CRypto

WE INNOVATE TO SECURE YOUR BUSINESS

Post-quantum Signatures from Secure Multiparty Computation

Thibauld Feneuil

June 14th, 2023 —WRACH’23

Context

- Additional NIST call for quantum-resilient signature schemes

Context

Additional NIST call for quantum-resilient signature schemes

Context

Additional NIST call for quantum-resilient signature schemes

Context

Additional NIST call for quantum-resilient signature schemes

CATEGORIES

Type	Number
Lattice	8
Code-based	5
Multivariate	11
MPC in the head	7
Symmetric	6
Isogeny	12
Other	50
Total	

Source: NIST, 9th June 2023

MPC-in-the-Head Paradigm

Build a signature scheme from MPC

Choose an one-way function F.

Build a signature scheme from MPC

Choose an one-way function F.

- Syndrome decoding problem: given (H, y), find a vector x such that $y=H x$ and $\mathrm{w}_{H}(x) \leq w$.

Build a signature scheme from MPC

- Choose an one-way function F.
- Rephrase the pre-image verification, i.e. the arithmetic circuit verifying that we have $y=F(x)$, to have a more MPCfriendly circuit.
- Syndrome decoding problem: given (H, y), find a vector x such that $y=H x$ and $\mathrm{w}_{H}(x) \leq w$.

Build a signature scheme from MPC

- Choose an one-way function F.
\square Rephrase the pre-image verification, i.e. the arithmetic circuit verifying that we have $y=F(x)$, to have a more MPCfriendly circuit.
- Syndrome decoding problem: given (H, y), find a vector x such that $y=H x$ and $\mathrm{w}_{H}(x) \leq w$.
- Find a vector x such that $y=H x$ and there exists two polynomials Q and P satisfying
$Q(X) \cdot\left(\sum_{i=1}^{m} x_{i} \prod_{j=1, j \neq i}^{m} \frac{X-\gamma_{j}}{\gamma_{i}-\gamma_{j}}\right)=P(X) \cdot\left(\prod_{i=1}^{m}\left(X-\gamma_{i}\right)\right)$ with $\operatorname{deg} Q=w$.

Rephrase the pre-image verification

Let us assume that we have

$$
Q(X) \cdot \underbrace{\left(\sum_{i=1}^{m} x_{i} \prod_{j=1, j \neq \gamma_{i}}^{m} \frac{X-\gamma_{j}}{\gamma_{i}-\gamma_{j}}\right)}_{\begin{array}{c}
\text { is equal to } x_{k} \\
\text { when evaluating in } \gamma_{k}
\end{array}}=P(X) \cdot\left(\prod_{i=1}^{m}\left(X-\gamma_{i}\right)\right)
$$

Rephrase the pre-image verification

Let us assume that we have

$$
\begin{aligned}
& \qquad Q(X) \cdot \underbrace{\left(\sum_{i=1}^{m} x_{i} \prod_{j=1, j \neq i}^{m} \frac{X-\gamma_{j}}{\gamma_{i}-\gamma_{j}}\right)}_{\begin{array}{c}
\text { is equal to } x_{k} \\
\text { when evaluating in } \gamma_{k}
\end{array}}=P(X) \cdot\left(\prod_{i=1}^{m}\left(X-\gamma_{i}\right)\right) \\
& \text { Let us take } \gamma_{k} \in\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}, \\
& Q\left(\gamma_{k}\right) \cdot x_{k}=0
\end{aligned}
$$

Rephrase the pre-image verification

Let us assume that we have

$$
Q(X) \cdot \underbrace{\left(\sum_{i=1}^{m} x_{i} \prod_{j=1, j \neq i}^{m} \frac{X-\gamma_{j}}{\gamma_{i}-\gamma_{j}}\right)}=P(X) \cdot\left(\prod_{i=1}^{m}\left(X-\gamma_{i}\right)\right)
$$

is equal to x_{k} when evaluating in γ_{k}

Let us take $\gamma_{k} \in\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$, with $\operatorname{deg} Q=w$.

