Building MPCitH-based Signatures with Some Classical Hardness Assumptions

Thibauld Feneuil

CryptoExperts, Paris, France
Sorbonne Université, CNRS, INRIA, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Ouragan, Paris, France

NIST. February 7, 2023.

Table of Contents

(1) Introduction
(2) Syndrome Decoding in the Head

- Rephrase the constraint
- MPC Protocol
- Zero-Knowledge Proof
(3) Recent Optimizations
(4) Exploring other problems
- Multivariate Quadratic Problem
- MinRank
- Rank SD
- Subset Sum Problem
- Summary

Methodology

Hard Problem

MPC-in-the-Head

Zero Knowledge Proof of Knowledge

Fiat-Shamir Transform

Signature Scheme

Zero-Knowledge Proofs of Knowledge

Let have a circuit C and an output y. Problem: find x such that $C(x)=y$.

Zero-Knowledge Proofs of Knowledge

Let have a circuit C and an output y.
Problem: find x such that $C(x)=y$.

MPC-in-the-Head Paradigm

MPC-in-the-Head Paradigm

- Generic technique to build zero-knowledge protocols using multi-party computation.
- Introduced in 2007 by:
[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation. STOC 2007.
- Popularized in 2016 by Picnic, a former candidate of the NIST Post-Quantum Cryptography Standardization.

Sharing of the secret

The secret x satisfies

$$
y=C(x) .
$$

We share it in N parts:

$$
x=\llbracket x \rrbracket_{1}+\llbracket x \rrbracket_{2}+\ldots+\llbracket x \rrbracket_{N-1}+\llbracket x \rrbracket_{N} .
$$

MPC-in-the-Head Paradigm

$$
x=\llbracket x \rrbracket_{1}+\llbracket x \rrbracket_{2}+\llbracket x \rrbracket_{3}+\llbracket x \rrbracket_{4}+\llbracket x \rrbracket_{5}
$$

The multi-party computation outputs

- Accept if x satisfies $y=C(x)$,
- Reject otherwise.

MPC-in-the-Head Paradigm

MPC-in-the-Head Paradigm

MPC-in-the-Head Paradigm

© = Commitment

MPC-in-the-Head Paradigm

Soundness error:

$$
\frac{1}{N}
$$

Proof size: depends on the multi-party computation protocol

Two possible trade-offs:

- Repeat the protocol many times:
fast proofs, but large proofs
- Take a larger N :
short proofs, but slow proofs

From ID scheme to signature scheme

To get a signature scheme, we use
the Fiat-Shamir Transformation.

The First MPCitH-based Signatures

Scheme Name	Year	\mid sgn \mid	Assumption
Picnic1 [CDG+17]	2016	32.1 KB	LowMC (partial)
Picnic2 [KKW18]	2018	12.1 KB	
Picnic3 [KZ20b]	2019	12.3 KB	LowMC (full)
Helium+LowMC [KZ22]	2022	$6.4-9.2 \mathrm{~KB}$	
BBQ [dDOS19]	2019	30.9 KB	
Banquet [BdK+21]	2021	$13.0-17.1 \mathrm{~KB}$	
Limbo-Sign [dOT21]	2021	$14.2-17.9 \mathrm{~KB}^{\star}$	AES
Helium+AES [KZ22]	2022	$9.7-14.4 \mathrm{~KB}^{\star}$	
Rainier [DKR+21]	2021	$5.9-8.1 \mathrm{~KB}^{\star}$	Rain
BN++Rain [KZ22]	2022	$4.9-6.4 \mathrm{~KB}^{\star}$	

${ }^{\boldsymbol{*}}$ sizes given for a range of 32-256 parties.

Table of Contents

(1) Introduction

(2) Syndrome Decoding in the Head

- Rephrase the constraint
- MPC Protocol
- Zero-Knowledge Proof
(3) Recent Optimizations

4 Exploring other problems

Signature with Syndrome Decoding Problem

Idea:
Instead of relying on AES or on MPC-friendly primitives, we can rely on hard problems from asymmetric crypto.

The case of the Syndrome Decoding in Hamming metric:
[FJR22] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome
Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs. CRYPTO 2022.

Rephrase the constraint

Syndrome Decoding Problem

From (H, y), find $x \in \mathbb{F}^{m}$ such that

$$
y=H x \quad \text { and } \quad \mathrm{wt}_{H}(x) \leq w
$$

$$
\mathrm{wt}_{H}(x):=n b \text { of non-zero coordinates of } x
$$

The multi-party computation must check that the vector x satisfies

$$
\underbrace{y=H x}_{\text {ar, easy to check }} \quad \text { and } \quad \underbrace{\mathrm{wt}_{H}(x) \leq w}_{\text {non-linear, hard to check }}
$$

Rephrase the constraint

The multi-party computation must check that the vector x satisfies

$$
y=H x
$$

and
$\exists Q, P$ two polynomials : $S Q=P F$ and $\operatorname{deg} Q=w$
where
S is defined by interpolation such that $\forall i, S\left(\gamma_{i}\right)=x_{i}$,

$$
F:=\prod_{i=1}^{m}\left(X-\gamma_{i}\right) .
$$

Rephrase the constraint

Let us assume that there exists $Q, P \in \mathbb{F}_{\text {poly }}[X]$ s.t.

$$
S \cdot Q=P \cdot F \quad \text { and } \quad \operatorname{deg} Q=w
$$

where
S is built by interpolation such that $\forall i, S\left(\gamma_{i}\right)=x_{i}$,

$$
F:=\prod_{i=1}^{m}\left(X-\gamma_{i}\right),
$$

then, the verifier deduces that

$$
\begin{aligned}
\forall i \leq m, & (Q \cdot S)\left(\gamma_{i}\right)=P\left(\gamma_{i}\right) \cdot F\left(\gamma_{i}\right)=0 \\
& \Rightarrow \forall i \leq m, Q\left(\gamma_{i}\right)=0 \quad \text { or } \quad S\left(\gamma_{i}\right)=x_{i}=0
\end{aligned}
$$

