CRYPTOEXPERTS

Post-quantum Signatures from Secure Multiparty Computation Thibauld Feneuil

June 14th, 2023 — WRACH'23

Type	Number
Lattice	8
Code-based	5
Multivariate	11
MPC in the head	7
Symmetric	6
Isogeny	1
Other	12
Total	50

Source: NIST, 9th June 2023

CRYPTOEXPERTS

Choose an one-way function *F*.

Choose an one-way function *F*.

[FJR22]

Syndrome decoding problem: given (H, y), find a vector x such that y = Hx and $w_H(x) \le w$.

Choose an one-way function *F*.

[FJR22]

Syndrome decoding problem: given (H, y), find a vector x such that y = Hx and $w_H(x) \le w$.

Rephrase the pre-image verification, *i.e.* the arithmetic circuit verifying that we have y = F(x), to have a more MPCfriendly circuit.

<u>Example</u>

<u>Methodology</u>

Choose an one-way function *F*.

Rephrase the pre-image verification, *i.e.* the arithmetic circuit verifying that we have y = F(x), to have a more MPCfriendly circuit.

<u>Example</u>

[FJR22]

- Syndrome decoding problem: given (H, y), find a vector x such that y = Hx and $w_H(x) \le w$.
- Find a vector x such that y = Hxand there exists two polynomials Q and P satisfying

$$Q(X) \cdot \left(\sum_{i=1}^{m} x_i \prod_{j=1, j \neq i}^{m} \frac{X - \gamma_j}{\gamma_i - \gamma_j}\right) = P(X) \cdot \left(\prod_{i=1}^{m} (X - \gamma_i)\right)$$

with deg $Q = w$.

Methodology

Let us assume that we have

$$Q(X) \cdot \left(\sum_{i=1}^{m} x_i \prod_{j=1, j \neq i}^{m} \frac{X - \gamma_j}{\gamma_i - \gamma_j}\right) = P(X) \cdot \left(\prod_{i=1}^{m} (X - \gamma_i)\right)$$

is equal to x_k
when evaluating in γ_k with deg $Q = w$.

Let us assume that we have

$$Q(X) \cdot \left(\sum_{i=1}^{m} x_i \prod_{j=1, j \neq i}^{m} \frac{X - \gamma_j}{\gamma_i - \gamma_j}\right) = P(X) \cdot \left(\prod_{i=1}^{m} (X - \gamma_i)\right)$$

is equal to x_k
when evaluating in γ_k
with deg $Q = w$.
us take $\gamma_k \in \{\gamma_1, \dots, \gamma_m\},$
$$Q(\gamma_k) \cdot x_k = 0$$

Let

Let us assume that we have

$$Q(X) \cdot \left(\sum_{i=1}^{m} x_i \prod_{j=1, j \neq i}^{m} \frac{X - \gamma_j}{\gamma_i - \gamma_j}\right) = P(X) \cdot \left(\prod_{i=1}^{m} (X - \gamma_i)\right)$$

is equal to x_k
when evaluating in γ_k
With deg $Q = w$.
Let us take $\gamma_k \in \{\gamma_1, \dots, \gamma_m\}$,

$$Q(\gamma_k) \cdot x_k = 0$$

Can be zero for at
most w values

CRYPTOEXPERTS

80

Let us assume that we have

$$Q(X) \cdot \left(\sum_{i=1}^{m} x_i \prod_{j=1, j \neq i}^{m} \frac{X - \gamma_j}{\gamma_i - \gamma_j}\right) = P(X) \cdot \left(\prod_{i=1}^{m} (X - \gamma_i)\right)$$

is equal to x_k
when evaluating in γ_k
Let us take $\gamma_k \in \{\gamma_1, \dots, \gamma_m\}$,

$$Q(\gamma_k) \cdot x_k = 0$$

Can be zero for at
most w values
Must be zero for at
least w coordinates
 $(W_H(x) \le x)$

CRYPTOEXPERTS

To get a valid polynomial Q, we can take

$$Q(X) := Q'(X) \cdot \prod_{i=1, x_i \neq 0}^{m} (X - \gamma_i)$$

$$Q(\gamma_k) \cdot x_k = 0$$
Can be zero for at
most w values
$$Must be zero for at
least w coordinates
(w_H(x) \le x)$$

CRYPTOEXPERTS

Choose an one-way function *F*.

Rephrase the pre-image verification, *i.e.* the arithmetic circuit verifying that we have y = F(x), to have a more MPCfriendly circuit.

