Post-Quantum Signatures from Secure Multiparty Computation

Thibauld Feneuil

Quantum PEPR PQ-TLS project days

June 29, 2023, Paris

MPC in the Head

- **[IKOS07]** Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn an MPC protocol into a zero knowledge proof of knowledge
- **Generic**: can be apply to any cryptographic problem
- Convenient to build (candidate) **post-quantum signature** schemes
- **Picnic**: submission to NIST (2017)
- Recent NIST call (01/06/2023): 7 MPCitH schemes / 50 submissions

Background: Additive secret sharing

$$\llbracket x \rrbracket = (\llbracket x \rrbracket_1, \dots, \llbracket x \rrbracket_N) \quad \text{s.t.} \quad x = \sum_{i=1}^N \llbracket x \rrbracket_i$$

Any set of N-1 shares is random & independent of x

Background: Proof of knowledge

- **Completeness:** Pr[verif ✓ | honest prover] = 1
- Soundness: $\Pr[\text{verif } I \text{ malicious prover}] \leq \varepsilon$ (e.g. 2^{-128})
- **Zero-knowledge:** verifier learns nothing on *x*

MPCitH: general principle

MPC model

• Jointly compute

$$g(x) = \begin{cases} \mathsf{Accept} & \text{if } F(x) = y \\ \mathsf{Reject} & \text{if } F(x) \neq y \end{cases}$$

- (N-1) private: the views of any N-1 parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol

MPC model

• Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- (N-1) private: the views of any N-1 parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol

Broadcast model

- Parties locally compute on their shares $\llbracket x \rrbracket \mapsto \llbracket \alpha \rrbracket$
- Parties broadcast [[α]] and recompute
 α
- Parties start again (now knowing α)

$$g(y, \alpha) = \begin{cases} \text{Accept} & \text{if } y = \alpha \\ \text{Reject} & \text{if } y \neq \alpha \end{cases}$$

$$g(y, \alpha) = Accept \iff Hx = y$$

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

$\operatorname{Com}^{\rho_1}([\![x]\!]_1)$			
$\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$			
	$Com^{\rho_1}(\llbracket x \rrbracket_1)$ $Com^{\rho_N}(\llbracket x \rrbracket_N)$		

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

② Run MPC in their head

$\operatorname{Com}^{\rho_1}(\llbracket x \rrbracket_1)$					
$\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$					
send broadcast					
$\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N$	•				

<u>Prover</u>

<u>Prover</u>

<u>Prover</u>

<u>Verifier</u>

• **Zero-knowledge** \iff MPC protocol is (N-1)-private

- **Zero-knowledge** \iff MPC protocol is (N-1)-private
- Soundness
 - if $g(y, \alpha) \neq \text{Accept} \rightarrow \text{Verifier rejects}$
 - if $g(y, \alpha) = Accept$, then
 - either [[x]] = sharing of correct witness $F(x) = y \rightarrow$ Prover honest
 - or Prover has cheated for at least one party

 \rightarrow Cheat undetected with proba $\frac{1}{N}$

- **Zero-knowledge** \iff MPC protocol is (N-1)-private
- Soundness
 - if $g(y, \alpha) \neq \text{Accept} \rightarrow \text{Verifier rejects}$
 - if $g(y, \alpha) = Accept$, then
 - either [[x]] = sharing of correct witness $F(x) = y \rightarrow$ Prover honest
 - or Prover has cheated for at least one party

→ Cheat undetected with proba $\frac{1}{N}$

• Parallel repetition

Protocol repeated
$$\tau$$
 times in parallel \rightarrow soundness error $\left(\frac{1}{N}\right)^{\tau}$

Example: matrix multiplication y = Hx

<u>Prover</u>

<u>Verifier</u>

Check $\forall i \neq i^*$ - Commitments $\operatorname{Com}^{\rho_i}(\llbracket x \rrbracket_i)$ - MPC computation $\llbracket \alpha \rrbracket_i = H \cdot \llbracket x \rrbracket_i$ Check $\alpha := \Sigma_i \llbracket \alpha \rrbracket_i = y$

MPCitH: signature schemes

Fiat-Shamir Transformation

A signature scheme relying on the hardness to invert F

Submitted candidates at NIST call

Syndrome Decoding Problem:

SD-in-the-Head

C. Aguilar Melchor, T. Feneuil, N. Gama, S. Gueron, J. Howe, D. Joseph, A. Joux, E. Persichetti, T. Randrianarisoa, M. Rivain, D. Yue.

