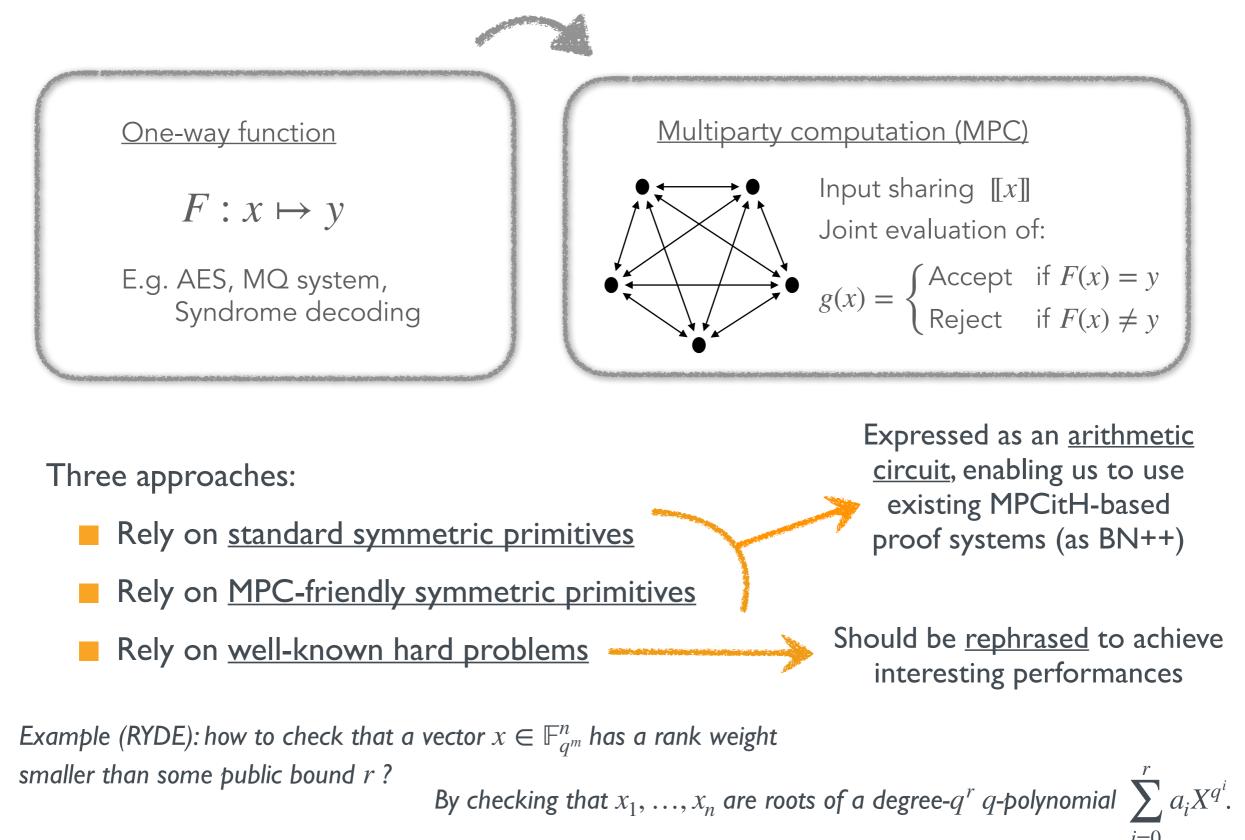
- Rely on <u>standard symmetric primitives</u>
- Rely on <u>MPC-friendly symmetric primitives</u>
- Rely on <u>well-known hard problems</u>



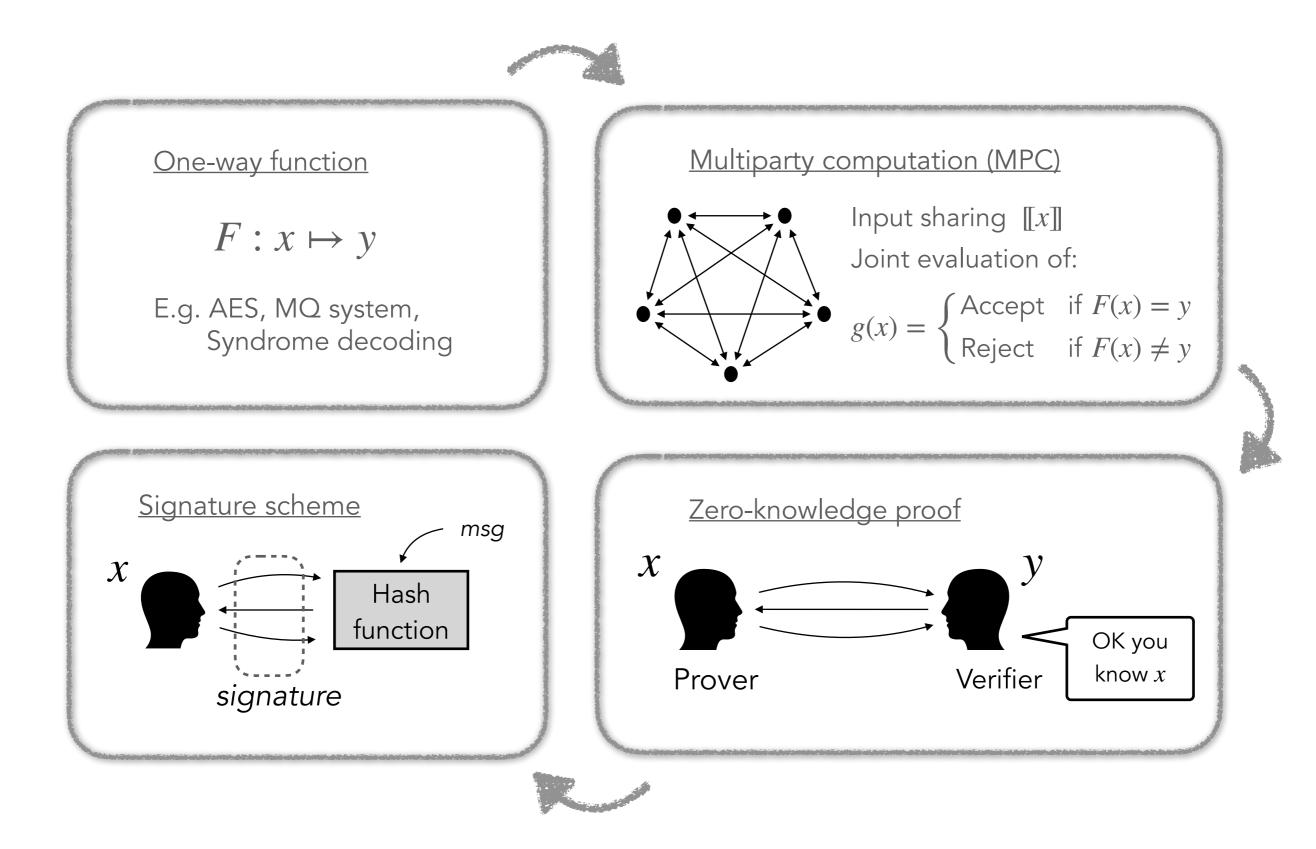
- Rely on <u>standard symmetric primitives</u>
- Rely on <u>MPC-friendly symmetric primitives</u>
- Rely on <u>well-known hard problems</u>

Expressed as an <u>arithmetic</u> <u>circuit</u>, enabling us to use existing MPCitH-based proof systems (as BN++)





[Fen22] Feneuil. "Building MPCitH-based Signatures from MQ, MinRank, Rank SD and PKP" (ePrint 2022/1512)





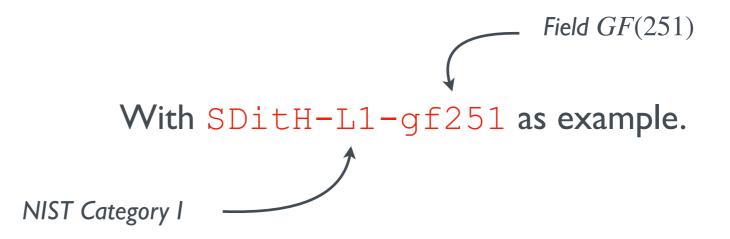
Fiat-Shamir transform

Should take [KZ20] attack into account (when there are more than 3 rounds)!

[KZ20] Kales, Zaverucha. "An attack on some signature schemes constructed from five-pass identification schemes" (CANS20)

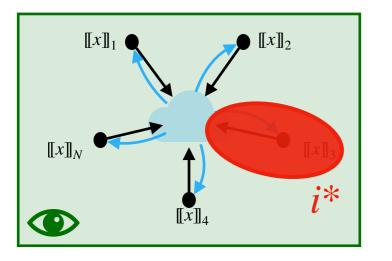
Optimisations and variants

Optimisations and variants

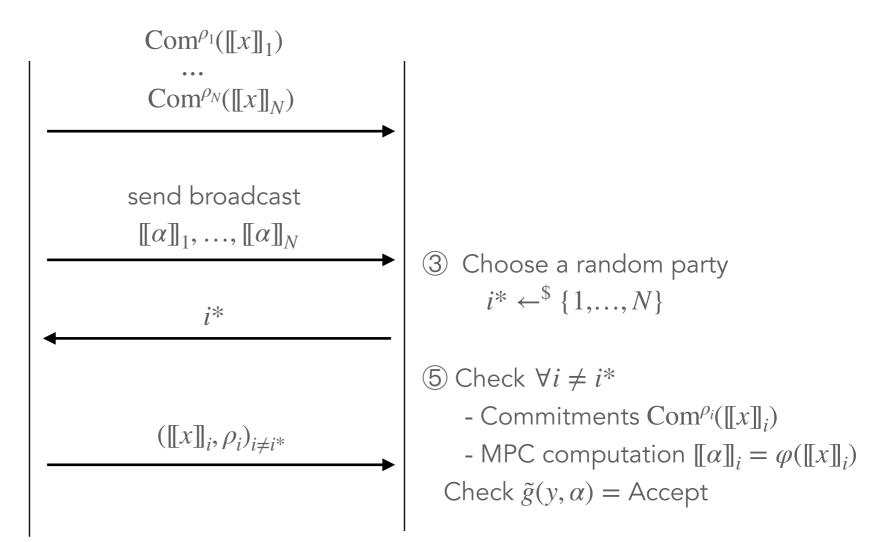


① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

2 Run MPC in their head



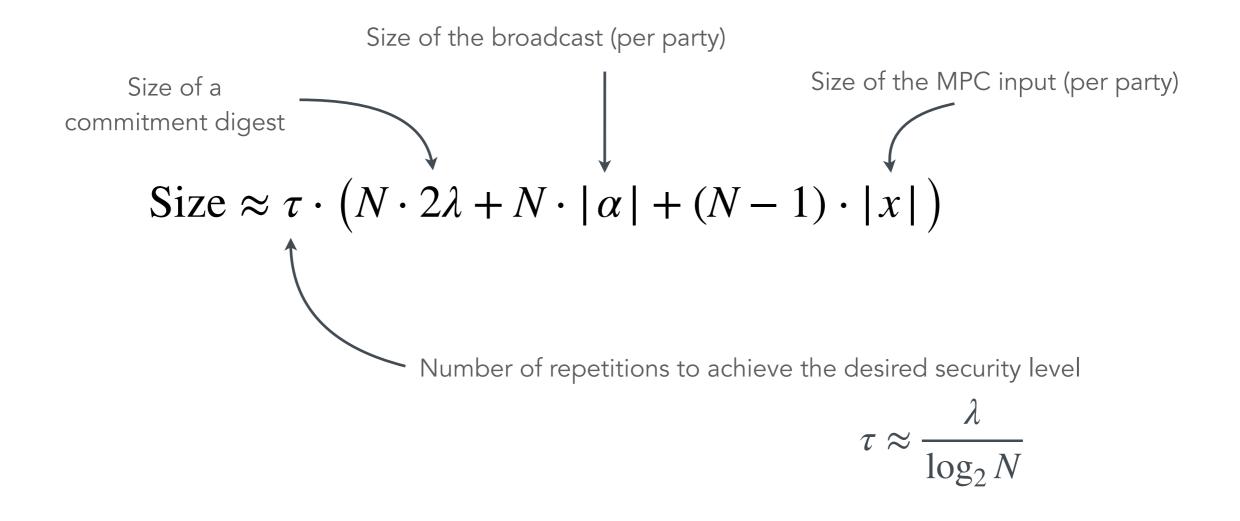
④ Open parties $\{1, ..., N\} \setminus \{i^*\}$



