1/49

Building MPCitH-based Signatures from MQ, MinRank, Rank SD and PKP

Thibauld Feneuil^{1,2}

1. CryptoExperts, Paris, France

2. Sorbonne Université, CNRS, INRIA, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Ouragan, Paris, France

INRIA. November 21, 2022.

Table of Contents

1 Introduction

- MPC-in-the-Head
- SD in the Head
- 2 Exploring other problems
 - Multivariate Quadratic Problem
 - Permuted Kernel Problem
 - MinRank & Rank SD
 - Summary

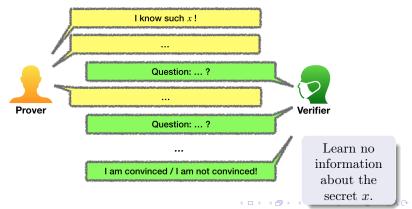
MPC in the Head

Zero-Knowledge Proofs of Knowledge

Let have a circuit C and an output y. *Problem:* find x such that C(x) = y.

Zero-Knowledge Proofs of Knowledge

Let have a circuit C and an output y. *Problem:* find x such that C(x) = y.



MPC-in-the-Head Paradigm

MPC-in-the-Head Paradigm

- Generic technique to build *zero-knowledge protocols* using *multi-party computation*.
- Introduced in 2007 by:

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation. STOC 2007.

 Popularized in 2016 by *Picnic*, a former candidate of the NIST Post-Quantum Cryptography Standardization.

Sharing of the secret

The secret x satisfies

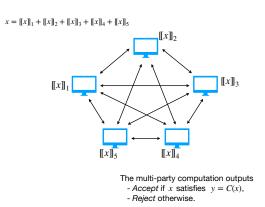
$$y = C(x).$$

We share it in N parts:

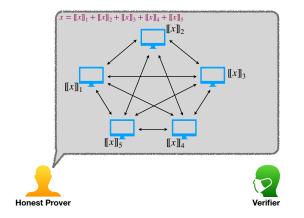
$$x = [\![x]\!]_1 + [\![x]\!]_2 + \ldots + [\![x]\!]_{N-1} + [\![x]\!]_N.$$

Exploring other problems

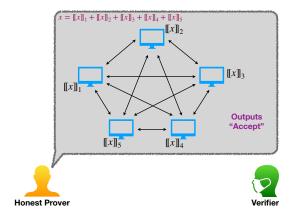
MPC in the Head



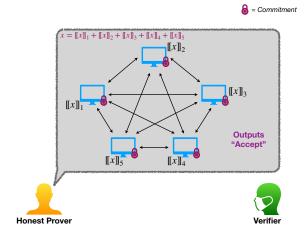
Exploring other problems

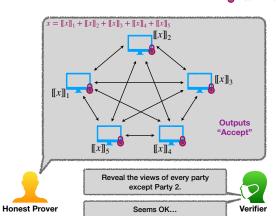


Exploring other problems

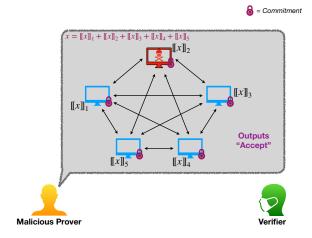


Exploring other problems

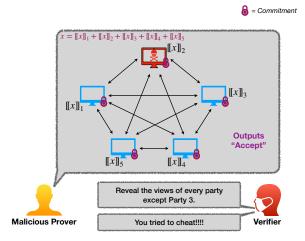




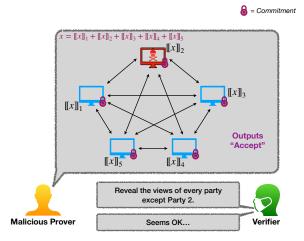
Exploring other problems



Exploring other problems



Exploring other problems



MPC-in-the-Head Paradigm

Soundness error:

 $\frac{1}{N}$

<u>Proof size</u>: depends on the multi-party computation protocol

Two possible trade-offs:

• Repeat the protocol many times:

fast proofs, but large proofs

 $\circ~$ Take a larger N:

short proofs, but slow proofs

Syndrome Decoding in the Head

Syndrome Decoding Problem

From (H, y), find $x \in \mathbb{F}^m$ such that

$$y = Hx$$
 and $wt_H(x) \le w$.

The multi-party computation must check that the vector \boldsymbol{x} satisfies

[FJR22] Thibauld Feneuil, Antoine Joux and Matthieu Rivain. Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs. Crypto 2022.

