Post-Quantum Signatures from
Secure Multiparty Computation

Thibauld Feneuil
Quantum PEPR PQ-TLS project days
June 29, 2023, Paris

0 h
U w. SORBONNE
CRYPTOCECXPERTS b UNIVERSITE

WE INNOVATE TO SECURE YOUR BUSINESS

MPC in the H_ead

e [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

® Turn an MPC protocol into a zero knowledge proof of knowledge
® Generic: can be apply to any cryptographic problem

e Convenient to build (candidate) post-quantum signature schemes
® Picnic: submission to NIST (2017)

® Recent NIST call (01/06/2023): 7 MPCitH schemes / 50 submissions

PPN

One-way function Multiparty computation (MPC)

o Input sharing [[x]]
\ Joint evaluation of:

» Accept if F(x) =y
Reject it F(x) #y

F:x—y

E.g. AES, MQ system,
Syndrome decoding

Signature scheme

Zero-knowledge proof

X Yy
—
N
. . OK you
Prover Verifier | knowx

Gl e P min i SRRt e e o e = O L e T e Sl b

/ msg
Hash
function

One-way function Multiparty computation (MPC)

o o Input sharing [[x]]

L X |
Fx Y ‘: M Joint evaluation of:
E.g. AES, MQ system, ‘. ° ; Accept it F(x) =y

5\},‘/ - 800 = {Reject it F(x) #y

MPC in the Head transform

Syndrome decoding

Signature scheme f Zero-knowledge proof

/ msg

“ X y
Hash | - >
function —_— OK you
| er

Prover Verifi know x

Background: Additive secret sharing

N
] = ([xDy .o [xDy) st x =) [«
i=1

Any set of N — 1 shares is random & independent of x

Commitment

>
< Challenge 1
Response 1 >
« Challe.nge n
Response n S
Prover Veritier

® Completeness: Prverif v’ | honest prover] = 1
® Soundness: Prlverit v | malicious prover] < ¢ (e.g. 2128

® Zero-knowledge: verifier learns nothing on x

MPCitH: general principle

Jointly compute

Accept if F(x) =1y
gx) = {R | |
eject if F(x) #y

(N — 1) private: the views of any N — 1
parties provide no information on x

Semi-honest model: assuming that the
parties follow the steps of the protocol

Hxﬂ1

® ®
AN

Public

Hxﬂz

domain
o e

ﬂxﬂs

|

@
[Xﬂ4

HXH3

Jointly compute
Accept if F(x) =1y
gx) = | |
Reject if F(x) #y

(N — 1) private: the views of any N — 1
parties provide no information on x

Semi-honest model: assuming that the
parties follow the steps of the protocol

Broadcast model

» Parties locally compute on their shares

[x] ~ [l

» Parties broadcast [[a]] and recompute
a

» Parties start again (now knowing a)

linear
function ¢

&

&

\

HXH1
[adl, = e(lxIly)

J

lall,

I

.

ﬂxﬂz
lall, = e(lx1l,)

_/

lall,

|

|

Lng
r N
HXHN'
[[a]]N = C”([[x]]N)
- i y,

[[05]]1\7

public

recovery

a

linear
function ¢

linear

function y

&

&

HXH1
[adl, = e(lxIly)

\

J

lall,

I

g

v
1414

|

\

ﬂxﬂz
lall, = e(lx1l,)

_/

lall,

,B]]Z — l/j(aa [[x]]2ﬂ

v
151>

PN

HXHN'

_ I

[[a]]N = C”([[x]]]v)

J

'
-+ [[05]]1\7

E[ﬁ]]]v = y(a, [[x]]]vﬂ

v
+ 221N,

public

recovery

=

public

recovery

= p

P, P, Py

4 \ (A r)
x4 1l Ll
linear [edl; = @(lx1y) | | Lad, = @(Ix1,) lally = ¢(lxly) | public
function ¢ J L J \ i “ recovery
[oll;, + Lall, + -+ Lally =
linear EIﬂIh = yl(a, IIXII@ EI,BIIz = y(a, IIXIIzﬂ E[ﬁIIN =y, IIXIINJ public
function y I I I
! i] recovery
s, + 0L 4+ e+ Wy =
Accept
and so on... g:(y,a,,ﬁ,---)'—) :
Reject

multiplication

is linear

P P,
4 N (D
]l [x]1l,
mult. byH lall, = H - [[Ix]I; lall, = H - [Ix]],
§ J L v,

Accept ity=a
gy, a) =14 _
Reject

ity #a

|

_

|

g(y,a) = Accept

tgJN
-
[[x]]N
lally =H-lixly| public
i Z recovery
[[05]]]\7 -
Hx =y

Prover Verifier

1) Generate and commit shares Com”([[x]],)

Lxll = (I, - [xTly) Com([Ix]ly)