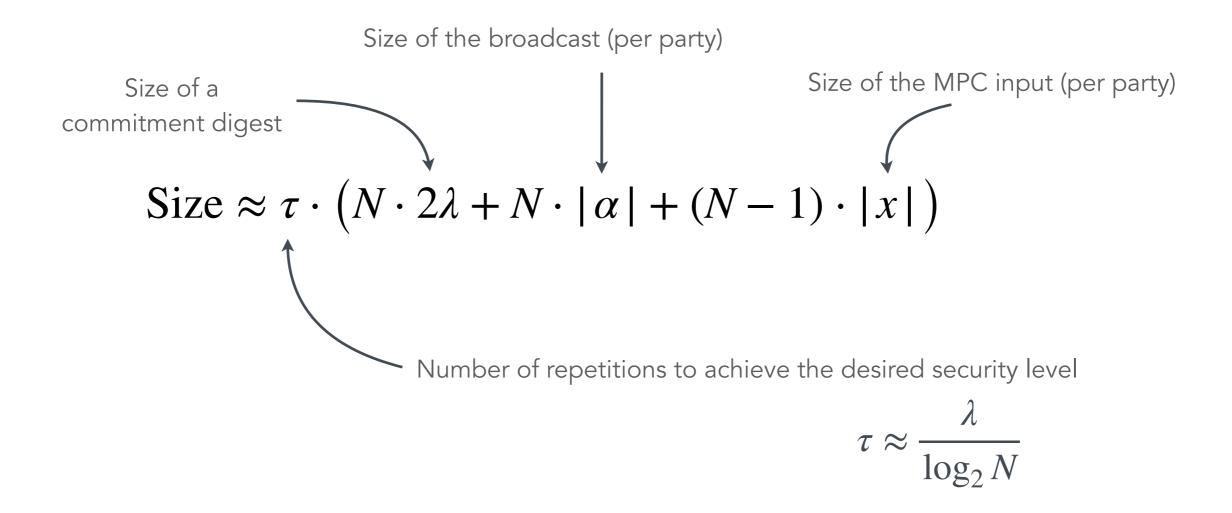
<u>Verifier</u>

<u>Prover</u>

Naive MPCitH transformation



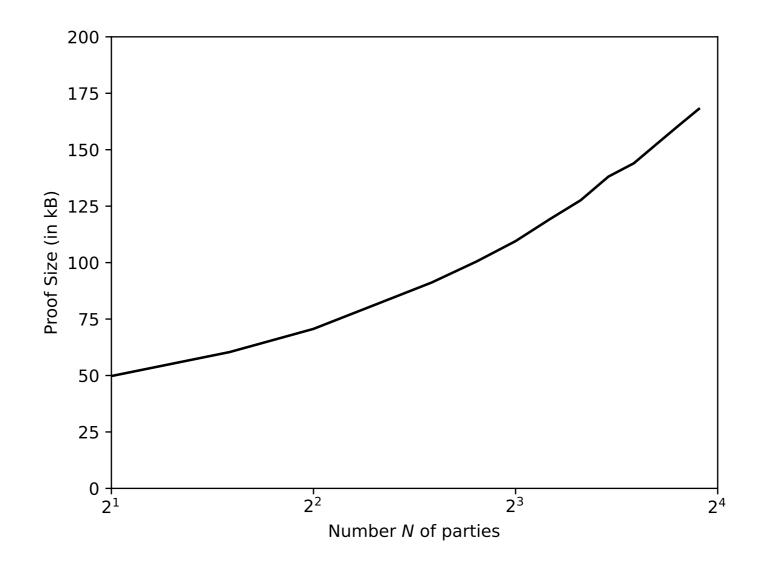
Naive MPCitH transformation



SDitH-L1-gf251:

the input x of the MPC protocol is around **323** bytes, The broadcast value α of the MPC protocol is around **36** bytes.

Naive MPCitH transformation

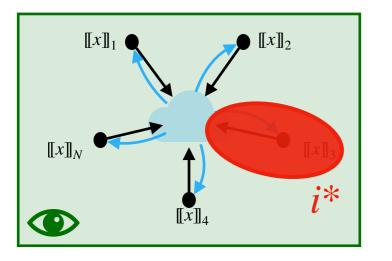


SDitH-L1-gf251:

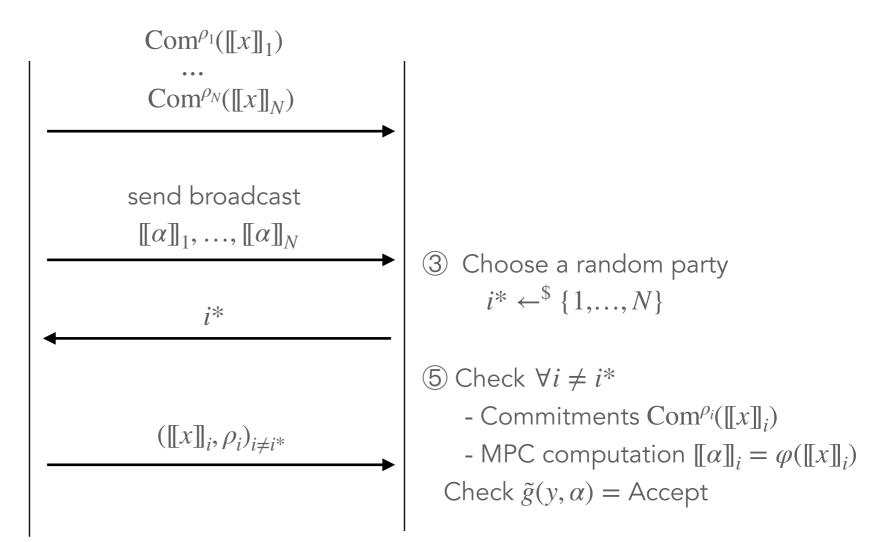
the input x of the MPC protocol is around **323** bytes, The broadcast value α of the MPC protocol is around **36** bytes

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

2 Run MPC in their head



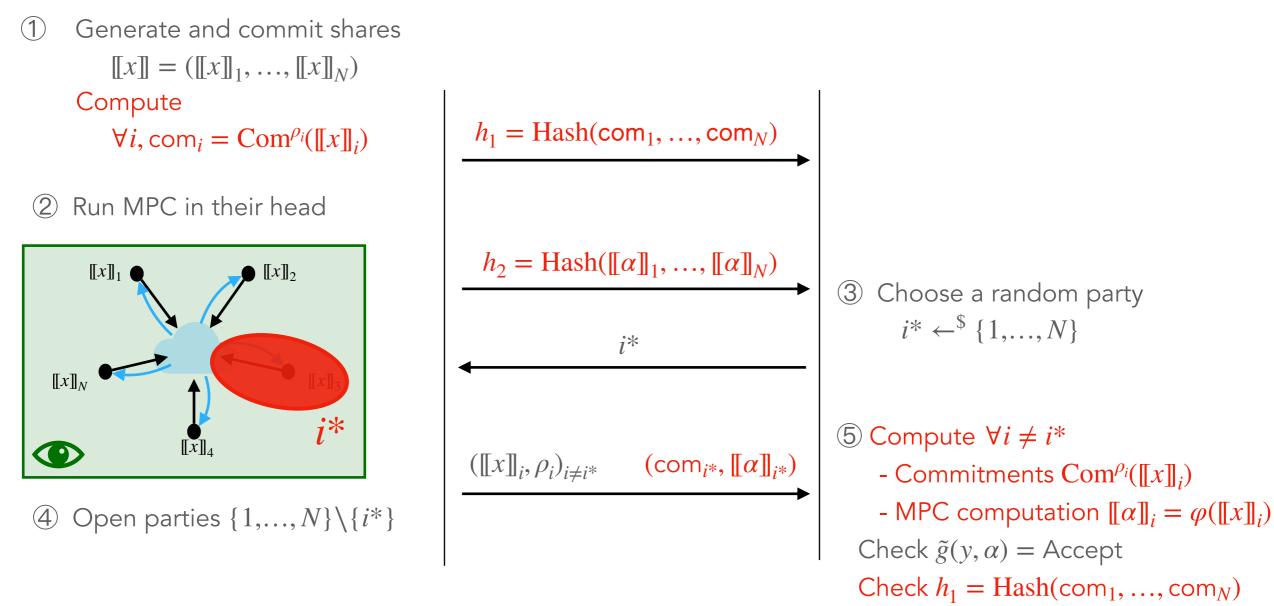
④ Open parties $\{1, ..., N\} \setminus \{i^*\}$



<u>Verifier</u>

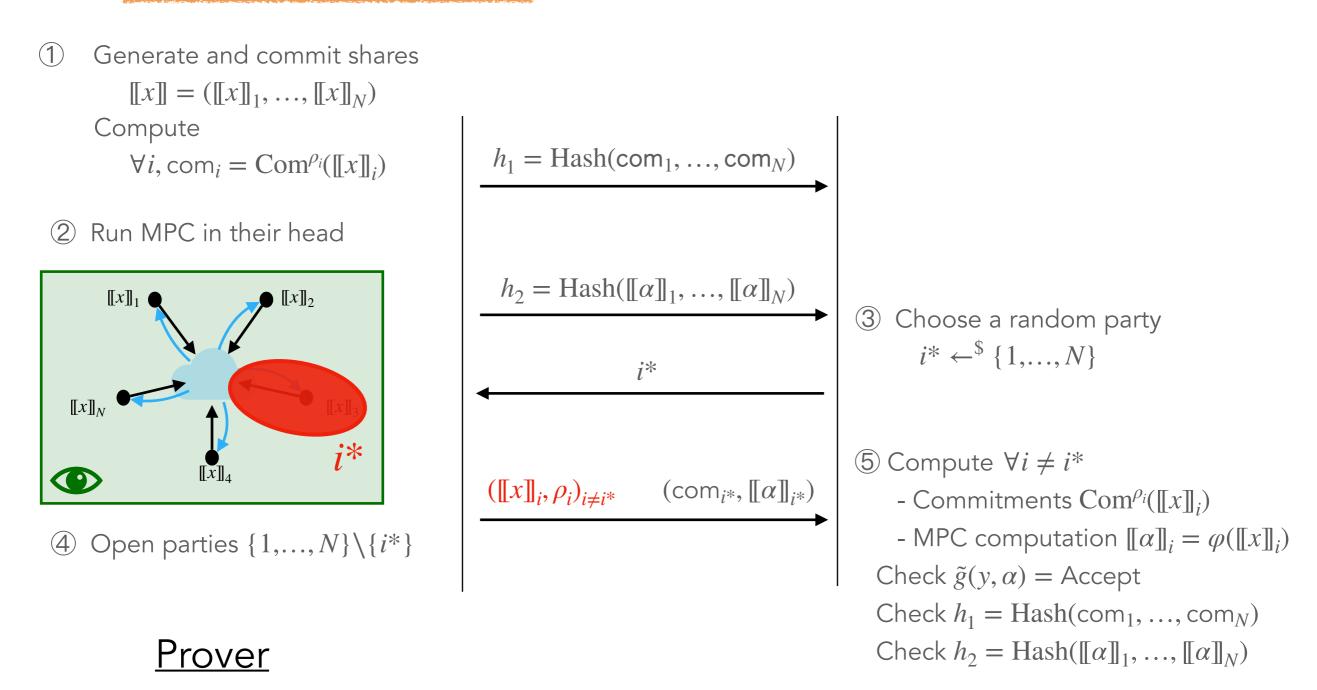
<u>Prover</u>

<u>Prover</u>



Check $h_2 = \text{Hash}(\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N)$