Syndrome Decoding in the Head

Syndrome Decoding Problem

From (H, y), find $x \in \mathbb{F}^m$ such that

$$y = Hx$$
 and $wt_H(x) \le w$.

The multi-party computation must check that the vector \boldsymbol{x} satisfies

$$y = H\mathbf{x}$$

and

$$\exists Q, P$$
 two polynomials : $SQ = PF$ and $\deg Q = w$

where

S is defined by interpolation such that $\forall i, \ S(\gamma_i) = x_i,$ $F := \prod_{i=1}^{m} (X - \gamma_i).$

8/49

Syndrome Decoding in the Head - MPC Protocol

The MPC protocol π checks that x describes a solution of the SD instance (H, y).

	Output of π			
	Accept	Reject		
A good witness	1	0		
Not a good witness	p	1-p		

where

$$p = \underbrace{\frac{m+w-1}{|\mathbb{F}_{\text{points}}|}}_{\text{false positive from Schwartz-Zippel}} + \left(1 - \frac{m+w-1}{|\mathbb{F}_{\text{points}}|}\right) \cdot \underbrace{\frac{1}{|\mathbb{F}_{\text{points}}|}}_{\text{false positive from [BN20]}}$$

Zero-Knowledge Protocol

Soundness error:

$$p + (1-p) \cdot \frac{1}{N}$$

<ロト <回ト < 言ト < 言ト ミ の < C 10 / 49

Soundness error:

$$p + (1-p) \cdot \frac{1}{N}$$

<u>Proof size</u>:

 $\circ~$ Inputs of N-1 parties:

<ロト < 回ト < 目ト < 目ト < 目ト 目 の Q @ 10 / 49

Soundness error:

$$p + (1-p) \cdot \frac{1}{N}$$

<u>Proof size</u>:

◦ Inputs of N − 1 parties:

- Party i < N: a seed of λ bits
- Last party: uncompressed shares $[\![x]\!]_N, [\![Q]\!]_N, [\![P]\!]_N$

Soundness error:

$$p + (1-p) \cdot \frac{1}{N}$$

<u>Proof size</u>:

- $\circ~$ Inputs of N-1 parties:
 - Party i < N: a seed of λ bits
 - Last party: uncompressed shares $[\![x]\!]_N, [\![Q]\!]_N, [\![P]\!]_N$
- Broadcast communication between parties.

Soundness error:

$$p + (1-p) \cdot \frac{1}{N}$$

<u>Proof size</u>:

◦ Inputs of N − 1 parties:

- Party i < N: a seed of λ bits
- Last party: uncompressed shares $[\![x]\!]_N, [\![Q]\!]_N, [\![P]\!]_N$
- Broadcast communication between parties.

Signature: Fiat-Shamir Transform

Syndrome Decoding in the Head - Performances

Scheme Name	sgn	pk	$t_{\sf sgn}$	$t_{\sf verif}$
FJR22 - \mathbb{F}_2 (fast)	15.6 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2 (short)	10.9 KB	$0.09~\mathrm{KB}$	-	-
FJR22 - \mathbb{F}_2 (fast)	17.0 KB	0.09 KB	$13 \mathrm{ms}$	$13 \mathrm{ms}$
FJR22 - \mathbb{F}_2 (short)	11.8 KB	0.09 KB	$64 \mathrm{ms}$	$61 \mathrm{ms}$
FJR22 - \mathbb{F}_{256} (fast)	11.5 KB	0.14 KB	$6 \mathrm{ms}$	$6 \mathrm{ms}$
$FJR22 - \mathbb{F}_{256}$ (short)	$8.26~\mathrm{KB}$	$0.14~\mathrm{KB}$	$30 \mathrm{ms}$	$27 \mathrm{ms}$

Table of Contents

Introduction

- MPC-in-the-Head
- SD in the Head

2 Exploring other problems

- Multivariate Quadratic Problem
- Permuted Kernel Problem
- MinRank & Rank SD
- Summary

MPC protocol to check that $x \cdot y = z$ [BN20]

- Inputs: (x, y, z), plus $(a, c := x \cdot a)$.
 - 1. The parties get a random $\varepsilon \in \mathbb{F}$.
 - 2. The parties locally set $\alpha = \varepsilon \cdot y + a$.
 - 3. The parties broadcast α to obtain α .
 - 4. The parties locally set $v = \alpha \cdot x c \varepsilon \cdot z$.
 - 5. The parties broadcast v to obtain v.
 - 6. The parties output ACCEPT if v = 0, and REJECT otherwise.

