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Zero-Knowledge Proofs of Knowledge

Let have a circuit C and an output y.
Problem: find x such that C(x) = y.
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MPC-in-the-Head Paradigm

MPC-in-the-Head Paradigm
◦ Generic technique to build zero-knowledge protocols using

multi-party computation.

◦ Introduced in 2007 by:

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.

Zero-knowledge from secure multiparty computation. STOC 2007.

◦ Popularized in 2016 by Picnic, a former candidate of the
NIST Post-Quantum Cryptography Standardization.
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Sharing of the secret

The secret x satisfies
y = C(x).

We share it in N parts:

x = JxK1 + JxK2 + . . .+ JxKN−1 + JxKN .
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MPC-in-the-Head Paradigm

[[x]]1

[[x]]2

[[x]]3

[[x]]4[[x]]5

x = [[x]]1 + [[x]]2 + [[x]]3 + [[x]]4 + [[x]]5

The multi-party computation outputs 
   - Accept if     satisfies                ,

   - Reject otherwise.

x y = C(x)
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MPC-in-the-Head Paradigm
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Honest Prover Verifier

x = [[x]]1 + [[x]]2 + [[x]]3 + [[x]]4 + [[x]]5
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MPC-in-the-Head Paradigm

Honest Prover Verifier

Outputs 
“Accept” 

Reveal the views of every party 
except Party 2.

Seems OK…

x = [[x]]1 + [[x]]2 + [[x]]3 + [[x]]4 + [[x]]5
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MPC-in-the-Head Paradigm

Malicious Prover Verifier
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MPC-in-the-Head Paradigm

Malicious Prover Verifier

Outputs 
“Accept” 

Reveal the views of every party 
except Party 3.

You tried to cheat!!!!

x = [[x]]1 + [[x]]2 + [[x]]3 + [[x]]4 + [[x]]5

= Commitment

[[x]]1

[[x]]2

[[x]]3

[[x]]4[[x]]5
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MPC-in-the-Head Paradigm

Soundness error:
1

N

Proof size: depends on the multi-party computation protocol

Two possible trade-offs:
◦ Repeat the protocol many times:

fast proofs, but large proofs
◦ Take a larger N :

short proofs, but slow proofs
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From ID scheme to signature scheme

To get a signature scheme, we use
☞ the Fiat-Shamir Transformation.

9 / 52



Introduction SD in the Head Recent Optimizations Exploring other problems

The First MPCitH-based Signatures

Scheme Name Year |sgn| Assumption
Picnic1 [CDG+17] 2016 32.1 KB LowMC (partial)Picnic2 [KKW18] 2018 12.1 KB
Picnic3 [KZ20b] 2019 12.3 KB LowMC (full)

Helium+LowMC [KZ22] 2022 6.4 - 9.2 KB✫

BBQ [dDOS19] 2019 30.9 KB

AESBanquet [BdK+21] 2021 13.0 - 17.1 KB✫

Limbo-Sign [dOT21] 2021 14.2 - 17.9 KB✫

Helium+AES [KZ22] 2022 9.7 - 14.4 KB✫

Rainier [DKR+21] 2021 5.9 - 8.1 KB✫

Rain
BN++Rain [KZ22] 2022 4.9 - 6.4 KB✫

✫sizes given for a range of 32-256 parties.
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Signature with Syndrome Decoding Problem

Idea:

Instead of relying on AES or on MPC-friendly primitives,
we can rely on hard problems from asymmetric crypto.

The case of the Syndrome Decoding in Hamming metric:
[FJR22] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome

Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs. CRYPTO

2022.

12 / 52



Introduction SD in the Head Recent Optimizations Exploring other problems

Rephrase the constraint

Syndrome Decoding Problem
From (H, y), find x ∈ Fm such that

y = Hx and wtH(x) ≤ w.

wtH(x) := nb of non-zero coordinates of x

The multi-party computation must check that the vector x
satisfies

y = Hx︸ ︷︷ ︸
linear, easy to check

and wtH(x) ≤ w︸ ︷︷ ︸
non-linear, hard to check
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Rephrase the constraint

The multi-party computation must check that the vector x
satisfies

y = Hx

and

∃ Q,P two polynomials : SQ = PF and degQ = w

where
S is defined by interpolation such that ∀i, S(γi) = xi,
F :=

∏m
i=1(X − γi).
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Rephrase the constraint

Let us assume that there exists Q,P ∈ Fpoly[X] s.t.