<u>Example</u>

[FJR22]

- Syndrome decoding problem: given (H, y), find a vector x such that y = Hx and $w_H(x) \le w$.
- Find a vector x such that y = Hxand there exists two polynomials Qand P satisfying

$$Q(X) \cdot \left(\sum_{i=1}^{m} x_i \prod_{j=1, j \neq i}^{m} \frac{X - \gamma_j}{\gamma_i - \gamma_j}\right) = P(X) \cdot \left(\prod_{i=1}^{m} (X - \gamma_i)\right)$$

with deg $Q = w$.

CRYPTOEXPERT

Choose an one-way function *F*.

Rephrase the pre-image verification, *i.e.* the arithmetic circuit verifying that we have y = F(x), to have a more MPCfriendly circuit.

Design a dedicated MPC protocol for the pre-image verification.

Example

[FJR22]

- Syndrome decoding problem: given (H, y), find a vector x such that y = Hx and $w_H(x) \le w$.
- Find a vector x such that y = Hxand there exists two polynomials Qand P satisfying

$$Q(X) \cdot \left(\sum_{i=1}^{m} x_i \prod_{j=1, j \neq i}^{m} \frac{X - \gamma_j}{\gamma_i - \gamma_j}\right) = P(X) \cdot \left(\prod_{i=1}^{m} (X - \gamma_i)\right)$$

with deg $Q = w$.

<u>Methodology</u>

Design a MPC protocol for SD

We need to check that the secret x satisfies

$$y = Hx$$
 and $w_H(x) \le w$.

Design a MPC protocol for SD

We need to check that the secret x satisfies

$$y = Hx \text{ and } Q(X) \cdot \left(\sum_{i=1}^{m} x_i \prod_{j=1, j \neq i}^{m} \frac{X - \gamma_j}{\gamma_i - \gamma_j}\right) = P(X) \cdot \left(\prod_{i=1}^{m} (X - \gamma_i)\right).$$
Linear relation
Easy to compute in MPC
The MPC protocol will sample a
random public point *r* and evaluate
the polynomial relation on this point.
$$\underbrace{Schwartz-Zippel \ Lemma:}_{\text{satisfied, then the probability that it}}$$
Finally, the MPC protocol just needs
to check a quadratic term:
 $Q(r) \cdot S(r) = P(r) \cdot F(r)$

 \Rightarrow

CRYPTOEXPERTS

20

Choose an one-way function *F*.

Rephrase the pre-image verification, *i.e.* the arithmetic circuit verifying that we have y = F(x), to have a more MPCfriendly circuit.

Design a dedicated MPC protocol for the pre-image verification.

[FJR22]

- Syndrome decoding problem: given (H, y), find a vector x such that y = Hx and $w_H(x) \le w$.
- Find a vector x such that y = Hx and there exists two polynomials Q and P satisfying

$$Q(X) \cdot \left(\sum_{i=1}^{m} x_i \prod_{j=1, j \neq i}^{m} \frac{X - \gamma_j}{\gamma_i - \gamma_j}\right) = P(X) \cdot \left(\prod_{i=1}^{m} (X - \gamma_i)\right)$$

with deg $Q = w$

An MPC protocol which evaluates the above polynomial relation on a random point (Schwartz-Zippel).

Example

Choose an one-way function *F*.

Rephrase the pre-image verification, *i.e.* the arithmetic circuit verifying that we have y = F(x), to have a more MPCfriendly circuit.

Design a dedicated MPC protocol for the pre-image verification.

Apply a MPC-in-the-Head transformation [FJR22]

- Syndrome decoding problem: given (H, y), find a vector x such that y = Hx and $w_H(x) \le w$.
- Find a vector x such that y = Hx and there exists two polynomials Q and P satisfying

$$Q(X) \cdot \left(\sum_{i=1}^{m} x_i \prod_{j=1, j \neq i}^{m} \frac{X - \gamma_j}{\gamma_i - \gamma_j}\right) = P(X) \cdot \left(\prod_{i=1}^{m} (X - \gamma_i)\right)$$

with deg $Q = w$

- An MPC protocol which evaluates the above polynomial relation on a random point (Schwartz-Zippel).
- Result: a zero-knowledge proof of knowledge for the syndrome decoding problem.

Example

due to arithmetics

CRYPTOEXPER

Choose an one-way function *F*.