Computation:

$$v = \varepsilon \cdot (x \cdot y - z) + (a \cdot x - c)$$

If $x \cdot y \neq x$, then v is zero only with probability $1/|\mathbb{F}|$.

MPC protocol to check that XY = Z

Check that XY = Z, where $X \in \mathbb{F}_q^{m \times p}$, $Y \in \mathbb{F}_q^{p \times n}$, $Z \in \mathbb{F}_q^{m \times n}$.

Inputs: (X, Y, Z), plus $(A, C := X \cdot A)$.

- 1. The parties get a random $\Sigma \in \mathbb{F}_q^{n \times \eta}$.
- 2. The parties locally set $D = Y\Sigma + A$.
- 3. The parties broadcast D to obtain $D \in \mathbb{F}_q^{p \times \eta}$.
- 4. The parties locally set $V = XD C Z\Sigma$.
- 5. The parties broadcast V to obtain $V \in \mathbb{F}_q^{m \times \eta}$.
- 6. The parties output ACCEPT if V = 0, and REJECT otherwise.

If $XY \neq Z$, then v is zero only with probability $1/|\mathbb{F}|^{\eta}$.

Multivariate Quadratic Problem

Multivariate Quadratic Problem

From
$$(A_1, \ldots, A_m, b_1, \ldots, b_m, y_1, \ldots, y_m)$$
, find $x \in \mathbb{F}_q^n$ such that
 $\forall i \leq m, \ y_i = x^T A_i x + b_i^T x.$

The multi-party computation must check that the vector \boldsymbol{x} satisfies

$$y_1 = \mathbf{x}^T A_1 \mathbf{x} + b_1^T \mathbf{x}$$
$$y_2 = \mathbf{x}^T A_2 \mathbf{x} + b_2^T \mathbf{x}$$
$$\vdots$$
$$y_m = \mathbf{x}^T A_m \mathbf{x} + b_m^T \mathbf{x}$$

イロト 不通 ト イヨト イヨト ヨー ろんで

16/49

Multivariate Quadratic Problem

Multivariate Quadratic Problem

From $(A_1, \ldots, A_m, b_1, \ldots, b_m, y_1, \ldots, y_m)$, find $x \in \mathbb{F}^n$ such that $\forall i \leq m, \ y_i = x^T A_i x + b_i^T x.$

The multi-party computation must check that the vector \boldsymbol{x} satisfies

$$\sum_{i=1}^{m} \gamma_i \cdot (y_i - \boldsymbol{x}^T A_i \boldsymbol{x} - b_i^T \boldsymbol{x}) = 0.$$

 $|\mathbb{F}_{EXT}|$

where $\gamma_1, \ldots, \gamma_m \in \mathbb{F}_{\text{EXT}}$ chosen by the verifier. False positive rate:

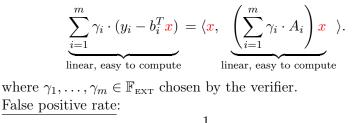
Multivariate Quadratic Problem

Multivariate Quadratic Problem

From $(A_1, \ldots, A_m, b_1, \ldots, b_m, y_1, \ldots, y_m)$, find $x \in \mathbb{F}^n$ such that

$$\forall i \leq m, \ y_i = x^T A_i x + b_i^T x.$$

The multi-party computation must check that the vector \boldsymbol{x} satisfies



 $|\mathbb{F}_{\mathrm{EXT}}|$

イロト 不得 トイヨト イヨト ニヨー

17/49

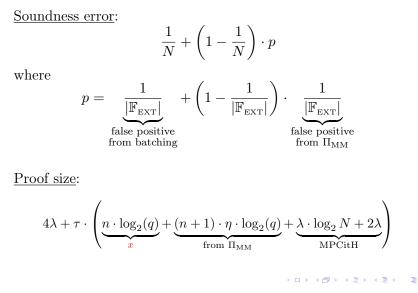
Multivariate Quadratic Problem - MPC Protocol

Inputs: *x*.

- 1. Get random coefficients $\gamma_1, \ldots, \gamma_m$ from \mathbb{F}_{EXT} .
- 2. Compute $\boldsymbol{z} := \sum_{i=1}^{m} \gamma_i \cdot (y_i b_i^T \boldsymbol{x}).$
- 3. Compute $\boldsymbol{w} := (\sum_{i=1}^{m} \gamma_i \cdot A_i) \boldsymbol{x}$.
- 4. Check that $z = \langle x, w \rangle$.