Prover Verifier

(1) Generate and commit shares

[x]] = ([[x]]]’ ceey [[x]]N)

@ Run MPC in their head

[x X // X1

[Ty & I) Q x5

[[x]]4

Prover

Com”'([[x]])

Coilol.pN([x1ly)

send broadcast

Lally, ..., [ally

Verifier

(1) Generate and commit shares

[x]] = ([[x]]]’ ceey [[x]]N)

@ Run MPC in their head

[x X // X1

[Ty & I) Q x5

[[x]]4

Prover

Com”'([[x]])

Coilol.pN([x1ly)

send broadcast

Lally, ..., [ally

l'*

@ Chose a random party
i* <% {1,....N}

Verifier

(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

@ Open parties {1,..., N}\{i*}

Prover

Com”([[x]],)

CoilolopN([x1ly)

send broadcast

Lally, ..., [ally

l'>l<

(IxT p)icei

@ Chose a random party
i* <% {1,....N}

Verifier

(1) Generate and commit shares Com”1([[x],)

[xI = (Ix1y, -, [xDy) CoilolopN([xIly)

@ Run MPC in their head

send broadcast

[[a]]la sy [[a]]N
»| @ Chose a random party
. i* <% {1,....N}
>
® Check Vi # i*
- Commitments Com”i([[x]],)
(lx1l;, pi)i;&i* MPC - _
@ Open parties {1,..., N}\{i*} > i computation [[all; = ¢([lx]l;)

Check g(y,) = Accept

Prover Verifier

MitH ransorm

® Zero-knowledge <<= MPC protocol is (N — 1)-private

MCit trasfor

e Zero-knowledge <= MPC protocol is (N — 1)-private

® Soundness
» it g(y, @) # Accept — Verifier rejects
> if g(y, @) = Accept, then
- either [x]] = sharing of correct witness F(x) =y — Prover honest
- or Prover has cheated for at least one party

1
— Cheat undetected with proba v

MCit trasfor

e Zero-knowledge <= MPC protocol is (N — 1)-private

® Soundness
» it g(y, @) # Accept — Verifier rejects
> if g(y, @) = Accept, then
- either [x]] = sharing of correct witness F(x) =y — Prover honest
- or Prover has cheated for at least one party

1
— Cheat undetected with proba v

e Parallel repetition

1 T
Protocol repeated 7 times in parallel = soundness error <N)

P P
(N\ ()
[x1l, [x1l,
[[a]h =H - [[x]]1 l[a]]z =H - [[x]]z
g l /L l J
' '
lally + Lall,
Prover (Com (1)
_ .. {[[a]]i}
\\v / ‘ e
—) (\o <
- I = {[x]];, pi}i;éi*

quN
r N
B4l N
k[[a]]z\/ = II{ . [[x]]NJ
v
+ lally -

Verifier

Check Vi #£ i*

- Commitments Com”i([[x]],)

- MPC computation [[a]l; = H - [[x]],
Checka:=2Z[a], = y

Picnicl

Malicious
Model

Broadcast

Picnicl

N\ &
Q)(\)\/ ?3» Malicious
- Model
Additive

Sharing

N\ &
CO(\)\’ ?3» Malicious
Model
Additive

Sharing

Picnic2 Y_/ "
\ \ &
* Low-threshold

-------------- _ | SSS

MPC-in-the-Head Paradigm

Malicious
Model

Choice of an
one-way function

Arithmetization l D

Circuit for a
pre-image verification

|
An MPC protocol

verifying a pre-image of F
Low-threshold

Additive sharing ©) ©) Shamir’s secret sharing

An zero-knowledge proof
of knowledge for a pre-image of F

Fiat-Shamir Transformation l @

A signature scheme relying on
the hardness to invert F’

. Syndrome Decoding (Hamming metric)
Choice of an Syndrome Decoding (rank metric)

[|

|
one-way function = MinRank

= Multivariate Quadratic

Arithmetization l @D

Circuit for a
pre-image verification

|
An MPC protocol

verifying a pre-image of F
Low-threshold

Additive sharing © ® Shamir’s secret sharing

An zero-knowledge proof
of knowledge for a pre-image of F

Fiat-Shamir Transformation l @

A signature scheme relying on
the hardness to invert F

Choice of an
one-way function

. o x € I, satisfies wty(x) < r
Arithmetization l @D q r(X) <

=
Circuit for a There exists P(X) := X9 + Zpini
pre-image verification 1
such that P(x;) = O for all x;
@
An MPC protocol
verifying a pre-image of F
Low-threshold

