Recent Optimizations

Exploring other problems

Building MPCitH-based Signatures with Some Classical Hardness Assumptions

Thibauld Feneuil

CryptoExperts, Paris, France

Sorbonne Université, CNRS, INRIA, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Ouragan, Paris, France

NIST. February 7, 2023.

SD in the Head

Recent Optimizations

Exploring other problems

Table of Contents

1 Introduction

- 2 Syndrome Decoding in the Head
 - Rephrase the constraint
 - MPC Protocol
 - Zero-Knowledge Proof
- **3** Recent Optimizations
- 4 Exploring other problems
 - Multivariate Quadratic Problem
 - MinRank
 - Rank SD
 - Subset Sum Problem
 - Summary

Recent Optimizations

Exploring other problems

Methodology

Introduction 0 = 0000000

SD in the Head

Recent Optimizations

Exploring other problems

Zero-Knowledge Proofs of Knowledge

Let have a circuit C and an output y. *Problem:* find x such that C(x) = y. Introduction 0 = 0000000

SD in the Head

Recent Optimizations

Exploring other problems

Zero-Knowledge Proofs of Knowledge

Let have a circuit C and an output y. *Problem:* find x such that C(x) = y.

SD in the Head

Recent Optimizations

Exploring other problems

MPC-in-the-Head Paradigm

MPC-in-the-Head Paradigm

- Generic technique to build *zero-knowledge protocols* using *multi-party computation*.
- Introduced in 2007 by:

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation. STOC 2007.

 Popularized in 2016 by *Picnic*, a former candidate of the NIST Post-Quantum Cryptography Standardization.

SD in the Head

Recent Optimizations

Exploring other problems

Sharing of the secret

The secret x satisfies

$$y = C(x).$$

We share it in N parts:

$$x = [\![x]\!]_1 + [\![x]\!]_2 + \ldots + [\![x]\!]_{N-1} + [\![x]\!]_N.$$

SD in the Head

Recent Optimizations

Exploring other problems

MPC-in-the-Head Paradigm

- Reject otherwise.

SD in the Head

Recent Optimizations

Exploring other problems

SD in the Head

Recent Optimizations

Exploring other problems

SD in the Head

Recent Optimization

Exploring other problems

SD in the Head

Recent Optimizations

Exploring other problems

SD in the Head

Recent Optimizations

Exploring other problems

SD in the Head

Recent Optimizations

Exploring other problems

SD in the Head

Recent Optimizations

Exploring other problems

SD in the Head

Recent Optimizations

Exploring other problems

MPC-in-the-Head Paradigm

Soundness error:

 $\frac{1}{N}$

<u>Proof size</u>: depends on the multi-party computation protocol

Two possible trade-offs:

• Repeat the protocol many times:

fast proofs, but large proofs

 $\circ~$ Take a larger N:

short proofs, but slow proofs

 $_{00000000}^{\rm Introduction}$

SD in the Head

 $\underset{000000000}{\operatorname{Recent}} \operatorname{Optimizations}$

Exploring other problems

From ID scheme to signature scheme

SD in the Head

 $\underset{000000000}{\operatorname{Recent}} \operatorname{Optimizations}$

Exploring other problems

The First MPCitH-based Signatures

Scheme Name	Year	sgn	Assumption
Picnic1 [CDG+17]	2016	32.1 KB	LowMC (partial)
Picnic2 [KKW18]	2018	12.1 KB	
Picnic3 [KZ20b]	2019	12.3 KB	LowMC (full)
Helium+LowMC [KZ22]	2022	6.4 - 9.2 KB★	
BBQ [dDOS19]	2019	30.9 KB	
Banquet [BdK+21]	2021	13.0 - 17.1 KB*	AES
Limbo-Sign [dOT21]	2021	14.2 - 17.9 KB★	ALS
Helium+AES [KZ22]	2022	9.7 - 14.4 KB*	
Rainier [DKR+21]	2021	5.9 - 8.1 KB*	Bain
BN++Rain [KZ22]	2022	4.9 - 6.4 KB★	Italli

*sizes given for a range of 32-256 parties.

Exploring other problems

Table of Contents

1 Introduction

2 Syndrome Decoding in the Head

- Rephrase the constraint
- MPC Protocol
- Zero-Knowledge Proof
- **3** Recent Optimizations
- ④ Exploring other problems

SD in the Head

Recent Optimizations

Exploring other problems

Signature with Syndrome Decoding Problem

Idea:

Instead of relying on AES or on MPC-friendly primitives, we can rely on hard problems from asymmetric crypto.

The case of the Syndrome Decoding in Hamming metric: [FJR22] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs. CRYPTO 2022.

 Recent Optimizations

Exploring other problems

Rephrase the constraint

Syndrome Decoding Problem

From (H, y), find $x \in \mathbb{F}^m$ such that

y = Hx and $wt_H(x) \le w$.

 $wt_H(x) := nb$ of non-zero coordinates of x

The multi-party computation must check that the vector \boldsymbol{x} satisfies

 Recent Optimizations

Exploring other problems

Rephrase the constraint

The multi-party computation must check that the vector \boldsymbol{x} satisfies

$$y = H\mathbf{x}$$

and

$$\exists Q, P$$
 two polynomials : $SQ = PF$ and $\deg Q = w$

where

S is defined by interpolation such that $\forall i, \ S(\gamma_i) = x_i,$ $F := \prod_{i=1}^m (X - \gamma_i).$

SD in the Head

Recent Optimizations

Exploring other problems

Rephrase the constraint

Let us assume that there exists $Q, P \in \mathbb{F}_{poly}[X]$ s.t.

 $S \cdot Q = P \cdot F$ and $\deg Q = w$

where

S is built by interpolation such that $\forall i, \ S(\gamma_i) = x_i,$ $F := \prod_{i=1}^m (X - \gamma_i),$

then, the verifier deduces that

$$\begin{aligned} \forall i \le m, \ (\boldsymbol{Q} \cdot \boldsymbol{S})(\gamma_i) &= \boldsymbol{P}(\gamma_i) \cdot \boldsymbol{F}(\gamma_i) = 0\\ \Rightarrow \ \forall i \le m, \ \boldsymbol{Q}(\gamma_i) = 0 \quad \text{or} \quad \boldsymbol{S}(\gamma_i) = \boldsymbol{x}_i = 0 \end{aligned}$$

 Recent Optimizations

Exploring other problems

Rephrase the constraint

Let us assume that there exists $Q, P \in \mathbb{F}_{poly}[X]$ s.t.