Rephrase the constraint

Let us assume that there exists $Q, P \in \mathbb{F}_{\text {poly }}[X]$ s.t.

$$
S \cdot Q=P \cdot F \quad \text { and } \quad \operatorname{deg} Q=w
$$

where
S is built by interpolation such that $\forall i, S\left(\gamma_{i}\right)=x_{i}$,

$$
F:=\prod_{i=1}^{m}\left(X-\gamma_{i}\right),
$$

then, the verifier deduces that

$$
\begin{aligned}
\forall i \leq m, & (Q \cdot S)\left(\gamma_{i}\right)=P\left(\gamma_{i}\right) \cdot F\left(\gamma_{i}\right)=0 \\
& \Rightarrow \forall i \leq m, Q\left(\gamma_{i}\right)=0 \text { or } S\left(\gamma_{i}\right)=x_{i}=0
\end{aligned}
$$

i.e.

$$
\mathrm{wt}_{H}(x):=\#\left\{i: x_{i} \neq 0\right\} \leq w
$$

Rephrase the constraint

Such polynomial Q can be built as

$$
Q:=Q^{\prime} \cdot \underbrace{\prod_{i: x_{i} \neq 0}\left(X-\gamma_{i}\right)}_{\begin{array}{c}
\text { The non-zero positions of } x \\
\text { are encoding as roots. }
\end{array}}
$$

And $P:=\frac{S \cdot Q}{F}$ since F divides $S \cdot Q$.

$$
\left(\forall i, S\left(\gamma_{i}\right)=x_{i}\right)
$$

Guidelines for the MPC Protocol

We want to build a MPC protocol which checks if some vector is a syndrome decoding solution.

Let us assume $H=\left(H^{\prime} \mid I\right)$. We split x as $\binom{x_{A}}{x_{B}}$.
We have $y=H x$, so

$$
x_{B}=y-H^{\prime} x_{A} .
$$

Guidelines for the MPC Protocol

We want to build a MPC protocol which checks if some vector is a syndrome decoding solution.

Let us assume $H=\left(H^{\prime} \mid I\right)$. We split x as $\binom{x_{A}}{x_{B}}$.
We have $y=H x$, so

$$
x_{B}=y-H^{\prime} x_{A} .
$$

Inputs of the MPC protocol: x_{A}, Q, P. Aim of the MPC protocol:

Check that x_{A} corresponds to a syndrome decoding solution.

Guidelines for the MPC Protocol

Inputs: x_{A}, Q, P.

1. Build $x_{B}:=y-H^{\prime} x_{A}$ and deduce $x:=\binom{x_{A}}{x_{B}}$.

We have

$$
y=H x .
$$

Guidelines for the MPC Protocol

Inputs: x_{A}, Q, P.

1. Build $x_{B}:=y-H^{\prime} x_{A}$ and deduce $x:=\binom{x_{A}}{x_{B}}$.
2. Build the polynomial S by interpolation such that

$$
\forall i \in\{1, \ldots, m\}, S\left(\gamma_{i}\right)=x_{i} .
$$

Interpolation Formula:

$$
S(X)=\sum_{i} x_{i} \cdot \prod_{\ell \neq i} \frac{X-\gamma_{\ell}}{\gamma_{i}-\gamma_{\ell}}
$$

Guidelines for the MPC Protocol

Inputs: x_{A}, Q, P.

1. Build $x_{B}:=y-H^{\prime} x_{A}$ and deduce $x:=\binom{x_{A}}{x_{B}}$.
2. Build the polynomial S by interpolation such that

$$
\forall i \in\{1, \ldots, m\}, S\left(\gamma_{i}\right)=x_{i} .
$$

3. Check that $S \cdot Q=P \cdot F$.

Guidelines for the MPC Protocol

Inputs: x_{A}, Q, P.

1. Build $x_{B}:=y-H^{\prime} x_{A}$ and deduce $x:=\binom{x_{A}}{x_{B}}$.
2. Build the polynomial S by interpolation such that

$$
\forall i \in\{1, \ldots, m\}, S\left(\gamma_{i}\right)=x_{i} .
$$

3. Get a random point r from $\mathbb{F}_{\text {points }}$ (field extension of $\mathbb{F}_{\text {poly }}$).
4. Compute $S(r), Q(r)$ and $P(r)$.
5. Using [BN20], check that $S(r) \cdot Q(r)=P(r) \cdot F(r)$.
[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. PKC 2020.

MPC Protocol

$\underline{\text { Inputs of the party } \mathcal{P}_{i}}: \llbracket x_{A} \rrbracket_{i}, \llbracket Q \rrbracket_{i}$ and $\llbracket P \rrbracket_{i}$.

1. Compute $\llbracket x_{B} \rrbracket:=y-H^{\prime} \llbracket x_{A} \rrbracket$ and deduce $\llbracket x \rrbracket:=\binom{\llbracket x_{A} \rrbracket}{\llbracket x_{B} \rrbracket}$.
2. Compute $\llbracket S \rrbracket$ from $\llbracket x \rrbracket$ thanks to

$$
\llbracket S(X) \rrbracket=\sum_{i} \llbracket x_{i} \rrbracket \cdot \prod_{\ell \neq i} \frac{X-\gamma_{\ell}}{\gamma_{i}-\gamma_{\ell}}
$$

3. Get a random point r from $\mathbb{F}_{\text {points }}$ (field extension of $\mathbb{F}_{\text {poly }}$).
4. Compute

$$
\left\{\begin{array}{l}
\llbracket S(r) \rrbracket=\llbracket S \rrbracket(r) \\
\llbracket Q(r) \rrbracket=\llbracket Q \rrbracket(r) \\
\llbracket P(r) \rrbracket=\llbracket P \rrbracket(r)
\end{array}\right.
$$

5. Using [BN20], check that $S(r) \cdot Q(r)=P(r) \cdot F(r)$.

Analysis

Even if x_{A} does not describe a SD solution (implying that $S \cdot Q \neq P \cdot F)$, the MPC protocol can output AcCept if

