
Post-Quantum Signatures from
Secure Multiparty Computation

Thibauld Feneuil

Quantum PEPR PQ-TLS project days

June 29, 2023, Paris

Introduction

MPC in the Head

• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
“Zero-knowledge from secure multiparty computation” (STOC 2007)

• Turn an MPC protocol into a zero knowledge proof of knowledge

• Generic: can be apply to any cryptographic problem

• Convenient to build (candidate) post-quantum signature schemes

• Picnic: submission to NIST (2017)

• Recent NIST call (01/06/2023): 7 MPCitH schemes / 50 submissions

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

One-way function

E.g. AES, MQ system,
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

MPC in the Head transform

Background: Additive secret sharing

 s.t.

Any set of shares is random & independent of

[[x]] = ([[x]]1, …, [[x]]N) x =
N

∑
i=1

[[x]]i

N − 1 x

Background: Proof of knowledge

• Completeness: Pr[verif ✓ | honest prover] = 1

• Soundness: Pr[verif ✓ | malicious prover] (e.g.)

• Zero-knowledge: verifier learns nothing on

≤ ε 2−128

x

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier

Secret
s.t.

x
F(x) = y

Output y

MPCitH: general principle

MPC model

[[x]]1

• Jointly compute

• private: the views of any
parties provide no information on

• Semi-honest model: assuming that the
parties follow the steps of the protocol

• Broadcast model

‣ Parties locally compute on their shares

‣ Parties broadcast and recompute

‣ Parties start again (now knowing)

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

MPC model

[[x]]1

• Jointly compute

• private: the views of any
parties provide no information on

• Semi-honest model: assuming that the
parties follow the steps of the protocol

• Broadcast model

‣ Parties locally compute on their shares

‣ Parties broadcast and recompute

‣ Parties start again (now knowing)

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

Public
domain

 [[x]]1
[[α]]1 = φ([[x]]1)

𝒫1 𝒫2 𝒫N

⋯ [[x]]2
[[α]]2 = φ([[x]]2)

 [[x]]N
[[α]]N = φ([[x]]N)

[[α]]1 [[α]]2 [[α]]N+ + ⋯ + = α

public
recovery

linear
function φ

 [[x]]1
[[α]]1 = φ([[x]]1)

𝒫1 𝒫2 𝒫N

⋯ [[x]]2
[[α]]2 = φ([[x]]2)

 [[x]]N
[[α]]N = φ([[x]]N)

[[α]]1 [[α]]2 [[α]]N+ + ⋯ + = α

[[β]]1 = ψ(α, [[x]]1) [[β]]2 = ψ(α, [[x]]2) [[β]]N = ψ(α, [[x]]N)

[[β]]1 [[β]]2 [[β]]N+ + ⋯ + = β

public
recovery

linear
function φ

linear
function ψ

public
recovery

 [[x]]1
[[α]]1 = φ([[x]]1)

𝒫1 𝒫2 𝒫N

⋯ [[x]]2
[[α]]2 = φ([[x]]2)

 [[x]]N
[[α]]N = φ([[x]]N)

[[α]]1 [[α]]2 [[α]]N+ + ⋯ + = α

[[β]]1 = ψ(α, [[x]]1) [[β]]2 = ψ(α, [[x]]2) [[β]]N = ψ(α, [[x]]N)

[[β]]1 [[β]]2 [[β]]N+ + ⋯ +

and so on… g : (y, α, β, …) ↦ {Accept

Reject

 = β

public
recovery

linear
function φ

linear
function ψ

public
recovery

 [[x]]1
[[α]]1 = H ⋅ [[x]]1

𝒫1 𝒫2 𝒫N

⋯ [[x]]2
[[α]]2 = H ⋅ [[x]]2

 [[x]]N
[[α]]N = H ⋅ [[x]]N

[[α]]1 [[α]]2 [[α]]N+ + ⋯ + = α

public
recovery

mult. by
is linear

H

 g(y, α) = {Accept if y = α
Reject if y ≠ α

 g(y, α) = Accept ⟺ Hx = y

Example: matrix multiplication y = Hx

MPCitH transform

Prover Verifier

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Chose a random party
i* ←$ {1,…, N}i*

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Chose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

i*

MPCitH transform

Prover Verifier

① Generate and commit shares
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast
 [[α]]1, …, [[α]]N

③ Chose a random party
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

i* ⑤ Check
 - Commitments
 - MPC computation
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

MPCitH transform
• Zero-knowledge MPC protocol is -private

• Soundness

‣ if → Verifier rejects

‣ if , then

- either = sharing of correct witness → Prover honest

- or Prover has cheated for at least one party

 → Cheat undetected with proba

• Parallel repetition

Protocol repeated times in parallel → soundness error

⟺ (N − 1)

g(y, α) ≠ Accept

g(y, α) = Accept

[[x]] F(x) = y

1
N

τ (1
N)