 $S \cdot Q = P \cdot F$ and $\deg Q = w$

where

S is built by interpolation such that $\forall i, \ S(\gamma_i) = x_i,$ $F := \prod_{i=1}^m (X - \gamma_i),$

then, the verifier deduces that

$$\forall i \le m, (\mathbf{Q} \cdot \mathbf{S})(\gamma_i) = \mathbf{P}(\gamma_i) \cdot F(\gamma_i) = 0$$

$$\Rightarrow \forall i \le m, \ \mathbf{Q}(\gamma_i) = 0 \text{ or } \mathbf{S}(\gamma_i) = \mathbf{x}_i = 0$$

i.e.

$$\operatorname{wt}_H(\boldsymbol{x}) := \#\{i : \boldsymbol{x}_i \neq 0\} \le w$$

 Recent Optimizations

Exploring other problems

Rephrase the constraint

Such polynomial Q can be built as

$$Q := Q' \cdot \prod_{\substack{i:x_i \neq 0}} (X - \gamma_i)$$

The non-zero positions of x
are encoding as roots.

And $P := \frac{S \cdot Q}{F}$ since F divides $S \cdot Q$.

 $(\forall i, \mathbf{S}(\gamma_i) = \mathbf{x}_i)$

 Recent Optimizations

Exploring other problems

Guidelines for the MPC Protocol

We want to build a MPC protocol which checks if some vector is a syndrome decoding solution.

Let us assume H = (H'|I). We split x as $\begin{pmatrix} x_A \\ x_B \end{pmatrix}$. We have y = Hx, so

$$\boldsymbol{x_B} = \boldsymbol{y} - \boldsymbol{H'}\boldsymbol{x_A}.$$

 Recent Optimizations

Exploring other problems

Guidelines for the MPC Protocol

We want to build a MPC protocol which checks if some vector is a syndrome decoding solution.

Let us assume H = (H'|I). We split x as $\begin{pmatrix} x_A \\ x_B \end{pmatrix}$. We have y = Hx, so

$$\boldsymbol{x_B} = \boldsymbol{y} - \boldsymbol{H'}\boldsymbol{x_A}.$$

Inputs of the MPC protocol: x_A, Q, P . Aim of the MPC protocol:

Check that x_A corresponds to a syndrome decoding solution.

 Recent Optimizations

Exploring other problems

Guidelines for the MPC Protocol

Inputs: x_A , Q, P.

1. Build
$$x_B := y - H'x_A$$
 and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.
We have

$$y = H\mathbf{x}.$$

 Recent Optimizations

Exploring other problems

Guidelines for the MPC Protocol

Inputs: x_A , Q, P.

1. Build $x_B := y - H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.

2. Build the polynomial S by interpolation such that

$$\forall i \in \{1,\ldots,m\}, \mathbf{S}(\gamma_i) = \mathbf{x}_i.$$

Interpolation Formula:

$$S(X) = \sum_{i} x_{i} \cdot \prod_{\ell \neq i} \frac{X - \gamma_{\ell}}{\gamma_{i} - \gamma_{\ell}} .$$

 $18 \ / \ 52$

 Recent Optimizations

Exploring other problems

Guidelines for the MPC Protocol

Inputs: x_A , Q, P.

- 1. Build $x_B := y H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.
- 2. Build the polynomial S by interpolation such that

$$\forall i \in \{1, \ldots, m\}, \mathbf{S}(\gamma_i) = \mathbf{x}_i.$$

3. Check that $S \cdot Q = P \cdot F$.

Guidelines for the MPC Protocol

Inputs: x_A , Q, P.

- 1. Build $x_B := y H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.
- 2. Build the polynomial S by interpolation such that

$$\forall i \in \{1,\ldots,m\}, \mathbf{S}(\gamma_i) = \mathbf{x_i}.$$

- 3. Get a random point r from $\mathbb{F}_{\text{points}}$ (field extension of \mathbb{F}_{poly}).
- 4. Compute S(r), Q(r) and P(r).
- 5. Using [BN20], check that $S(r) \cdot Q(r) = P(r) \cdot F(r)$.

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. PKC 2020.

SD in the Head

Recent Optimizations

Exploring other problems

MPC Protocol

Inputs of the party \mathcal{P}_i : $\llbracket x_A \rrbracket_i$, $\llbracket Q \rrbracket_i$ and $\llbracket P \rrbracket_i$.

1. Compute $\llbracket x_B \rrbracket := y - H' \llbracket x_A \rrbracket$ and deduce $\llbracket x \rrbracket := \begin{pmatrix} \llbracket x_A \rrbracket \\ \llbracket x_B \rrbracket \end{pmatrix}$.

2. Compute $[\![S]\!]$ from $[\![x]\!]$ thanks to

$$\llbracket S(X) \rrbracket = \sum_{i} \llbracket x_{i} \rrbracket \cdot \prod_{\ell \neq i} \frac{X - \gamma_{\ell}}{\gamma_{i} - \gamma_{\ell}}$$

Get a random point r from F_{points} (field extension of F_{poly}).
Compute

$$\begin{bmatrix} [S(r)]] = [[S]](r) \\ [[Q(r)]] = [[Q]](r) \\ [[P(r)]] = [[P]](r) \end{bmatrix}$$

5. Using [BN20], check that $S(r) \cdot Q(r) = P(r) \cdot F(r)$.

 Recent Optimizations

Exploring other problems

Analysis

Even if x_A does not describe a SD solution (implying that $S \cdot Q \neq P \cdot F$), the MPC protocol can output ACCEPT if

Case 1 :

$$\mathbf{S}(r) \cdot \mathbf{Q}(r) = \mathbf{P}(r) \cdot F(r)$$

which occurs with probability (Schwartz-Zippel Lemma)

$$\Pr_{\substack{r \leftarrow \$_{\text{points}}}} [S(r) \cdot Q(r) = P(r) \cdot F(r)] \le \frac{m + w - 1}{|\mathbb{F}_{\text{points}}|}$$

 Recent Optimizations

Exploring other problems

Analysis

Even if x_A does not describe a SD solution (implying that $S \cdot Q \neq P \cdot F$), the MPC protocol can output ACCEPT if

Case 1 :

$$S(r) \cdot Q(r) = P(r) \cdot F(r)$$

which occurs with probability (Schwartz-Zippel Lemma)

$$\Pr_{\substack{r \leftarrow \$} \mathsf{F}_{\text{points}}} [S(r) \cdot Q(r) = P(r) \cdot F(r)] \le \frac{m + w - 1}{|\mathbb{F}_{\text{points}}|}$$

Case 2 : the [BN20] protocol fails, which occurs with probability

Introduction 00000000	SD in the Head $000000000000000000000000000000000000$	Recent Optimizations	Exploring other problems
Summary			

The MPC protocol π checks that (x_A, Q, P) describes a solution of the SD instance (H, y).