MPC in the Head

Multivariate Quadratic Problem - ZKPoK



18 / 49

Multivariate Quadratic Problem - Performances

Instance Protocol Name	Variant	Parameters		Sig. Size		
	1 IOLOCOI IVallie	vanam	N	M	τ	big. bize
$\begin{array}{c c} q = 4 \\ m = 88 \\ n = 88 \end{array}$ Mes	MudFish	-	4	191	68	14640 B
	Magazzita	Fast	8	187	49	9578 B
	Mesquite	Short	32	389	28	8609 B
	Our scheme	Fast	32	-	40	10764 B
		Short	256	-	25	9064 B
$ \begin{array}{c c} q = 256 \\ m = 40 \\ n = 40 \\ \end{array} $	MudFish	Fast	8	176	51	15 958 B
		Short	16	250	36	13 910 B
	Mesquite	Fast	8	187	49	11 339 B
		Short	32	389	28	$9615~\mathrm{B}$
	Our scheme	Fast	32	-	36	8488 B
		Short	256	-	25	$7114~\mathrm{B}$

Permuted Kernel Problem

Permuted Kernel Problem

From (H, y, v), find a permutation σ such that

$$y = H\sigma(v).$$

The multi-party computation must check that the permutation σ satisfies

$$y = H\boldsymbol{\sigma}(v).$$

Permuted Kernel Problem

Permuted Kernel Problem

From (H, y, v), find a permutation σ such that

$$y = H\sigma(v).$$

The multi-party computation must check that the vector \boldsymbol{x} satisfies

$$y = Hx$$
 such that $\exists \sigma : x = \sigma(v)$.

Permuted Kernel Problem

Permuted Kernel Problem

From (H, y, v), find a permutation σ such that

$$y = H\sigma(v).$$

The multi-party computation must check that the vector \boldsymbol{x} satisfies

$$y = H\mathbf{x}$$

such that

$$\underbrace{(X-x_1)\ldots(X-x_n)}_{P(X)} = \underbrace{(X-v_1)\ldots(X-v_n)}_{Q(X)}.$$

Permuted Kernel Problem - MPC Protocol

Inputs: *x*.

- 1. Check that y = Hx.
- 2. Check that

$$\underbrace{(X-x_1)\ldots(X-x_n)}_{P(X)} \text{ is equal to } \underbrace{(X-v_1)\ldots(X-v_n)}_{Q(X)}.$$

Permuted Kernel Problem - MPC Protocol

Inputs: *x*.

- 1. Check that y = Hx.
- 2. Get a random ξ from \mathbb{F}_{EXT} .
- 2. Check that

$$\underbrace{(\xi - x_1) \dots (\xi - x_n)}_{P(\xi)} \text{ is equal to } \underbrace{(\xi - v_1) \dots (\xi - v_n)}_{Q(\xi)}.$$

Permuted Kernel Problem - Performances

Instance	ance Protocol Name		Parameters			Sig. Size
Instance	1 IOLOCOI Maine	Variant	N	M	au	Sig. Size
	Stern	-	-	-	219	23 848 B
	Véron	-	-	-	219	21 272 B
	SushyFish	Fast	4	191	68	18448 B
$\alpha = 0.07$	SUSHYFISH	Short	128	916	20	$12145~\mathrm{B}$
q = 997 n = 61	FJR21	Fast	8	187	49	15420 B
$\begin{array}{c} n = 01 \\ m = 38 \end{array}$	FJR21	Short	32	389	28	11 947 B
m = 30	BG22	Fast	32	-	42	9896 B
	DG22	Short	256	-	31	8 813 B
	Our scheme	Fast	32	-	41	16373 B
	Our scheme	Short	256	-	24	$12816~\mathrm{B}$

Hard Problems with Rank Constraint

MinRank Problem

From (M_0, M_1, \ldots, M_k) , find $x \in \mathbb{F}_q^k$ such that

$$\operatorname{rank}(M_0 + \sum_{i=1}^k x_i M_i) \le r.$$

Hard Problems with Rank Constraint

MinRank Problem

From (M_0, M_1, \ldots, M_k) , find $x \in \mathbb{F}_q^k$ such that

$$\operatorname{rank}(M_0 + \sum_{i=1}^k x_i M_i) \le r.$$

Rank Syndrome Decoding Problem

From (H, y), find $x \in \mathbb{F}_{q^m}^n$ such that

y = Hx and $\operatorname{rank}(x) \le r$.

・ロ ・ ・ 日 ・ ・ 目 ・ ・ 目 ・ つ へ (~ 23 / 49

MPC protocol (RD)

The multi-party computation must check that a matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r.

MPC protocol (RD)

The multi-party computation must check that a matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r.