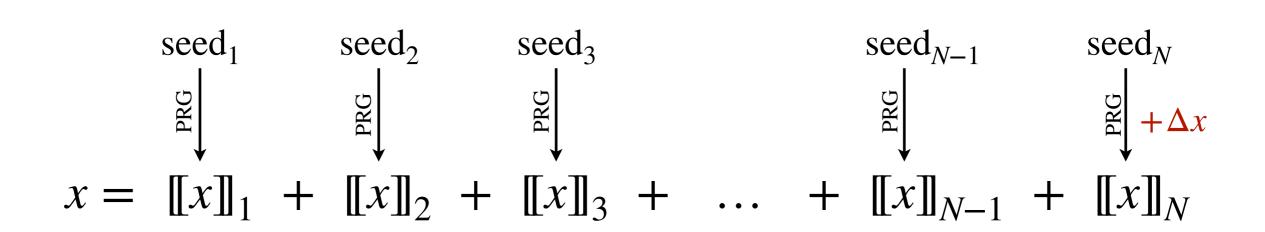
Verifier

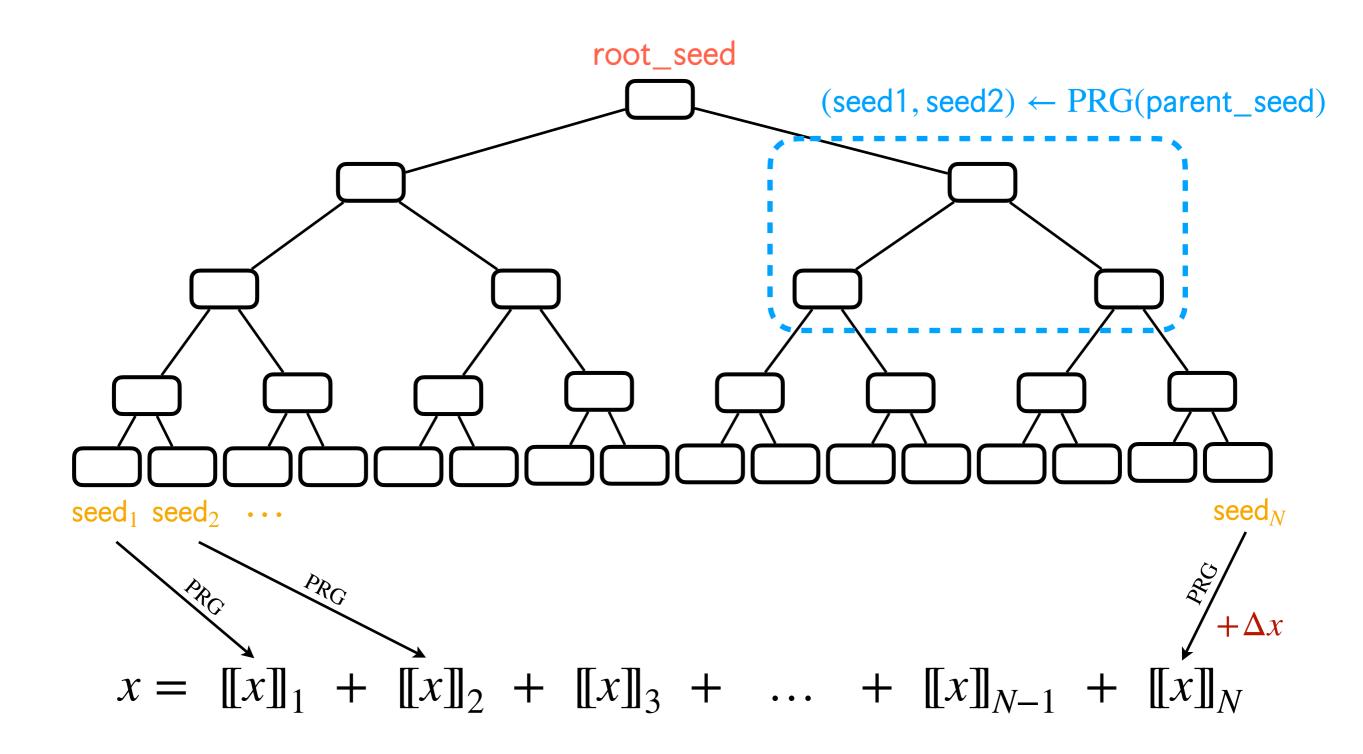


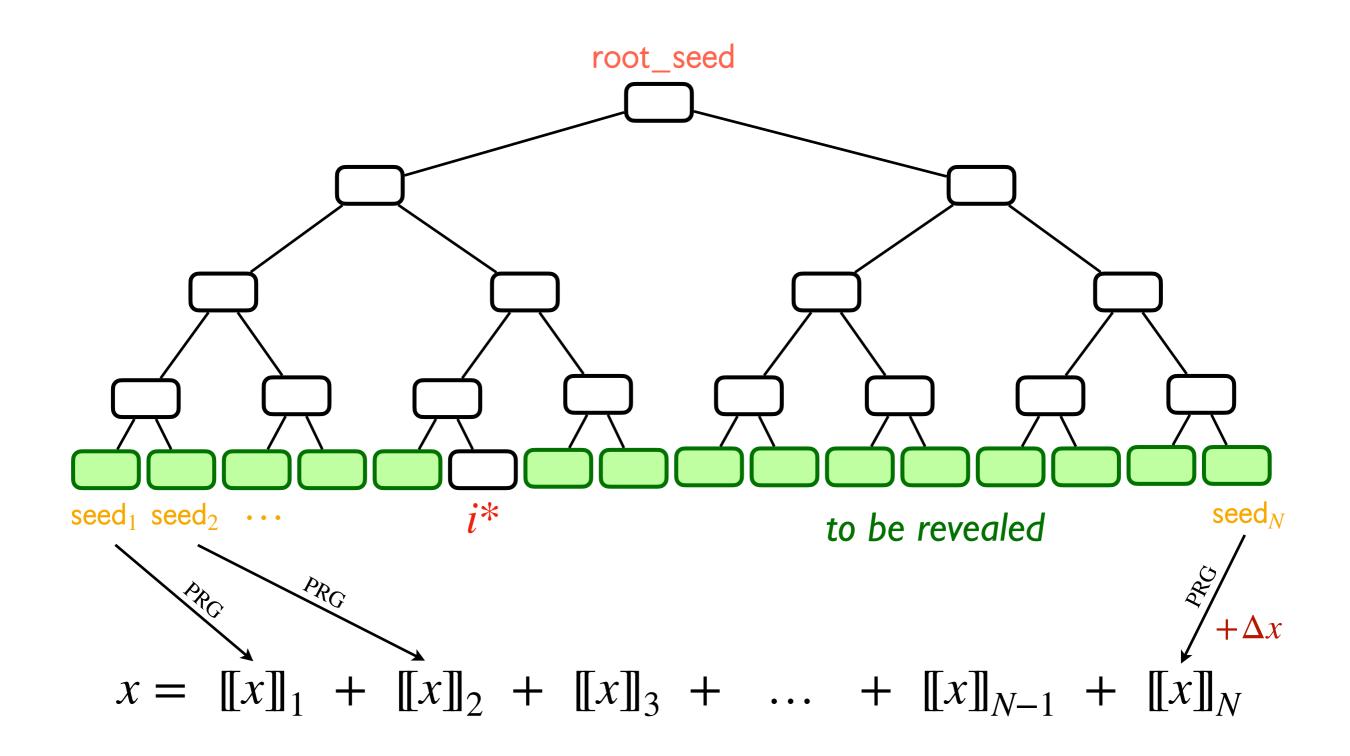
<u>Verifier</u>

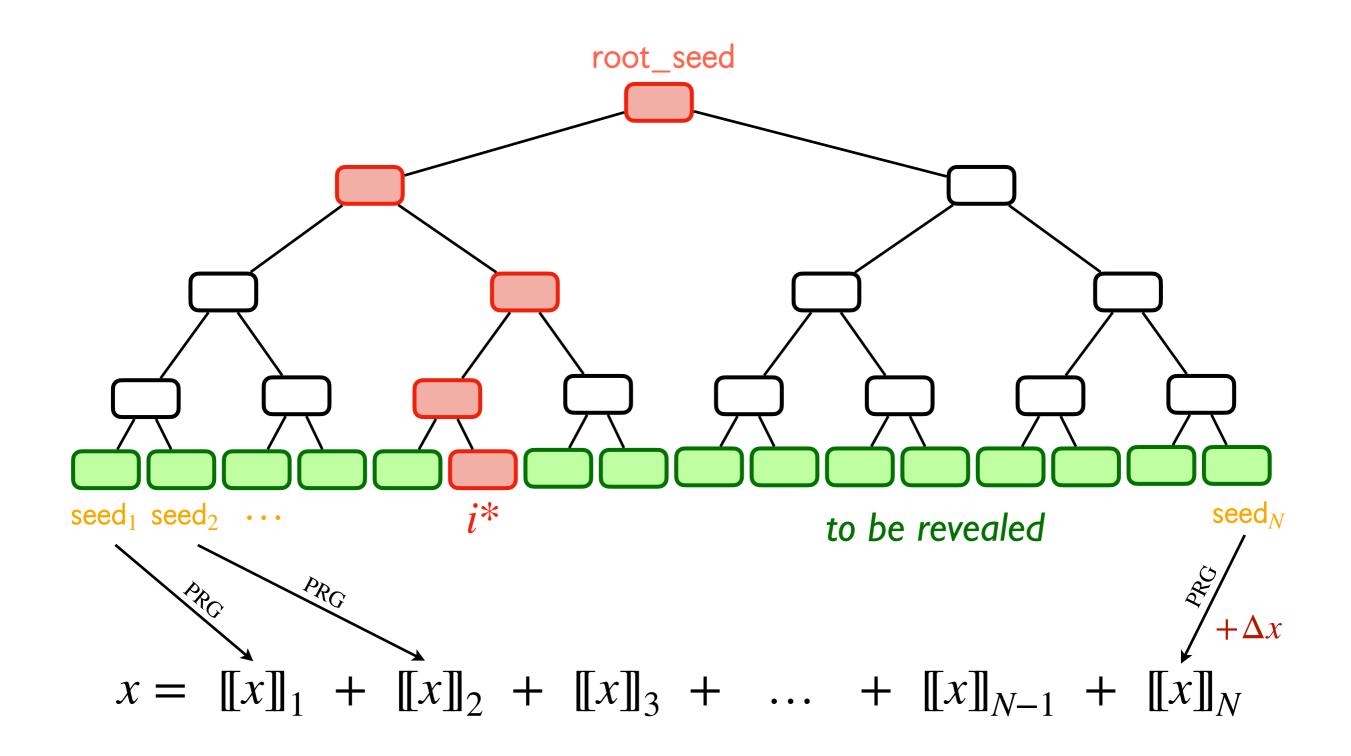
[KKW18] Katz, Kolesnikov, Wang: "Improved Non-Interactive Zero Knowledge with Applications to Post-Quantum Signatures" (CCS 2018)

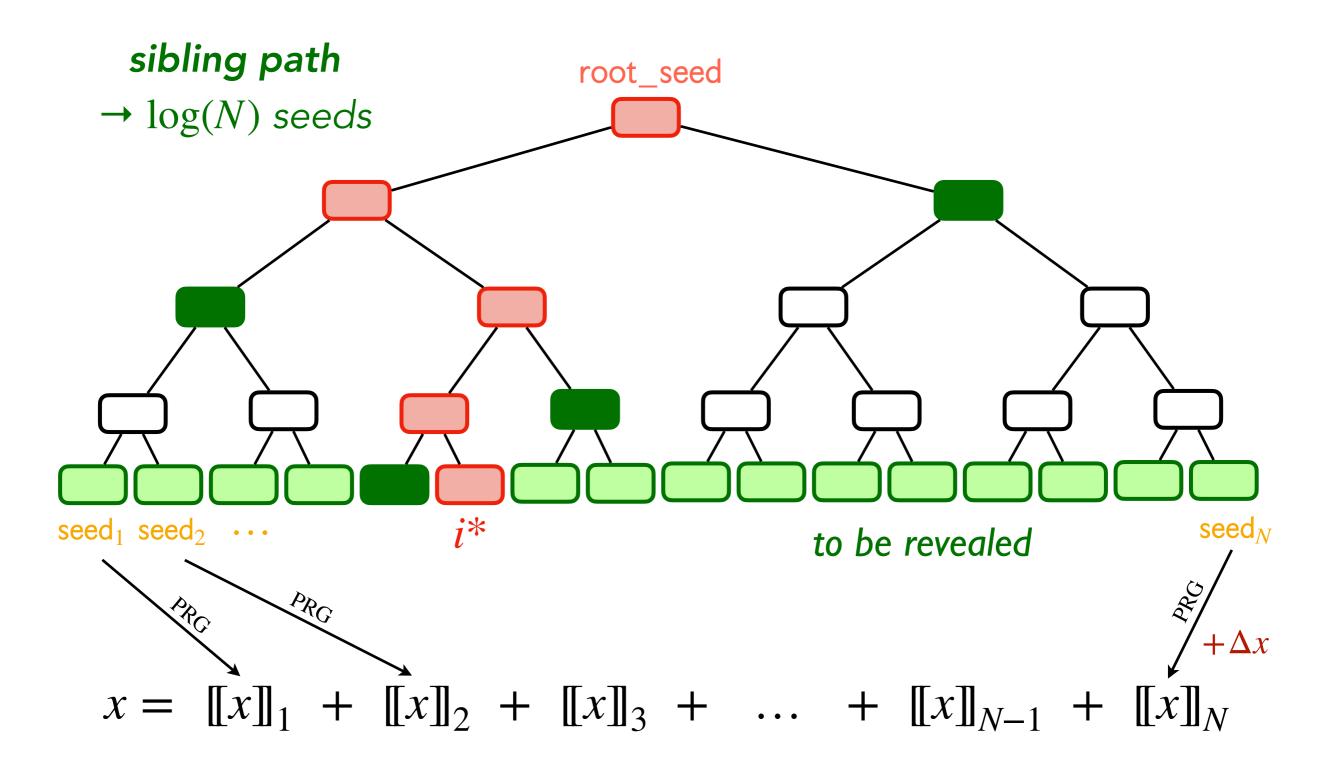
 $x = [x]_1 + [x]_2 + [x]_3 + \dots + [x]_{N-1} + [x]_N$