Additive sharing © ® Shamir’s secret sharing

An zero-knowledge proof
of knowledge for a pre-image of F

Fiat-Shamir Transformation l @

A signature scheme relying on
the hardness to invert F

Use only a broadcast channel

_—"Perform only linear operations
An MPC protocol

verifying a pre-image of I

Low-threshold
Additive sharing o .
[KKW | 8,AGHH|Y22] Shamir’s ?Fi(zilz‘]et sharmg
Shorter signatures o
Highly parallelizable :I'flsl'iler s;%r;“]jt;n;lee
Slower signing time ighly p iz
Signing time =~ verification time .Ve.ry fast Yerlﬁcatlon |
Computational cost is mainly A | led f A bit simpler |mplementat|on
due to symmetric primitive N Zero-knowiedge proo Larger signatures

Restriction # of parties
Computational cost is mainly
due to arithmetics

of knowledge for a pre-image of F

An zero-knowledge proof

of knowledge for a pre-image of F N
—
Fiat-Shamir Prover > Verifier
Transformation
v

A signature scheme relying on
the hardness to invert F

r := Hash(m, c¢) a
Signer (C’ Z) > Verifier

m Syndrome Decoding Problem:

SD-in-the-Head

C.Aguilar Melchor, T. Feneuil, N. Gama, S. Gueron, J. Howe, D. Joseph,
A. Joux, E. Persichetti, T. Randrianarisoa, M. Rivain, D.Yue.

® Rank Syndrome Decoding Problem:

RYDE

N.Aragon, M. Bardet, L. Bidoux, J.-]. Chi-Dominguez,V. Dyseryn,
T. Feneuil, P. Gaborit, A. Joux, M. Rivain, J.-P.Tillich, A.Vingotte.

®w Min Rank Problem:

MIRA

N.Aragon, M. Bardet, L. Bidoux, J.-]. Chi-Dominguez,V. Dyseryn,
T. Feneuil, P. Gaborit, R. Neveu, M. Rivain, |.-P.Tillich.

m Multivariate Quadratic Problem:

MQOM: MQ on my Mind

T. Feneuil, M. Rivain

Shamir’s sharing

Short Instance Fast Instance
[s1g] | Lsign | Tveripy | IS18] | Liign | Dieripy
SDitH-256 8.3 13.4 12.5 10.1 5.1 1.6
SDitH-251 3.3 22.1 21.2 10.1 4.4 0.6
MQOM-251 6.6 28.5 27.3 7.9 11.5 10.2
MQOM-31 6.4 44.4 41.7 /.7 17.7 15.5
RYDE 6.0 23.4 20.1 7.4 5.4 4.4
MIRA 5.6 46.8 43.9 /.3 37.4 36.7
Additive sharing) e secuy

Isochronous implementations
Size in kilobytes, timing in Mcycles
@2.60GHz: | millisecond ~ 2.6 Mcycles

How it scales for high security level?

Short Instance Fast Instance
Category | 5.6 KB — 8.3 KB 7.3 KB — 10.1 KB
Category Il 11.8 KB — 19.2 KB 15.5 KB —- 25.6 KB
Category V. | 20.8 KB — 33.4 KB 27.8 KB — 43.9 KB

What about the public key?
= Between 47 and 120 bytes for category |

= Between 99 and 234 bytes for categoryV

Limitations

= Relatively slow
= Greedy use of symmetric cryptography
= Relatively large signatures

= Quadratic growth in the security level

Advantages

= Conservative hardness assumption
= Small (public) keys

= Highly parallelizable

= Good public key + signature size

= Adaptive and tunable parameters

MPC-in-the-Head

= Very versatile and tunable
= Can be applied on any one-way function
= A practical tool to build conservative signature schemes

= No structure in the security assumption

Perspectives

s Additive-based MPCitH: stable

= | ow-threshold-based MPCitH: new approach, could lead to follow-up works

[AGHH]Y22] C.Aguilar-Melchor; N. Gama, J. Howe, A. Hulsing, D. Joseph, D.Yue.
The Return of the SDitH. Eurocrypt 2023.

[AHIV17] S.Ames, C. Hazay, Y. Ishai, M.Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. CCS 2017.

[BN20] C. Baum, A. Nof. Concretely-efficient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. PKC 2020.

[CDGORRSZI7] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C.
Rechberger, D. Slamanig, G. Zaverucha. Post-quantum zero-knowledge and signatures
from symmetric-key primitives. CCS 2017.

[FR22] T. Feneuil, M. Rivain. Threshold Linear Secret Sharing to the Rescue of MPC-in-
the-Head. Cryptology ePrint Archive, paper 2022/1407.

[GMO16] I. Giacomelli,). Madsen,C. Orlandi. ZKBoo: Faster zero-knowledge for
Boolean circuits. USENIX Security 2016

[IKOSO07] Y. Ishai, E. Kushilevitz, R. Ostrovsky, A. Sahai. Zero-knowledge from secure
multiparty computation. STOC 2007.

[KKW18] |. Katz,V. Kolesnikov, X.Wang. Improved non-interactive zero knowledge with
applications to post-quantum signatures. CCS 2018.