-

$$
Q\left(\gamma_{k}\right) \cdot x_{k}=0
$$

Can be zero for at most w values

Rephrase the pre-image verification

Let us assume that we have

$$
Q(X) \cdot \underbrace{\left(\sum_{i=1}^{m} x_{i} \prod_{j=1, j \neq i}^{m} \frac{X-\gamma_{j}}{\gamma_{i}-\gamma_{j}}\right)}=P(X) \cdot\left(\prod_{i=1}^{m}\left(X-\gamma_{i}\right)\right)
$$

is equal to x_{k} when evaluating in γ_{k}

Let us take $\gamma_{k} \in\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$, with $\operatorname{deg} Q=w$.

Must be zero for at
Can be zero for at least w coordinates

$$
\left(\mathrm{w}_{H}(x) \leq x\right)
$$

Rephrase the pre-image verification

To get a valid polynomial Q, we can take

$$
Q(X):=Q^{\prime}(X) \cdot \prod_{i=1, x_{i} \neq 0}^{m}\left(X-\gamma_{i}\right)
$$

Can be zero for at most w values

Must be zero for at least w coordinates

$$
\left(\mathrm{w}_{H}(x) \leq x\right)
$$

Build a signature scheme from MPC

- Choose an one-way function F.
\square Rephrase the pre-image verification, i.e. the arithmetic circuit verifying that we have $y=F(x)$, to have a more MPCfriendly circuit.
- Syndrome decoding problem: given (H, y), find a vector x such that $y=H x$ and $\mathrm{w}_{H}(x) \leq w$.
- Find a vector x such that $y=H x$ and there exists two polynomials Q and P satisfying
$Q(X) \cdot\left(\sum_{i=1}^{m} x_{i} \prod_{j=1, j \neq i}^{m} \frac{X-\gamma_{j}}{\gamma_{i}-\gamma_{j}}\right)=P(X) \cdot\left(\prod_{i=1}^{m}\left(X-\gamma_{i}\right)\right)$ with $\operatorname{deg} Q=w$.

Build a signature scheme from MPC

- Choose an one-way function F.
- Rephrase the pre-image verification, i.e. the arithmetic circuit verifying that we have $y=F(x)$, to have a more MPCfriendly circuit.

Design a dedicated MPC protocol for the pre-image verification.

- Syndrome decoding problem: given (H, y), find a vector x such that $y=H x$ and $\mathrm{w}_{H}(x) \leq w$.
- Find a vector x such that $y=H x$ and there exists two polynomials Q and P satisfying
$Q(X) \cdot\left(\sum_{i=1}^{m} x_{i} \prod_{j=1, j \neq i}^{m} \frac{X-\gamma_{j}}{\gamma_{i}-\gamma_{j}}\right)=P(X) \cdot\left(\prod_{i=1}^{m}\left(X-\gamma_{i}\right)\right)$
with $\operatorname{deg} Q=w$.

Design a MPC protocol for SD

We need to check that the secret x satisfies

$$
y=H x \quad \text { and } \quad \mathrm{w}_{H}(x) \leq w
$$

Design a MPC protocol for SD

We need to check that the secret x satisfies

$$
y=H x \text { and } Q(X) \cdot\left(\sum_{i=1}^{m} x_{i} \prod_{j=1, j \not j i}^{m} \frac{X-\gamma_{j}}{\gamma_{i}-\gamma_{j}}\right)=P(X) \cdot\left(\prod_{i=1}^{m}\left(X-\gamma_{i}\right)\right) .
$$

Linear relation
\Rightarrow Easy to compute in MPC

The MPC protocol will sample a random public point r and evaluate the polynomial relation on this point.

Schwartz-Zippel Lemma: If the polynomial relation is not satisfied, then the probability that it is true for a random point is small.

Finally, the MPC protocol just needs to check a quadratic term:

$$
Q(r) \cdot S(r)=P(r) \cdot F(r)
$$

Build a signature scheme from MPC

- Choose an one-way function F.
- Rephrase the pre-image verification, i.e. the arithmetic circuit verifying that we have $y=F(x)$, to have a more MPCfriendly circuit.

Design a dedicated MPC protocol for the pre-image verification.