Case 1 :

$$
S(r) \cdot Q(r)=P(r) \cdot F(r)
$$

which occurs with probability (Schwartz-Zippel Lemma)

$$
\underset{\mathbb{S}_{\mathbb{F}_{\text {points }}}^{\operatorname{Pr}}[S(r) \cdot Q(r)=P(r) \cdot F(r)] \leq \frac{m+w-1}{\left|\mathbb{F}_{\text {points }}\right|}}{\mid}
$$

Analysis

Even if x_{A} does not describe a SD solution (implying that $S \cdot Q \neq P \cdot F)$, the MPC protocol can output AcCept if

Case 1 :

$$
S(r) \cdot Q(r)=P(r) \cdot F(r)
$$

which occurs with probability (Schwartz-Zippel Lemma)

$$
\underset{\mathbb{S}_{\mathbb{F}_{\text {points }}}}{\operatorname{Pr}}[S(r) \cdot Q(r)=P(r) \cdot F(r)] \leq \frac{m+w-1}{\left|\mathbb{F}_{\text {points }}\right|}
$$

Case 2 : the [BN20] protocol fails, which occurs with probability

$$
\frac{1}{\left|\mathbb{F}_{\text {points }}\right|}
$$

Summary

The MPC protocol π checks that $\left(x_{A}, Q, P\right)$ describes a solution of the SD instance (H, y).

	Output of π	
	ACCEPT	REJECT
A good witness	1	0
Not a good witness	p	$1-p$

where

$$
p=\underbrace{\frac{m+w-1}{\left|\mathbb{F}_{\text {points }}\right|}}_{\begin{array}{c}
\text { false positive } \\
\text { from Schwartz-Zippel }
\end{array}}+\left(1-\frac{m+w-1}{\left|\mathbb{F}_{\text {points }}\right|}\right) \cdot \underbrace{\frac{1}{\left|\mathbb{F}_{\text {points }}\right|}}_{\begin{array}{c}
\text { false positive } \\
\text { from [BN20] }
\end{array}}
$$

MPC-in-the-Head paradigm

O = Commitment

MPC-in-the-Head paradigm

Prover \mathcal{P}	Verifier \mathcal{V}
H, y, x such that	H, y
$y=H x$ and $\mathrm{wt}_{H}(x) \leq w$	

Prepare Q, P.
$\operatorname{Com}_{i} \leftarrow \operatorname{Com}\left(\right.$ inputs of $\left.\mathcal{P}_{i}\right)$

Run the MPC protocol π for each party.

Check that the views are consistent
Check that the MPC output is Accept

Zero-Knowledge Protocol

Soundness error:

$$
p+(1-p) \cdot \frac{1}{N}
$$

Zero-Knowledge Protocol

Soundness error:

$$
p+(1-p) \cdot \frac{1}{N}
$$

Proof size:

- Inputs of $N-1$ parties:

Zero-Knowledge Protocol

Soundness error:

$$
p+(1-p) \cdot \frac{1}{N}
$$

Proof size:

- Inputs of $N-1$ parties:
- Party $i<N$: a seed of λ bits
- Last party:

$$
\underbrace{k \cdot \log _{2}\left|\mathbb{F}_{\mathrm{SD}}\right|}_{\llbracket x_{A} \rrbracket_{N}}+\underbrace{2 w \cdot \log _{2}\left|\mathbb{F}_{\text {poly }}\right|}_{\llbracket Q \rrbracket_{N}, \llbracket P \rrbracket_{N}}+\underbrace{\lambda}_{\llbracket a \rrbracket_{N}, \llbracket b \rrbracket_{N}}+\underbrace{\log _{2}\left|\mathbb{F}_{\text {points }}\right|}_{\llbracket c \rrbracket_{N}}
$$

Zero-Knowledge Protocol

Soundness error:

$$
p+(1-p) \cdot \frac{1}{N}
$$

Proof size:

- Inputs of $N-1$ parties:
- Party $i<N$: a seed of λ bits
- Last party:

$$
\underbrace{k \cdot \log _{2}\left|\mathbb{F}_{\mathrm{SD}}\right|}_{\llbracket x_{A} \rrbracket_{N}}+\underbrace{2 w \cdot \log _{2}\left|\mathbb{F}_{\text {poly }}\right|}_{\llbracket Q \rrbracket_{N}, \llbracket P \rrbracket_{N}}+\underbrace{\lambda}_{\llbracket a \rrbracket_{N}, \llbracket b \rrbracket_{N}}+\underbrace{\log _{2}\left|\mathbb{F}_{\text {points }}\right|}_{\llbracket c \rrbracket_{N}}
$$

- Communication between parties: 2 elements of $\mathbb{F}_{\text {points }}$.
- 2 hash digests ($2 \times 2 \lambda$ bits),
- Some commitment randomness $+\mathrm{COM}_{i^{*}}$

Security of the signature

Fiat-Shamir Transform:

5-round Identification Scheme \Rightarrow Signature

Attack of [KZ20]:

$$
\operatorname{cost}_{\text {forge }}:=\min _{\tau_{1}, \tau_{2}: \tau_{1}+\tau_{2}=\tau}\left\{\frac{1}{\sum_{i=\tau_{1}}^{\tau}\binom{\tau}{i} p^{i}(1-p)^{\tau-i}}+N^{\tau_{2}}\right\}
$$

[KZ20a] Daniel Kales and Greg Zaverucha. An attack on some signature schemes constructed from five-pass identification schemes. CANS 2020.

Parameters selected

Variant 1: SD over \mathbb{F}_{2},
 $$
(m, k, w)=(1280,640,132)
$$

We have $\mathbb{F}_{\text {poly }}=\mathbb{F}_{2^{11}}$.

Parameters selected

Variant 1: SD over \mathbb{F}_{2},

$$
(m, k, w)=(1280,640,132)
$$

We have $\mathbb{F}_{\text {poly }}=\mathbb{F}_{2^{11}}$.
Variant 2: SD over \mathbb{F}_{2},

$$
(m, k, w)=(1536,888,120)
$$

but we split $x:=\left(x_{1}|\ldots| x_{6}\right)$ into 6 chunks and we prove that $\mathrm{wt}_{H}\left(x_{i}\right) \leq \frac{w}{6}$ for all i.