τ

MPCitH transform
• Zero-knowledge MPC protocol is -private

• Soundness

‣ if → Verifier rejects

‣ if , then

- either = sharing of correct witness → Prover honest

- or Prover has cheated for at least one party

 → Cheat undetected with proba

• Parallel repetition

Protocol repeated times in parallel → soundness error

⟺ (N − 1)

g(y, α) ≠ Accept

g(y, α) = Accept

[[x]] F(x) = y

1
N

τ (1
N)

τ

MPCitH transform
• Zero-knowledge MPC protocol is -private

• Soundness

‣ if → Verifier rejects

‣ if , then

- either = sharing of correct witness → Prover honest

- or Prover has cheated for at least one party

 → Cheat undetected with proba

• Parallel repetition

Protocol repeated times in parallel → soundness error

⟺ (N − 1)

g(y, α) ≠ Accept

g(y, α) = Accept

[[x]] F(x) = y

1
N

τ (1
N)

τ

Prover Verifier{Comρi([[x]]i)}

{[[α]]i}

i*

{[[x]]i, ρi}i≠i*

Check
 - Commitments
 - MPC computation
Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = H ⋅ [[x]]i
α := Σi[[α]]i = y

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

 [[x]]1
[[α]]1 = H ⋅ [[x]]1

𝒫1 𝒫2 𝒫N

⋯ [[x]]2
[[α]]2 = H ⋅ [[x]]2

 [[x]]N
[[α]]N = H ⋅ [[x]]N

[[α]]1 [[α]]2 [[α]]N+ + ⋯ + = α

Example: matrix multiplication y = Hx

MPCitH: signature schemes

IK
OS
07

GM
O1
6

CD
GO
RR
SZ
17

MPC-in-the-Head Paradigm

Picnic1

IK
OS
07

GM
O1
6

CD
GO
RR
SZ
17 AH

IV
17

Broadcast

Ligero

Malicious
Model

MPC-in-the-Head Paradigm

Picnic1

IK
OS
07

GM
O1
6

CD
GO
RR
SZ
17 AH

IV
17

KK
W1
8

BN
20

AG
HH
JY
22

Broadcast

Ligero

Additive
Sharing

Malicious
Model

MPC-in-the-Head Paradigm

Picnic1

Picnic2

IK
OS
07

GM
O1
6

CD
GO
RR
SZ
17 AH

IV
17

KK
W1
8

BN
20

AG
HH
JY
22

FR
22

Broadcast

Ligero

Additive
Sharing

Low-threshold
LSSS

Malicious
Model

MPC-in-the-Head Paradigm

Picnic1

Picnic2

IK
OS
07

GM
O1
6

CD
GO
RR
SZ
17

Picnic1

AH
IV
17

KK
W1
8

BN
20

AG
HH
JY
22

FR
22

Additive
Sharing

Low-threshold
LSSS

Signature
Schemes

Malicious
Model

Broadcast

Ligero

MPC-in-the-Head Paradigm

Picnic2

An zero-knowledge proof
of knowledge for a pre-image of F

A signature scheme relying on
the hardness to invert F

Fiat-Shamir Transformation

An MPC protocol
verifying a pre-image of F

Additive sharing Low-threshold
Shamir’s secret sharing

Choice of an
one-way function

Circuit for a
pre-image verification

Arithmetization ①

②

③

④

③

Build a signature scheme from MPC

Syndrome Decoding (Hamming metric)
Syndrome Decoding (rank metric)
MinRank
Multivariate Quadratic

Build a signature scheme from MPC

An zero-knowledge proof
of knowledge for a pre-image of F

A signature scheme relying on
the hardness to invert F

Fiat-Shamir Transformation

An MPC protocol
verifying a pre-image of F

Additive sharing Low-threshold
Shamir’s secret sharing

Choice of an
one-way function

Circuit for a
pre-image verification

Arithmetization ①

②

③

④

③

 satisfies

There exists

such that for all

x ∈ 𝔽n
qm wtR(x) ≤ r

⟺

P(X) := Xqr +
n

∑
i=1

piXqi

P(xi) = 0 xi

Build a signature scheme from MPC

An zero-knowledge proof
of knowledge for a pre-image of F

A signature scheme relying on
the hardness to invert F

Fiat-Shamir Transformation

An MPC protocol
verifying a pre-image of F

Additive sharing Low-threshold
Shamir’s secret sharing

Choice of an
one-way function

Circuit for a
pre-image verification

Arithmetization ①

②

③

④

③

An MPC protocol
verifying a pre-image of F

An zero-knowledge proof
of knowledge for a pre-image of F

Additive sharing
[KKW18,AGHHJY22]

Low-threshold
Shamir’s secret sharing

[FR22]