	Output of π	
	Accept	Reject
A good witness	1	0
Not a good witness	p	1-p

where

$$p = \underbrace{\frac{m + w - 1}{|\mathbb{F}_{\text{points}}|}}_{\text{false positive}}_{\text{from Schwartz-Zippel}} + \left(1 - \frac{m + w - 1}{|\mathbb{F}_{\text{points}}|}\right) \cdot \underbrace{\frac{1}{|\mathbb{F}_{\text{points}}|}}_{\text{false positive}}_{\text{from [BN20]}}$$

 Recent Optimizations

Exploring other problems

Recent Optimizations

Exploring other problems

MPC-in-the-Head paradigm

Prover \mathcal{P}		Verifier \mathcal{V}
H, y, x such that		H, y
$y = Hx$ and $wt_H(x) \le w$		
Prepare Q, P .		
$\operatorname{COM}_i \leftarrow \operatorname{Com}(\operatorname{inputs} \operatorname{of} \mathcal{P}_i)$		
	$Com_1,,Com_N$	$r \in \mathbb{F}$
Bup the MPC protocol π	, <u>r</u>	/ C in points
for each party	V	
tor each party.	broadcast messages	
		$i^* \leftarrow \{1, \dots, N\}$
	$\leftarrow \frac{i^*}{}$	
	all V_i for $i \neq i^*$	
	,	Check that the views are consistent
		Check that the MPC output is ACCEPT
		check that the hir o butput is receir i

 $\underset{000000000}{\operatorname{Recent}} \operatorname{Optimizations}$

Exploring other problems

Zero-Knowledge Protocol

Soundness error:

$$p + (1-p) \cdot \frac{1}{N}$$

 Recent Optimizations

Exploring other problems

Zero-Knowledge Protocol

Soundness error:

$$p + (1-p) \cdot \frac{1}{N}$$

<u>Proof size</u>:

 $\circ~$ Inputs of N-1 parties:

 Recent Optimizations

Exploring other problems

Zero-Knowledge Protocol

Soundness error:

$$p + (1-p) \cdot \frac{1}{N}$$

<u>Proof size</u>:

◦ Inputs of N - 1 parties:

- Party i < N: a seed of λ bits
- Last party:

$$\underbrace{k \cdot \log_2 |\mathbb{F}_{\mathrm{SD}}|}_{[\![x_A]\!]_N} + \underbrace{2w \cdot \log_2 |\mathbb{F}_{\mathrm{poly}}|}_{[\![Q]\!]_N, [\![P]\!]_N} + \underbrace{\lambda}_{[\![a]\!]_N, [\![b]\!]_N} + \underbrace{\log_2 |\mathbb{F}_{\mathrm{points}}|}_{[\![c]\!]_N}$$

 Recent Optimizations

Exploring other problems

Zero-Knowledge Protocol

Soundness error:

$$p + (1-p) \cdot \frac{1}{N}$$

<u>Proof size</u>:

• Inputs of N-1 parties:

- Party i < N: a seed of λ bits
- Last party:

$$\underbrace{k \cdot \log_2 |\mathbb{F}_{\mathrm{SD}}|}_{[\![x_A]\!]_N} + \underbrace{2w \cdot \log_2 |\mathbb{F}_{\mathrm{poly}}|}_{[\![Q]\!]_N, [\![P]\!]_N} + \underbrace{\lambda}_{[\![a]\!]_N, [\![b]\!]_N} + \underbrace{\log_2 |\mathbb{F}_{\mathrm{points}}|}_{[\![c]\!]_N}$$

- \circ Communication between parties: 2 elements of $\mathbb{F}_{\text{points}}$.
- \circ 2 hash digests (2 × 2 λ bits),
- \circ Some commitment randomness + COM_{*i**}

 Recent Optimizations

Exploring other problems

Security of the signature

Fiat-Shamir Transform:

5-round Identification Scheme \Rightarrow Signature

Attack of [KZ20]:

$$\text{cost}_{\text{forge}} := \min_{\tau_1, \tau_2: \tau_1 + \tau_2 = \tau} \left\{ \frac{1}{\sum_{i=\tau_1}^{\tau} {\tau \choose i} p^i (1-p)^{\tau-i}} + N^{\tau_2} \right\}$$

[KZ20a] Daniel Kales and Greg Zaverucha. An attack on some signature schemes constructed from five-pass identification schemes. CANS 2020.

 Recent Optimizations

Exploring other problems

Parameters selected

Variant 1: SD over \mathbb{F}_2 ,

(m, k, w) = (1280, 640, 132)

We have $\mathbb{F}_{poly} = \mathbb{F}_{2^{11}}$.

 Recent Optimizations

Exploring other problems

Parameters selected

Variant 1: SD over \mathbb{F}_2 ,

(m, k, w) = (1280, 640, 132)

We have $\mathbb{F}_{poly} = \mathbb{F}_{2^{11}}$.

Variant 2: SD over \mathbb{F}_2 ,

$$(m, k, w) = (1536, 888, 120)$$

but we split $x := (x_1 \mid \ldots \mid x_6)$ into 6 chunks and we prove that wt_H $(x_i) \leq \frac{w}{6}$ for all *i*.

We have
$$\mathbb{F}_{poly} = \mathbb{F}_{2^8}$$
.

 Recent Optimizations

Exploring other problems

Parameters selected

Variant 3: SD over \mathbb{F}_{2^8} ,

$$(m, k, w) = (256, 128, 80)$$

We have $\mathbb{F}_{poly} = \mathbb{F}_{2^8}$.

