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Zero-Knowledge Proofs of Knowledge

Let have a circuit C' and an output y.
Problem: find z such that C'(z) = y.
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Zero-Knowledge Proofs of Knowledge

Let have a circuit C' and an output y.
Problem: find z such that C'(z) = y.

j | know such x! i
i Question: ... ? lh
R )
Prover Verifier
l Question: ... ?
Learn no
g | am convinced / | am not convinced! information
about the

secret x.
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MPC-in-the-Head Paradigm

MPC-in-the-Head Paradigm

o Generic technique to build zero-knowledge protocols using
multi-party computation.

o Introduced in 2007 by:

[IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation. STOC 2007.

o Popularized in 2016 by Picnic, a former candidate of the
NIST Post-Quantum Cryptography Standardization.
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Sharing of the secret

The secret x satisfies

We share it in NV parts:

r=[z]1 + [z]2 + ... + [2]n-1 + [2] N
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MPC-in-the-Head Paradigm

x = [[xDy + [xT; + D3 + Dxlly + [xDs

PN
Ix, |:| |__;| [xTl5
\ /

—

[[xTl 5 |[x]]4

The multi-party computation outputs
- Accept if x satisfies y = C(x),
- Reject otherwise.
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MPC-in-the-Head Paradigm
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{x = [IxIl, + [xT, + [T + [x1, + [x1s N
g
| | | | [[x]]3
[lx11y \ /
[xTis (x4 )
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MPC-in-the-Head Paradigm

Vv

Honest Prover

{x = [IxIl, + [xT, + [T + [x1, + [x1s N
o
| | | | [[x]]3
[Ty

\ / Outputs

E — E “Accept”
[xTis (x4 )
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Verifier
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MPC-in-the-Head Paradigm

8 = Commitment
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MPC-in-the-Head Paradigm

8 = Commitment

{x = [IxIl, + [xT, + [T + [x1, + [x1s 3
[[x]]z
:A
[T, /
Outputs
“Accept”
|[x]]5 [[X]]4
4 ‘
Reveal the views of every party
except Party 3. { )
P
Malicious Prover i You tried to cheat!!!! r Verifier
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MPC-in-the-Head Paradigm

8 = Commitment

(x = [xTly + [xl, + DxDl; + [xlly + [x]s )
[[x]]z
:A
[T, /
Outputs
“Accept”
|[x]]5 [[X]]4
-’
v
Reveal the views of every party
except Party 2. ia
P
Malicious Prover i Seems OK... r Verifier
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MPC-in-the-Head Paradigm

Soundness error:

1
N
Proof size: depends on the multi-party computation protocol

Two possible trade-offs:

o Repeat the protocol many times:
fast proofs, but large proofs
o Take a larger IV:

short proofs, but slow proofs
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From ID scheme to signature scheme

To get a signature scheme, we use

iz the Fiat-Shamir Transformation.
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The First MPCitH-based Signatures

‘ Scheme Name | Year | |sgn| | Assumption |
Picnicl [CDG+17] | 2016 32.1 KB .
Picnic2 [KKW18] 2018 121 KB LowMC (partial)

Picnic3 [KZ20b)] 2019 12.3 KB
Felim + LowMC [KZ22] | 2022 | 6.4- 9.2 kgr | owMC (full
BBQ [dDOS19] 2019 30.9 KB

Banquet [BAK+21] 2021 | 13.0 - 17.1 KB¥

Limbo-Sign [dOT21] | 2021 | 14.2 - 17.9 KB* AES
Helium+AES [KZ22] | 2022 | 9.7 - 14.4 KB*
Rainier [DKR+21] 2021 | 5.9-8.1 KB* .
Rain

BN-++Rain [KZ22] 2022 [ 4.9 - 6.4 KB¥

* sizes given for a range of 32-256 parties.
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Signature with Syndrome Decoding Problem

Idea:

Instead of relying on AES or on MPC-friendly primitives,
we can rely on hard problems from asymmetric crypto.