S ·Q = P · F and degQ = w

where
S is built by interpolation such that ∀i, S(γi) = xi,
F :=

∏m
i=1(X − γi),

then, the verifier deduces that

∀i ≤ m, (Q · S)(γi) = P (γi) · F (γi) = 0

⇒ ∀i ≤ m, Q(γi) = 0 or S(γi) = xi = 0

i.e.
wtH(x) := #{i : xi ̸= 0} ≤ w
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Rephrase the constraint

Such polynomial Q can be built as

Q := Q′ ·
∏

i:xi ̸=0

(X − γi)︸ ︷︷ ︸
The non-zero positions of x

are encoding as roots.

And P := S·Q
F since F divides S ·Q.

(∀i, S(γi) = xi)
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Guidelines for the MPC Protocol

We want to build a MPC protocol which checks if some vector is
a syndrome decoding solution.

Let us assume H = (H ′|I). We split x as
(

xA
xB

)
.

We have y = Hx, so

xB = y −H ′xA.

Inputs of the MPC protocol: xA, Q, P .
Aim of the MPC protocol:

Check that xA corresponds to a syndrome decoding solution.
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Guidelines for the MPC Protocol

18 / 52

Inputs: xA, Q, P .

1. Build xB := y −H ′xA and deduce x :=

(
xA
xB

)
.

We have
y = Hx.
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Guidelines for the MPC Protocol
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Inputs: xA, Q, P .

1. Build xB := y −H ′xA and deduce x :=

(
xA
xB

)
.

2. Build the polynomial S by interpolation such that

∀i ∈ {1, . . . ,m}, S(γi) = xi.

Interpolation Formula:

S(X) =
∑
i

xi ·
∏
ℓ̸=i

X − γℓ
γi − γℓ

.
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Guidelines for the MPC Protocol
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1. Build xB := y −H ′xA and deduce x :=

(
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xB

)
.

2. Build the polynomial S by interpolation such that

∀i ∈ {1, . . . ,m}, S(γi) = xi.

3. Check that S ·Q = P · F .
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Guidelines for the MPC Protocol
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Inputs: xA, Q, P .

1. Build xB := y −H ′xA and deduce x :=

(
xA
xB

)
.

2. Build the polynomial S by interpolation such that

∀i ∈ {1, . . . ,m}, S(γi) = xi.

3. Get a random point r from Fpoints (field extension of Fpoly).
4. Compute S(r), Q(r) and P (r).
5. Using [BN20], check that S(r) ·Q(r) = P (r) · F (r).

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge
arguments for arithmetic circuits and their application to lattice-based
cryptography. PKC 2020.
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MPC Protocol

Inputs of the party Pi: JxAKi, JQKi and JP Ki.

1. Compute JxBK := y −H ′JxAK and deduce JxK :=
(

JxAK
JxBK

)
.

2. Compute JSK from JxK thanks to

JS(X)K =
∑
i

JxiK ·
∏
ℓ̸=i

X − γℓ
γi − γℓ

.

3. Get a random point r from Fpoints (field extension of Fpoly).
4. Compute 

JS(r)K = JSK(r)
JQ(r)K = JQK(r)
JP (r)K = JP K(r)

5. Using [BN20], check that S(r) ·Q(r) = P (r) · F (r).
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Analysis

Even if xA does not describe a SD solution (implying that
S ·Q ̸= P · F ), the MPC protocol can output Accept if

Case 1 :
S(r) ·Q(r) = P (r) · F (r)

which occurs with probability (Schwartz-Zippel Lemma)

Pr
r

$←−Fpoints

[S(r) ·Q(r) = P (r) · F (r)] ≤ m+ w − 1

|Fpoints|

Case 2 : the [BN20] protocol fails, which occurs with
probability

1

|Fpoints|
.
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Summary

The MPC protocol π checks that (xA, Q, P ) describes a solution
of the SD instance (H, y).

Output of π
Accept Reject

A good witness 1 0
Not a good witness p 1− p

where

p =
m+ w − 1

|Fpoints|︸ ︷︷ ︸
false positive

from Schwartz-Zippel

+

(
1− m+ w − 1

|Fpoints|

)
· 1

|Fpoints|︸ ︷︷ ︸
false positive
from [BN20]
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MPC-in-the-Head paradigm

Honest Prover Verifier

Outputs 
“Accept” 

Reveal the views of every party 
except Party 2.

