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given , find a vector  such 
that  and .
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Rephrase the pre-image verification

19

Q(γk) ⋅ xk = 0

Can be zero for at 
most  valuesw

Must be zero for at 
least  coordinates 

( )
w

wH(x) ≤ x

To get a valid polynomial , we can takeQ

Q(X) := Q′￼(X) ⋅
m

∏
i=1, xi≠0

(X − γi)
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Design a MPC protocol for SD
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We need to check that the secret  satisfiesx

y = Hx and Q(X) ⋅
m

∑
i=1

xi

m

∏
j=1, j≠i

X − γj

γi − γj
= P(X) ⋅ (

m

∏
i=1

(X − γi)) .

Linear relation 
 Easy to compute in MPC⇒

The MPC protocol will sample a 
random public point  and evaluate 

the polynomial relation on this point. 
r

Schwartz-Zippel Lemma: 
If the polynomial relation is not 

satisfied, then the probability that it 
is true for a random point is small. Finally, the MPC protocol just needs 

to check a quadratic term:
Q(r) ⋅ S(r) = P(r) ⋅ F(r)
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Build a signature scheme from MPC

26

An MPC protocol
verifying an SD solution

An zero-knowledge proof
of knowledge for the SD problem

Additive sharing
[KKW18,AGHHJY22]

Low-threshold
Shamir’s secret sharing

[FR22]

Use only a broadcast channel
Perform only linear operations

Faster signing time
Highly parallelizable
Very fast verification

A bit simpler implementation
Larger signature size

Restriction # of parties
Computational cost is mainly

due to arithmetics

Shorter signature size
Highly parallelizable
Slower signing time

Signing time  verification time
Computational cost is mainly

due to symmetric primitive

≈
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Choose an one-way function .

Rephrase the pre-image 
verification, i.e. the arithmetic 
circuit verifying that we have 

, to have a more MPC-
friendly circuit.

Design a dedicated MPC protocol 
for the pre-image verification.

Apply a MPC-in-the-Head 
transformation

Make the scheme non-interactive 
(Fiat-Shamir transformation)
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Syndrome decoding problem: 
given , find a vector  such 
that  and .

Find a vector  such that   
and there exists two polynomials  
and  satisfying 

with .

An MPC protocol which evaluates 
the above polynomial relation on a 
random point (Schwartz-Zippel).

Result: a zero-knowledge proof of 
knowledge for the syndrome 
decoding problem.

Result: a signature scheme relying 
on the syndrome decoding problem.

(H, y) x
y = Hx wH(x) ≤ w

x y = Hx
Q

P

Q(X) ⋅
m

∑
i=1

xi

m

∏
j=1, j≠i

X − γj

γi − γj
= P(X) ⋅ (
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(X − γi))
deg Q = w

[FJR22]
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Build a signature scheme from MPC

28

An zero-knowledge proof
of knowledge for the SD problem

A signature scheme relying on
the hardness of the SD problem

Fiat-Shamir 
Transformation

Prover Verifier

c
r
z

Signer Verifier(c, z)
r := Hash(m, c)
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Build a signature scheme from MPC
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An zero-knowledge proof
of knowledge for the SD problem

A signature scheme relying on
the hardness of the SD problem

Fiat-Shamir Transformation

An MPC protocol
verifying an SD solution

Additive sharing Low-threshold
Shamir’s secret sharing

Choice of an
one-way function

Circuit for a 
pre-image verification

Arithmetization
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An MPC-friendly statement
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Size of the solution ring:              

Lattice (SIS): ring of  solution candidates 

Code (SD): ring of  solution candidates 

sizebits ≥ λ2 +
log2 |ring |

log2 N
⋅ λ

265 536 ⇒ sizebits ≥ 133 KB

21280 ⇒ sizebits ≥ 4.6 KB
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Size of the solution ring:              

Lattice (SIS): ring of  solution candidates 

Code (SD): ring of  solution candidates 

Size of the base field: the current MPC techniques for MPCitH are more 
efficient with large fields (for example, the Schwartz-Zippel Lemma).
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SD over : around 8-9 KB

sizebits ≥ λ2 +
log2 |ring |
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⋅ λ

265 536 ⇒ sizebits ≥ 133 KB

21280 ⇒ sizebits ≥ 4.6 KB

GF(2)

GF(256)
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An MPC-friendly statement

32

Size of the solution ring:              

Lattice (SIS): ring of  solution candidates 

Code (SD): ring of  solution candidates 

Size of the base field: the current MPC techniques for MPCitH are more 
efficient with large fields (for example, the Schwartz-Zippel Lemma).