The case of the Syndrome Decoding in Hamming metric:

[FJR22] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Syndrome
Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs. CRYPTO
2022.
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Rephrase the constraint

Syndrome Decoding Problem
From (H,y), find x € F" such that

y=Hzx and wty(z)<w.

wtu (z) := nb of non-zero coordinates of ©

The multi-party computation must check that the vector x

satisfies
y=Huz and wtg(z) <w
—_——
linear, easy to check non-linear, hard to check
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Rephrase the constraint

The multi-party computation must check that the vector x
satisfies
y=Hx

and

3 @, P two polynomials : SQ = PF and deg(@ = w

where
S'is defined by interpolation such that Vi, S(v;) = =i,

F .= H;ll(X — i)
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Rephrase the constraint

Let us assume that there exists @, P € Fyo1y[X] s.t.
S-Q=P-F and deg () = w

where
S is built by interpolation such that Vi, S(v;) = z;,

F = H?il(X - ’W))
then, the verifier deduces that

Vi <m, (Q-5)(v) =Pv) F(y) =0
= Vi<m, Q(v)=0 or S(vi)=2;=0
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Rephrase the constraint

Let us assume that there exists @, P € Fyo1y[X] s.t.
S-Q=P-F and deg () = w

where
S is built by interpolation such that Vi, S(v;) = z;,

F = H?il(X - ’W))
then, the verifier deduces that

Vi <m, (Q-5)(v) =Pv) F(y) =0
= Vi<m, Q(v)=0 or S(vi)=2;=0

wtg(z) = #{i:2; #0} <w

i.e.

15 /52



SD in the Head
[e]e]e] ]

Rephrase the constraint

Such polynomial ) can be built as

Q:=0q" IT xX=

i:x;7#0

The non-zero positions of x
are encoding as roots.

And P := 2 since F divides S - Q).
(Vi, S(vi) = @)
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Guidelines for the MPC Protocol

We want to build a MPC protocol which checks if some vector is
a syndrome decoding solution.

Let us assume H = (H'|I). We split = as ( iA >
TR
We have y = Hzx, so

B =Y — H'xA.
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Guidelines for the MPC Protocol

We want to build a MPC protocol which checks if some vector is
a syndrome decoding solution.

Let us assume H = (H'|I). We split = as ( iA >
TR
We have y = Hzx, so

B =Y — HI:EA.

Inputs of the MPC protocol: x4, @), P.
Aim of the MPC protocol:

Check that x4 corresponds to a syndrome decoding solution.
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Guidelines for the MPC Protocol

Inputs: 24, Q, P.

1. Build 25 := y — H'z4 and deduce z := ( ;'A >
B
We have

y=Huz.
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Guidelines for the MPC Protocol

Inputs: z4, Q, P.
1. Build 25 := y — H'z4 and deduce z := ( ;'A >
B
2. Build the polynomial S by interpolation such that

Vie{l,...,m}, S(vi) = z.

Interpolation Formula:

SO0 =Y [

7 #i%—w
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Guidelines for the MPC Protocol

Inputs: 24, Q, P.

1.

2.

Build 25 := y — H'z4 and deduce x := ( zA >
B
Build the polynomial S by interpolation such that
Vie{l,...,m}, S(vi) = z.

Check that S-Q =P - F.
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Guidelines for the MPC Protocol

Inputs: 24, Q, P.

1. Build 25 := y — H'z4 and deduce z := ( ;'A >
B

2. Build the polynomial S by interpolation such that
Vie{l,...,m}, S(vi) = z.

3. Get a random point 7 from Fpeints (field extension of Fpoly).
. Compute S(r), Q(r) and P(r).
. Using [BN20], check that S(r) - Q(r) = P(r) - F(r).

v

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge
arguments for arithmetic circuits and their application to lattice-based
cryptography. PKC 2020.
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MPC Protocol

Inputs of the party P;: [zali, [Q]: and [P];.

