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Introduction



MPC in the Head

• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 
“Zero-knowledge from secure multiparty computation” (STOC 2007) 

• Turn an MPC protocol into a zero knowledge proof of knowledge 

• Generic: can be apply to any cryptographic problem 

• Convenient to build (candidate) post-quantum signature schemes 

• Picnic: submission to NIST (2017) 

• Recent NIST call (01/06/2023): 7 MPCitH schemes / 50 submissions
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Background: Additive secret sharing

          s.t.     

Any set of   shares is random & independent of 

[[x]] = ([[x]]1, …, [[x]]N) x =
N

∑
i=1

[[x]]i

N − 1 x



Background: Proof of knowledge

• Completeness: Pr[verif ✓ | honest prover] = 1 

• Soundness: Pr[verif ✓ | malicious prover]   (e.g.  ) 

• Zero-knowledge: verifier learns nothing on 

≤ ε 2−128

x
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⋮
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x
F(x) = y

Output y



MPCitH: general principle
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 [[x]]1
[[α]]1 = H ⋅ [[x]]1

𝒫1 𝒫2 𝒫N

⋯ [[x]]2
[[α]]2 = H ⋅ [[x]]2

 [[x]]N
[[α]]N = H ⋅ [[x]]N

[[α]]1 [[α]]2 [[α]]N+ + ⋯ +    = α

public  
recovery

mult. by  
is linear

H

 g(y, α) = {Accept if y = α
Reject if y ≠ α

 g(y, α) = Accept ⟺ Hx = y

Example: matrix multiplication y = Hx
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Prover Verifier{Comρi([[x]]i)}

{[[α]]i}

i*
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      - Commitments  
      - MPC computation  
Check 

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = H ⋅ [[x]]i
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MPCitH: signature schemes
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An zero-knowledge proof
of knowledge for a pre-image of F

A signature scheme relying on
the hardness to invert F

Fiat-Shamir Transformation

An MPC protocol
verifying a pre-image of F
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Shamir’s secret sharing
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Arithmetization ①

②

③
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③

Build a signature scheme from MPC



Syndrome Decoding (Hamming metric)
Syndrome Decoding (rank metric)
MinRank
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 satisfies  
 

There exists  

such that  for all 

x ∈ 𝔽n
qm wtR(x) ≤ r

⟺

P(X) := Xqr +
n

∑
i=1

piXqi

P(xi) = 0 xi
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An MPC protocol
verifying a pre-image of F

An zero-knowledge proof
of knowledge for a pre-image of F

Additive sharing
[KKW18,AGHHJY22]

Low-threshold
Shamir’s secret sharing

[FR22]

Use only a broadcast channel
Perform only linear operations

Faster signing time
Highly parallelizable
Very fast verification

A bit simpler implementation
Larger signatures

Restriction # of parties
Computational cost is mainly

due to arithmetics

Shorter signatures
Highly parallelizable
Slower signing time

Signing time  verification time
Computational cost is mainly

due to symmetric primitive

≈

Build a signature scheme from MPC



An zero-knowledge proof
of knowledge for a pre-image of F

A signature scheme relying on
the hardness to invert F

Fiat-Shamir 
Transformation

Prover Verifier

c
r
z

Signer Verifier(c, z)
r := Hash(m, c)

Build a signature scheme from MPC



Syndrome Decoding Problem:

SD-in-the-Head 
C. Aguilar Melchor, T. Feneuil, N. Gama, S. Gueron, J. Howe, D. Joseph, 

A. Joux, E. Persichetti, T. Randrianarisoa, M. Rivain, D. Yue.

Rank Syndrome Decoding Problem:

RYDE 
N. Aragon, M. Bardet, L. Bidoux, J.-J. Chi-Domínguez, V. Dyseryn,  
T. Feneuil, P. Gaborit, A. Joux, M. Rivain, J.-P. Tillich, A. Vinçotte.

Min Rank Problem:

MIRA 
N. Aragon, M. Bardet, L. Bidoux, J.-J. Chi-Domínguez, V. Dyseryn, 

 T. Feneuil, P. Gaborit, R. Neveu, M. Rivain, J.-P. Tillich.

Multivariate Quadratic Problem:

MQOM: MQ on my Mind 
T. Feneuil, M. Rivain

Submitted candidates at NIST call



Short Instance Fast Instance

SDitH-256 8.3 13.4 12.5 10.1 5.1 1.6

SDitH-251 8.3 22.1 21.2 10.1 4.4 0.6

MQOM-251 6.6 28.5 27.3 7.9 11.5 10.2

MQOM-31 6.4 44.4 41.7 7.7 17.7 15.5

RYDE 6.0 23.4 20.1 7.4 5.4 4.4

MIRA 5.6 46.8 43.9 7.3 37.4 36.7

128-bit security
Isochronous implementations
Size in kilobytes, timing in Mcycles

@2.60GHz:  1 millisecond  2.6 Mcycles≈

|sig | tsign tverify |sig | tsign tverify

Additive sharing

Shamir’s sharing

Performances



How it scales for high security level?

What about the public key?

Between 47 and 120 bytes for category I

Between 99 and 234 bytes for category V

Short Instance Fast Instance

Category I

Category III

Category V

5.6 KB → 8.3 KB 7.3 KB → 10.1 KB

11.8 KB → 19.2 KB 15.5 KB → 25.6 KB

20.8 KB → 33.4 KB 27.8 KB → 43.9 KB

Performances



Limitations

Relatively slow

Greedy use of symmetric cryptography

Relatively large signatures

Quadratic growth in the security level

Advantages

Conservative hardness assumption

Small (public) keys

Highly parallelizable

Good public key + signature size

Adaptive and tunable parameters

Advantages and limitations



MPC-in-the-Head

Very versatile and tunable

 Can be applied on any one-way function

A practical tool to build conservative signature schemes

No structure in the security assumption

Perspectives

Additive-based MPCitH: stable

Low-threshold-based MPCitH: new approach, could lead to follow-up works

Conclusion
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