Recent Optimizations

Exploring other problems

Obtained Performances

Scheme Name	sgn	pk	$t_{\sf sgn}$	$t_{\sf verif}$
FJR22 - \mathbb{F}_2 (fast)	15.6 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2 (short)	10.9 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2 (fast)	17.0 KB	0.09 KB	$13 \mathrm{ms}$	13 ms
$FJR22 - \mathbb{F}_2$ (short)	11.8 KB	0.09 KB	$64 \mathrm{ms}$	$61 \mathrm{ms}$
FJR22 - \mathbb{F}_{256} (fast)	11.5 KB	0.14 KB	$6 \mathrm{ms}$	$6 \mathrm{ms}$
FJR22 - \mathbb{F}_{256} (short)	$8.26~\mathrm{KB}$	0.14 KB	$30 \mathrm{ms}$	$27 \mathrm{ms}$

Recent Optimizations

Exploring other problems

Obtained Performances

Scheme N	ame	sgn	pk	$t_{\sf sgn}$	$t_{\sf verif}$
FJR22 - \mathbb{F}_2	(fast)	15.6 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2	(short)	10.9 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2	(fast)	17.0 KB	0.09 KB	$13 \mathrm{ms}$	$13 \mathrm{ms}$
FJR22 - \mathbb{F}_2	(short)	11.8 KB	0.09 KB	$64 \mathrm{~ms}$	$61 \mathrm{ms}$
FJR22 - \mathbb{F}_{256}	(fast)	11.5 KB	$0.14~\mathrm{KB}$	$6 \mathrm{ms}$	$6 \mathrm{ms}$
FJR22 - \mathbb{F}_{256}	(short)	8.26 KB	$0.14~\mathrm{KB}$	$30 \mathrm{ms}$	$27 \mathrm{~ms}$

Number of parties: N = 256Number of repetitions: $\tau = 17$

Recent Optimizations

Exploring other problems

Obtained Performances

Scheme N	ame	sgn	pk	$t_{\sf sgn}$	$t_{\sf verif}$
FJR22 - \mathbb{F}_2	(fast)	15.6 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2	(short)	10.9 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2	(fast)	17.0 KB	0.09 KB	13 ms	$13 \mathrm{ms}$
$FJR22 - \mathbb{F}_2$	(short)	11.8 KB	0.09 KB	$64 \mathrm{ms}$	$61 \mathrm{ms}$
FJR22 - \mathbb{F}_{256}	(fast)	11.5 KB	0.14 KB	6 ms	6 ms
FJR22 - \mathbb{F}_{256}	(short)	$8.26~\mathrm{KB}$	$0.14~\mathrm{KB}$	$30 \mathrm{ms}$	$27 \mathrm{ms}$

Number of parties: N = 32Number of repetitions: $\tau = 27$

 $\underset{000000000}{\operatorname{Recent}} \operatorname{Optimizations}$

Exploring other problems

Comparison Code-based Signatures (1/2)

Scheme Name	sgn	pk	$t_{\sf sgn}$	$t_{\sf verif}$
BGKS21	24.1 KB	0.1 KB	-	-
BGKS21	$22.5~\mathrm{KB}$	1.7 KB	-	-
GPS21 - 256	22.2 KB	0.11 KB	-	-
GPS21 - 1024	19.5 KB	0.12 KB	-	-
FJR21 (fast)	22.6 KB	0.09 KB	$13 \mathrm{ms}$	12 ms
FJR21 (short)	16.0 KB	0.09 KB	$62 \mathrm{ms}$	$57 \mathrm{ms}$
BGKM22 - Sig1	23.7 KB	0.1 KB	-	-
BGKM22 - Sig2	$20.6~\mathrm{KB}$	0.2 KB	-	-
FJR22 - \mathbb{F}_2 (fast)	15.6 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2 (short)	$10.9~\mathrm{KB}$	0.09 KB	-	-
FJR22 - \mathbb{F}_2 (fast)	17.0 KB	0.09 KB	$13 \mathrm{ms}$	13 ms
$FJR22 - \mathbb{F}_2$ (short)	11.8 KB	0.09 KB	$64 \mathrm{ms}$	$61 \mathrm{ms}$
FJR22 - \mathbb{F}_{256} (fast)	11.5 KB	0.14 KB	6 ms	6 ms
FJR22 - \mathbb{F}_{256} (short)	8.26 KB	$0.14~\mathrm{KB}$	$30 \mathrm{ms}$	27 ms

 $\underset{000000000}{\operatorname{Recent}} \operatorname{Optimizations}$

Exploring other problems

Comparison Code-based Signatures (2/2)

Scheme Name	sgn	pk	$t_{\sf sgn}$	$t_{\sf verif}$
Durandal - I	3.97 KB	14.9 KB	$4 \mathrm{ms}$	5 ms
Durandal - II	4.90 KB	$18.2~\mathrm{KB}$	$5 \mathrm{ms}$	6 ms
LESS-FM - I	15.2 KB	9.78 KB	-	-
LESS-FM - II	$5.25~\mathrm{KB}$	205 KB	-	-
LESS-FM - III	10.39 KB	$11.57~\mathrm{KB}$	-	-
Wave	$2.07~\mathrm{KB}$	3.1 MB	$\geq 300 \text{ ms}$	2 ms
Wavelet	0.91 KB	3.1 MB	$\geq 300~{\rm ms}$	$\leq 1 \text{ ms}$
FJR22 - \mathbb{F}_2 (fast)	15.6 KB	0.09 KB	-	-
$FJR22 - \mathbb{F}_2$ (short)	10.9 KB	$0.09~\mathrm{KB}$	-	-
FJR22 - \mathbb{F}_2 (fast)	17.0 KB	0.09 KB	13 ms	13 ms
$FJR22 - \mathbb{F}_2$ (short)	11.8 KB	$0.09~\mathrm{KB}$	64 ms	$61 \mathrm{ms}$
FJR22 - \mathbb{F}_{256} (fast)	11.5 KB	0.14 KB	6 ms	6 ms
FJR22 - \mathbb{F}_{256} (short)	8.26 KB	$0.14~\mathrm{KB}$	30 ms	27 ms

 Recent Optimizations

Signature Security

- \mathbb{R} Keys = Generic Instances of the considered problem (no structure).
- Forgery in the Random Oracle Model: $Adv^{EUF-KO} \leq \varepsilon_{OWF} + \frac{(\tau \cdot N + 1)Q^2}{2^{2\lambda}} + \underbrace{\operatorname{Prob}[X + Y = \tau]}_{[KZ20a]'s \text{ attack}}$ $Adv^{EUF-CMA} \leq Adv^{EUF-KO} + Q_s \cdot \left(\tau \cdot \varepsilon_{PRG} + \varepsilon_{Tree} + \frac{Q}{2^{\kappa}}\right)$

[BdK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter Scholl, and Greg Zaverucha. Banquet: Short and Fast Signatures from AES. PKC 2021.