Use only a broadcast channel
Perform only linear operations

Faster signing time
Highly parallelizable
Very fast verification

A bit simpler implementation
Larger signatures

Restriction # of parties
Computational cost is mainly

due to arithmetics

Shorter signatures
Highly parallelizable
Slower signing time

Signing time verification time
Computational cost is mainly

due to symmetric primitive

≈

Build a signature scheme from MPC

An zero-knowledge proof
of knowledge for a pre-image of F

A signature scheme relying on
the hardness to invert F

Fiat-Shamir
Transformation

Prover Verifier

c
r
z

Signer Verifier(c, z)
r := Hash(m, c)

Build a signature scheme from MPC

Syndrome Decoding Problem:

SD-in-the-Head
C. Aguilar Melchor, T. Feneuil, N. Gama, S. Gueron, J. Howe, D. Joseph,

A. Joux, E. Persichetti, T. Randrianarisoa, M. Rivain, D. Yue.

Rank Syndrome Decoding Problem:

RYDE
N. Aragon, M. Bardet, L. Bidoux, J.-J. Chi-Domínguez, V. Dyseryn,
T. Feneuil, P. Gaborit, A. Joux, M. Rivain, J.-P. Tillich, A. Vinçotte.

Min Rank Problem:

MIRA
N. Aragon, M. Bardet, L. Bidoux, J.-J. Chi-Domínguez, V. Dyseryn,

 T. Feneuil, P. Gaborit, R. Neveu, M. Rivain, J.-P. Tillich.

Multivariate Quadratic Problem:

MQOM: MQ on my Mind
T. Feneuil, M. Rivain

Submitted candidates at NIST call

Short Instance Fast Instance

SDitH-256 8.3 13.4 12.5 10.1 5.1 1.6

SDitH-251 8.3 22.1 21.2 10.1 4.4 0.6

MQOM-251 6.6 28.5 27.3 7.9 11.5 10.2

MQOM-31 6.4 44.4 41.7 7.7 17.7 15.5

RYDE 6.0 23.4 20.1 7.4 5.4 4.4

MIRA 5.6 46.8 43.9 7.3 37.4 36.7

128-bit security
Isochronous implementations
Size in kilobytes, timing in Mcycles

@2.60GHz: 1 millisecond 2.6 Mcycles≈

|sig | tsign tverify |sig | tsign tverify

Additive sharing

Shamir’s sharing

Performances

How it scales for high security level?

What about the public key?

Between 47 and 120 bytes for category I

Between 99 and 234 bytes for category V

Short Instance Fast Instance

Category I

Category III

Category V

5.6 KB → 8.3 KB 7.3 KB → 10.1 KB

11.8 KB → 19.2 KB 15.5 KB → 25.6 KB

20.8 KB → 33.4 KB 27.8 KB → 43.9 KB

Performances

Limitations

Relatively slow

Greedy use of symmetric cryptography

Relatively large signatures

Quadratic growth in the security level

Advantages

Conservative hardness assumption

Small (public) keys

Highly parallelizable

Good public key + signature size

Adaptive and tunable parameters

Advantages and limitations

MPC-in-the-Head

Very versatile and tunable

 Can be applied on any one-way function

A practical tool to build conservative signature schemes

No structure in the security assumption

Perspectives

Additive-based MPCitH: stable

Low-threshold-based MPCitH: new approach, could lead to follow-up works

Conclusion

[AGHHJY22] C. Aguilar-Melchor, N. Gama, J. Howe, A. Hülsing, D. Joseph, D. Yue.
The Return of the SDitH. Eurocrypt 2023.

[AHIV17] S. Ames, C. Hazay, Y. Ishai, M. Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. CCS 2017.

[BN20] C. Baum, A. Nof. Concretely-efficient zero-knowledge arguments for arithmetic
circuits and their application to lattice-based cryptography. PKC 2020.

[CDGORRSZ17] M. Chase, D. Derler, S. Goldfeder, C. Orlandi, S. Ramacher, C.
Rechberger, D. Slamanig, G. Zaverucha. Post-quantum zero-knowledge and signatures
from symmetric-key primitives. CCS 2017.

[FR22] T. Feneuil, M. Rivain. Threshold Linear Secret Sharing to the Rescue of MPC-in-
the-Head. Cryptology ePrint Archive, paper 2022/1407.

[GMO16] I. Giacomelli, J. Madsen,C. Orlandi. ZKBoo: Faster zero-knowledge for
Boolean circuits. USENIX Security 2016

[IKOS07] Y. Ishai, E. Kushilevitz, R. Ostrovsky, A. Sahai. Zero-knowledge from secure
multiparty computation. STOC 2007.

[KKW18] J. Katz, V. Kolesnikov, X. Wang. Improved non-interactive zero knowledge with
applications to post-quantum signatures. CCS 2018.

References