1. Compute [zg] := y — H'[z 4] and deduce [z] := ( Eig% )

2. Compute [S] from [z] thanks to

[S(X)] = 3 [i] HX i

i i v
3. Get a random point 7 from Fpeines (field extension of Fpoly ).
4. Compute
[S(r)] = [5](r)
[Q(r)] = [Q](r)
[P(r)] = [PI(r)
5. Using |[BN20], check that S(r) - Q(r) = P(r) - F(r).
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Analysis

Even if x4 does not describe a SD solution (implying that
S-Q # P-F), the MPC protocol can output ACCEPT if

Case 1 :
S(r)-Q(r) = P(r)- F(r)

which occurs with probability (Schwartz-Zippel Lemma)

Pr [S(r)-Q(r) = P(r) - F(r)] < 2@ =1

T'&Fpoints ‘Fpoints |
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Analysis

Even if x4 does not describe a SD solution (implying that
S-Q # P-F), the MPC protocol can output ACCEPT if

Case 1 :
S(r)-Q(r) = P(r)- F(r)

which occurs with probability (Schwartz-Zippel Lemma)

Pr [S(r)-Q(r) = P(r) - F(r)] < 2@ =1

rﬁFpoints UFpOintS |

Case 2 : the [BN20| protocol fails, which occurs with

probability
1

|Fpoints| '

20/ 52



SD in the Head
0000e

Summary

The MPC protocol 7 checks that (24, Q), P) describes a solution
of the SD instance (H,y).

Output of =«
ACCEPT REJECT
A good witness 1 0
Not a good witness P 1—p
where
m+w—1 ( m+w — 1) 1
p = B — —_ .
|Fp0ints | |Fp0ints | ‘Fpoints |
——
false positive false positive
from Schwartz-Zippel from [BN20]
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MPC-in-the-Head paradigm

8 = Commitment

(x = [xTly + [xl, + DxDl; + [xlly + [x]s )
[[x]]z
:A
[T, /
Outputs
“Accept”
ﬂxﬂs ﬂxﬂ4
-’
v
Reveal the views of every party
except Party 2. ia
P
Honest Prover i Seems OK... r Verifier
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MPC-in-the-Head paradigm

Prover P Verifier V
H,y,x such that H,y
y=Hz and wty(z) <w

Prepare @, P.
Cowm; < Com(inputs of P;)

Cowmy,...,Compy
re ]Fpoints
T

Run the MPC protocol 7 G
for each party.
broadcast messages i $
_Droadeast messages,

i*

-
all V; for i#i*

Check that the views are consistent
Check that the MPC output is ACCEPT
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Zero-Knowledge Protocol

Soundness error:

2=

p+(1-p)-
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Zero-Knowledge Protocol

Soundness error:

1
1—p). —
p+(l-p) -
Proof size:
o Inputs of N — 1 parties:
P Po ... Pn_1 PN
za = [zali + [zale + ... + [zalv—1 + [zaln
Q = [Q@h + [@Q:2 + ... + [Qln—1 + [QI~
P = [[P]]l + [[PHQ + ... + [[P]]N—l + HPHN
) T i
3 3 =
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Zero-Knowledge Protocol

Soundness error:

1
1—p). —
p+(l=p)
Proof size:
o Inputs of N — 1 parties:

- Party i < N: a seed of A\ bits
- Last party:

k - logy |[Fsp| + 2w - logy |Fpoly| + A +1ogy [Fpoints|
[ealn [QIn [Py laln[B]~ [l
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Zero-Knowledge Protocol

Soundness error:

1
1—p) —
p+(1-p) N

Proof size:
o Inputs of N — 1 parties:

- Party i < N: a seed of A bits
- Last party:

k - log, ‘FSD‘ + 2w - logy ’Fpoly’ + A .+ logy ’Fpoints‘
[ealn [QIn [PlN laln[B]~ [l

o Communication between parties: 2 elements of Fpoints-
o 2 hash digests (2 x 2\ bits),
o Some commitment randomness + COM;x
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Security of the signature

Fiat-Shamir Transform:

’ 5-round Identification Scheme = Signature

Attack of [KZ20]:

. 1 72
COStforge o 717723'111272:7' ZiT:n (Z)pl(l o p)T_i o

|[KZ20a| Daniel Kales and Greg Zaverucha. An attack on some signature schemes
constructed from five-pass identification schemes. CANS 2020.
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Parameters selected

Variant 1: SD over Fo,
(m, k,w) = (1280, 640, 132)

We have F o1y = Fou1.