[KZ22] Daniel Kales, and Greg Zaverucha. Efficient Lifting for Shorter Zero-Knowledge Proofs and Post-Quantum Signatures. Eprint 2022/282.

 Recent Optimizations

Exploring other problems

Signature Security

 Forgery in the Quantum Random Oracle Model: [DFM20] Jelle Don, Serge Fehr, and Christian Majenz. The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more. Crypto 2020.
 [DFMS21] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-extractability in the quantum random-oracle model. Eprint 2021/280.

SD in the Head

 $\substack{\text{Recent Optimizations}\\ \bullet 000000000}$

Exploring other problems

Table of Contents

1 Introduction

2 Syndrome Decoding in the Head

- **3** Recent Optimizations
- 4 Exploring other problems

SD in the Head

Recent Optimizations

Exploring other problems

Recent Optimizations

Usage of additive sharings with a hypercube approach [AGH+22] Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David Joseph, Dongze Yue. The Return of the SDitH. Eprint 2022/1645.

Usage of low-threshold Shamir's secret sharings [FR22] Thibauld Feneuil, Matthieu Rivain. Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head. Eprint 2022/1407.

SD in the Head

Recent Optimizations

Exploring other problems

Using additive sharings in a hypercube approach

(Eprint 2022/1645)

SD in the Head

 $\begin{array}{c} \operatorname{Recent}\ Optimizations\\ \circ\circ\circ\bullet\circ\circ\circ\circ\circ\circ\end{array}$

Exploring other problems

Using additive sharings in a hypercube approach

How to generate two N-sharings of a given value?

 \square Option 1: With two seed trees of N seeds.

 $COST = 2 \log_2 N$ seeds + 2 auxiliary states.

SD in the Head

 $\begin{array}{c} \operatorname{Recent}\ Optimizations\\ \circ\circ\circ\bullet\circ\circ\circ\circ\circ\circ\end{array}$

Exploring other problems

Using additive sharings in a hypercube approach

How to generate two N-sharings of a given value?

 \square Option 1: With two seed trees of N seeds.

 $COST = 2 \log_2 N$ seeds + 2 auxiliary states.

 $\stackrel{\text{\tiny ISS}}{\longrightarrow} \ \underline{\text{Option 2: With a large seed tree of } N^2 \text{ seeds [AGH+22].}}{\text{COST}} = \log_2(N^2) \text{ seeds } + 1 \text{ auxiliary state.}}$

SD in the Head

Recent Optimizations

Exploring other problems

Using additive sharings in a hypercube approach

If we want to have a protocol with a soundness error of $\frac{1}{N}$, we can emulate the MPC protocol $D := \log_2(N)$ times on 2-sharings with the same auxiliary state:

Soundness Error :=
$$\left(\frac{1}{2}\right)^{\log_2 N} = \frac{1}{N}$$
.

Thus, instead of emulating N parties to achieve a soundness error of 1/N, we run only $2 \log_2 N$ parties.

The $D \times N$ main party slices

SD in the Head

 $\underset{0000000000}{\operatorname{Recent}} \operatorname{Optimizations}$

Exploring other problems

Comparison over SDitH

Comparison over SDitH – variant \mathbb{F}_{256} :

Variant	sgn	$t_{\sf sgn}$	$t_{\sf verif}$
Standard - Fast $(N = 32)$	11.5 KB	$\approx 6 \ { m ms}$	$pprox 6 \ { m ms}$
Standard - Short $(N = 256)$	$8.26~\mathrm{KB}$	$\approx 25~{ m ms}$	$\approx 25 \text{ ms}$
Hypercube - Fast $(N = 32)$	11.5 KB	$\approx 4 \text{ ms}$	$\approx 4 \text{ ms}$
Hypercube - Short $(N = 256)$	$8.26~\mathrm{KB}$	$pprox 7 \ { m ms}$	$pprox 7 \ { m ms}$

Using Shamir's secret sharings

<u>Idea</u>: use a Shamir's (ℓ, N) -secret sharing and reveal only ℓ shares to the verifier (instead of N - 1) [FR22].

To share $s \in \mathbb{F}$,

- sample r_1, r_2, \ldots, r_ℓ uniformly from \mathbb{F} ,
- build the polynomial $P(X) = s + \sum_{k=1}^{\ell} r_k X^k$,
- set the share $[\![s]\!]_i$ as $P(e_i)$, where e_i is publicly known.

Resulting proof of knowledge:

🖙 Correctness: ok.

Using Shamir's secret sharings

<u>Idea</u>: use a Shamir's (ℓ, N) -secret sharing and reveal only ℓ shares to the verifier (instead of N - 1) [FR22].

To share $s \in \mathbb{F}$,

- sample r_1, r_2, \ldots, r_ℓ uniformly from \mathbb{F} ,
- build the polynomial $P(X) = s + \sum_{k=1}^{\ell} r_k X^k$,
- set the share $[\![s]\!]_i$ as $P(e_i)$, where e_i is publicly known.

Resulting proof of knowledge:

- ${\ensuremath{\mathbb S}}$ Correctness: ok.
- ${\tt IS}$ Zero-knowledge: ok, since we reveal only ℓ parties.

Using Shamir's secret sharings

<u>Idea</u>: use a Shamir's (ℓ, N) -secret sharing and reveal only ℓ shares to the verifier (instead of N - 1) [FR22].

To share $s \in \mathbb{F}$,

- sample r_1, r_2, \ldots, r_ℓ uniformly from \mathbb{F} ,
- build the polynomial $P(X) = s + \sum_{k=1}^{\ell} r_k X^k$,
- set the share $[\![s]\!]_i$ as $P(e_i)$, where e_i is publicly known.

Resulting proof of knowledge:

- \square Correctness: ok.
- ${\tt IS}$ Zero-knowledge: ok, since we reveal only ℓ parties.
- \blacksquare Soundness: ?