We have $\mathbb{F}_{\text {poly }}=\mathbb{F}_{2^{8}}$.

Parameters selected

Variant 3: SD over $\mathbb{F}_{2^{8}}$,

$$
(m, k, w)=(256,128,80)
$$

We have $\mathbb{F}_{\text {poly }}=\mathbb{F}_{2^{8}}$.

Obtained Performances

Scheme Name		$\|\mathrm{sgn}\|$	$\|\mathrm{pk}\|$	$t_{\text {sgn }}$	$t_{\text {verif }}$
FJR22 $-\mathbb{F}_{2}$	(fast)	15.6 KB	0.09 KB	-	-
FJR22 $-\mathbb{F}_{2}$	(short)	10.9 KB	0.09 KB	-	-
FJR22 $-\mathbb{F}_{2}$	(fast)	17.0 KB	0.09 KB	13 ms	13 ms
FJR22 $-\mathbb{F}_{2}$	(short)	11.8 KB	0.09 KB	64 ms	61 ms
FJR22 - \mathbb{F}_{256}	(fast)	11.5 KB	0.14 KB	6 ms	6 ms
FJR22 - \mathbb{F}_{256}	(short)	8.26 KB	0.14 KB	30 ms	27 ms

Obtained Performances

Scheme Name		$\|\mathrm{sgn}\|$	$\|\mathrm{pk}\|$	$t_{\text {sgn }}$	$t_{\text {verif }}$
FJR22 - \mathbb{F}_{2}	(fast)	15.6 KB	0.09 KB	-	-
FJR22 $-\mathbb{F}_{2}$	(short)	10.9 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_{2}	(fast)	17.0 KB	0.09 KB	13 ms	13 ms
FJR22 $-\mathbb{F}_{2}$	(short)	11.8 KB	0.09 KB	64 ms	61 ms
FJR22 $-\mathbb{F}_{256}$	(fast)	11.5 KB	0.14 KB	6 ms	6 ms
FJR22 $-\mathbb{F}_{256}$	(short)	8.26 KB	0.14 KB	30 ms	27 ms

Number of parties: $N=256$
Number of repetitions: $\tau=17$

Obtained Performances

Scheme Name		\mid sgn \mid	$\|\mathrm{pk}\|$	$t_{\text {sgn }}$	$t_{\text {verif }}$
FJR22 - \mathbb{F}_{2}	(fast)	15.6 KB	0.09 KB	-	-
FJR22 $-\mathbb{F}_{2}$	(short)	10.9 KB	0.09 KB	-	-
FJR22 $-\mathbb{F}_{2}$	(fast)	17.0 KB	0.09 KB	13 ms	13 ms
FJR22 $-\mathbb{F}_{2}$	(short)	11.8 KB	0.09 KB	64 ms	61 ms
FJR22 - \mathbb{F}_{256}	(fast)	11.5 KB	0.14 KB	6 ms	6 ms
FJR22 - \mathbb{F}_{256}	(short)	8.26 KB	0.14 KB	30 ms	27 ms

Number of parties: $N=32$
Number of repetitions: $\tau=27$

Comparison Code-based Signatures (1/2)

Scheme Name	$\|\mathrm{sgn}\|$	$\|\mathrm{pk}\|$	$t_{\text {sgn }}$	$t_{\text {verif }}$
BGKS21	24.1 KB	0.1 KB	-	-
BGKS21	22.5 KB	1.7 KB	-	-
GPS21 - 256	22.2 KB	0.11 KB	-	-
GPS21 - 1024	19.5 KB	0.12 KB	-	-
FJR21 (fast)	22.6 KB	0.09 KB	13 ms	12 ms
FJR21 (short)	16.0 KB	0.09 KB	62 ms	57 ms
BGKM22 - Sig1	23.7 KB	0.1 KB	-	-
BGKM22 - Sig2	20.6 KB	0.2 KB	-	-
FJR22 - \mathbb{F}_{2} (fast)	15.6 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_{2} (short)	10.9 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_{2} (fast)	17.0 KB	0.09 KB	13 ms	13 ms
FJR22 - \mathbb{F}_{2} (short)	11.8 KB	0.09 KB	64 ms	61 ms
FJR22 - \mathbb{F}_{256} (fast)	11.5 KB	0.14 KB	6 ms	6 ms
FJR22 - \mathbb{F}_{256} (short)	$\mathbf{8 . 2 6 ~ K B ~}$	0.14 KB	30 ms	27 ms

Comparison Code-based Signatures (2/2)

Scheme Name	$\|\mathrm{sgn}\|$	$\|\mathrm{pk}\|$	$t_{\text {sgn }}$	$t_{\text {verif }}$
Durandal - I	3.97 KB	14.9 KB	4 ms	5 ms
Durandal - II	4.90 KB	18.2 KB	5 ms	6 ms
LESS-FM - I	15.2 KB	9.78 KB	-	-
LESS-FM - II	5.25 KB	205 KB	-	-
LESS-FM - III	10.39 KB	11.57 KB	-	-
Wave	$\mathbf{2 . 0 7} \mathrm{KB}$	3.1 MB	$\geq 300 \mathrm{~ms}$	2 ms
Wavelet	$\mathbf{0 . 9 1 ~ K B}$	3.1 MB	$\geq 300 \mathrm{~ms}$	$\leq 1 \mathrm{~ms}$
FJJ22 - \mathbb{F}_{2} (fast)	15.6 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_{2} (short)	10.9 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_{2} (fast)	17.0 KB	0.09 KB	13 ms	13 ms
FJR22 - \mathbb{F}_{2} (short)	11.8 KB	0.09 KB	64 ms	61 ms
FJR22 - \mathbb{F}_{256} (fast)	11.5 KB	0.14 KB	6 ms	6 ms
FJR22 - \mathbb{F}_{256} (short)	$\mathbf{8 . 2 6} \mathrm{KB}$	$\mathbf{0 . 1 4 ~ K B}$	30 ms	27 ms

Signature Security

Keys = Generic Instances of the considered problem (no structure).