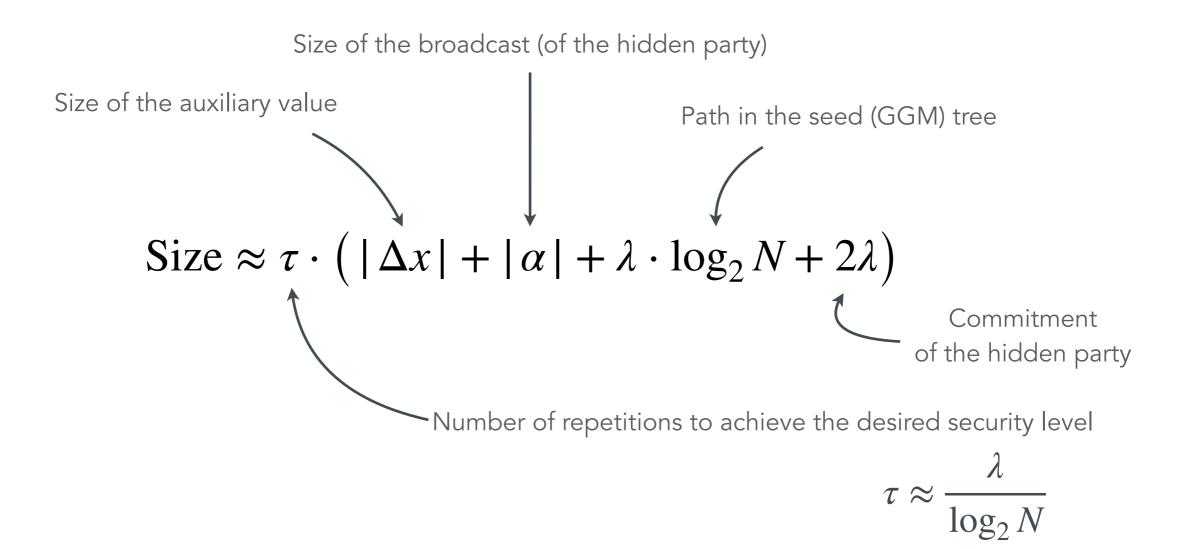


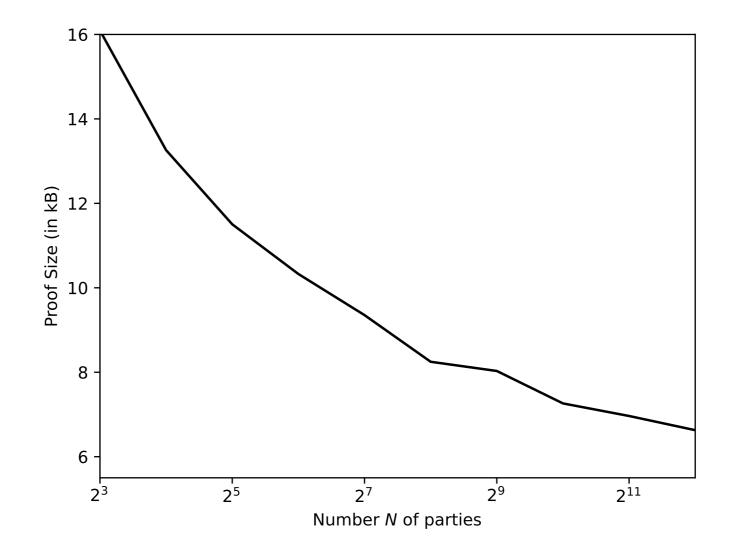






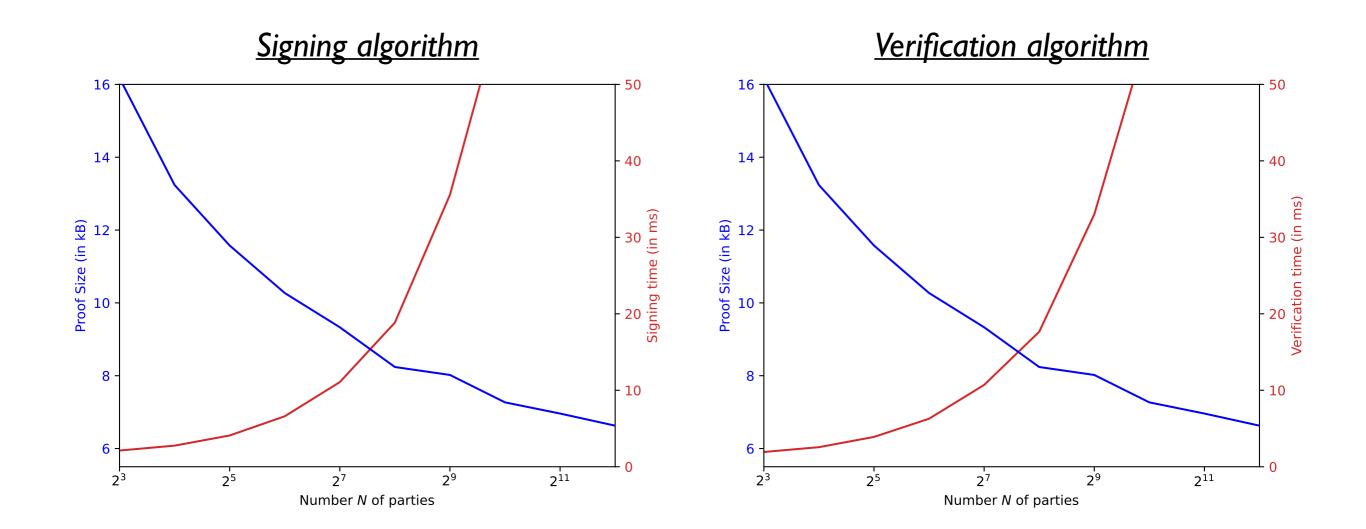




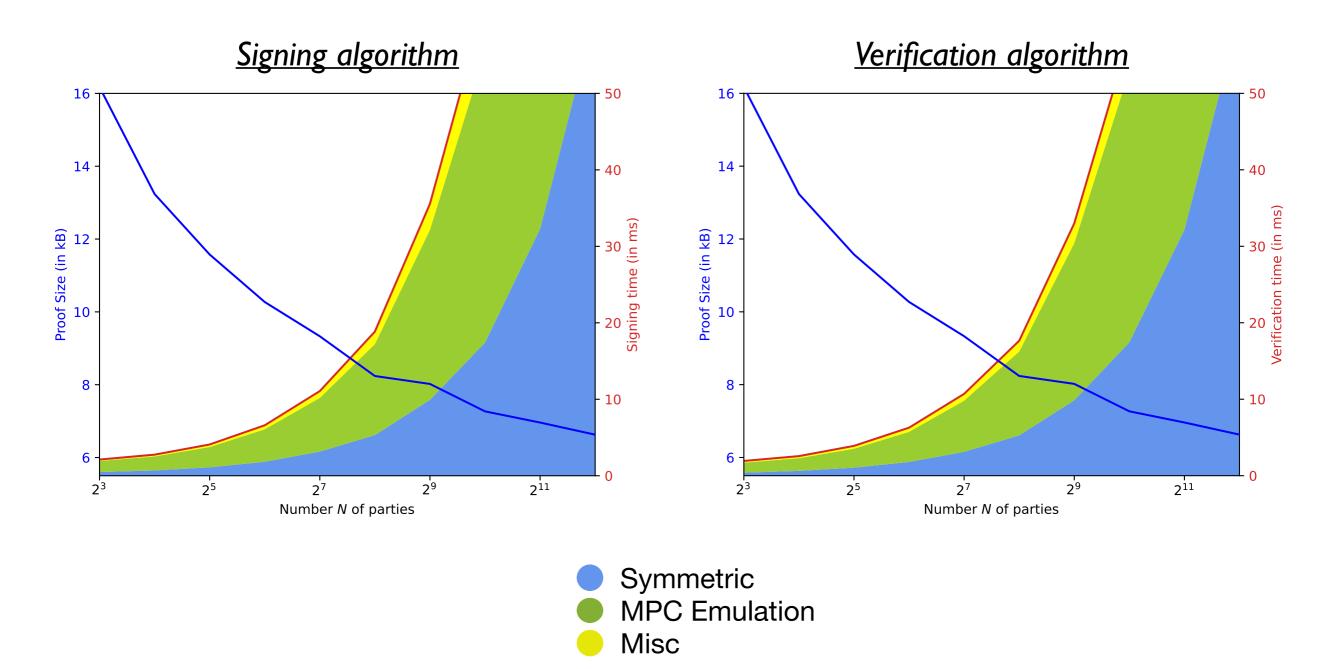


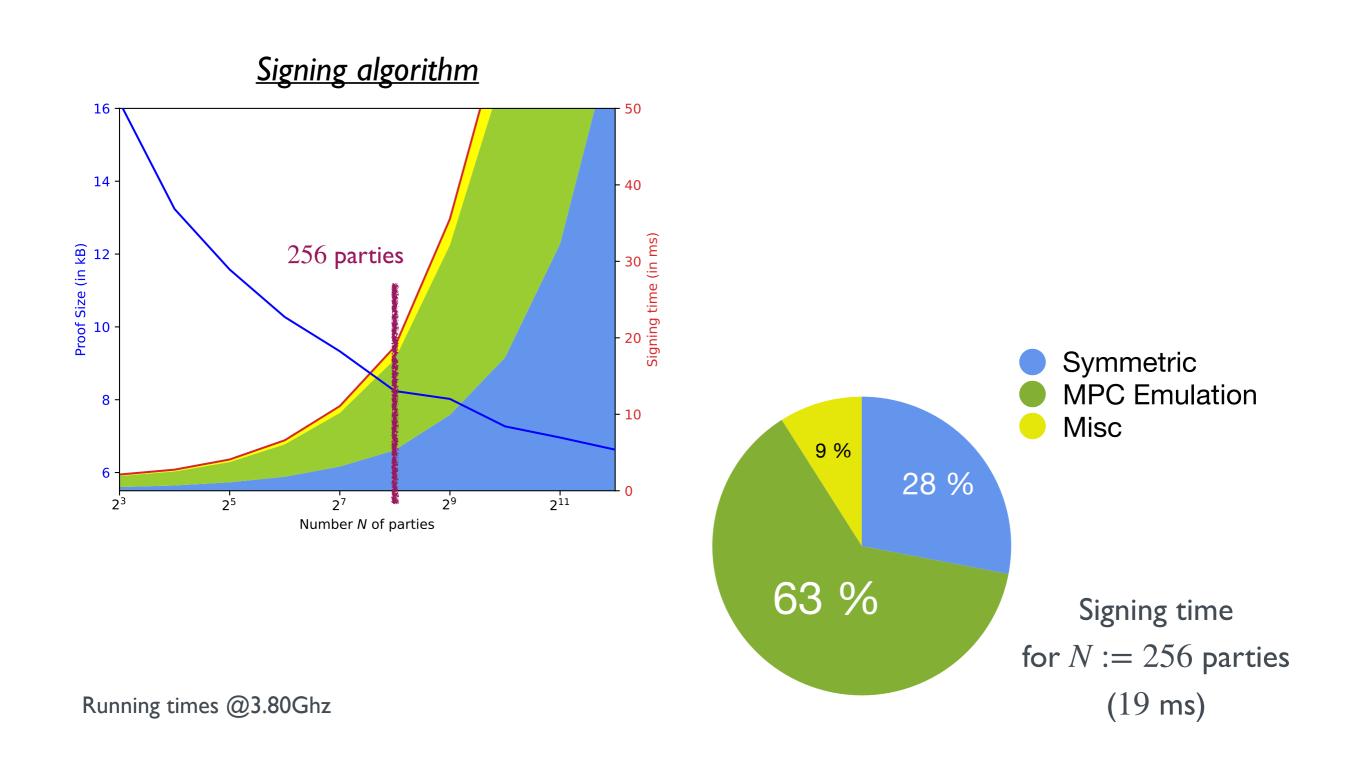
SDitH-L1-gf251:

the input x of the MPC protocol is around **323** bytes, The broadcast value α of the MPC protocol is around **36** bytes.