Rephrase the pre-image verification, *i.e.* the arithmetic circuit verifying that we have y = F(x), to have a more MPCfriendly circuit.

Design a dedicated MPC protocol for the pre-image verification.

- Apply a MPC-in-the-Head transformation
- Make the scheme non-interactive (Fiat-Shamir transformation)

- Syndrome decoding problem: given (H, y), find a vector x such that y = Hx and $w_H(x) \le w$.
- Find a vector x such that y = Hx and there exists two polynomials Q and P satisfying

$$Q(X) \cdot \left(\sum_{i=1}^{m} x_i \prod_{j=1, j \neq i}^{m} \frac{X - \gamma_j}{\gamma_i - \gamma_j}\right) = P(X) \cdot \left(\prod_{i=1}^{m} (X - \gamma_i)\right)$$

with deg $Q = w$.

- An MPC protocol which evaluates the above polynomial relation on a random point (Schwartz-Zippel).
- Result: a zero-knowledge proof of knowledge for the syndrome decoding problem.
- Result: a signature scheme relying on the syndrome decoding problem.

CRYPTOEXPER

Example

An zero-knowledge proof of knowledge for the SD problem

Fiat-Shamir Transformation

A signature scheme relying on the hardness of the SD problem

CRYPTOEXPER

Size of the solution ring:

$$size_{bits} \ge \lambda^2 + \frac{\log_2 |ring|}{\log_2 N} \cdot \lambda$$

- Lattice (SIS): ring of $2^{65\,536}$ solution candidates \Rightarrow size_{bits} $\ge 133 \text{ KB}$
- Code (SD): ring of 2^{1280} solution candidates \Rightarrow size_{bits} $\ge 4.6 \text{ KB}$

Size of the solution ring:
$$size_{bits} \ge \lambda^2 + \frac{\log_2 |ring|}{\log_2 N} \cdot \lambda$$

- Lattice (SIS): ring of $2^{65\,536}$ solution candidates \Rightarrow size_{bits} $\ge 133 \text{ KB}$
- Code (SD): ring of 2^{1280} solution candidates \Rightarrow size_{bits} $\ge 4.6 \text{ KB}$
- Size of the base field: the current MPC techniques for MPCitH are more efficient with large fields (for example, the Schwartz-Zippel Lemma).
 - SD over *GF*(2): around 11-13 KB
 - SD over GF(256): around 8-9 KB

Size of the solution ring:
$$size_{bits} \ge \lambda^2 + \frac{\log_2 |ring|}{\log_2 N} \cdot \lambda$$

- Lattice (SIS): ring of $2^{65\,536}$ solution candidates \Rightarrow size_{bits} $\ge 133 \text{ KB}$
- Code (SD): ring of 2^{1280} solution candidates \Rightarrow size_{bits} $\ge 4.6 \text{ KB}$
- Size of the base field: the current MPC techniques for MPCitH are more efficient with large fields (for example, the Schwartz-Zippel Lemma).
 - SD over *GF*(2): around II-I3 KB
 - SD over *GF*(256): around 8-9 KB

Multiplicative depth of the verification circuits

- Having a depth of 1 is the optimal.
- SD over GF(256): depth of 1, around 8-9 KB
- PKP: depth of log₂ n, around 12-13 KB

Size of the solution ring:
$$size_{bits} \ge \lambda^2 + \frac{\log_2 |ring|}{\log_2 N} \cdot \lambda$$

- Lattice (SIS): ring of $2^{65\,536}$ solution candidates \Rightarrow size_{bits} $\ge 133 \text{ KB}$
- Code (SD): ring of 2^{1280} solution candidates \Rightarrow size_{bits} $\ge 4.6 \text{ KB}$
- Size of the base field: the current MPC techniques for MPCitH are more efficient with large fields (for example, the Schwartz-Zippel Lemma).
 - SD over *GF*(2): around II-I3 KB
 - SD over *GF*(256): around 8-9 KB

Multiplicative depth of the verification circuits

- Having a depth of 1 is the optimal.
- SD over GF(256): depth of 1, around 8-9 KB
- PKP: depth of log₂ n, around 12-13 KB

Number of multiplications in the verification circuit

Post-quantum Signatures from MPC

Signature scheme: SD-in-the-Head

- Many (standard) MPCitH optimisations to reduce the signature size
- Obtained signature sizes:

Field		Signature Size			
	PK size	Additive	LSSSitH		
GF(2)	90-100 B	11-13 KB	-		
GF(251)	40- 50 B	8-9 KB	9.5-10.5 KB		
GF(256)	40- 50 B	8-9 KB	9.5-10.5 KB		

Signature scheme: SD-in-the-Head

- Many (standard) MPCitH optimisations to reduce the signature size
- Obtained signature sizes:

Field	PK size	Signature Size			
		Additive	LSSSitH		
GF(2)	90-100 B	11-13 KB	-		
GF(251)	40- 50 B	8-9 KB	9.5-10.5 KB		
GF(256)	40- 50 B	8-9 KB	9.5-10.5 KB		

Why GF(251) or GF(256)?