25/ 52
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Parameters selected

Variant 1: SD over Fo,
(m, k,w) = (1280, 640, 132)
We have F o1y = Fou1.
Variant 2: SD over Fo,
(m, k,w) = (1536, 888, 120)

but we split z := (21 | ... | zg) into 6 chunks and we prove
that wty(z;) < 7§ for all 4.

We have F oy = Fos.
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Parameters selected

Variant 3: SD over Fogs,
(m, k,w) = (256,128, 80)

We have F o1y = Fos.
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Obtained Performances

‘ Scheme Name ‘ |sgn| ‘ Ipk| ‘ tsgn tyerif
FJR22 - Fy (fast) 15.6 KB | 0.09 KB - -
FJR22 - F, (short) | 109 KB | 0.09 KB ; -
FJR22 - Fy (fast) 170KB | 0.09 KB | 13ms | 13 ms

FJR22 - Fy (short) 11.8KB | 0.09 KB | 64ms | 61 ms
FJR22 - Fos (fast) 11.5 KB | 0.14 KB 6 ms 6 ms
FJR22 - Fa56 (short) 826 KB | 0.14 KB | 30 ms | 27 ms
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Obtained Performances

‘ Scheme Name ‘ |sgn| ‘ Ipk| ‘ tsgn tyerif
FJR22 - Fy (fast) 15.6 KB | 0.09 KB - -
FJR22 - F, (short) | 109 KB | 0.09 KB ; -
FJR22 - Fy (fast) 170KB | 0.09 KB | 13ms | 13 ms

FJR22 - Fy (short) 11.8 KB | 0.09 KB | 64 ms | 61 ms
FJR22 - Fos (fast) 11.5 KB | 0.14 KB 6 ms 6 ms
FJR22 - Fa56 (short) 826 KB | 0.14 KB | 30 ms | 27 ms

Number of parties: N = 256
Number of repetitions: 7 =17
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Obtained Performances

‘ Scheme Name ‘ |sgn| ‘ Ipk| ‘ tsgn tyerif
FJR22 - Fy (fast) 15.6 KB | 0.09 KB - -
FJR22- F, (short) | 10.9KB | 0.09 KB - -
FJR22 - Fy (fast) 170KB | 0.09 KB | 13ms | 13 ms

FJR22 - Fy (short) 11.8KB | 0.09 KB | 64ms | 61 ms
FJR22 - Fo56  (fast) 11.5 KB | 0.14 KB 6 ms 6 ms
FJR22 - Fa56 (short) 826 KB | 0.14 KB | 30 ms | 27 ms

Number of parties: N = 32
Number of repetitions: 7 = 27
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Comparison Code-based Signatures (1/2)

‘ Scheme Name |sgn| ‘ Ipk| ‘ tsgn tverif
BGKS21 24.1 KB 0.1 KB - -
BGKS21 22.5 KB 1.7 KB - -

GPS21 - 256 22.2 KB 0.11 KB - -
GPS21 - 1024 19.5 KB 0.12 KB - -
FJR21 (fast) 226 KB | 0.09 KB | 13ms | 12 ms
FJR21 (short) 16.0 KB 0.09 KB 62 ms 57 ms
BGKM22 - Sigl 23.7 KB 0.1 KB - -
BGKM22 - Sig2 20.6 KB 0.2 KB - -
FJR22 - F, (fast) | 15.6 KB | 0.09 KB - -
FJR22 - Fy (short) | 10.9 KB | 0.09 KB - ;
FJR22 - Fy (fast) 170KB | 0.09KB | 13ms | 13 ms
FJR22 - Fy (short) 11.8 KB | 0.09 KB | 64ms | 61 ms
FJR22 - Fa56 (fast) 11.5 KB 0.14 KB 6 ms 6 ms
FJR22 - Fa56 (short) | 8.26 KB | 0.14 KB 30 ms 27 ms
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Comparison Code-based Signatures (2/2)