- Syndrome decoding problem: given (H, y), find a vector x such that $y=H x$ and $\mathrm{w}_{H}(x) \leq w$.
- Find a vector x such that $y=H x$ and there exists two polynomials Q and P satisfying
$Q(X) \cdot\left(\sum_{i=1}^{m} x_{i} \prod_{j=1, j \neq i}^{m} \frac{X-\gamma_{j}}{\gamma_{i}-\gamma_{j}}\right)=P(X) \cdot\left(\prod_{i=1}^{m}\left(X-\gamma_{i}\right)\right)$
with $\operatorname{deg} Q=w$.
- An MPC protocol which evaluates the above polynomial relation on a random point (Schwartz-Zippel).

Build a signature scheme from MPC

- Choose an one-way function F.
- Rephrase the pre-image verification, i.e. the arithmetic circuit verifying that we have $y=F(x)$, to have a more MPCfriendly circuit.

Design a dedicated MPC protocol for the pre-image verification.

- Apply a MPC-in-the-Head transformation
- Syndrome decoding problem: given (H, y), find a vector x such that $y=H x$ and $\mathrm{w}_{H}(x) \leq w$.
- Find a vector x such that $y=H x$ and there exists two polynomials Q and P satisfying
$Q(X) \cdot\left(\sum_{i=1}^{m} x_{i} \prod_{j=1, j \neq i}^{m} \frac{X-\gamma_{j}}{\gamma_{i}-\gamma_{j}}\right)=P(X) \cdot\left(\prod_{i=1}^{m}\left(X-\gamma_{i}\right)\right)$
with $\operatorname{deg} Q=w$.
- An MPC protocol which evaluates the above polynomial relation on a random point (Schwartz-Zippel).
- Result: a zero-knowledge proof of knowledge for the syndrome decoding problem.

Build a signature scheme from MPC

Build a signature scheme from MPC

- Choose an one-way function F.
- Rephrase the pre-image verification, i.e. the arithmetic circuit verifying that we have $y=F(x)$, to have a more MPCfriendly circuit.

Design a dedicated MPC protocol for the pre-image verification.

- Apply a MPC-in-the-Head transformation
- Make the scheme non-interactive (Fiat-Shamir transformation)
- Syndrome decoding problem: given (H, y), find a vector x such that $y=H x$ and $\mathrm{w}_{H}(x) \leq w$.
- Find a vector x such that $y=H x$ and there exists two polynomials Q and P satisfying
$Q(X) \cdot\left(\sum_{i=1}^{m} x_{i} \prod_{j=1, j \neq i}^{m} \frac{X-\gamma_{j}}{\gamma_{i}-\gamma_{j}}\right)=P(X) \cdot\left(\prod_{i=1}^{m}\left(X-\gamma_{i}\right)\right)$
with $\operatorname{deg} Q=w$.
- An MPC protocol which evaluates the above polynomial relation on a random point (Schwartz-Zippel).
- Result: a zero-knowledge proof of knowledge for the syndrome decoding problem.
- Result: a signature scheme relying on the syndrome decoding problem.

Build a signature scheme from MPC

An zero-knowledge proof of knowledge for the SD problem

Fiat-Shamir
Transformation

A signature scheme relying on the hardness of the SD problem

Build a signature scheme from MPC

An MPC-friendly statement

Size of the solution ring: $\quad \operatorname{size}_{\text {bits }} \geq \lambda^{2}+\frac{\log _{2} \mid \text { ring } \mid}{\log _{2} N} \cdot \lambda$

- Lattice (SIS): ring of 2^{65536} solution candidates \Rightarrow size $_{\text {bits }} \geq 133 \mathrm{~KB}$
- Code (SD): ring of 2^{1280} solution candidates \Rightarrow size $_{\text {bits }} \geq 4.6 \mathrm{~KB}$

An MPC-friendly statement

Size of the solution ring:

$$
\text { size }_{\text {bits }} \geq \lambda^{2}+\frac{\log _{2} \mid \text { ring } \mid}{\log _{2} N} \cdot \lambda
$$

- Lattice (SIS): ring of 2^{65536} solution candidates \Rightarrow size $_{\text {bits }} \geq 133 \mathrm{~KB}$
- Code (SD): ring of 2^{1280} solution candidates \Rightarrow size $_{\text {bits }} \geq 4.6 K B$
- Size of the base field: the current MPC techniques for MPCitH are more efficient with large fields (for example, the Schwartz-Zippel Lemma).
- SD over GF(2): around II-I3 KB
- SD over GF(256): around 8-9 KB