Signature scheme: SD-in-the-Head

- Many (standard) MPCitH optimisations to reduce the signature size
- Obtained signature sizes:

Field P		Signature Size			
	PK SIZE	Additive	LSSSitH		
GF(2)	90-100 B	11-13 KB	-		
GF(251)	140-150 B	8-9 KB	9.5-10.5 KB		
GF(256)	140-150 B	8-9 KB	9.5-10.5 KB		

Why GF(251) or GF(256)?

- Additive: the computational bottleneck is the pseudo-random generation (and the commitments). GF(256) will be more efficient than GF(251)
- LSSSitH: the computational bottleneck is the arithmetics. GF(251) will be more efficient than GF(256), especially on platforms without GFNI.

Performances

NIST Candidate SD-in-the-Head: Benchmark on a 2.60GHz recent platform

	Additive Sharing			LSSSitH		
	Size	Sign	Verify	Size	Sign	Verify
SDitH (256)	8241	5.18	4.81	10117	1.97	0.62
SDitH (251)	8241	8.51	8.16	10117	1.71	0.23

Size in bytes, timing in milliseconds

Syndrome Decoding Problem:

SD-in-the-Head

C. Aguilar Melchor, T. Feneuil, N. Gama, S. Gueron, J. Howe, D. Joseph, A. Joux, E. Persichetti, T. Randrianarisoa, M. Rivain, D. Yue.

Rank Syndrome Decoding Problem:

RYDE

N. Aragon, M. Bardet, L. Bidoux, J.-J. Chi-Domínguez, V. Dyseryn, T. Feneuil, P. Gaborit, A. Joux, M. Rivain, J.-P. Tillich, A. Vinçotte.

Min Rank Problem:

MIRA

N. Aragon, M. Bardet, L. Bidoux, J.-J. Chi-Domínguez, V. Dyseryn, T. Feneuil, P. Gaborit, R. Neveu, M. Rivain, J.-P. Tillich.

Multivariate Quadratic Problem:

MQOM: MQ on my Mind

T. Feneuil, M. Rivain

How to deal with the rank metric [Fen22]:

• <u>Technique 1</u>: let us have a matrix $X \in \mathbb{F}_q^{n \times m}$

 $\operatorname{rk}(X) \leq r \Longleftrightarrow \exists T \in \mathbb{F}^{n \times r}, R \in \mathbb{F}^{r \times m} : X = T \cdot R$

• <u>Technique 2</u>: let us have a vector $x \in \mathbb{F}_{q^m}^n$

$$w_{R}(x) \le r \iff \exists P(X) := X^{q^{r}} + \sum_{j=0}^{r-1} \beta_{j} X^{q^{j}} : \forall i : P(x_{j}) = 0$$

How to deal with the rank metric [Fen22]:

• <u>Technique 1</u>: let us have a matrix $X \in \mathbb{F}_q^{n \times m}$

 $\operatorname{rk}(X) \le r \Longleftrightarrow \exists T \in \mathbb{F}^{n \times r}, R \in \mathbb{F}^{r \times m} : X = T \cdot R$

• <u>Technique 2</u>: let us have a vector $x \in \mathbb{F}_{q^m}^n$

$$w_{R}(x) \le r \iff \exists P(X) := X^{q^{r}} + \sum_{j=0}^{r-1} \beta_{j} X^{q^{j}} : \forall i : P(x_{j}) = 0$$

Shorter size

Lighter scheme

How to deal with the rank metric [Fen22]:

• <u>Technique 1</u>: let us have a matrix $X \in \mathbb{F}_q^{n \times m}$

 $\operatorname{rk}(X) \le r \Longleftrightarrow \exists T \in \mathbb{F}^{n \times r}, R \in \mathbb{F}^{r \times m} : X = T \cdot R$