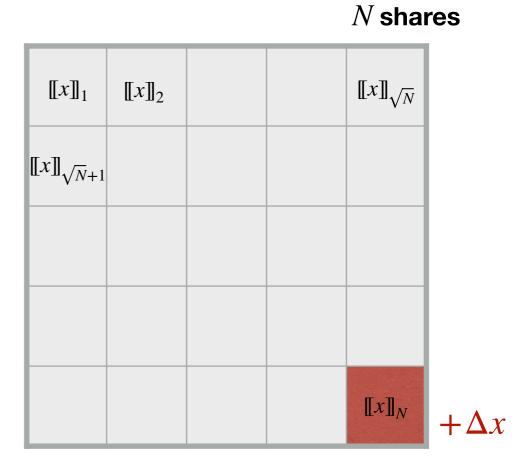
Running times @3.80Ghz





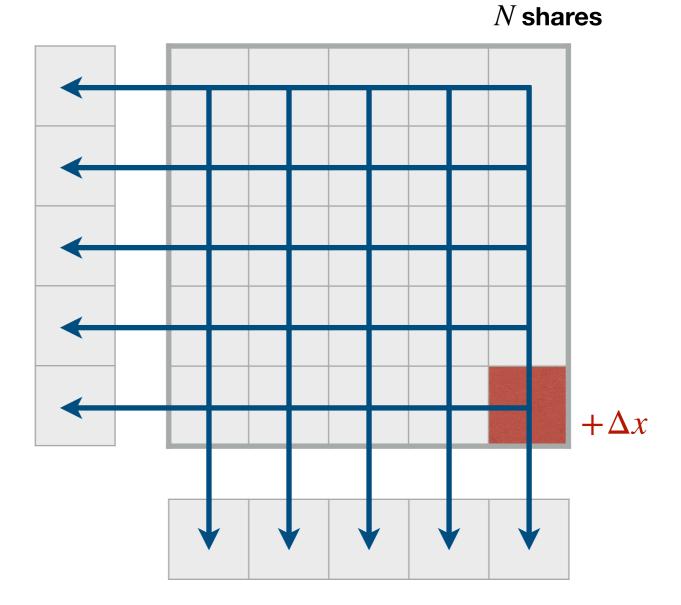
The Hypercube Technique

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)



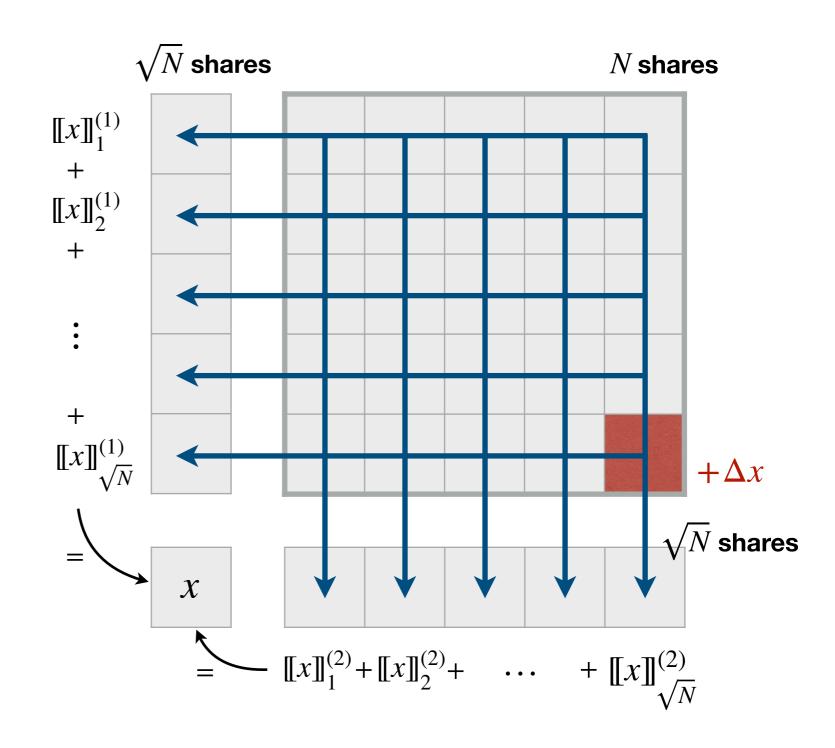
The Hypercube Technique

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)



The Hypercube Technique

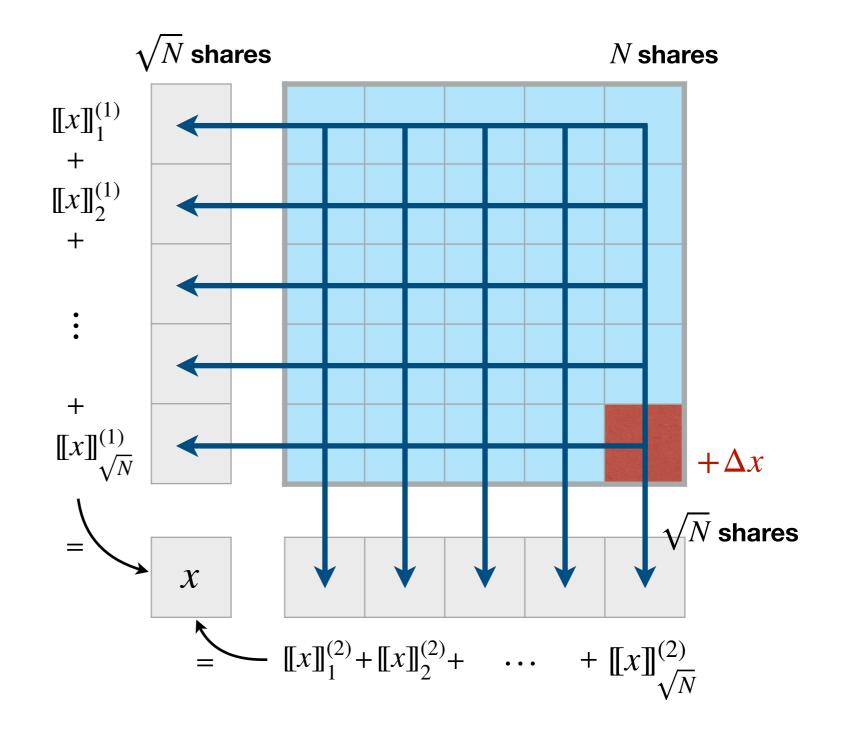
[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)



[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

<u>Traditional approach</u>:

- Emulating the *N*-party protocol with inputs $\llbracket x \rrbracket_1, \dots, \llbracket x \rrbracket_N$
- Chance of cheating $1/\!N$



[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

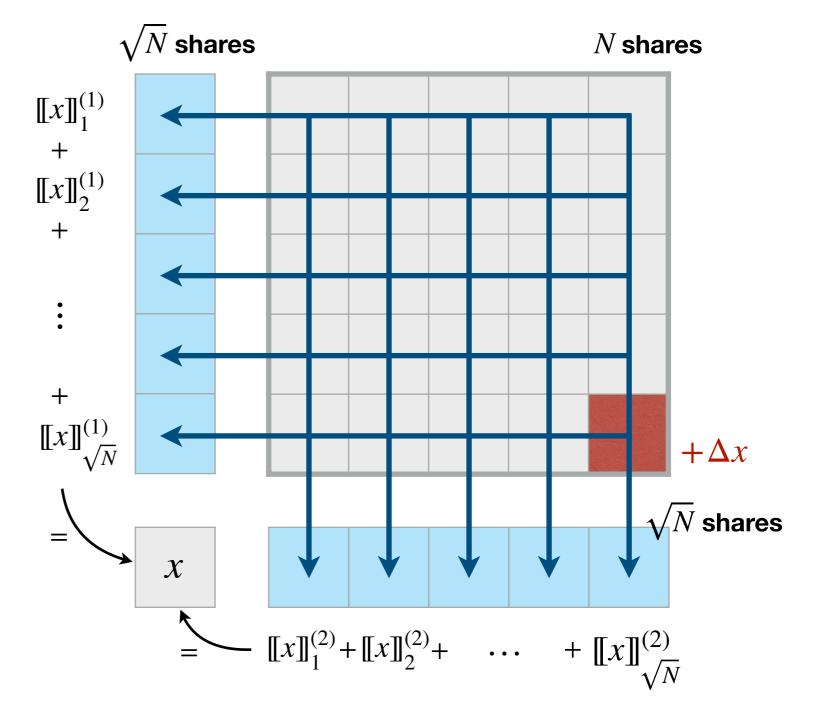
Traditional approach:

- Emulating the *N*-party protocol with inputs $\llbracket x \rrbracket_1, ..., \llbracket x \rrbracket_N$
- Chance of cheating $1/\!N$

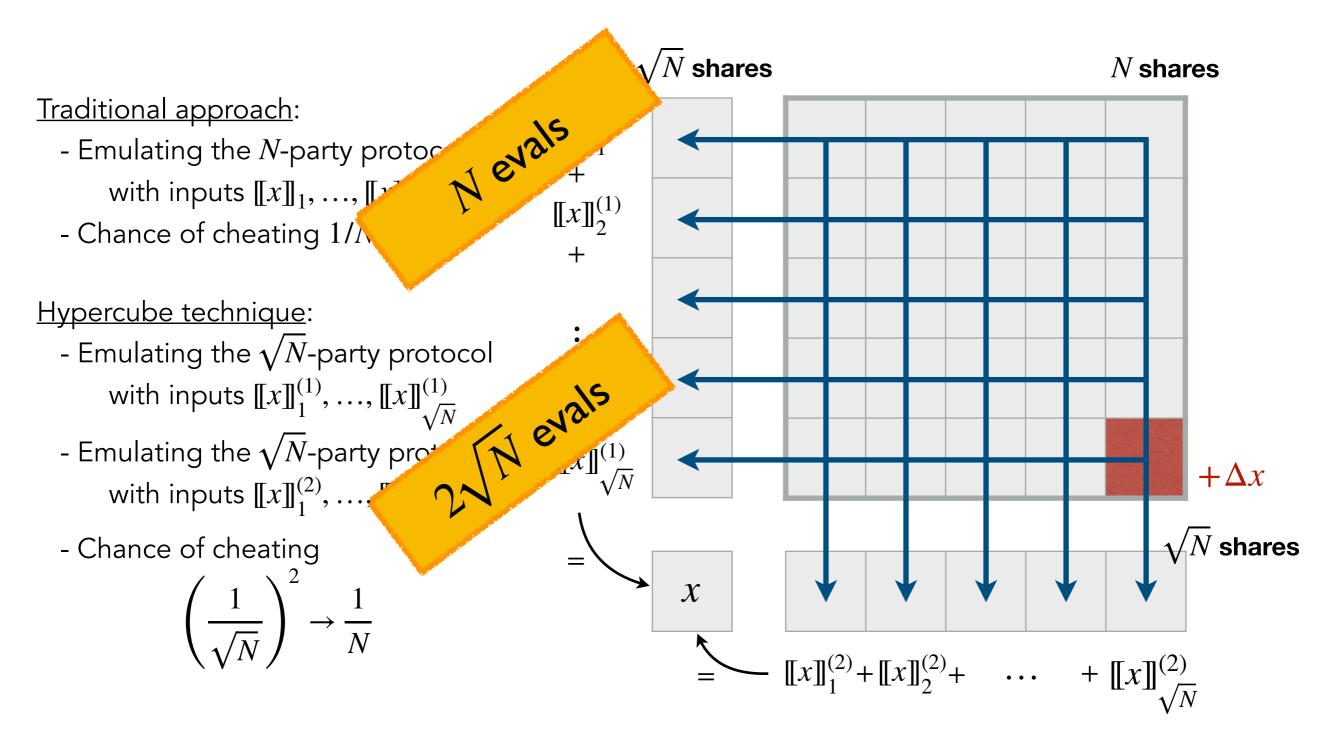
<u>Hypercube technique</u>:

- Emulating the \sqrt{N} -party protocol with inputs $[\![x]\!]_1^{(1)}, \dots, [\![x]\!]_{\sqrt{N}}^{(1)}$
- Emulating the \sqrt{N} -party protocol with inputs $[\![x]\!]_1^{(2)}, \dots, [\![x]\!]_{\sqrt{N}}^{(2)}$
- Chance of cheating

$$\left(\frac{1}{\sqrt{N}}\right)^2 \to \frac{1}{N}$$



[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)



[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

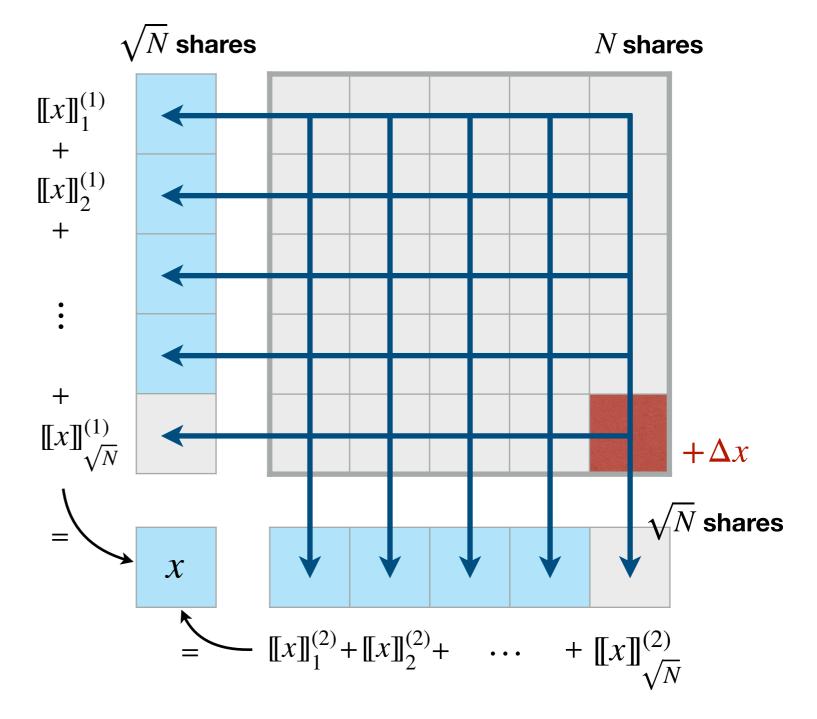
Traditional approach:

- Emulating the *N*-party protocol with inputs $\llbracket x \rrbracket_1, ..., \llbracket x \rrbracket_N$
- Chance of cheating $1/\!N$

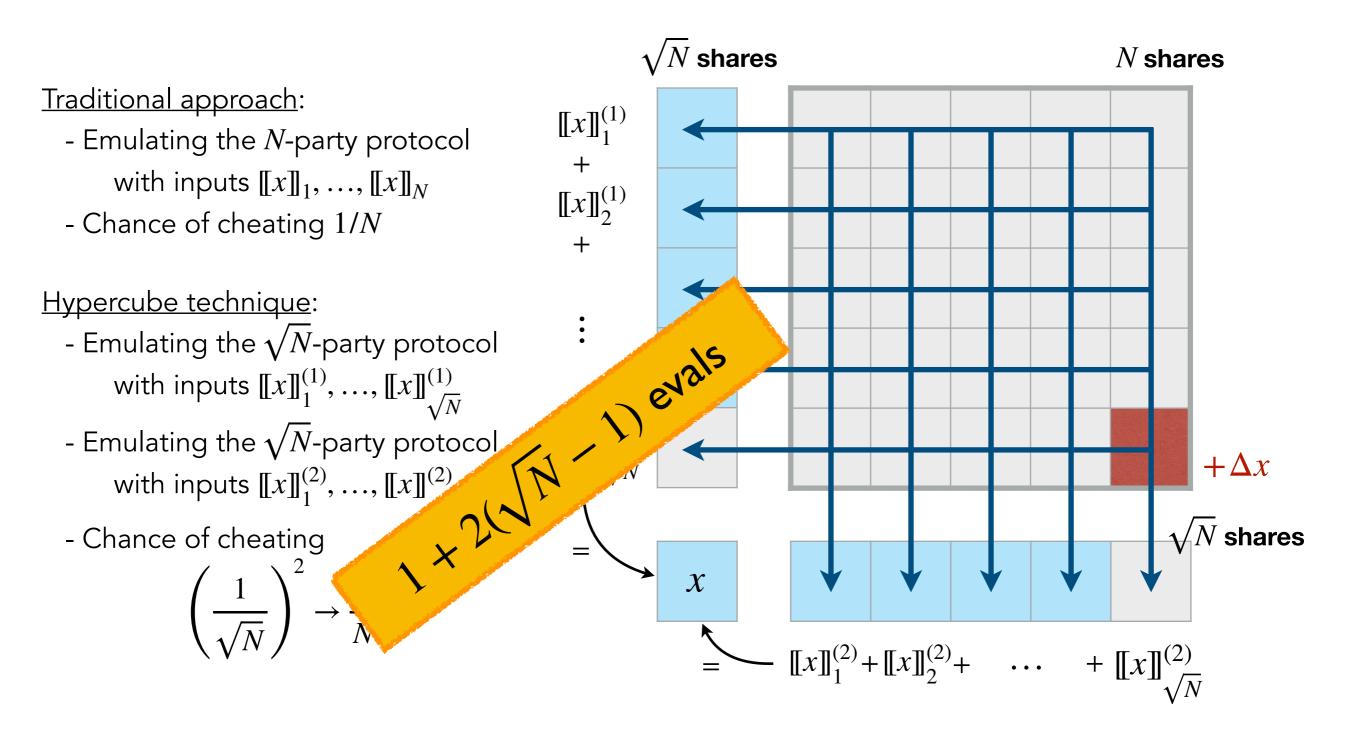
<u>Hypercube technique</u>:

- Emulating the \sqrt{N} -party protocol with inputs $[\![x]\!]_1^{(1)}, \dots, [\![x]\!]_{\sqrt{N}}^{(1)}$
- Emulating the \sqrt{N} -party protocol with inputs $[\![x]\!]_1^{(2)}, \dots, [\![x]\!]_{\sqrt{N}}^{(2)}$
- Chance of cheating

$$\left(\frac{1}{\sqrt{N}}\right)^2 \to \frac{1}{N}$$



[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)



[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

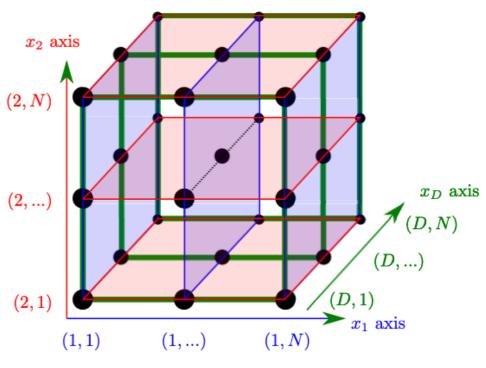
<u>Previous slide</u>: square of side \sqrt{N}

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

<u>Previous slide</u>: square of side \sqrt{N}

<u>The hypercube technique</u>: hypercube of dimension $\log_2 N$ (each side has a size of 2)

Emulating $\log_2 N$ subprotocols with 2 parties.



Source: Figure from [AGHHJY23]

The $D\times N$ main party slices

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

<u>Previous slide</u>: square of side \sqrt{N}

<u>The hypercube technique</u>: hypercube of dimension $\log_2 N$ (each side has a size of 2) Emulating $\log_2 N$ subprotocols with 2 parties.

Soundness error:

$$\left(\frac{1}{2}\right)^{\log_2 N} = \frac{1}{N}$$

Emulation cost:

 $2 \cdot \log_2 N$ parties

 $\begin{array}{c} x_{2} \text{ axis} \\ (2, N) \\ (2, ...) \\ (2, ...) \\ (2, 1) \\ (1, 1) \\ (1, ...) \\ (1, ...) \\ (1, N) \end{array} \\ \begin{array}{c} x_{D} \text{ axis} \\ (D, N) \\ (D, ...) \\ (D, 1) \\ x_{1} \text{ axis} \end{array}$

Source: Figure from [AGHHJY23]

The $D \times N$ main party slices

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

<u>Previous slide</u>: square of side \sqrt{N}

<u>The hypercube technique</u>: hypercube of dimension $\log_2 N$ (each side has a size of 2) Emulating $\log_2 N$ subprotocols with 2 parties.

Soundness error:

$$\left(\frac{1}{2}\right)^{\log_2 N} = \frac{1}{N}$$

Emulation cost:

 $\frac{2 \cdot \log_2 N \text{ parties}}{1 + \log_2 N \text{ parties}}$

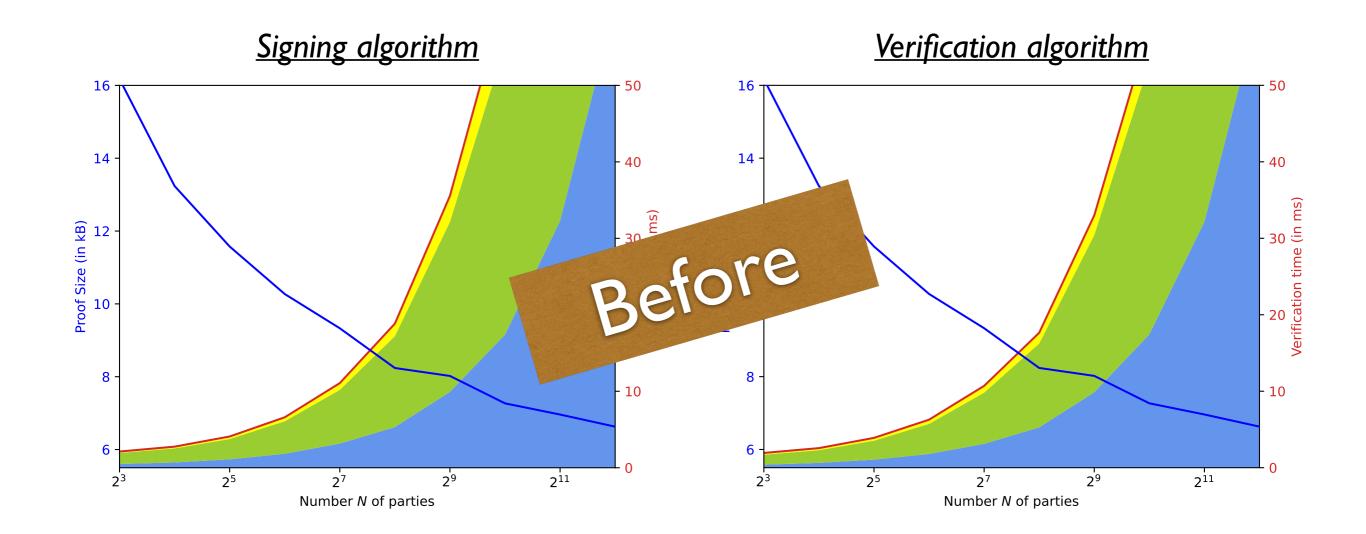
 $\begin{array}{c} x_{2} \text{ axis} \\ (2, N) \\ (2, N) \\ (2, ...) \\ (2, 1) \\ (1, 1) \\ (1, ...) \\ (1, N) \end{array} x_{D} \text{ axis} \\ (D, N) \\ (D, ...) \\ (D, 1) \\ x_{1} \text{ axis} \end{array}$