An MPC-friendly statement

Size of the solution ring:

$$
\text { size }_{b i t s} \geq \lambda^{2}+\frac{\log _{2} \mid \text { ring } \mid}{\log _{2} N} \cdot \lambda
$$

- Lattice (SIS): ring of 2^{65536} solution candidates \Rightarrow size $_{\text {bits }} \geq 133 \mathrm{~KB}$
- Code (SD): ring of 2^{1280} solution candidates \Rightarrow size $_{\text {bits }} \geq 4.6 K B$
- Size of the base field: the current MPC techniques for MPCitH are more efficient with large fields (for example, the Schwartz-Zippel Lemma).
- SD over GF(2): around II-I3 KB
- SD over GF(256): around 8-9 KB
- Multiplicative depth of the verification circuits
- Having a depth of 1 is the optimal.
- SD over GF(256): depth of 1 , around 8-9 KB
- PKP: depth of $\log _{2} n$, around I2-I3 KB

An MPC-friendly statement

Size of the solution ring:

$$
\text { size }_{b i t s} \geq \lambda^{2}+\frac{\log _{2} \mid \text { ring } \mid}{\log _{2} N} \cdot \lambda
$$

- Lattice (SIS): ring of 2^{65536} solution candidates \Rightarrow size $_{\text {bits }} \geq 133 K B$
- Code (SD): ring of 2^{1280} solution candidates \Rightarrow size $_{\text {bits }} \geq 4.6 K B$
- Size of the base field: the current MPC techniques for MPCitH are more efficient with large fields (for example, the Schwartz-Zippel Lemma).
- SD over GF(2): around II-I3 KB
- SD over GF(256): around 8-9 KB
- Multiplicative depth of the verification circuits
- Having a depth of 1 is the optimal.
- SD over GF(256): depth of 1 , around 8-9 KB
- PKP: depth of $\log _{2} n$, around I2-I3 KB
- Number of multiplications in the verification circuit

Signature scheme: SD-in-the-Head

- Many (standard) MPCitH optimisations to reduce the signature size

■ Obtained signature sizes:

Field	PK size	Signature Size	
		Additive	LSSSith
GF(2)	$90-100 \mathrm{~B}$	$11-13 \mathrm{~KB}$	-
GF(25 I)	$140-150 \mathrm{~B}$	$8-9 \mathrm{~KB}$	$9.5-10.5 \mathrm{~KB}$
GF(256)	$140-150 \mathrm{~B}$	$8-9 \mathrm{~KB}$	$9.5-10.5 \mathrm{~KB}$

Signature scheme: SD-in-the-Head

- Many (standard) MPCitH optimisations to reduce the signature size
\square Obtained signature sizes:

Field	PK size	Signature Size	
		Additive	LSSSit
$G F(2)$	$90-100 \mathrm{~B}$	$11-13 \mathrm{~KB}$	-
$G F(25 \mathrm{l})$	$140-150 \mathrm{~B}$	$8-9 \mathrm{~KB}$	$9.5-10.5 \mathrm{~KB}$
$\operatorname{GF}(256)$	$140-150 \mathrm{~B}$	$8-9 \mathrm{~KB}$	$9.5-10.5 \mathrm{~KB}$

Why GF(25 I) or GF(256)?

Signature scheme: SD-in-the-Head

- Many (standard) MPCitH optimisations to reduce the signature size
\square Obtained signature sizes:

Field	PK size	Signature Size	
		Additive	LSSSith
$\mathrm{GF}(2)$	$90-100 \mathrm{~B}$	$\mathrm{II}-\mathrm{I} 3 \mathrm{~KB}$	-
$\mathrm{GF}(25 \mathrm{I})$	$\mathrm{I} 40-\mathrm{I} 50 \mathrm{~B}$	$8-9 \mathrm{~KB}$	$9.5-10.5 \mathrm{~KB}$
$\mathrm{GF}(256)$	$140-150 \mathrm{~B}$	$8-9 \mathrm{~KB}$	$9.5-10.5 \mathrm{~KB}$

Why GF(25 I) or GF(256)?

\square Additive: the computational bottleneck is the pseudo-random generation (and the commitments). GF(256) will be more efficient than GF(25I)

- LSSSitH: the computational bottleneck is the arithmetics. GF(25I) will be more efficient than GF(256), especially on platforms without GFNI.