‘ Scheme Name ‘ |sgn| ‘ Ipk| ‘ tsgn ‘ tyerif
Durandal - I 3.97 KB 14.9 KB 4 ms 5 ms
Durandal - IT 4.90 KB 18.2 KB 5 ms 6 ms
LESS-FM -1 15.2 KB 9.78 KB - -
LESS-FM - II 5.25 KB 205 KB - -
LESS-FM - III 10.39 KB | 11.57 KB - -

Wave 2.07 KB 3.1 MB > 300 ms 2 ms
Wavelet 0.91 KB 3.1 MB >300ms | <1 ms
FJR22 - Fy (fast) 15.6 KB 0.09 KB - -
FJR22 - Fy (short) 10.9 KB 0.09 KB - -
FJR22 - Fy (fast) 17.0 KB 0.09 KB 13 ms 13 ms
FJR22 - Fy (short) 11.8 KB 0.09 KB 64 ms 61 ms
FJIR22 - Fos6 (fast) 11.5 KB 0.14 KB 6 ms 6 ms
FJR22 - Fa56 (short) | 8.26 KB | 0.14 KB 30 ms 27 ms
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Signature Security

w Keys = Generic Instances of the considered problem (no
structure).

1= Forgery in the Random Oracle Model:

(r-N+1)Q?

EUF-KO
Adv < eowr + 227

+ Prob[X +Y = 1]

[KZ20a|’s attack

EUF-CMA EUF-KO Q
Adv < Adv +Qs - (7‘ - EPRG T €Tree t+ 2H>
[BdK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales,
Emmanuela Orsini, Peter Scholl, and Greg Zaverucha. Banquet: Short and
Fast Signatures from AES. PKC 2021.
[KZ22| Daniel Kales, and Greg Zaverucha. Efficient Lifting for Shorter

Zero-Knowledge Proofs and Post-Quantum Signatures. Eprint 2022/282.
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Signature Security

i Forgery in the Quantum Random Oracle Model:
[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. The

measure-and-reprogram technique 2.0: Multi-round fiat-shamir and more.

Crypto 2020.
[DFMS21] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.

Online-extractability in the qguantum random-oracle model. Eprint 2021 /280.
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Recent Optimizations

1w Usage of additive sharings with a hypercube approach
[AGH+22] Carlos Aguilar-Melchor, Nicolas Gama, James Howe, Andreas
Hiilsing, David Joseph, Dongze Yue. The Return of the SDitH. Eprint
2022/1645.

i Usage of low-threshold Shamir’s secret sharings
[FR22] Thibauld Feneuil, Matthieu Rivain. Threshold Linear Secret Sharing
to the Rescue of MPC-in-the-Head. Eprint 2022/1407.
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Using additive sharings in a hypercube approach

P P2 . Pn-1 Pn

z = [z + [z]e + ... + [z]lv-1 + [z]v

seed; —
seedy —
seedy_1 —

master seed

g
g
:
g
H

(Eprint 2022/1645)

to disclose N — 1 leaf shares, we need 1 hidden
to reveal only logy(IV) seeds share
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Using additive sharings in a hypercube approach

How to generate two N-sharings of a given value?
= Option 1: With two seed trees of N seeds.
CoSsT = 2logy N seeds + 2 auxiliary states.
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Using additive sharings in a hypercube approach

How to generate two N-sharings of a given value?
= Option 1: With two seed trees of N seeds.
CoSsT = 2logy N seeds + 2 auxiliary states.

= Option 2: With a large seed tree of N? seeds [AGH+22].
CoST = logy(N?) seeds + 1 auxiliary state.