The $D\times N$ main party slices

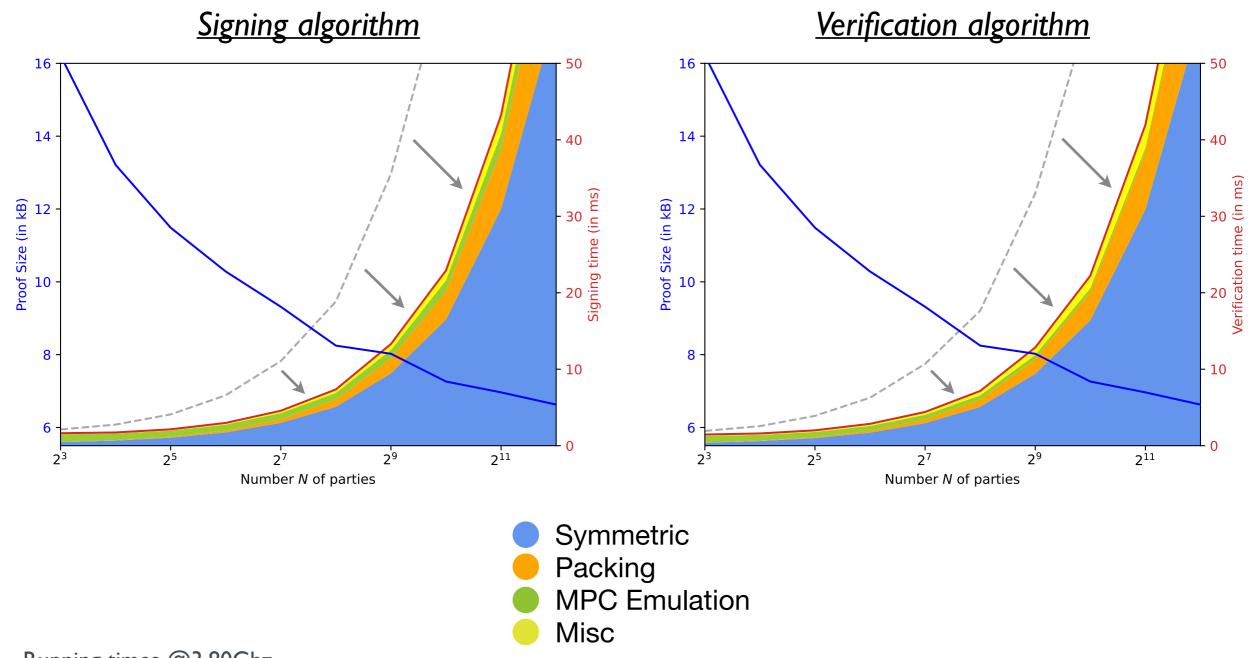
Source: Figure from [AGHHJY23]

[AGHHJY23] Aguilar-Melchor, Gama, Howe, Hülsing, Joseph, Yue: "The Return of the SDitH" (Eurocrypt 2023)

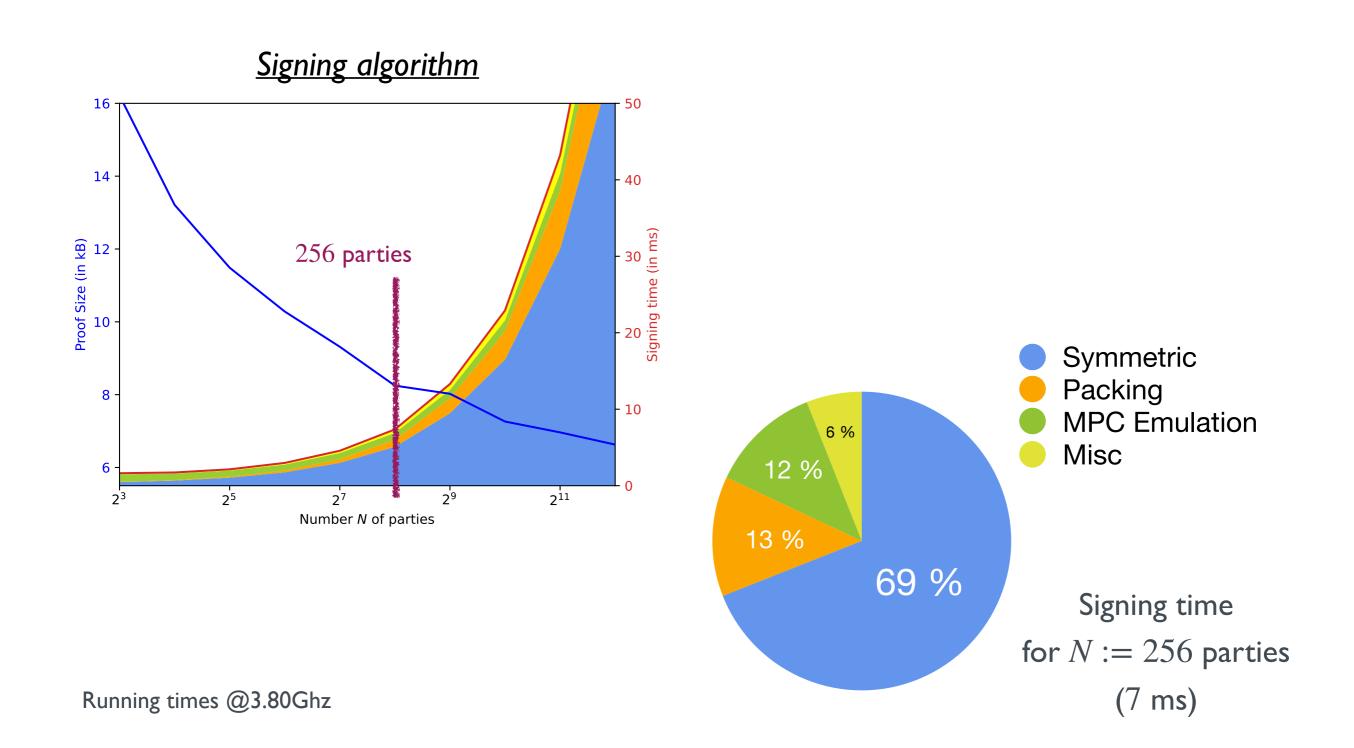
Traditional: N party emulations per repetition N = 256 **Hypercube:** 1 + $\log_2 N$ party emulations per repetition $1 + \log_2 N = 9$



Running times @3.80Ghz



Running times @3.80Ghz



[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (ePrint 2022/1407)

In the *threshold* approach, we used an **low-threshold** sharing scheme. For example, the Shamir's $(\ell + 1, N)$ -secret sharing scheme.

To share a value x,

- sample $r_1, r_2, ..., r_\ell$ uniformly at random,
- build the polynomial $P(X) = x + \sum_{k=0}^{\iota} r_k \cdot X^k$,
- Set the share $[[x]]_i \leftarrow P(e_i)$, where e_i is publicly known.

[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (ePrint 2022/1407)

In the *threshold* approach, we used an **low-threshold** sharing scheme. For example, the Shamir's ($\ell + 1, N$)-secret sharing scheme.

The prover reveals only ℓ shares to the verifier (instead of N-1). In practice, $\ell \in \{1,2,3\}$.

[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (ePrint 2022/1407)

In the *threshold* approach, we used an **low-threshold** sharing scheme. For example, the Shamir's ($\ell + 1, N$)-secret sharing scheme.

The prover reveals only ℓ shares to the verifier (instead of N - 1). In practice, $\ell \in \{1,2,3\}$.

<u>Construction</u>:

The verifier just needs to re-emulate *c* parties (per repetition);

[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (ePrint 2022/1407)

In the *threshold* approach, we used an **low-threshold** sharing scheme. For example, the Shamir's $(\ell + 1, N)$ -secret sharing scheme.

The prover reveals only ℓ shares to the verifier (instead of N-1). In practice, $\ell \in \{1,2,3\}$.

- The verifier just needs to re-emulate ℓ parties (per repetition);
- The prover just needs to emulate $1 + \ell$ parties (per repetition);

[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (ePrint 2022/1407)

In the *threshold* approach, we used an **low-threshold** sharing scheme. For example, the Shamir's $(\ell + 1, N)$ -secret sharing scheme.

The prover reveals only ℓ shares to the verifier (instead of N-1). In practice, $\ell \in \{1,2,3\}$.

- The verifier just needs to re-emulate ℓ parties (per repetition);
- The prover just needs to emulate $1 + \ell$ parties (per repetition);
- The prover uses a Merkle tree to commit the share;

[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (ePrint 2022/1407)

In the *threshold* approach, we used an **low-threshold** sharing scheme. For example, the Shamir's $(\ell + 1, N)$ -secret sharing scheme.

The prover reveals only ℓ shares to the verifier (instead of N-1). In practice, $\ell \in \{1,2,3\}$.

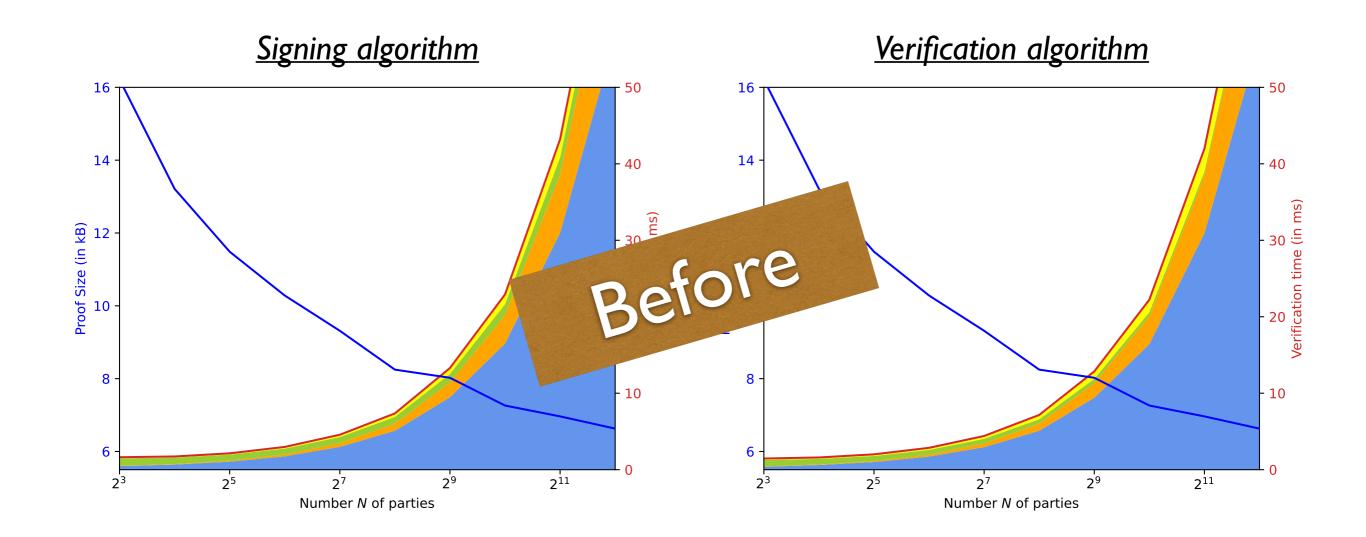
- The verifier just needs to re-emulate ℓ parties (per repetition);
- The prover just needs to emulate $1 + \ell$ parties (per repetition);
- The prover uses a Merkle tree to commit the share;
- The obtained signature size is **larger**;