Seems OK…

x = [[x]]1 + [[x]]2 + [[x]]3 + [[x]]4 + [[x]]5

= Commitment

[[x]]1

[[x]]2

[[x]]3

[[x]]4[[x]]5
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MPC-in-the-Head paradigm

Prover P Verifier V
H, y, x such that H, y
y = Hx and wtH(x) ≤ w

Prepare Q, P .
Comi ← Com(inputs of Pi)

Com1,...,ComN−−−−−−−−−−−−→ r ∈ Fpoints

Run the MPC protocol π r←−−−−−−−−−−−−
for each party.

broadcast messages−−−−−−−−−−−−→ i∗
$←− {1, . . . , N}

i∗←−−−−−−−−−−−−
all Vi for i ̸=i∗−−−−−−−−−−−−→

Check that the views are consistent
Check that the MPC output is Accept
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Zero-Knowledge Protocol

Soundness error:

p+ (1− p) · 1
N

Proof size:
◦ Inputs of N − 1 parties:
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Zero-Knowledge Protocol

Soundness error:

p+ (1− p) · 1
N

Proof size:
◦ Inputs of N − 1 parties:

P1 P2 . . . PN−1 PN

xA = JxAK1 + JxAK2 + . . . + JxAKN−1 + JxAKN
Q = JQK1 + JQK2 + . . . + JQKN−1 + JQKN
P = JP K1 + JP K2 + . . . + JP KN−1 + JP KN

se
ed

1
→

se
ed

2
→

se
ed

N
−
1
→
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Zero-Knowledge Protocol

Soundness error:

p+ (1− p) · 1
N

Proof size:
◦ Inputs of N − 1 parties:

- Party i < N : a seed of λ bits
- Last party:

k · log2 |FSD|︸ ︷︷ ︸
JxAKN

+2w · log2 |Fpoly|︸ ︷︷ ︸
JQKN ,JP KN

+ λ︸︷︷︸
JaKN ,JbKN

+ log2 |Fpoints|︸ ︷︷ ︸
JcKN
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Zero-Knowledge Protocol

Soundness error:

p+ (1− p) · 1
N

Proof size:
◦ Inputs of N − 1 parties:

- Party i < N : a seed of λ bits
- Last party:

k · log2 |FSD|︸ ︷︷ ︸
JxAKN

+2w · log2 |Fpoly|︸ ︷︷ ︸
JQKN ,JP KN

+ λ︸︷︷︸
JaKN ,JbKN

+ log2 |Fpoints|︸ ︷︷ ︸
JcKN

◦ Communication between parties: 2 elements of Fpoints.
◦ 2 hash digests (2× 2λ bits),
◦ Some commitment randomness + comi∗
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Security of the signature

Fiat-Shamir Transform:

5-round Identification Scheme ⇒ Signature

Attack of [KZ20]:

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi(1− p)τ−i

+N τ2

}

[KZ20a] Daniel Kales and Greg Zaverucha. An attack on some signature schemes
constructed from five-pass identification schemes. CANS 2020.
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Parameters selected

Variant 1: SD over F2,

(m, k,w) = (1280, 640, 132)

We have Fpoly = F211.

Variant 2: SD over F2,

(m, k,w) = (1536, 888, 120)

but we split x := (x1 | . . . | x6) into 6 chunks and we prove
that wtH(xi) ≤ w

6 for all i.
We have Fpoly = F28.
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Parameters selected

Variant 3: SD over F28 ,

(m, k,w) = (256, 128, 80)

We have Fpoly = F28.

25 / 52



Introduction SD in the Head Recent Optimizations Exploring other problems

Obtained Performances

Scheme Name |sgn| |pk| tsgn tverif

FJR22 - F2 (fast) 15.6 KB 0.09 KB - -
FJR22 - F2 (short) 10.9 KB 0.09 KB - -

FJR22 - F2 (fast) 17.0 KB 0.09 KB 13 ms 13 ms
FJR22 - F2 (short) 11.8 KB 0.09 KB 64 ms 61 ms

FJR22 - F256 (fast) 11.5 KB 0.14 KB 6 ms 6 ms
FJR22 - F256 (short) 8.26 KB 0.14 KB 30 ms 27 ms
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Comparison Code-based Signatures (1/2)

Scheme Name |sgn| |pk| tsgn tverif

BGKS21 24.1 KB 0.1 KB - -
BGKS21 22.5 KB 1.7 KB - -

GPS21 - 256 22.2 KB 0.11 KB - -
GPS21 - 1024 19.5 KB 0.12 KB - -
FJR21 (fast) 22.6 KB 0.09 KB 13 ms 12 ms
FJR21 (short) 16.0 KB 0.09 KB 62 ms 57 ms