N2 Shares

<&
<

&
<

<&
<

&
<

&
<

N Shares

\L Y V VY VY
N Shares
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Using additive sharings in a hypercube approach

If we want to have a protocol with a soundness error of %, we
can emulate the MPC protocol D := log, (V) times on
2-sharings with the same auxiliary state:

logy N 1
SOUNDNESS ERROR := | — = —.
Thus, instead of emulating N parties e
to achieve a soundness error of 1/N,
we run only 2log, N parties. o
pd
@) - op axis

o
(D,..)
(2,1) (0.1

(1) . an

The D x N main party slices
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Comparison over SDitH — variant Fosg4:

‘ Variant ‘ |sgn| ‘ tsgn tyerif
Standard - Fast (N = 32) 11.5KB | ~6ms | ~6 ms
Standard - Short (N = 256) | 8.26 KB | &~ 25 ms | =~ 25 ms
Hypercube - Fast (N =32) | 11.5 KB | ®4ms | ~4ms
Hypercube - Short (N =256) | 8.26 KB | ~7ms | ~7ms
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Using Shamir’s secret sharings

Idea: use a Shamir’s (¢, N)-secret sharing and reveal only ¢
shares to the verifier (instead of N — 1) [FR22|.

To share s € T,
— sample rq1, 79, ...,y uniformly from F,
— build the polynomial P(X) = s+ Zi:l re X",

— set the share [s]; as P(e;), where e; is publicly known.

Resulting proof of knowledge:

= Correctness: ok.
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Using Shamir’s secret sharings

Idea: use a Shamir’s (¢, N)-secret sharing and reveal only ¢
shares to the verifier (instead of N — 1) [FR22|.

To share s € T,
— sample rq1, 79, ...,y uniformly from F,
— build the polynomial P(X) = s+ Zi:l re X",

— set the share [s]; as P(e;), where e; is publicly known.

Resulting proof of knowledge:
= Correctness: ok.

i Zero-knowledge: ok, since we reveal only ¢ parties.
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Using Shamir’s secret sharings

Idea: use a Shamir’s (¢, N)-secret sharing and reveal only ¢
shares to the verifier (instead of N — 1) [FR22|.

To share s € T,
— sample rq1, 79, ...,y uniformly from F,
— build the polynomial P(X) = s+ Zi:l re X",

— set the share [s]; as P(e;), where e; is publicly known.

Resulting proof of knowledge:
= Correctness: ok.
i Zero-knowledge: ok, since we reveal only ¢ parties.

> Soundness: 7
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Using Shamir’s secret sharings

Input shares

Compute functionality f

Accept

PPy .. <l ... Py

+

Assumptions:

- Only broadcast
- Only linear operations
on shares
Impossible to reveal £ honest parties!
Cheat on less than N — £ parties Impossible
Cheat on more than N — ¢ parties Useless

?

Cheat on exactly N — £ parties
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Using Shamir’s secret sharings

Input shares

Compute functionality f

Accept

P Py L parties ..y,

/’

Assumptions:

- Only broadcast
- Only linear operations
on shares
Cheat on less than N — £ parties Impossible
Cheat on more than N — £ parties Useless
Cheat on exactly N — £ parties OK
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Using Shamir’s secret sharings

Soundness error:

1 1

(o) (3)

1 No seed tree to generate the input shares
= A Merkle tree to commit the N input shares (by repetition)

= A verifier re-emulates only ¢ parties by repetition
(instead of N — 1)

= A prover needs to emulate only ¢ + 1 parties by repetition
(instead of N)

Restriction: N < |F|.
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Comparison over SDitH

Comparison over SDitH — variant Fosg:

‘ Variant ‘ |sgn| ‘ tsgn tyerif
Standard - Fast (N = 32) 115 KB | ~6ms | =~6ms
Standard - Short (N = 256) 8.26 KB | ~ 25 ms | ~ 25 ms
Hypercube - Fast (N = 32) 115 KB | ®4ms | ~4ms
Hypercube - Short (N = 256) 826 KB | ~7ms | ~7ms

‘ Shamir’s Secret Sharing (N = 256) ‘ 997KB | 3 ms | ~0.4 ms

Remark: non-isochronous implementation. Ongoing efforts are
currently done to propose isochronous and optimized implementations of
SDitH.