Performances

NIST Candidate SD-in-the-Head: Benchmark on a 2.60 GHz recent platform

	Additive Sharing			LSSSitH		
	Size	Sign	Verify	Size	Sign	Verify
SDitH (256)	$\mathbf{8 2 4 I}$	$\mathbf{5 . 1 8}$	$\mathbf{4 . 8 1}$	10117	1.97	0.62
SDitH (25I)	$\mathbf{8 2 4 I}$	8.51	8.16	$\mathbf{1 0 1 1 7}$	$\mathbf{1 . 7 1}$	$\mathbf{0 . 2 3}$

Size in bytes, timing in milliseconds

Submitted candidates at NIST call

- Syndrome Decoding Problem:

SD-in-the-Head

C.Aguilar Melchor, T. Feneuil, N. Gama, S. Gueron, J. Howe, D. Joseph, A. Joux, E. Persichetti, T. Randrianarisoa, M. Rivain, D. Yue.

- Rank Syndrome Decoding Problem:

RYDE

N. Aragon, M. Bardet, L. Bidoux, J.-J. Chi-Domínguez,V. Dyseryn, T. Feneuil, P. Gaborit, A. Joux, M. Rivain, J.-P.Tillich, A.Vinçotte.

- Min Rank Problem:

MIRA

N.Aragon, M. Bardet, L. Bidoux, J.-J. Chi-Domínguez,V. Dyseryn,
T. Feneuil, P. Gaborit, R. Neveu, M. Rivain, J.-P.Tillich.

- Multivariate Quadratic Problem:

MQOM: MQ on my Mind
T. Feneuil, M. Rivain

Submitted candidates at NIST call

- How to deal with the rank metric [Fen22]:
- Technique I: let us have a matrix $X \in \mathbb{F}_{q}^{n \times m}$

$$
\operatorname{rk}(X) \leq r \Longleftrightarrow \exists T \in \mathbb{F}^{n \times r}, R \in \mathbb{F}^{r \times m}: X=T \cdot R
$$

- Technique 2: let us have a vector $x \in \mathbb{F}_{q^{m}}^{n}$

$$
\mathrm{w}_{R}(x) \leq r \Longleftrightarrow \exists P(X):=X^{q^{r}}+\sum_{j=0}^{r-1} \beta_{j} X^{q^{j}}: \forall i: P\left(x_{j}\right)=0
$$

Submitted candidates at NIST call

- How to deal with the rank metric [Fen22]:
- Technique I: let us have a matrix $X \in \mathbb{F}_{q}^{n \times m}$

$$
\operatorname{rk}(X) \leq r \Longleftrightarrow \exists T \in \mathbb{F}^{n \times r}, R \in \mathbb{F}^{r \times m}: X=T \cdot R
$$

- Technique 2: let us have a vector $x \in \mathbb{F}_{q^{m}}^{n}$

$$
\mathrm{w}_{R}(x) \leq r \Longleftrightarrow \exists P(X):=X^{q^{r}}+\sum_{j=0}^{r-1} \beta_{j} X^{q^{j}}: \forall i: P\left(x_{j}\right)=0
$$

Shorter size

Submitted candidates at NIST call

- How to deal with the rank metric [Fen22]:
- Technique I: let us have a matrix $X \in \mathbb{F}_{q}^{n \times m}$

$$
\operatorname{rk}(X) \leq r \Longleftrightarrow \exists T \in \mathbb{F}^{n \times r}, R \in \mathbb{F}^{r \times m}: X=T \cdot R
$$

- Technique 2: let us have a vector $x \in \mathbb{F}_{q^{m}}^{n}$

$$
\mathrm{w}_{R}(x) \leq r \Longleftrightarrow \exists P(X):=X^{q^{r}}+\sum_{j=0}^{r-1} \beta_{j} X^{q^{j}}: \forall i: P\left(x_{j}\right)=0
$$

- Rank SD: Technique 2 is the best
- From $H \in \mathbb{F}_{q^{m}}^{(n-k) \times n}$ and $y \in \mathbb{F}_{q}^{n-k}$, find a vector $x \in \mathbb{F}_{q^{m}}^{n}$ such that $y=H x$ and $\mathrm{w}_{R}(x) \leq r$.
- Min Rank: not clear which technique is the best
- From $M_{0}, M_{1}, \ldots, M_{k} \in \mathbb{F}_{q}^{m \times n}$,
find a vector $x \in \mathbb{F}_{q}^{k}$ such that $\operatorname{rk}\left(M_{0}+\sum_{i=1}^{k} x_{i} M_{i}\right) \leq r$.