BGKM22 - Sig1 23.7 KB 0.1 KB - -
BGKM22 - Sig2 20.6 KB 0.2 KB - -

FJR22 - F2 (fast) 15.6 KB 0.09 KB - -
FJR22 - F2 (short) 10.9 KB 0.09 KB - -
FJR22 - F2 (fast) 17.0 KB 0.09 KB 13 ms 13 ms
FJR22 - F2 (short) 11.8 KB 0.09 KB 64 ms 61 ms

FJR22 - F256 (fast) 11.5 KB 0.14 KB 6 ms 6 ms
FJR22 - F256 (short) 8.26 KB 0.14 KB 30 ms 27 ms
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Comparison Code-based Signatures (2/2)

Scheme Name |sgn| |pk| tsgn tverif

Durandal - I 3.97 KB 14.9 KB 4 ms 5 ms
Durandal - II 4.90 KB 18.2 KB 5 ms 6 ms
LESS-FM - I 15.2 KB 9.78 KB - -
LESS-FM - II 5.25 KB 205 KB - -
LESS-FM - III 10.39 KB 11.57 KB - -

Wave 2.07 KB 3.1 MB ≥ 300 ms 2 ms
Wavelet 0.91 KB 3.1 MB ≥ 300 ms ≤ 1 ms

FJR22 - F2 (fast) 15.6 KB 0.09 KB - -
FJR22 - F2 (short) 10.9 KB 0.09 KB - -
FJR22 - F2 (fast) 17.0 KB 0.09 KB 13 ms 13 ms
FJR22 - F2 (short) 11.8 KB 0.09 KB 64 ms 61 ms

FJR22 - F256 (fast) 11.5 KB 0.14 KB 6 ms 6 ms
FJR22 - F256 (short) 8.26 KB 0.14 KB 30 ms 27 ms
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Signature Security

☞ Keys = Generic Instances of the considered problem (no
structure).

☞ Forgery in the Random Oracle Model :

AdvEUF-KO ≤ εOWF +
(τ ·N + 1)Q2

22λ
+ Prob[X + Y = τ ]︸ ︷︷ ︸

[KZ20a]’s attack

AdvEUF-CMA ≤ AdvEUF-KO +Qs ·
(
τ · εPRG + εTree +

Q

2κ

)
[BdK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales,

Emmanuela Orsini, Peter Scholl, and Greg Zaverucha. Banquet: Short and

Fast Signatures from AES. PKC 2021.

[KZ22] Daniel Kales, and Greg Zaverucha. Efficient Lifting for Shorter

Zero-Knowledge Proofs and Post-Quantum Signatures. Eprint 2022/282.
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Signature Security

☞ Forgery in the Quantum Random Oracle Model :
[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. The

measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more.

Crypto 2020.

[DFMS21] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.

Online-extractability in the quantum random-oracle model. Eprint 2021/280.
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Recent Optimizations

☞ Usage of additive sharings with a hypercube approach
[AGH+22] Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas

Hülsing, David Joseph, Dongze Yue. The Return of the SDitH. Eprint

2022/1645.

☞ Usage of low-threshold Shamir’s secret sharings
[FR22] Thibauld Feneuil, Matthieu Rivain. Threshold Linear Secret Sharing

to the Rescue of MPC-in-the-Head. Eprint 2022/1407.
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Using additive sharings in a hypercube approach

P1 P2 . . . PN−1 PN

x = JxK1 + JxK2 + . . . + JxKN−1 + JxKN

se
ed

1
→

se
ed

2
→

se
ed

N
−
1
→
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Using additive sharings in a hypercube approach

How to generate two N -sharings of a given value?
☞ Option 1: With two seed trees of N seeds.

Cost = 2 log2N seeds + 2 auxiliary states.

☞ Option 2: With a large seed tree of N2 seeds [AGH+22].
Cost = log2(N

2) seeds + 1 auxiliary state.

34 / 52
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Using additive sharings in a hypercube approach

If we want to have a protocol with a soundness error of 1
N , we

can emulate the MPC protocol D := log2(N) times on
2-sharings with the same auxiliary state:

Soundness Error :=

(
1

2

)log2 N

=
1

N
.