Forgery in the Random Oracle Model:

$$
\mathrm{Adv}^{\mathrm{EUF}-\mathrm{KO}} \leq \varepsilon_{\mathrm{OWF}}+\frac{(\tau \cdot N+1) Q^{2}}{2^{2 \lambda}}+\underbrace{\operatorname{Prob}[X+Y=\tau]}_{[\mathrm{KZ20a}] \text { 's attack }}
$$

$\mathrm{Adv}^{\text {EUF-CMA }} \leq \mathrm{Adv}^{\mathrm{EUF}-\mathrm{KO}}+Q_{s} \cdot\left(\tau \cdot \varepsilon_{\mathrm{PRG}}+\varepsilon_{\text {Tree }}+\frac{Q}{2^{\kappa}}\right)$
[BdK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter Scholl, and Greg Zaverucha. Banquet: Short and Fast Signatures from AES. PKC 2021.
[KZ22] Daniel Kales, and Greg Zaverucha. Efficient Lifting for Shorter Zero-Knowledge Proofs and Post-Quantum Signatures. Eprint 2022/282.

Signature Security

Forgery in the Quantum Random Oracle Model:
[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more.
Crypto 2020.
[DFMS21] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-extractability in the quantum random-oracle model. Eprint 2021/280.

Table of Contents

Introduction(2) Syndrome Decoding in the Head
(3) Recent Optimizations

4 Exploring other problems

Recent Optimizations

Usage of additive sharings with a hypercube approach [AGH+22] Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David Joseph, Dongze Yue. The Return of the SDitH. Eprint 2022/1645.

Usage of low-threshold Shamir's secret sharings
[FR22] Thibauld Feneuil, Matthieu Rivain. Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head. Eprint 2022/1407.

Using additive sharings in a hypercube approach

(Eprint 2022/1645)
to disclose $N-1$ leaf shares, we need to reveal only $\log _{2}(N)$ seeds

1 hidden
share

Using additive sharings in a hypercube approach

How to generate two N-sharings of a given value?
Option 1: With two seed trees of N seeds.
Cost $=2 \log _{2} N$ seeds +2 auxiliary states.

Using additive sharings in a hypercube approach

How to generate two N-sharings of a given value?
Option 1: With two seed trees of N seeds.
Cost $=2 \log _{2} N$ seeds +2 auxiliary states.
Option 2: With a large seed tree of N^{2} seeds $[\mathrm{AGH}+22]$. $\operatorname{Cost}=\log _{2}\left(N^{2}\right)$ seeds +1 auxiliary state.

Using additive sharings in a hypercube approach

If we want to have a protocol with a soundness error of $\frac{1}{N}$, we can emulate the MPC protocol $D:=\log _{2}(N)$ times on 2 -sharings with the same auxiliary state:

$$
\text { SOUNDNESS ERROR }:=\left(\frac{1}{2}\right)^{\log _{2} N}=\frac{1}{N} .
$$

Thus, instead of emulating N parties to achieve a soundness error of $1 / N$, we run only $2 \log _{2} N$ parties.

The $D \times N$ main party slices

Comparison over SDitH

Comparison over SDitH - variant \mathbb{F}_{256} :

Variant	$\|\mathrm{sgn}\|$	$t_{\text {sgn }}$	$t_{\text {verif }}$
Standard - Fast $(N=32)$	11.5 KB	$\approx 6 \mathrm{~ms}$	$\approx 6 \mathrm{~ms}$
Standard - Short $(N=256)$	8.26 KB	$\approx 25 \mathrm{~ms}$	$\approx 25 \mathrm{~ms}$
Hypercube - Fast $(N=32)$	11.5 KB	$\approx 4 \mathrm{~ms}$	$\approx 4 \mathrm{~ms}$
Hypercube - Short $(N=256)$	8.26 KB	$\approx 7 \mathrm{~ms}$	$\approx 7 \mathrm{~ms}$

Using Shamir's secret sharings

Idea: use a Shamir's (ℓ, N)-secret sharing and reveal only ℓ shares to the verifier (instead of $N-1$) [FR22].

To share $s \in \mathbb{F}$,

- sample $r_{1}, r_{2}, \ldots, r_{\ell}$ uniformly from \mathbb{F},
- build the polynomial $P(X)=s+\sum_{k=1}^{\ell} r_{k} X^{k}$,
- set the share $\llbracket s \rrbracket_{i}$ as $P\left(e_{i}\right)$, where e_{i} is publicly known.

Resulting proof of knowledge:
Correctness: ok.

Using Shamir's secret sharings

Idea: use a Shamir's (ℓ, N)-secret sharing and reveal only ℓ shares to the verifier (instead of $N-1$) [FR22].

To share $s \in \mathbb{F}$,

- sample $r_{1}, r_{2}, \ldots, r_{\ell}$ uniformly from \mathbb{F},
- build the polynomial $P(X)=s+\sum_{k=1}^{\ell} r_{k} X^{k}$,
- set the share $\llbracket s \rrbracket_{i}$ as $P\left(e_{i}\right)$, where e_{i} is publicly known.

Resulting proof of knowledge:
Correctness: ok.
Zero-knowledge: ok, since we reveal only ℓ parties.

Using Shamir's secret sharings

Idea: use a Shamir's (ℓ, N)-secret sharing and reveal only ℓ shares to the verifier (instead of $N-1$) [FR22].

To share $s \in \mathbb{F}$,

- sample $r_{1}, r_{2}, \ldots, r_{\ell}$ uniformly from \mathbb{F},
- build the polynomial $P(X)=s+\sum_{k=1}^{\ell} r_{k} X^{k}$,
- set the share $\llbracket s \rrbracket_{i}$ as $P\left(e_{i}\right)$, where e_{i} is publicly known.

Resulting proof of knowledge:
Correctness: ok.
Zero-knowledge: ok, since we reveal only ℓ parties.
Soundness: ?