SD in the Head

 $\underset{0000000000000}{\operatorname{Recent}} \operatorname{Optimizations}$

Exploring other problems

Accept

Cheat on less than $N - \ell'$ parties	?
Cheat on more than $N - \ell$ parties	?
Cheat on exactly $N - \ell$ parties	?

SD in the Head

 $\underset{0000000000000}{\operatorname{Recent}} \operatorname{Optimizations}$

Exploring other problems

Using Shamir's secret sharings

Accept

Cheat on less than $N - \ell'$ parties	?
Cheat on more than $N - \ell$ parties	?
Cheat on exactly $N - \ell$ parties	?

SD in the Head

 $\underset{0000000000000}{\operatorname{Recent}} \operatorname{Optimizations}$

Exploring other problems

Cheat on less than $N - \ell'$ parties	Impossible
Cheat on more than $N - \ell$ parties	?
Cheat on exactly $N - \ell'$ parties	?

SD in the Head

 $\underset{0000000000000}{\operatorname{Recent}} \operatorname{Optimizations}$

Exploring other problems

Cheat on less than $N - \ell'$ parties	Impossible
Cheat on more than $N - \ell'$ parties	Useless
Cheat on exactly $N - \ell'$ parties	?

SD in the Head

 $\underset{0000000000000}{\operatorname{Recent}} \operatorname{Optimizations}$

Exploring other problems

Cheat on less than $N - \ell$ parties	Impossible
Cheat on more than $N - \ell$ parties	Useless
Cheat on exactly $N - \ell'$ parties	ОК

Exploring other problems

Using Shamir's secret sharings

Soundness error:

$$\frac{1}{\binom{N}{N-\ell}} = \frac{1}{\binom{N}{\ell}}$$

- \mathbb{I} No seed tree to generate the input shares
- \mathbb{R} A Merkle tree to commit the N input shares (by repetition)
- A verifier re-emulates only ℓ parties by repetition (instead of N-1)
- A prover needs to emulate only $\ell+1$ parties by repetition (instead of N)

<u>Restriction</u>: $N \leq |\mathbb{F}|$.

SD in the Head

Recent Optimizations

Exploring other problems

Comparison over SDitH

Comparison over SDitH – variant \mathbb{F}_{256} :

Variant	sgn	$t_{\sf sgn}$	$t_{\sf verif}$
Standard - Fast $(N = 32)$	11.5 KB	$\approx 6 \ { m ms}$	$\approx 6 \ { m ms}$
Standard - Short $(N = 256)$	8.26 KB	$\approx 25~{ m ms}$	$\approx 25 \text{ ms}$
Hypercube - Fast $(N = 32)$	11.5 KB	$\approx 4 \text{ ms}$	$\approx 4 \text{ ms}$
Hypercube - Short $(N = 256)$	8.26 KB	$\approx 7 \text{ ms}$	$\approx 7 \text{ ms}$
Shamir's Secret Sharing $(N = 256)$	9.97 KB	$\approx 3 \text{ ms}$	$\approx 0.4~{\rm ms}$

<u>Remark</u>: **non-isochronous implementation**. Ongoing efforts are currently done to propose isochronous and optimized implementations of SDitH.

<u>Remark</u>: the two optimizations do not seem to be compatible with each other.

Table of Contents

1 Introduction

2 Syndrome Decoding in the Head

3 Recent Optimizations

4 Exploring other problems

- Multivariate Quadratic Problem
- MinRank
- Rank SD
- Subset Sum Problem
- Summary

SD in the Head

Recent Optimizations

Exploring other problems 0 = 0 = 0 = 0 = 0

Exploring other problems

[Fen22] Thibauld Feneuil. Building MPCitH-based Signatures from MQ, MinRank, Rank SD and PKP. Eprint 2022/1512.

[FMRV22] Thibauld Feneuil, Jules Maire, Matthieu Rivain and Damien Vergnaud. Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection. Asiacrypt 2022.

SD in the Head

 $\underset{000000000}{\operatorname{Recent}} \operatorname{Optimizations}$

Multivariate Quadratic Problem

Multivariate Quadratic Problem

From
$$(A_1, \ldots, A_m, b_1, \ldots, b_m, y_1, \ldots, y_m)$$
, find $x \in \mathbb{F}_q^n$ such that

$$\forall i \le m, \ y_i = x^T A_i x + b_i^T x.$$

The multi-party computation must check that the vector \boldsymbol{x} satisfies

$$y_1 = x^T A_1 x + b_1^T x$$
$$y_2 = x^T A_2 x + b_2^T x$$
$$\vdots$$
$$y_m = x^T A_m x + b_m^T x$$
SD in the Head

 $\underset{000000000}{\operatorname{Recent}} \operatorname{Optimizations}$

Multivariate Quadratic Problem - Signature schemes

Instanco	Protocol Name	Variant	Parameters			Sig Size
Instance			N	M	τ	Sig. Size
	MudFish	-	4	191	68	14 640 B
q = 4	Mesquite	Fast	8	187	49	$9578~\mathrm{B}$
m = 88		Short	32	389	28	8609 B
n = 88	Fen22	Fast	32	-	40	10764 B
		Short	256	-	25	9064 B
q = 256 $m = 40$ $n = 40$	MudFish	Fast	8	176	51	$15958~\mathrm{B}$
		Short	16	250	36	$13910~\mathrm{B}$
	Mesquite	Fast	8	187	49	11 339 B
		Short	32	389	28	$9615~\mathrm{B}$
	Fen22	Fast	32	-	36	8488 B
		Short	256	-	25	7114 B

SD in the Head

Recent Optimizations

MinRank Problem

MinRank Problem

From (M_0, M_1, \ldots, M_k) , find $\alpha \in \mathbb{F}_q^k$ such that

$$\operatorname{rank}(M_0 + \sum_{i=1}^k \alpha_i M_i) \le r.$$

SD in the Head

Recent Optimizations

MPC protocols

The multi-party computation must check that a matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r.

Recent Optimizations

MPC protocols

The multi-party computation must check that a matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r.

Rank Decomposition:

A matrix $M \in \mathbb{F}_q^{n \times m}$ has a rank of at most riff there exists $T \in \mathbb{F}_q^{n \times r}$ and $R \in \mathbb{F}_q^{r \times m}$ such that M = TR. Recent Optimizations

Exploring other problems

MPC protocols

The multi-party computation must check that a matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r. Rewrite M as $(x_1, \ldots, x_n) \in \mathbb{F}_{q^m}^n$.