Thus, instead of emulating N parties
to achieve a soundness error of 1/N ,
we run only 2 log2N parties.
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Comparison over SDitH

Comparison over SDitH – variant F256:

Variant |sgn| tsgn tverif

Standard - Fast (N = 32) 11.5 KB ≈ 6 ms ≈ 6 ms
Standard - Short (N = 256) 8.26 KB ≈ 25 ms ≈ 25 ms
Hypercube - Fast (N = 32) 11.5 KB ≈ 4 ms ≈ 4 ms

Hypercube - Short (N = 256) 8.26 KB ≈ 7 ms ≈ 7 ms
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Using Shamir’s secret sharings

Idea: use a Shamir’s (ℓ,N)-secret sharing and reveal only ℓ
shares to the verifier (instead of N − 1) [FR22].

To share s ∈ F,
– sample r1, r2, . . . , rℓ uniformly from F,
– build the polynomial P (X) = s+

∑ℓ
k=1 rkX

k,
– set the share JsKi as P (ei), where ei is publicly known.

Resulting proof of knowledge:
☞ Correctness: ok.

☞ Zero-knowledge: ok, since we reveal only ℓ parties.
☞ Soundness: ?
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Using Shamir’s secret sharings

!1 !2 !N
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… …
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Cheat on less than              parties ?

Cheat on more than              parties ?

Cheat on exactly              parties ?

N − ℓ
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N − ℓ

Assumptions: 
  - Only broadcast 
  - Only linear operations 
               on shares
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Using Shamir’s secret sharings

Soundness error:
1(
N

N−ℓ

) =
1(
N
ℓ

)
☞ No seed tree to generate the input shares
☞ A Merkle tree to commit the N input shares (by repetition)
☞ A verifier re-emulates only ℓ parties by repetition

(instead of N − 1)
☞ A prover needs to emulate only ℓ+ 1 parties by repetition

(instead of N)

Restriction: N ≤ |F|.
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Comparison over SDitH

Comparison over SDitH – variant F256:

Variant |sgn| tsgn tverif

Standard - Fast (N = 32) 11.5 KB ≈ 6 ms ≈ 6 ms
Standard - Short (N = 256) 8.26 KB ≈ 25 ms ≈ 25 ms
Hypercube - Fast (N = 32) 11.5 KB ≈ 4 ms ≈ 4 ms

Hypercube - Short (N = 256) 8.26 KB ≈ 7 ms ≈ 7 ms
Shamir’s Secret Sharing (N = 256) 9.97 KB ≈ 3 ms ≈ 0.4 ms

Remark: non-isochronous implementation. Ongoing efforts are
currently done to propose isochronous and optimized implementations of
SDitH.

Remark: the two optimizations do not seem to be compatible with each
other.
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Exploring other problems

☞ [Fen22] Thibauld Feneuil. Building MPCitH-based Signatures from MQ,

MinRank, Rank SD and PKP. Eprint 2022/1512.

☞ [FMRV22] Thibauld Feneuil, Jules Maire, Matthieu Rivain and Damien

Vergnaud. Zero-Knowledge Protocols for the Subset Sum Problem from

MPC-in-the-Head with Rejection. Asiacrypt 2022.

42 / 52



Introduction SD in the Head Recent Optimizations Exploring other problems

Multivariate Quadratic Problem

Multivariate Quadratic Problem
From (A1, . . . , Am, b1, . . . bm, y1, . . . , ym), find x ∈ Fn

q such that

∀i ≤ m, yi = xTAix+ bTi x.

The multi-party computation must check that the vector x
satisfies

y1 = xTA1x+ bT1 x

y2 = xTA2x+ bT2 x

...

ym = xTAmx+ bTmx
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Multivariate Quadratic Problem - Signature schemes

Instance Protocol Name Variant Parameters Sig. Size
N M τ

q = 4
m = 88
n = 88

MudFish - 4 191 68 14 640 B

Mesquite Fast 8 187 49 9 578 B
Short 32 389 28 8 609 B

Fen22 Fast 32 - 40 10 764 B
Short 256 - 25 9 064 B

q = 256
m = 40
n = 40

MudFish
Fast 8 176 51 15 958 B
Short 16 250 36 13 910 B

Mesquite Fast 8 187 49 11 339 B
Short 32 389 28 9 615 B

Fen22 Fast 32 - 36 8 488 B
Short 256 - 25 7 114 B
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MinRank Problem

MinRank Problem

From (M0,M1, . . . ,Mk), find α ∈ Fk
q such that

rank(M0 +

k∑
i=1

αiMi) ≤ r.
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MPC protocols

The multi-party computation must check that a matrix
M ∈ Fm×n

q has a rank of at most r.