• <u>Technique 2</u>: let us have a vector $x \in \mathbb{F}_{q^m}^n$ $w_R(x) \le r \iff \exists P(X) := X^{q^r} + \sum_{j=0}^{r-1} \beta_j X^{q^j} : \forall i : P(x_j) = 0$ Shorter size

Rank SD: Technique 2 is the best

- From $H \in \mathbb{F}_{q^m}^{(n-k) \times n}$ and $y \in \mathbb{F}_q^{n-k}$, find a vector $x \in \mathbb{F}_{q^m}^n$ such that y = Hxand $w_R(x) \le r$.
- Min Rank: not clear which technique is the best

■ From
$$M_0, M_1, ..., M_k \in \mathbb{F}_q^{m \times n}$$
,
find a vector $x \in \mathbb{F}_q^k$ such that $\operatorname{rk}(M_0 + \sum_{i=1}^k x_i M_i) \le r$.
41 CRYPTOEXPERTS

How to deal with the rank metric [Fen22]:

• <u>Technique 1</u>: let us have a matrix $X \in \mathbb{F}_q^{n \times m}$

 $\operatorname{rk}(X) \leq r \Longleftrightarrow \exists T \in \mathbb{F}^{n \times r}, R \in \mathbb{F}^{r \times m} : X = T \cdot R$

• <u>Technique 2</u>: let us have a vector $x \in \mathbb{F}_{q^m}^n$ $w_R(x) \le r \iff \exists P(X) := X^{q^r} + \sum_{j=0}^{r-1} \beta_j X^{q^j} : \forall i : P(x_j) = 0$ Shorter size

Technique I: MiRith

Technique 2: MIRA

CRYPTOEXPER

Rank SD: Technique 2 is the best

- From $H \in \mathbb{F}_{q^m}^{(n-k) \times n}$ and $y \in \mathbb{F}_q^{n-k}$, find a vector $x \in \mathbb{F}_{q^m}^n$ such that y = Hxand $w_R(x) \le r$.
- Min Rank: not clear which technique is the best
 - From $M_0, M_1, \dots, M_k \in \mathbb{F}_q^{m \times n}$, find a vector $x \in \mathbb{F}_q^k$ such that $\operatorname{rk}(M_0 + \sum_{i=1}^k x_i M_i) \le r$.

Performances

NIST Candidates: Benchmark on a 2.60GHz recent platform

	Additive Sharing			LSSSitH		
	Size	Sign	Verify	Size	Sign	Verify
SDitH (256)	8241	5.18	4.81	10117	1.97	0.62
SDitH (251)	8241	8.51	8.16	10117	1.71	0.23
MQOM (31)	6 3 4 8	17.06	16.05	-	-	-
MQOM (251)	6 575	10.97	10.50	~ 14000	-	-
RYDE	5 956	8.58	7.31	~ 9 200	-	-
MIRA (16)	5 640	16.65	15.61	-	-	-

Size in bytes, timing in milliseconds Isochronous implementations Single thread

Performances

NIST Candidates: Benchmark on a 2.60GHz recent platform

	Additive Sharing			LSSSitH		
	Size	Sign	Verify	Size	Sign	Verify
SDitH (256)	8241	5.18	4.81	10117	l.97	0.62
SDitH (251)	8241	8.51	8.16	10117	1.71	0.23
MQOM (31)	6 3 4 8	17.06	16.05	-	-	-
MQOM (251)	6 5 7 5	10.97	10.50	~ 14000	-	-
RYDE	5 956	8.58	7.31	~ 9 200	-	-
MIRA (16)	5 640	16.65	15.61	-	-	-
$= \text{Dilithium} + \frac{1}{2420} + \frac{1}{212} $						

 Dilithium: |sig|=2420, |pk|=1312, $t_{sign}=0.13$, $t_{verify}=0.05$ Falcon: |sig|=666, |pk|=897, $t_{sign}=0.20$, $t_{verify}=0.06$ SPHINCS⁺: |sig|=7856, |pk|=32, $t_{sign}=331$, $t_{verify}=2.3$ |sig|=17088, |pk|=32, $t_{sign}=19$, $t_{verify}=0.9$

CRYPTOEXPERTS

Conclusion

MPC-in-the-Head

- A practical tool to build *conservative* signature schemes
- Very versatile and tunable
- Can be applied on any one-way function

Perspectives

- Additive-based MPCitH: stable
- Low-threshold-based MPCitH: new approach, could lead to follow-up works