Rank Decomposition:

A matrix $M \in \mathbb{F}_q^{n \times m}$ has a rank of at most riff there exists $T \in \mathbb{F}_q^{n \times r}$ and $R \in \mathbb{F}_q^{r \times m}$ such that M = TR. Linearized Polynomials:

A matrix $M \in \mathbb{F}_q^{n \times m}$ has a rank of at most r \Leftrightarrow there exists a linear subspace U of \mathbb{F}_{q^m} of dimension rsuch that $\{x_1, \dots, x_n\} \subset U$. \Leftrightarrow there exists a monic q-polynomial L_U of degree q^r such that $\overline{x_1, \dots, x_n}$ are roots of L_U .

Remark: Computing $\llbracket v^q \rrbracket$ from $\llbracket v \rrbracket$ is <u>free</u>.

Recent Optimizations

MinRank Problem

Instance	Protocol Name	Verient	Parameters			Sig Sizo
mstance		Variant	N	M	au	Sig. Size
	Com01	-	-	-	219	52430 B
	COUOI	Optimized	-	-	219	$28575~\mathrm{B}$
	SINV99	-	-	-	128	$50640~\mathrm{B}$
	5111122	Optimized	-	-	128	$28128~\mathrm{B}$
q = 16	BESV22	-	-	256	128	$26405~\mathrm{B}$
m = 16 $n = 16$	BG22	Fast	8	187	49	13644 B
		Short	32	389	28	$10937~\mathrm{B}$
k = 142	A D 7 V 9 9	Fast	32	-	28	10116 B
r = 4	AILZ V 22	Short	256	-	18	7422 B
	Fen22 (RD)	Fast	32	-	33	9288 B
		Short	256	-	19	$7122~\mathrm{B}$
	Eon 92 (I D)	Fast	32	-	28	7204 B
	1'CH22 (L1)	Short	256	-	18	$5518~\mathrm{B}$

SD in the Head

Recent Optimizations

Rank Syndrome Decoding Problem

Rank Syndrome Decoding Problem

From (H, y), find $x \in \mathbb{F}_{q^m}^n$ such that

$$y = Hx$$
 and $\operatorname{rank}(x) \le r$.

- \blacksquare Using the rank decomposition
- \square Using q-polynomials

SD in the Head

Recent Optimizations

Rank Syndrome Decoding Problem

Instance	Protocol Namo	Variant	Parameters			Sig Sizo
mistance	1 IOLOCOI IVallie	variant	N	M	τ	big. bize
	Stern	-	-	-	219	31358 B
	Véron	-	-	-	219	27 115 B
a-2	E ID 91	Fast	8	187	49	19328 B
q = 2 m = 31	1 51(21	Short	32	389	28	14181 B
m = 31	BG22	Fast	8	187	49	15982 B
n = 30 k = 15		Short	32	389	28	12274 B
$ \begin{array}{c} \kappa = 13 \\ r = 9 \end{array} $	Fen22 (RD)	Fast	32	-	- 33	11000 B
		Short	256	-	21	8543 B
	Fen22 (LP)	Fast	32	-	30	7376 B
		Short	256	-	20	5899 B
LINIDCI	DCDD	Fast	32	-	27	9392 B
Ideal KSL	DG22	Short	256	-	17	$6754~\mathrm{B}$

SD in the Head

Recent Optimizations

Subset Sum Problem

Subset Sum Problem

From (w, t), find a vector x such that

$$\langle w, x \rangle = t \mod q$$
 and $x \in \{0, 1\}^n$.

The multi-party computation must check that the vector \boldsymbol{x} satisfies

$$\langle w, \boldsymbol{x} \rangle = t \mod q \quad \text{and} \quad \boldsymbol{x} \in \{0, 1\}^n.$$

<u>Problem</u>: q is very large $(q \approx 2^{256})$.

SD in the Head

Recent Optimizations

Exploring other problems

Subset Sum Problem

Subset Sum Problem

From (w, t), find a vector x such that

$$\langle w, x \rangle = t \mod q$$
 and $x \in \{0, 1\}^n$.

The multi-party computation must check that the vector \boldsymbol{x} satisfies

$$\langle w, \boldsymbol{x} \rangle = t \mod q \quad \text{and} \quad \boldsymbol{x} \in \{0, 1\}^n.$$

<u>Problem</u>: q is very large $(q \approx 2^{256})$. <u>Solution</u>: Use an additive sharing over integers with rejection. [FMRV22] Thibauld Feneuil, Jules Maire, Matthieu Rivain and Damien Vergnaud. Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection. Asiacrypt 2022.

SD in the Head

Recent Optimizations

Subset Sum Problem

Instance	Protocol Name	Variant	Parameters			Cir Ciro
Instance			N	M	au	Jig. Size
	Sha86	-	-	-	219	$\approx 1.2 \text{ MB}$
	LNSW13	-	-	-	219	$\approx 2.3 \text{ MB}$
$a = 2^{256}$	Beu20	-	1024	4040	14	$\approx 120 \text{ KB}$
q = 2 n = 256	56 FMRV22	C&C	64	514	28	$\approx 21 \text{ KB}^{\star}$
n = 250		Short	256	-	29	$\approx 28 \text{ KB}^{\star}$
	EMDV99 + Onting	Fast	32	-	28	$\approx 29 \text{ KB}^{\star}$
	FMRV22 + Optim	Short	256	-	19	$\approx 18 \text{ KB}^{\star}$

 \star sizes given for a rejection rate which is less than 2%.

SD in the Head

Recent Optimizations

Conclusion

Security Assumption	Scheme	Achieved sizes (in KB)
Subset Sum	[FMRV22]	18 - 29
Legendre PRF	[Bd20]	12.2 - 14.8
AES	[KZ22]	9.7 - 14.4
Permuted Kernel	[BG22]	8.6 - 9.7
Syndrome Decoding (Hamm.)	[FJR22]	8.3 - 11.5
LowMC	[KZ22]	6.4 - 9.2
Multivariate Quadratic	[Fen22]	6.9 - 8.3
Higher-Power Residue Characters	[Bd20]	6.3 - 7.8
Syndrome Decoding (Rank)	[Fen22]	5.8 - 7.2
Min Rank	[Fen22]	5.4 - 7.0
[BHH01] PRF	[FMRV22]	4.8 - 6.5
Rain $[DKR+21]$	[KZ22]	4.9 - 6.4

Sizes given for a range of 32-256 parties.