SD over : around 11-13 KB

SD over : around 8-9 KB

Multiplicative depth of the verification circuits

Having a depth of  is the optimal.

SD over GF(256): depth of , around 8-9 KB

PKP: depth of , around 12-13 KB

sizebits ≥ λ2 +
log2 |ring |

log2 N
⋅ λ

265 536 ⇒ sizebits ≥ 133 KB

21280 ⇒ sizebits ≥ 4.6 KB

GF(2)

GF(256)

1

1

log2 n
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An MPC-friendly statement

33

Size of the solution ring:              

Lattice (SIS): ring of  solution candidates 

Code (SD): ring of  solution candidates 

Size of the base field: the current MPC techniques for MPCitH are more 
efficient with large fields (for example, the Schwartz-Zippel Lemma).

SD over : around 11-13 KB

SD over : around 8-9 KB

Multiplicative depth of the verification circuits

Having a depth of  is the optimal.

SD over GF(256): depth of , around 8-9 KB

PKP: depth of , around 12-13 KB

Number of multiplications in the verification circuit

sizebits ≥ λ2 +
log2 |ring |

log2 N
⋅ λ

265 536 ⇒ sizebits ≥ 133 KB

21280 ⇒ sizebits ≥ 4.6 KB

GF(2)

GF(256)

1

1

log2 n
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Signature scheme: SD-in-the-Head

34

Many (standard) MPCitH optimisations to reduce the signature size

Obtained signature sizes:

Field PK size
Signature Size

Additive LSSSitH

GF(2) 90-100 B 11-13 KB -

GF(251) 140-150 B 8-9 KB 9.5-10.5 KB

GF(256) 140-150 B 8-9 KB 9.5-10.5 KB
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Why GF(251) or GF(256)?
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Signature scheme: SD-in-the-Head

36

Many (standard) MPCitH optimisations to reduce the signature size

Obtained signature sizes:

Field PK size
Signature Size

Additive LSSSitH

GF(2) 90-100 B 11-13 KB -

GF(251) 140-150 B 8-9 KB 9.5-10.5 KB

GF(256) 140-150 B 8-9 KB 9.5-10.5 KB

Why GF(251) or GF(256)?
Additive: the computational bottleneck is the pseudo-random generation 
(and the commitments). GF(256) will be more efficient than GF(251)

LSSSitH: the computational bottleneck is the arithmetics. GF(251) will be 
more efficient than GF(256), especially on platforms without GFNI.
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Additive Sharing LSSSitH

Size Sign Verify Size Sign Verify

SDitH (256) 8 241 5.18 4.81 10 117 1.97 0.62

SDitH (251) 8 241 8.51 8.16 10 117 1.71 0.23

NIST Candidate SD-in-the-Head: Benchmark on a 2.60GHz recent platform

Size in bytes, timing in milliseconds
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Syndrome Decoding Problem:

SD-in-the-Head 
C. Aguilar Melchor, T. Feneuil, N. Gama, S. Gueron, J. Howe, D. Joseph, 

A. Joux, E. Persichetti, T. Randrianarisoa, M. Rivain, D. Yue.

Rank Syndrome Decoding Problem:

RYDE 
N. Aragon, M. Bardet, L. Bidoux, J.-J. Chi-Domínguez, V. Dyseryn,  
T. Feneuil, P. Gaborit, A. Joux, M. Rivain, J.-P. Tillich, A. Vinçotte.

Min Rank Problem:

MIRA 
N. Aragon, M. Bardet, L. Bidoux, J.-J. Chi-Domínguez, V. Dyseryn, 

 T. Feneuil, P. Gaborit, R. Neveu, M. Rivain, J.-P. Tillich.

Multivariate Quadratic Problem:

MQOM: MQ on my Mind 
T. Feneuil, M. Rivain
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How to deal with the rank metric [Fen22]:

Technique 1: let us have a matrix 

Technique 2: let us have a vector 

 

X ∈ 𝔽n×m
q

rk(X) ≤ r ⟺ ∃T ∈ 𝔽n×r, R ∈ 𝔽 r×m : X = T ⋅ R

x ∈ 𝔽n
qm

wR(x) ≤ r ⟺ ∃P(X) := Xqr +
r−1

∑
j=0

βjXqj : ∀i : P(xj) = 0
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q

rk(X) ≤ r ⟺ ∃T ∈ 𝔽n×r, R ∈ 𝔽 r×m : X = T ⋅ R

x ∈ 𝔽n
qm

wR(x) ≤ r ⟺ ∃P(X) := Xqr +
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∑
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βjXqj : ∀i : P(xj) = 0

Lighter scheme

Shorter size
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How to deal with the rank metric [Fen22]:

Technique 1: let us have a matrix 

Technique 2: let us have a vector 

 

Rank SD:  Technique 2 is the best

From  and , find a vector  such that  

and .