Remark: the two optimizations do not seem to be compatible with each

other.
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Exploring other problems

I |Fen22] Thibauld Feneuil. Building MPCitH-based Signatures from MQ,
MinRank, Rank SD and PKP. Eprint 2022/1512.

1" [FMRV22] Thibauld Feneuil, Jules Maire, Matthieu Rivain and Damien
Vergnaud. Zero-Knowledge Protocols for the Subset Sum Problem from
MPC-in-the-Head with Rejection. Asiacrypt 2022.
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Multivariate Quadratic Problem

Multivariate Quadratic Problem
From (A1,..., Am, b1, b, Y1, - -+, Ym), find @ € FY such that

Vi <m, y; = T Az + blT:r.

The multi-party computation must check that the vector x
satisfies

Yy = :L'TAlm + b?a:
Yo = :L'TAQ:E + bga:

Ym = 2T Az 4 bl
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Multivariate Quadratic Problem - Signature schemes

Instance Protocol Name Variant ]\1; a‘ranj\;[et(‘%rsT Sig. Size
MupFisu - 4 | 191 | 68 | 14640 B

qg=4 Mesquite Fast 8 | 187 | 49 9578 B
m = 88 Short 32 389 | 28 | 8609 B
n = 88 Fen22 Fast 32 - 40 | 10764 B
Short 256 | - 25 9064 B

MUDFISH Fast 8 | 176 | 51 | 15958 B

g = 256 Short 16 | 250 | 36 | 13910 B
m — 40 Mesquite Fast 8 | 187 | 49 | 11339 B
n— 40 Short 32 | 389 | 28 9615 B
Fen22 Fast 32 - 36 8488 B

Short 256 - 25 7114 B
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MinRank Problem

MinRank Problem

From (My, M, ..., M), find a € ]F'; such that

k
rank(My + Z a; M;) <.
i=1

45 /52



Exploring other problems
(o] Jo}

MPC protocols

The multi-party computation must check that a matrix
M € F*™™ has a rank of at most 7.
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MPC protocols

The multi-party computation must check that a matrix
M € F*™™ has a rank of at most 7.

Rank Decomposition:

A matrix M € Fj*™ has a rank of at most r
iff there exists T' € Fg*" and R € F;*™ such that M = TR.
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MPC protocols

The multi-party computation must check that a matrix
MeF g”" has a rank of at most r. Rewrite M as
(71, 7n) € Fim.

Rank Decomposition:

A matrix M € Fj*™ has a rank of at most r
iff there exists T' € Fy*" and R € F;*™ such that M = TR.

Linearized Polynomials:

A matrix M € Fj*™ has a rank of at most r
& there exists a linear subspace U of Fym of dimension r
such that {z1,...,z,} CU.
& there exists a monic ¢g-polynomial L of degree ¢"
such that x1,...,x, are roots of L.

Remark: Computing [v?] from [v] is free.
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Parameters

Instance Protocol Name Variant N ‘ i ‘ po Sig. Size
- ~ [ - 219 52430 B

Coull Optimized | - | - |219| 28575 B

- — | - 128 50640 B

SINY22 Optimized - - 128 | 28128 B

q=16 BESV22 - ~ 256 | 128 | 26405 B
m =16 BG22 Fast 8§ [ 187 | 49 | 13644 B
n=16 Short 32 1380 28 | 10937 B
k=142 Fast 32| - [ 28| 10116B
r=4 ARZV22 Short 256 | - | 18 | 7422B
Fast 32 | - | 33| 9288B

Fen22 (RD) Short 256 | - | 19| 7122B

Fast 32 | - | 28 | 7204B

Fen22 (LP) Short 256 | - | 18 | 5518 B
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Rank Syndrome Decoding Problem

Rank Syndrome Decoding Problem
From (H,y), find € Fjm such that

y=Hzx and rank(z) <r.