Using Shamir's secret sharings

Cheat on less than $N-\ell$ parties	$\boldsymbol{?}$
Cheat on more than $N-\ell$ parties	$\boldsymbol{?}$
Cheat on exactly $N-\ell$ parties	$\boldsymbol{?}$

Using Shamir's secret sharings

Cheat on less than $N-\ell$ parties	$\boldsymbol{?}$
Cheat on more than $N-\ell$ parties	$\boldsymbol{?}$
Cheat on exactly $N-\ell$ parties	$\boldsymbol{?}$

Using Shamir's secret sharings

Cheat on less than $N-\ell$ parties	Impossible
Cheat on more than $N-\ell$ parties	$?$
Cheat on exactly $N-\ell$ parties	$?$

Using Shamir's secret sharings

Cheat on less than $N-\ell$ parties	Impossible
Cheat on more than $N-\ell$ parties	Useless
Cheat on exactly $N-\ell$ parties	$?$

Using Shamir's secret sharings

Cheat on less than $N-\ell$ parties	Impossible
Cheat on more than $N-\ell$ parties	Useless
Cheat on exactly $N-\ell$ parties	OK

Using Shamir's secret sharings

Soundness error:

$$
\frac{1}{\binom{N}{N-\ell}}=\frac{1}{\binom{N}{\ell}}
$$

No seed tree to generate the input shares
A Merkle tree to commit the N input shares (by repetition)
A A verifier re-emulates only ℓ parties by repetition (instead of $N-1$)
A prover needs to emulate only $\ell+1$ parties by repetition (instead of N)

Restriction: $N \leq|\mathbb{F}|$.

Comparison over SDitH

Comparison over SDitH - variant \mathbb{F}_{256} :

Variant	$\|\mathrm{sgn}\|$	t_{sgn}	$t_{\text {verif }}$
Standard - Fast $(N=32)$	11.5 KB	$\approx 6 \mathrm{~ms}$	$\approx 6 \mathrm{~ms}$
Standard - Short $(N=256)$	8.26 KB	$\approx 25 \mathrm{~ms}$	$\approx 25 \mathrm{~ms}$
Hypercube - Fast $(N=32)$	11.5 KB	$\approx 4 \mathrm{~ms}$	$\approx 4 \mathrm{~ms}$
Hypercube - Short $(N=256)$	8.26 KB	$\approx 7 \mathrm{~ms}$	$\approx 7 \mathrm{~ms}$
Shamir's Secret Sharing $(N=256)$	9.97 KB	$\approx 3 \mathrm{~ms}$	$\approx 0.4 \mathrm{~ms}$

Remark: non-isochronous implementation. Ongoing efforts are currently done to propose isochronous and optimized implementations of SDitH.
$\underline{\text { Remark: the two optimizations do not seem to be compatible with each }}$ other.

Table of Contents

(1) Introduction

(2) Syndrome Decoding in the Head

(3) Recent Optimizations

(4) Exploring other problems

- Multivariate Quadratic Problem
- MinRank
- Rank SD
- Subset Sum Problem
- Summary

Exploring other problems

[198 [Fen22] Thibauld Feneuil. Building MPCitH-based Signatures from $M Q$, MinRank, Rank SD and PKP. Eprint 2022/1512.
[q8 [FMRV22] Thibauld Feneuil, Jules Maire, Matthieu Rivain and Damien Vergnaud. Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection. Asiacrypt 2022.

Multivariate Quadratic Problem

Multivariate Quadratic Problem

From $\left(A_{1}, \ldots, A_{m}, b_{1}, \ldots b_{m}, y_{1}, \ldots, y_{m}\right)$, find $x \in \mathbb{F}_{q}^{n}$ such that

$$
\forall i \leq m, y_{i}=x^{T} A_{i} x+b_{i}^{T} x
$$

The multi-party computation must check that the vector x satisfies

$$
\begin{aligned}
& y_{1}=x^{T} A_{1} x+b_{1}^{T} x \\
& y_{2}=x^{T} A_{2} x+b_{2}^{T} x \\
& \quad \vdots \\
& y_{m}=x^{T} A_{m} x+b_{m}^{T} x
\end{aligned}
$$

Multivariate Quadratic Problem - Signature schemes

Instance	Protocol Name	Variant	Parameters			Sig. Size
			N	M	τ	
$\begin{aligned} q & =4 \\ m & =88 \\ n & =88 \end{aligned}$	MUDFish	-	4	191	68	14640 B
	Mesquite	Fast	8	187	49	9578 B
		Short	32	389	28	8609 B
	Fen22	Fast	32	-	40	10764 B
		Short	256	-	25	9064 B
$\begin{gathered} q=256 \\ m=40 \\ n=40 \end{gathered}$	MudFish	Fast	8	176	51	15958 B
		Short	16	250	36	13910 B
	Mesquite	Fast	8	187	49	11339 B
		Short	32	389	28	9615 B
	Fen22	Fast	32	-	36	8488 B
		Short	256	-	25	7114 B

MinRank Problem

MinRank Problem

From $\left(M_{0}, M_{1}, \ldots, M_{k}\right)$, find $\alpha \in \mathbb{F}_{q}^{k}$ such that

$$
\operatorname{rank}\left(M_{0}+\sum_{i=1}^{k} \alpha_{i} M_{i}\right) \leq r
$$

MPC protocols

The multi-party computation must check that a matrix $M \in \mathbb{F}_{q}^{m \times n}$ has a rank of at most r.

MPC protocols

The multi-party computation must check that a matrix $M \in \mathbb{F}_{q}^{m \times n}$ has a rank of at most r.

Rank Decomposition:
A matrix $M \in \mathbb{F}_{q}^{n \times m}$ has a rank of at most r iff there exists $T \in \mathbb{F}_{q}^{n \times r}$ and $R \in \mathbb{F}_{q}^{r \times m}$ such that $M=T R$.

MPC protocols

The multi-party computation must check that a matrix $M \in \mathbb{F}_{q}^{m \times n}$ has a rank of at most r. Rewrite M as $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$.