Min Rank:  not clear which technique is the best 

From , 

find a vector  such that .

X ∈ 𝔽n×m
q

rk(X) ≤ r ⟺ ∃T ∈ 𝔽n×r, R ∈ 𝔽 r×m : X = T ⋅ R

x ∈ 𝔽n
qm

wR(x) ≤ r ⟺ ∃P(X) := Xqr +
r−1

∑
j=0

βjXqj : ∀i : P(xj) = 0

H ∈ 𝔽 (n−k)×n
qm y ∈ 𝔽n−k

q x ∈ 𝔽n
qm y = Hx

wR(x) ≤ r

M0, M1, …, Mk ∈ 𝔽m×n
q

x ∈ 𝔽k
q rk(M0 +

k

∑
i=1

xiMi) ≤ r

Lighter scheme

Shorter size
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How to deal with the rank metric [Fen22]:

Technique 1: let us have a matrix 

Technique 2: let us have a vector 

 

Rank SD:  Technique 2 is the best

From  and , find a vector  such that  

and .

Min Rank:  not clear which technique is the best 

From , 

find a vector  such that .

X ∈ 𝔽n×m
q

rk(X) ≤ r ⟺ ∃T ∈ 𝔽n×r, R ∈ 𝔽 r×m : X = T ⋅ R

x ∈ 𝔽n
qm

wR(x) ≤ r ⟺ ∃P(X) := Xqr +
r−1

∑
j=0

βjXqj : ∀i : P(xj) = 0

H ∈ 𝔽 (n−k)×n
qm y ∈ 𝔽n−k

q x ∈ 𝔽n
qm y = Hx

wR(x) ≤ r

M0, M1, …, Mk ∈ 𝔽m×n
q

x ∈ 𝔽k
q rk(M0 +

k

∑
i=1

xiMi) ≤ r

Lighter scheme

Shorter size

Technique 1: MiRith
Technique 2: MIRA
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Additive Sharing LSSSitH

Size Sign Verify Size Sign Verify

SDitH (256) 8 241 5.18 4.81 10 117 1.97 0.62

SDitH (251) 8 241 8.51 8.16 10 117 1.71 0.23

MQOM (31) 6 348 17.06 16.05 - - -

MQOM (251) 6 575 10.97 10.50 ~ 14 000 - -

RYDE 5 956 8.58 7.31 ~ 9 200 - -

MIRA (16) 5 640 16.65 15.61 - - -

NIST Candidates: Benchmark on a 2.60GHz recent platform

Size in bytes, timing in milliseconds
Isochronous implementations
Single thread
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Additive Sharing LSSSitH

Size Sign Verify Size Sign Verify

SDitH (256) 8 241 5.18 4.81 10 117 1.97 0.62

SDitH (251) 8 241 8.51 8.16 10 117 1.71 0.23

MQOM (31) 6 348 17.06 16.05 - - -

MQOM (251) 6 575 10.97 10.50 ~ 14 000 - -

RYDE 5 956 8.58 7.31 ~ 9 200 - -

MIRA (16) 5 640 16.65 15.61 - - -

NIST Candidates: Benchmark on a 2.60GHz recent platform

Dilithium:     |sig|=2420,   |pk|=1312,   tsign=0.13,   tverify=0.05
Falcon:         |sig|=666,     |pk|=897,     tsign=0.20,   tverify=0.06
SPHINCS+:   |sig|=7856,   |pk|=32,       tsign=331,    tverify=2.3 
                   |sig|=17088, |pk|=32,       tsign=19,      tverify=0.9 
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MPC-in-the-Head

A practical tool to build conservative signature schemes

Very versatile and tunable

 Can be applied on any one-way function

Perspectives

Additive-based MPCitH: stable

Low-threshold-based MPCitH: new approach, could lead to follow-up works