Estimation of the running time:

for 256 parties, 2-10 ms for signing (with [AGH+22]).

SD in the Head

Recent Optimizations

Conclusion

Security Assumption	Scheme	Achieved sizes (in KB)
Subset Sum	[FMRV22]	18 - 29
Legendre PRF	[Bd20]	12.2 - 14.8
AES	[KZ22]	9.7 - 14.4
Permuted Kernel	[BG22]	8.6 - 9.7
Syndrome Decoding (Hamm.)	[FJR22]	8.3 - 11.5
LowMC	[KZ22]	6.4 - 9.2
Multivariate Quadratic	[Fen22]	6.9 - 8.3
Higher-Power Residue Characters	[Bd20]	6.3 - 7.8
Syndrome Decoding (Rank)	[Fen22]	5.8 - 7.2
Min Rank	[Fen22]	5.4 - 7.0
[BHH01] PRF	[FMRV22]	4.8 - 6.5
Rain $[DKR+21]$	[KZ22]	4.9 - 6.4

Sizes given for a range of 32-256 parties.

Estimation of the running time:

for 256 parties, 2-10 ms for signing (with $[{\rm AGH}{+}22]).$

Thank you for your attention!

References

[ABG+19] Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and Gilles Zémor. *Durandal: A Rank Metric Based Signature Scheme*. Eurocrypt 2019.

[AGH+22] Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David Joseph, Dongze Yue. *The Return of the SDitH.* Eprint 2022/1645.

[ARZV22] Gora Adj, Luis Rivera-Zamarripa, and Javier Verbel. *Minrank in the head: Short signatures from zero-knowledge proofs.* Eprint 2022/1501.

[Cou01] Nicolas Courtois. Efficient zero-knowledge authentication based on a linear algebra problem MinRank. Asiacrypt 2001.

[Beu20] Ward Beullens. LESS-FM: Sigma protocols for MQ, PKP and SIS, and Fishy signature schemes. Eurocrypt 2020.

[Bd20] Ward Beullens and Cyprien de Saint Guilhem. LegRoast: Efficient post-quantum signatures from the Legendre PRF. PQC 2020.

[BBPS21] Alessandro Barenghi, Jean-François Biasse, Edoardo Persichetti, and Paolo Santini. *LESS-FM: Fine-Tuning Signatures from the Code Equivalence Problem.* PQC 2021.

[BdK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter Scholl, and Greg Zaverucha. Banquet: Short and Fast Signatures from AES. PKC 2021.

[BDNS21] Gustavo Banegas, Thomas Debris-Alazard, Milena Nedeljković, and Benjamin Smith. Wavelet: Code-based postquantum signatures with fast verification on microcontrollers. Eprint 2021/1432. [BG22] Loïc Bidoux and Philippe Gaborit. Compact post-quantum signatures from proofs of knowledge leveraging structure for the pkp, sd and rsd problems. arXiv 2204.02915.

[BGKM22] Loïc Bidoux, Philippe Gaborit, Mukul Kulkarni, and Victor Mateu. Code-based Signatures from New Proofs of Knowledge for the Syndrome Decoding Problem. arXiv 2110.05005.

[BGKS21] Loïc Bidoux, Philippe Gaborit, Mukul Kulkarni, and Nicolas Sendrier. Quasi-Cyclic Stern Proof of Knowledge. 2022 IEEE ISIT.

[BHH01] D. Boneh, S. Halevi, and N. Howgrave-Graham. *The modular inversion hidden number problem*. Asiacrypt 2001.

References

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. PKC 2020.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and signatures from symmetric-key primitives. CCS 2017.

[dDOS19] Cyprien de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and Nigel P. Smart. *BBQ: Using AES in picnic signatures.* SAC 2019.

[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. *The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more.* Crypto 2020.

References

[DFMS21] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-extractability in the quantum random-oracle model. Eprint 2021/280.

[DKR+21] C. Dobraunig, D. Kales, C. Rechberger, M. Schofnegger, and G. Zaverucha. Shorter signatures based on tailor-made minimalist symmetric-key crypto. CCS 2022.

[dOT21] Cyprien de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy. Limbo: Efficient zero-knowledge MPCitH-based arguments. CCS 2021.

[DST19] Thomas Debris, Nicolas Sendrier, and Jean-Pierre Tillich. Wave: A New Family of Trapdoor One-Way Preimage Sampleable Functions Based on Codes. Asiacrypt 2019.

[Fen22] Thibauld Feneuil. Building MPCitH-based Signatures from MQ, MinRank, Rank SD and PKP. Eprint 2022/1512. [FJR21] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared Permutation for Syndrome Decoding: New Zero-Knowledge Protocol and Code-Based Signature. Designs, Codes and Cryptography.

[FJR22] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs. Crypto 2022.

[FMRV22] Thibauld Feneuil, Jules Maire, Matthieu Rivain and Damien Vergnaud. Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection. Asiacrypt 2022.

[FR22] Thibauld Feneuil, Matthieu Rivain. Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head. Eprint 2022/1407.

References

[GPS21] Shay Gueron, Edoardo Persichetti, and Paolo Santini. Designing a Practical Code-based Signature Scheme from Zero-Knowledge Proofs with Trusted Setup. Cryptography 2022.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation. STOC 2007.

[KKW18] J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowledge with applications to post-quantum signatures. CCS 2018.

[KZ20a] Daniel Kales and Greg Zaverucha. An attack on some signature schemes constructed from five-pass identification schemes. CANS 2020.

[KZ20b] Daniel Kales and Greg Zaverucha. Improving the performance of the Picnic signature scheme. TCHES 2020.

[KZ22] Daniel Kales, and Greg Zaverucha. Efficient Lifting for Shorter Zero-Knowledge Proofs and Post-Quantum Signatures. Eprint 2022/282.

[LNSW13] S. Ling, K. Nguyen, D. Stehlé, and H. Wang. Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. PKC 2013.

[Sha86] A. Shamir. A zero-knowledge proof for knapsacks. 1986.

[SINY22] Bagus Santoso, Yasuhiko Ikematsu, Shuhei Nakamura, and Takanori Yasuda. Three-Pass Identification Scheme Based on MinRank Problem with Half Cheating Probability. arXiv 2205.03255.

[Wan22] William Wang. Shorter Signatures from MQ. Eprint 2022/344.