1 Using the rank decomposition

= Using g-polynomials

48 /52



Exploring other problems
oe

Rank Syndrome Decoding Problem

. Parameters . .
Instance Protocol Name Variant N ‘ i ‘ pe Sig. Size
Stern - - - 219 | 31358 B
Véron - - 219 27115 B
Fast ) 187 | 49 | 19328 B
7= ?2) . FIR21 Short 32 38| 28 | 14181 B
[ BG22 Fast 8 [187| 49 | 15982 B
E 1 Short 32 380 | 28 | 12274 B
- Fast 32 [ 33 ] 11000 B
r=9 Fen22 (RD) Short 256 | - | 21 | 8543 B
Fast 32 - 30 7376 B
Fen22 (LP) Short 256 | - | 20 | 5899 B
Fast 32 - [ 27 ] 9392B
Ideal RSL BG22 Short 256 | - | 17 | 6754 B
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Subset Sum Problem

Subset Sum Problem

From (w,t), find a vector = such that

(w,z) =t mod q and z€{0,1}".

The multi-party computation must check that the vector x
satisfies
(w,r) =t mod q and 1z € {0,1}".

Problem: g is very large (q ~ 2%5).
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Subset Sum Problem

Subset Sum Problem

From (w,t), find a vector = such that

(w,z) =t mod q and z€{0,1}".

The multi-party computation must check that the vector x
satisfies
(w,r) =t mod q and 1z € {0,1}".

Problem: g is very large (q ~ 2%5).

Solution: Use an additive sharing over integers with rejection.
[FMRV22] Thibauld Feneuil, Jules Maire, Matthieu Rivain and Damien Vergnaud.
Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head
with Rejection. Asiacrypt 2022.
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Subset Sum Problem

. Parameters . .
Instance Protocol Name Variant N ‘ 7 ‘ p- Sig. Size
Sha86 - - - 219 | =~ 1.2 MB
LNSW13 - - - 219 | = 2.3 MB
g = 2250 Beu20 - 1024 | 4040 | 14 | ~ 120 KB
~ C&C 64 | 514 | 28 | =21 KB¥
n =256 FMRV22 Short | 256 | - | 29 | ~28 KB*
. Fast 32 - 28 | ~ 29 KB¥
FMRV22 + Optim | 6 | 956 | - | 19 | ~ 18 KB*

*sizes given for a rejection rate which is less than 2%.
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Conclusion

Security Assumption | Scheme [ Achieved sizes (in KB) |
Subset Sum [FMRV22| 18 —29

Legendre PRF Bd20| 12.2 - 148

AES KZ22| 97— 144

Permuted Kernel [BG22| 8.6 —9.7
Syndrome Decoding (Hamm.) [FJR22] 8.3—-11.5
LowMC [KZ22] 64—92
Multivariate Quadratic [Fen22| 6.9—8.3
Higher-Power Residue Characters |Bd20] 6.3—17.8
Syndrome Decoding (Rank) Fen22 58 —17.2
Min Rank Fen22 54—-17.0

[BHI01] PRF [FMRV22] 18-65

Rain [DKR-21] [KZ22] 19-64

Sizes given for a range of 32-256 parties.

Estimation of the running time:

for 256 parties, 2-10 ms for signing (with [AGH+-22]).
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Conclusion

Security Assumption | Scheme [ Achieved sizes (in KB) |
Subset Sum [FMRV22| 18 —29

Legendre PRF Bd20| 12.2 - 148

AES KZ22| 97— 144

Permuted Kernel [BG22| 8.6 —9.7
Syndrome Decoding (Hamm.) [FJR22] 8.3—-11.5
LowMC [KZ22] 64—92
Multivariate Quadratic [Fen22| 6.9—8.3
Higher-Power Residue Characters |Bd20] 6.3—17.8
Syndrome Decoding (Rank) Fen22 58 —17.2
Min Rank Fen22 54—-17.0

[BHI01] PRF [FMRV22] 18-65

Rain [DKR-21] [KZ22] 19-64

Sizes given for a range of 32-256 parties.

Estimation of the running time:

for 256 parties, 2-10 ms for signing (with [AGH+-22]).

Thank you for your attention!
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