Submitted candidates at NIST call

- How to deal with the rank metric [Fen22]:
- Technique I: let us have a matrix $X \in \mathbb{F}_{q}^{n \times m}$

$$
\operatorname{rk}(X) \leq r \Longleftrightarrow \exists T \in \mathbb{F}^{n \times r}, R \in \mathbb{F}^{r \times m}: X=T \cdot R
$$

- Technique 2: let us have a vector $x \in \mathbb{F}_{q^{m}}^{n}$

$$
\mathrm{w}_{R}(x) \leq r \Longleftrightarrow \exists P(X):=X^{q^{r}}+\sum_{j=0}^{r-1} \beta_{j} X^{q^{j}}: \forall i: P\left(x_{j}\right)=0
$$

- Rank SD: Technique 2 is the best
- From $H \in \mathbb{F}_{q^{m}}^{(n-k) \times n}$ and $y \in \mathbb{F}_{q}^{n-k}$, find a vector $x \in \mathbb{F}_{q^{m}}^{n}$ such that $y=H x$ and $\mathrm{w}_{R}(x) \leq r$.
- Min Rank: not clear which technique is the best
- From $M_{0}, M_{1}, \ldots, M_{k} \in \mathbb{F}_{q}^{m \times n}$,

Technique I: MiRith Technique 2: MIRA find a vector $x \in \mathbb{F}_{q}^{k}$ such that $\operatorname{rk}\left(M_{0}+\sum_{i=1}^{k} x_{i} M_{i}\right) \leq r$.

Performances

NIST Candidates: Benchmark on a 2.60 GHz recent platform

	Additive Sharing			LSSSitH		
	Size	Sign	Verify	Size	Sign	Verify
SDitH (256)	8241	5.18	4.81	10117	1.97	0.62
SDitH (25I)	8241	8.51	8.16	10117	1.71	0.23
MQOM (3I)	6348	17.06	16.05	-	-	-
MQOM (25I)	6575	10.97	10.50	~ 14000	-	-
RYDE	5956	8.58	7.31	~ 9200	-	-
MIRA (16)	5640	16.65	15.61	-	-	-

Size in bytes, timing in milliseconds Isochronous implementations Single thread

Performances

NIST Candidates: Benchmark on a 2.60 GHz recent platform

	Additive Sharing			LSSSitH		
	Size	Sign	Verify	Size	Sign	Verify
SDitH (256)	8241	5.18	4.81	10117	1.97	0.62
SDitH (25I)	8241	8.51	8.16	10117	1.71	0.23
MQOM (3I)	6348	17.06	16.05	-	-	-
MQOM (25I)	6575	10.97	10.50	~ 14000	-	-
RYDE	5956	8.58	7.31	~ 9200	-	-
MIRA (16)	5640	16.65	15.61	-	-	-

\square Dilithium: $\quad \mid$ sig $\left|=2420,|p k|=|3| 2, t_{\text {sign }}=0.13, t_{\text {verify }}=0.05\right.$

- Falcon: $\quad|\mathrm{sig}|=666,|\mathrm{pk}|=897, \mathrm{t}_{\text {sign }}=0.20, \mathrm{t}_{\text {verify }}=0.06$
- SPHINCS+:
\mid sig $|=7856, \quad| \mathrm{pk} \mid=32, \quad \mathrm{t}_{\text {sign }}=331, \quad \mathrm{t}_{\text {verify }}=2.3$
$|\mathrm{sig}|=17088,|\mathrm{pk}|=32, \quad \mathrm{t}_{\text {sign }}=19, \quad \mathrm{t}_{\text {verify }}=0.9$

Conclusion

- MPC-in-the-Head
- A practical tool to build conservative signature schemes
- Very versatile and tunable
- Can be applied on any one-way function
- Perspectives
- Additive-based MPCitH: stable
- Low-threshold-based MPCitH: new approach, could lead to follow-up works