Rank Decomposition:
A matrix $M \in \mathbb{F}_{q}^{n \times m}$ has a rank of at most r iff there exists $T \in \mathbb{F}_{q}^{n \times r}$ and $R \in \mathbb{F}_{q}^{r \times m}$ such that $M=T R$. Linearized Polynomials:

A matrix $M \in \mathbb{F}_{q}^{n \times m}$ has a rank of at most r \Leftrightarrow there exists a linear subspace U of $\mathbb{F}_{q^{m}}$ of dimension r such that $\left\{x_{1}, \ldots, x_{n}\right\} \subset U$.
\Leftrightarrow there exists a monic q-polynomial L_{U} of degree q^{r} such that x_{1}, \ldots, x_{n} are roots of L_{U}.

Remark: Computing $\llbracket v^{q} \rrbracket$ from $\llbracket v \rrbracket$ is free.

MinRank Problem

Instance	Protocol Name	Variant	Parameters			Sig. Size
			N	M	τ	
$\begin{gathered} q=16 \\ m=16 \\ n=16 \\ k=142 \\ r=4 \end{gathered}$	Cou01	-	-	-	219	52430 B
		Optimized	-	-	219	28575 B
	SINY22	-	-	-	128	50640 B
		Optimized	-	-	128	28128 B
	BESV22	-	-	256	128	26405 B
	BG22	Fast	8	187	49	13644 B
		Short	32	389	28	10937 B
	ARZV22	Fast	32	-	28	10116 B
		Short	256	-	18	7422 B
	Fen22 (RD)	Fast	32	-	33	9288 B
		Short	256	-	19	7122 B
	Fen22 (LP)	Fast	32	-	28	7204 B
		Short	256	-	18	5518 B

Rank Syndrome Decoding Problem

Rank Syndrome Decoding Problem

From (H, y), find $x \in \mathbb{F}_{q^{m}}^{n}$ such that

$$
y=H x \quad \text { and } \quad \operatorname{rank}(x) \leq r .
$$

\leftrightarrow Using the rank decomposition
Using q-polynomials

Rank Syndrome Decoding Problem

Instance	Protocol Name	Variant	Parameters			Sig. Size
			N	M	τ	
$\begin{aligned} q & =2 \\ m & =31 \\ n & =30 \\ k & =15 \\ r & =9 \end{aligned}$	Stern	-	-	-	219	31358 B
	Véron	-	-	-	219	27115 B
	FJR21	Fast	8	187	49	19328 B
	FJR21	Short	32	389	28	14181 B
	BG22	Fast	8	187	49	15982 B
	BG22	Short	32	389	28	12274 B
	Fen22 (RD)	Fast	32	-	33	11000 B
	Fen22 (RD)	Short	256	-	21	8543 B
	Fen22 (LP)	Fast	32	-	30	7376 B
	Fen22 (LP)	Short	256	-	20	5899 B
Ideal RSL	BG22	Fast	32	-	27	9392 B
	BG22	Short	256	-	17	6754 B

Subset Sum Problem

Subset Sum Problem

From (w, t), find a vector x such that

$$
\langle w, x\rangle=t \quad \bmod q \quad \text { and } \quad x \in\{0,1\}^{n} .
$$

The multi-party computation must check that the vector x satisfies

$$
\langle w, x\rangle=t \quad \bmod q \quad \text { and } \quad x \in\{0,1\}^{n} .
$$

Problem: q is very large $\left(q \approx 2^{256}\right)$.

Subset Sum Problem

Subset Sum Problem

From (w, t), find a vector x such that

$$
\langle w, x\rangle=t \quad \bmod q \quad \text { and } \quad x \in\{0,1\}^{n} .
$$

The multi-party computation must check that the vector x satisfies

$$
\langle w, x\rangle=t \quad \bmod q \quad \text { and } \quad x \in\{0,1\}^{n} .
$$

Problem: q is very large $\left(q \approx 2^{256}\right)$.
Solution: Use an additive sharing over integers with rejection.
[FMRV22] Thibauld Feneuil, Jules Maire, Matthieu Rivain and Damien Vergnaud.
Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection. Asiacrypt 2022.

Subset Sum Problem

Instance	Protocol Name	Variant	Parameters			Sig. Size
			M	τ		
$q=2^{256}$		-	-	-	219	$\approx 1.2 \mathrm{MB}$
	Sha86	-	-	-	219	$\approx 2.3 \mathrm{MB}$
	LNSW13	Beu20	-	1024	4040	14
	FMRV22	C\&C	64	514	28	$\approx 21 \mathrm{~KB}$
		Short	256	-	29	$\approx 28 \mathrm{~KB}^{\star}$
	FMRV22 + Optim	Fast	32	-	28	$\approx 29 \mathrm{~KB}^{\star}$
		256	-	19	$\approx 18 \mathrm{~KB}^{\star}$	

${ }^{\star}$ sizes given for a rejection rate which is less than 2%.

Conclusion

Security Assumption	Scheme	Achieved sizes (in KB)
Subset Sum	$[$ FMRV22]	$18-29$
Legendre PRF	$[$ Bd20]	$12.2-14.8$
AES	$[$ KZ22]	$9.7-14.4$
Permuted Kernel	$[$ BG22]	$8.6-9.7$
Syndrome Decoding (Hamm.)	[FJR22]	$8.3-11.5$
LowMC	$[$ KZ22]	$6.4-9.2$
Multivariate Quadratic	$[$ Fen22]	$6.9-8.3$
Higher-Power Residue Characters	[Bd20]	$6.3-7.8$
Syndrome Decoding (Rank)	[Fen22]	$5.8-7.2$
Min Rank	[Fen22]	$5.4-7.0$
[BHH01] PRF	[FMRV22]	$4.8-6.5$
Rain [DKR+21]	[KZ22]	$4.9-6.4$

Sizes given for a range of 32-256 parties.

Estimation of the running time:
for 256 parties, $2-10 \mathrm{~ms}$ for signing (with $[\mathrm{AGH}+22]$).