Rank Syndrome Decoding Problem:

RYDE

N. Aragon, M. Bardet, L. Bidoux, J.-J. Chi-Domínguez, V. Dyseryn, T. Feneuil, P. Gaborit, A. Joux, M. Rivain, J.-P. Tillich, A. Vinçotte.

Min Rank Problem:

MIRA

N. Aragon, M. Bardet, L. Bidoux, J.-J. Chi-Domínguez, V. Dyseryn, T. Feneuil, P. Gaborit, R. Neveu, M. Rivain, J.-P. Tillich.

Multivariate Quadratic Problem:

MQOM: MQ on my Mind

T. Feneuil, M. Rivain

Performances

Shamir's sharing

	Short Instance			Fast Instance		
	sig	t _{sign}	<i>t</i> _{verify}	sig	t _{sign}	<i>t</i> _{verify}
SDitH-256	8.3	13.4	12.5	10.1	5.1	1.6
SDitH-251	8.3	22.1	21.2	10.1	4.4	0.6
MQOM-251	6.6	28.5	27.3	7.9	11.5	10.2
MQOM-31	6.4	44.4	41.7	7.7	17.7	15.5
RYDE	6.0	23.4	20.1	7.4	5.4	4.4
MIRA	5.6	46.8	43.9	7.3	37.4	36.7

Additive sharing

I 28-bit security Isochronous implementations Size in kilobytes, timing in Mcycles @2.60GHz: I millisecond \approx 2.6 Mcycles

Performances

How it scales for high security level?

	Short Instance	Fast Instance		
Category I	5.6 KB \rightarrow 8.3 KB	7.3 KB \rightarrow 10.1 KB		
Category III	11.8 KB → 19.2 KB	$15.5 \text{ KB} \rightarrow 25.6 \text{ KB}$		
Category V	$20.8 \text{ KB} \rightarrow 33.4 \text{ KB}$	27.8 KB \rightarrow 43.9 KB		

What about the public key?

- Between 47 and 120 bytes for category I
- Between 99 and 234 bytes for category V

Advantages and limitations

<u>Limitations</u>

- Relatively slow
 - Greedy use of symmetric cryptography
- Relatively *large* signatures
- **Quadratic** growth in the security level

Advantages

- Conservative hardness assumption
- Small (public) keys
- Highly parallelizable
- Good public key + signature size
- Adaptive and *tunable* parameters

MPC-in-the-Head

- Very versatile and tunable
- Can be applied on any one-way function
- A practical tool to build conservative signature schemes
 - No structure in the security assumption

Perspectives

- Additive-based MPCitH: stable
- Low-threshold-based MPCitH: new approach, could lead to follow-up works

References

- [AGHHJY22] C.Aguilar-Melchor, N. Gama, J. Howe, A. Hülsing, D. Joseph, D.Yue. The Return of the SDitH. Eurocrypt 2023.
- [AHIV17] S.Ames, C. Hazay, Y. Ishai, M.Venkitasubramaniam. Ligero: Lightweight sublinear arguments without a trusted setup. CCS 2017.
- [BN20] C. Baum, A. Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. PKC 2020.
- [CDGORRSZ17] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C. Rechberger, D. Slamanig, G. Zaverucha. Post-quantum zero-knowledge and signatures from symmetric-key primitives. CCS 2017.
- [FR22] T. Feneuil, M. Rivain. Threshold Linear Secret Sharing to the Rescue of MPC-inthe-Head. Cryptology ePrint Archive, paper 2022/1407.
- [GMO16] I. Giacomelli, J. Madsen, C. Orlandi. ZKBoo: Faster zero-knowledge for Boolean circuits. USENIX Security 2016
- [IKOS07] Y. Ishai, E. Kushilevitz, R. Ostrovsky, A. Sahai. Zero-knowledge from secure multiparty computation. STOC 2007.
- [KKW18] J. Katz, V. Kolesnikov, X. Wang. Improved non-interactive zero knowledge with applications to post-quantum signatures. CCS 2018.