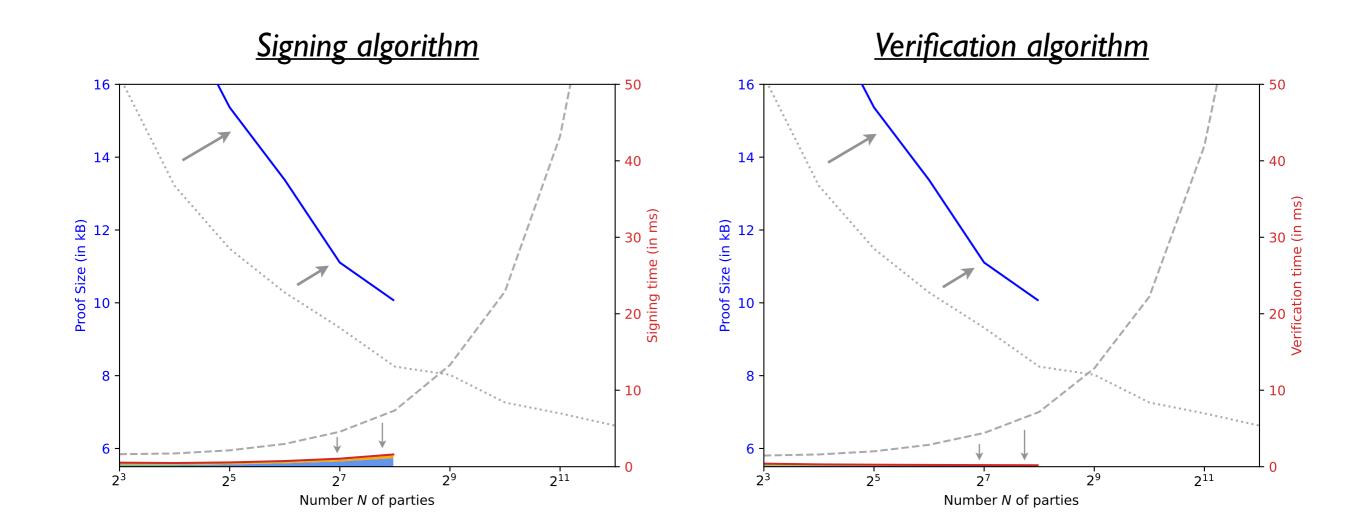
[FR22] Feneuil, Rivain: "Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head" (ePrint 2022/1407)

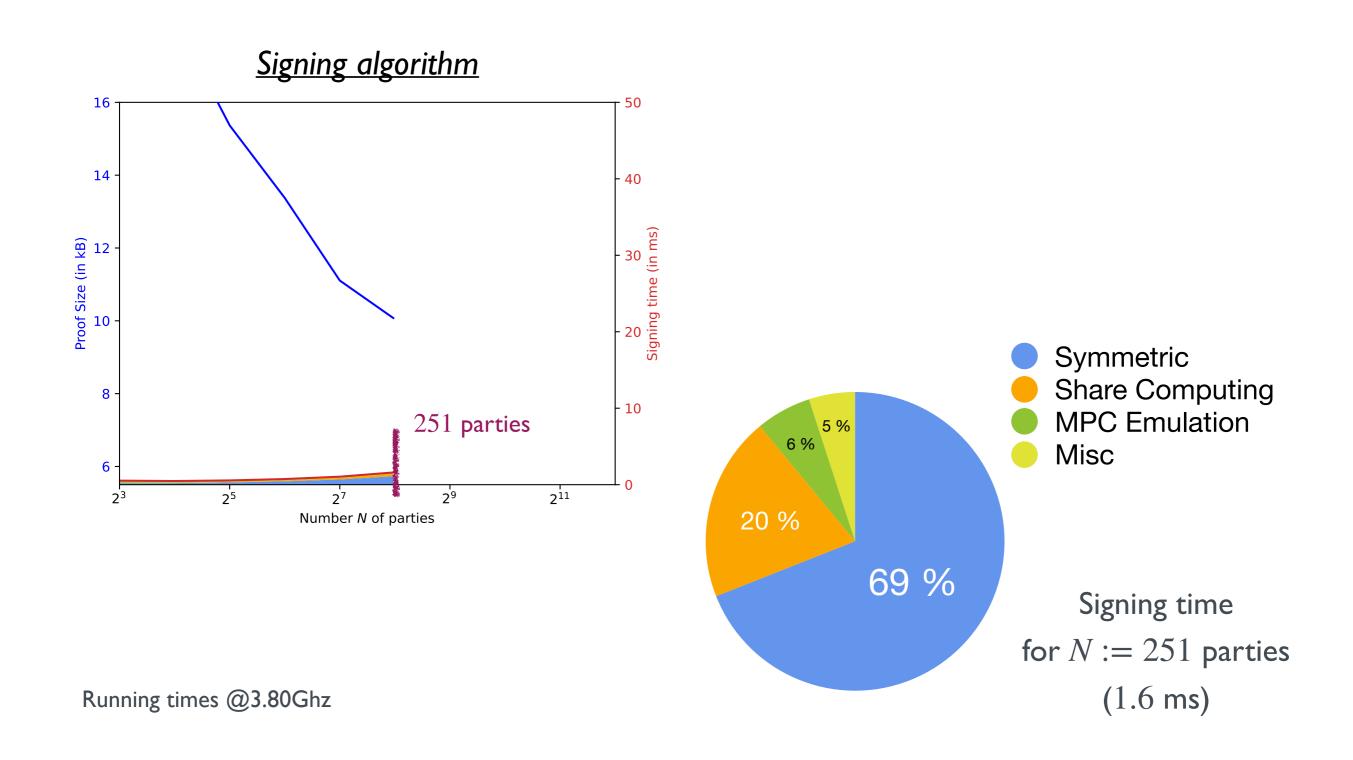
In the *threshold* approach, we used an **low-threshold** sharing scheme. For example, the Shamir's ($\ell + 1, N$)-secret sharing scheme.

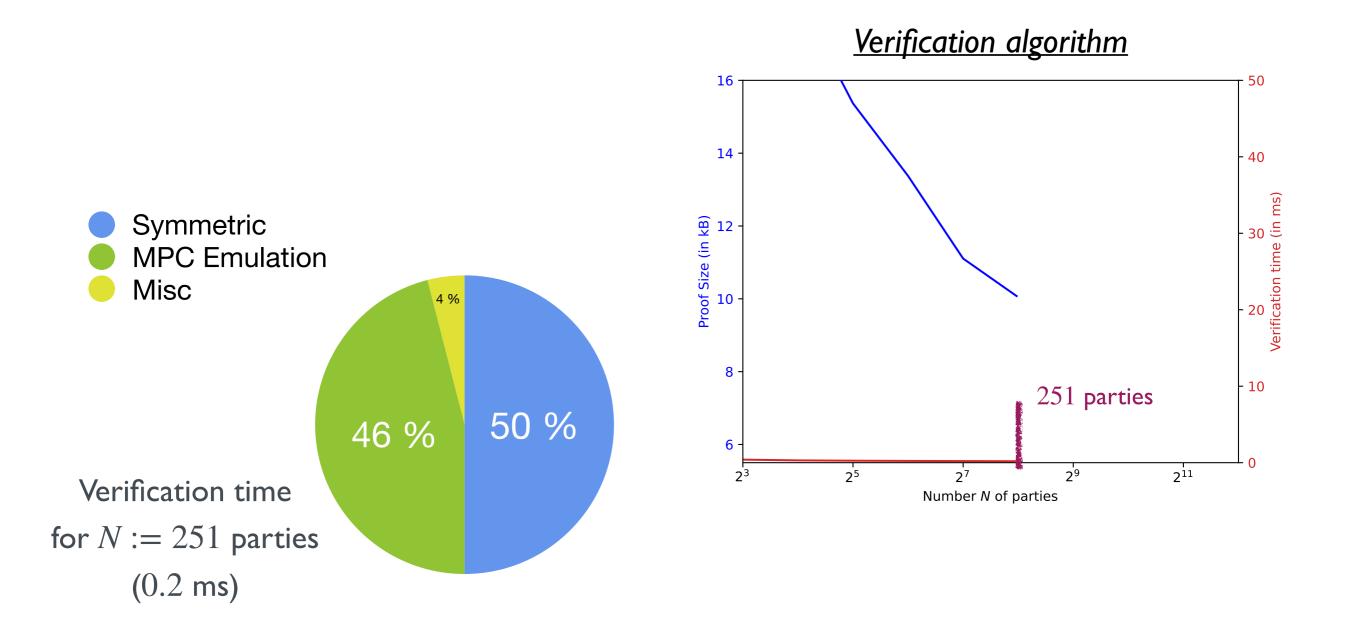
The prover reveals only ℓ shares to the verifier (instead of N-1). In practice, $\ell \in \{1,2,3\}$.

- The verifier just needs to re-emulate ℓ parties (per repetition);
- The prover just needs to emulate $1 + \ell$ parties (per repetition);
- The prover uses a Merkle tree to commit the shares;
- The obtained signature size is **larger**;
- We have the constraint: $N \leq |\mathbb{F}|$.









Running times @3.80Ghz

The existing MPCitH transforms

Traditional Hypercube Threshold

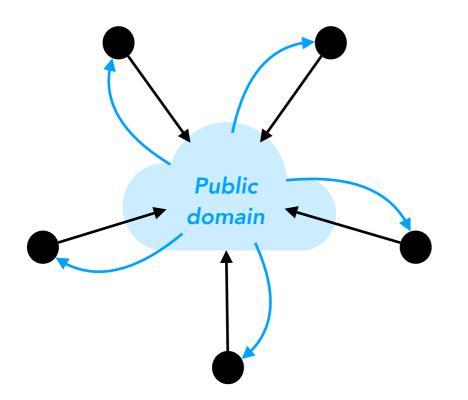
Shorter signature sizes Highly parallelizable Slower signing time Signing time ≈ Verification time Computational cost is mainly due to symmetric primitives Faster signing time Highly parallelizable Very fast verification Larger signature size Restriction # of parties Computational cost is mainly due to arithmetics

MPCitH-based NIST candidates

	Short Instance	Fast Instance
AlMer	Traditional (256-1615)	Traditional (16-57)
Biscuit	Traditional (256)	Traditional (16)
MIRA	Hypercube (256)	Hypercube (32)
MiRith	Traditional (256)	Traditional (16)
	Hypercube (256)	Hypercube (16)
MQOM	Hypercube (256)	Hypercube (32)
RYDE	Hypercube (256)	Hypercube (32)
SDitH	Hypercube (256)	Threshold (251-256)

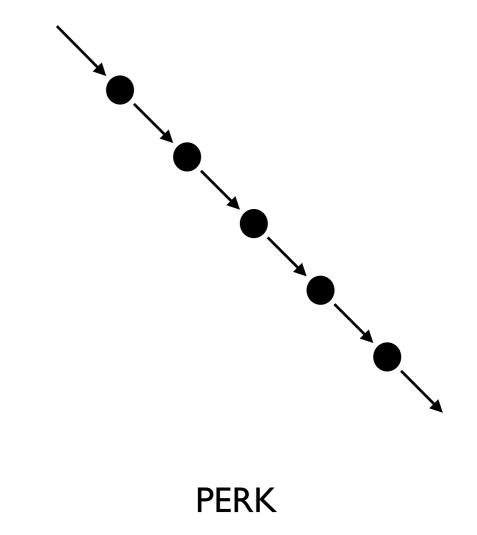
PERK: Shared Permutation on Permuted Kernel Problem

Standard MPC-in-the-Head



AlMer, Biscuit, MIRA, MiRitH MQOM, RYDE, SDitH

Path-based MPC-in-the-Head



VOLE: vector oblivious linear evaluation

"FAEST is the first AES-based signature scheme to be smaller than SPHINCS+"

Will be presented at Crypto'23 the 23rd August

Advantages and limitations

Limitations

- Relatively *slow* (few milliseconds)
 - Greedy use of symmetric cryptography
- Relatively *large* signatures (4-10 KB for L1)
- Signature size: quadratic growth in the security level

Advantages and limitations

Limitations

- Relatively *slow* (few milliseconds)
 - Greedy use of symmetric cryptography
- Relatively *large* signatures (4-10 KB for L1)
- Signature size: quadratic growth in the security level

Advantages

- **Conservative** hardness assumption:
 - No structure (often), no trapdoor
- Small (public) keys
- Good public key + signature size
- Adaptive and *tunable* parameters

MPC-in-the-Head

- Very versatile and tunable
- Can be applied on any one-way function
- A practical tool to build conservative signature schemes

MPC-in-the-Head

- Very versatile and tunable
- Can be applied on any one-way function
- A practical tool to build *conservative* signature schemes

Perspectives

MPCitH transformations: new works in 2022 (hypercube, threshold)

Could lead to follow-up works

Signatures with advanced functionalities:

ring signatures, threshold signatures, multi-signatures,

blind signatures, ...

MPC-in-the-Head

- Very versatile and tunable
- Can be applied on any one-way function
- A practical tool to build conservative signature schemes

Perspectives

MPCitH transformations: new works in 2022 (hypercube, threshold)

Could lead to follow-up works

Signatures with advanced functionalities:

ring signatures, threshold signatures, multi-signatures,

blind signatures, ...

Thank you for your attention.