Conclusion

Security Assumption	Scheme	Achieved sizes (in KB)
Subset Sum	$[$ FMRV22]	$18-29$
Legendre PRF	$[$ [Bd20]	$12.2-14.8$
AES	$[$ KZ22]	$9.7-14.4$
Permuted Kernel	$[$ BG22]	$8.6-9.7$
Syndrome Decoding (Hamm.)	[FJR22]	$8.3-11.5$
LowMC	[KZ22]	$6.4-9.2$
Multivariate Quadratic	[Fen22]	$6.9-8.3$
Higher-Power Residue Characters	[Bd20]	$6.3-7.8$
Syndrome Decoding (Rank)	[Fen22]	$5.8-7.2$
Min Rank	$[$ Fen22]	$5.4-7.0$
[BHH01] PRF	[FMRV22]	$4.8-6.5$
Rain [DKR+21]	[KZ22]	$4.9-6.4$

Sizes given for a range of 32-256 parties.

Estimation of the running time:
for 256 parties, $2-10 \mathrm{~ms}$ for signing (with $[\mathrm{AGH}+22]$).

Thank you for your attention!

References

[ABG+19] Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and Gilles Zémor. Durandal: A Rank Metric Based Signature Scheme. Eurocrypt 2019.
[AGH+22] Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas Hülsing, David Joseph, Dongze Yue. The Return of the SDitH. Eprint 2022/1645.
[ARZV22] Gora Adj, Luis Rivera-Zamarripa, and Javier Verbel. Minrank in the head: Short signatures from zero-knowledge proofs. Eprint 2022/1501.
[Cou01] Nicolas Courtois. Efficient zero-knowledge authentication based on a linear algebra problem MinRank. Asiacrypt 2001.
[Beu20] Ward Beullens. LESS-FM: Sigma protocols for MQ, PKP and SIS, and Fishy signature schemes. Eurocrypt 2020.

References

[Bd20] Ward Beullens and Cyprien de Saint Guilhem. LegRoast: Efficient post-quantum signatures from the Legendre PRF. PQC 2020.
[BBPS21] Alessandro Barenghi, Jean-François Biasse, Edoardo Persichetti, and Paolo Santini. LESS-FM: Fine-Tuning Signatures from the Code Equivalence Problem. PQC 2021.
[BdK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter Scholl, and Greg Zaverucha. Banquet: Short and Fast Signatures from AES. PKC 2021.
[BDNS21] Gustavo Banegas, Thomas Debris-Alazard, Milena Nedeljković, and Benjamin Smith. Wavelet: Code-based postquantum signatures with fast verification on microcontrollers. Eprint 2021/1432.

References

[BG22] Loïc Bidoux and Philippe Gaborit. Compact post-quantum signatures from proofs of knowledge leveraging structure for the pkp, sd and rsd problems. arXiv 2204.02915.
[BGKM22] Loïc Bidoux, Philippe Gaborit, Mukul Kulkarni, and Victor Mateu.
Code-based Signatures from New Proofs of Knowledge for the Syndrome Decoding Problem. arXiv 2110.05005.
[BGKS21] Loïc Bidoux, Philippe Gaborit, Mukul Kulkarni, and Nicolas Sendrier. Quasi-Cyclic Stern Proof of Knowledge. 2022 IEEE ISIT.
[BHH01] D. Boneh, S. Halevi, and N. Howgrave-Graham. The modular inversion hidden number problem. Asiacrypt 2001.

References

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. PKC 2020.
[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-knowledge and signatures from symmetric-key primitives. CCS 2017.
[dDOS19] Cyprien de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and Nigel P. Smart. BBQ: Using AES in picnic signatures. SAC 2019.
[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. The measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more. Crypto 2020.

References

[DFMS21] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
Online-extractability in the quantum random-oracle model. Eprint 2021/280.
[DKR+21] C. Dobraunig, D. Kales, C. Rechberger, M. Schofnegger, and G.
Zaverucha. Shorter signatures based on tailor-made minimalist symmetric-key crypto. CCS 2022.
[dOT21] Cyprien de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy. Limbo: Efficient zero-knowledge MPCitH-based arguments. CCS 2021.
[DST19] Thomas Debris, Nicolas Sendrier, and Jean-Pierre Tillich. Wave: A New Family of Trapdoor One-Way Preimage Sampleable Functions Based on Codes. Asiacrypt 2019.
[Fen22] Thibauld Feneuil. Building MPCitH-based Signatures from $M Q$, MinRank, Rank SD and PKP. Eprint 2022/1512.

References

[FJR21] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared Permutation for Syndrome Decoding: New Zero-Knowledge Protocol and Code-Based Signature. Designs, Codes and Cryptography.
[FJR22] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs. Crypto 2022.
[FMRV22] Thibauld Feneuil, Jules Maire, Matthieu Rivain and Damien Vergnaud. Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection. Asiacrypt 2022.
[FR22] Thibauld Feneuil, Matthieu Rivain. Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head. Eprint 2022/1407.

References

[GPS21] Shay Gueron, Edoardo Persichetti, and Paolo Santini. Designing a Practical Code-based Signature Scheme from Zero-Knowledge Proofs with Trusted Setup. Cryptography 2022.
[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation. STOC 2007.
[KKW18] J. Katz, V. Kolesnikov, and X. Wang. Improved non-interactive zero knowledge with applications to post-quantum signatures. CCS 2018.
[KZ20a] Daniel Kales and Greg Zaverucha. An attack on some signature schemes constructed from five-pass identification schemes. CANS 2020.
[KZ20b] Daniel Kales and Greg Zaverucha. Improving the performance of the Picnic signature scheme. TCHES 2020.

References

[KZ22] Daniel Kales, and Greg Zaverucha. Efficient Lifting for Shorter Zero-Knowledge Proofs and Post-Quantum Signatures. Eprint 2022/282.
[LNSW13] S. Ling, K. Nguyen, D. Stehlé, and H. Wang. Improved zero-knowledge proofs of knowledge for the ISIS problem, and applications. PKC 2013.
[Sha86] A. Shamir. A zero-knowledge proof for knapsacks. 1986.
[SINY22] Bagus Santoso, Yasuhiko Ikematsu, Shuhei Nakamura, and Takanori Yasuda. Three-Pass Identification Scheme Based on MinRank Problem with Half Cheating Probability. arXiv 2205.03255.
[Wan22] William Wang. Shorter Signatures from MQ. Eprint 2022/344.