Rank Decomposition:

A matrix M ∈ Fn×m
q has a rank of at most r

iff there exists T ∈ Fn×r
q and R ∈ Fr×m

q such that M = TR.

Linearized Polynomials:

A matrix M ∈ Fn×m
q has a rank of at most r

⇔ there exists a linear subspace U of Fqm of dimension r
such that {x1, . . . , xn} ⊂ U .

⇔ there exists a monic q-polynomial LU of degree qr

such that x1, . . . , xn are roots of LU .

Remark: Computing JvqK from JvK is free.
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MPC protocols
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MinRank Problem

Instance Protocol Name Variant Parameters Sig. Size
N M τ

q = 16
m = 16
n = 16
k = 142
r = 4

Cou01 - - - 219 52 430 B
Optimized - - 219 28 575 B

SINY22 - - - 128 50 640 B
Optimized - - 128 28 128 B

BESV22 - - 256 128 26 405 B

BG22 Fast 8 187 49 13 644 B
Short 32 389 28 10 937 B

ARZV22 Fast 32 - 28 10 116 B
Short 256 - 18 7 422 B

Fen22 (RD) Fast 32 - 33 9 288 B
Short 256 - 19 7 122 B

Fen22 (LP) Fast 32 - 28 7 204 B
Short 256 - 18 5 518 B
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Rank Syndrome Decoding Problem

Rank Syndrome Decoding Problem
From (H, y), find x ∈ Fn

qm such that

y = Hx and rank(x) ≤ r.

☞ Using the rank decomposition
☞ Using q-polynomials
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Rank Syndrome Decoding Problem

Instance Protocol Name Variant Parameters Sig. Size
N M τ

q = 2
m = 31
n = 30
k = 15
r = 9

Stern - - - 219 31 358 B
Véron - - - 219 27 115 B

FJR21 Fast 8 187 49 19 328 B
Short 32 389 28 14 181 B

BG22 Fast 8 187 49 15 982 B
Short 32 389 28 12 274 B

Fen22 (RD) Fast 32 - 33 11 000 B
Short 256 - 21 8 543 B

Fen22 (LP) Fast 32 - 30 7 376 B
Short 256 - 20 5 899 B

Ideal RSL BG22 Fast 32 - 27 9 392 B
Short 256 - 17 6 754 B
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Subset Sum Problem

Subset Sum Problem
From (w, t), find a vector x such that

⟨w, x⟩ = t mod q and x ∈ {0, 1}n.

The multi-party computation must check that the vector x
satisfies

⟨w, x⟩ = t mod q and x ∈ {0, 1}n.

Problem: q is very large (q ≈ 2256).

Solution: Use an additive sharing over integers with rejection.
[FMRV22] Thibauld Feneuil, Jules Maire, Matthieu Rivain and Damien Vergnaud.

Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head

with Rejection. Asiacrypt 2022.
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Subset Sum Problem

Instance Protocol Name Variant Parameters Sig. Size
N M τ

q = 2256

n = 256

Sha86 - - - 219 ≈ 1.2 MB
LNSW13 - - - 219 ≈ 2.3 MB
Beu20 - 1024 4040 14 ≈ 120 KB

FMRV22 C&C 64 514 28 ≈ 21 KB✫

Short 256 - 29 ≈ 28 KB✫

FMRV22 + Optim Fast 32 - 28 ≈ 29 KB✫

Short 256 - 19 ≈ 18 KB✫

✫sizes given for a rejection rate which is less than 2%.

51 / 52



Introduction SD in the Head Recent Optimizations Exploring other problems

Conclusion

Security Assumption Scheme Achieved sizes (in KB)
Subset Sum [FMRV22] 18− 29

Legendre PRF [Bd20] 12.2− 14.8

AES [KZ22] 9.7− 14.4

Permuted Kernel [BG22] 8.6− 9.7

Syndrome Decoding (Hamm.) [FJR22] 8.3− 11.5

LowMC [KZ22] 6.4− 9.2

Multivariate Quadratic [Fen22] 6.9− 8.3

Higher-Power Residue Characters [Bd20] 6.3− 7.8

Syndrome Decoding (Rank) [Fen22] 5.8− 7.2

Min Rank [Fen22] 5.4− 7.0

[BHH01] PRF [FMRV22] 4.8− 6.5

Rain [DKR+21] [KZ22] 4.9− 6.4

Sizes given for a range of 32-256 parties.

Estimation of the running time:

for 256 parties, 2-10 ms for signing (with [AGH+22]).

Thank you for your attention!
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