Rank Decomposition:

A matrix $M \in \mathbb{F}_q^{n \times m}$ has a rank of at most riff there exists $T \in \mathbb{F}_q^{n \times r}$ and $R \in \mathbb{F}_q^{r \times m}$ such that M = TR.

MPC protocol (RD)

The multi-party computation must check that a matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r.

Rank Decomposition:

A matrix $M \in \mathbb{F}_q^{n \times m}$ has a rank of at most riff there exists $T \in \mathbb{F}_q^{n \times r}$ and $R \in \mathbb{F}_q^{r \times m}$ such that M = TR.

Inputs: M, T, R. 1. Check that M = TR.

MinRank Problem - Performances

Instance	Protocol Name	Variant	Pa	ramet	ers	Sig. Size
Instance	i iotocoi Maine	Variant	N	M	τ	big. bize
	Coull	-	-	-	219	52 430 B
	Cou01	Optimized	-	-	219	28 575 B
	SINY22	-	-	-	128	50640 B
q = 16	5111 1 22	Optimized	-	-	128	28128 B
m = 16	BESV22	-	-	256	128	26405 B
n = 16	BG22	Fast	8	187	49	13644 B
k = 142	DG22	Short	32	389	28	10 937 B
r = 4	ARZV22	Fast	32	-	28	10116 B
	71102 V 22	Short	256	-	18	7 422 B
	Our scheme (RD)	Fast	32	-	- 33	9288 B
	Our scheme (RD)	Short	256	-	19	7 122 B

Rank Syndrome Decoding Problem - Performances

Instance	Protocol Name	Variant	Parameters			Sig. Size
Instance	1 Iotocor Maine	variant	N	M	au	Dig. Dize
	Stern	-	-	-	219	31 358 B
a-2	Véron	-	-	-	219	27 115 B
$\begin{array}{c} q = 2\\ m = 31 \end{array}$	FJR21	Fast	8	187	49	19328 B
n = 31 n = 30		Short	32	389	28	14 181 B
n = 30 k = 15	BG22	Fast	8	187	49	$15982~\mathrm{B}$
$\kappa = 10$ r = 9	DG22	Short	32	389	28	12274 B
7 = 9	Our scheme (RD)	Fast	32	-	33	11000 B
	Our scheme (RD)	Short	256	-	21	8543 B
Ideal RSL	DCDD	Fast	32	-	27	9392 B
Ideal LOL	BG22	Short	256	-	17	$6754~\mathrm{B}$

Cost Decomposition

Component	MinRank	Rank SD
Seeds	2432~(35%)	2688 (31%)
Secret x	1349~(19%)	1221 (14%)
Decomposition T, R	$1216\ (17\%)$	1441 (17%)
$\Pi_{\rm MM}$	1453~(20%)	2457 (29%)
Commitments	672~(9%)	736~(9%)
Total	7122 B	8543 B

<ロ> <四> <四> <四> <四> <四> <四> <四</p>

28/49

MPC protocol (LP)

The multi-party computation must check that a matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r. Rewrite M as $(x_1, \ldots, x_n) \in \mathbb{F}_{q^m}^n$.

The multi-party computation must check that a matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r. Rewrite M as $(x_1, \ldots, x_n) \in \mathbb{F}_{q^m}^n$.

A matrix $M \in \mathbb{F}_q^{n \times m}$ has a rank of at most r \Leftrightarrow there exists a linear subspace U of \mathbb{F}_{q^m} of dimension rsuch that $\{x_1, \ldots, x_n\} \subset U$.

The multi-party computation must check that a matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r. Rewrite M as $(x_1, \ldots, x_n) \in \mathbb{F}_{q^m}^n$.

A matrix $M \in \mathbb{F}_q^{n \times m}$ has a rank of at most r \Leftrightarrow there exists a linear subspace U of \mathbb{F}_{q^m} of dimension rsuch that $\{x_1, \ldots, x_n\} \subset U$.

Let us define

$$L_{\boldsymbol{U}} := \prod_{\boldsymbol{u} \in \boldsymbol{U}} (X - \boldsymbol{u}) = X^{q^r} + \sum_{i=0}^{r-1} \beta_i X^{q^i}$$

MPC + Frobenius endomorphism

Let have

$$v = [v]_1 + [v]_2 + \ldots + [v]_N.$$

We get

$$v^{q} = (\llbracket v \rrbracket_{1} + \llbracket v \rrbracket_{2} + \ldots + \llbracket v \rrbracket_{N})^{q} = \llbracket v \rrbracket_{1}^{q} + \llbracket v \rrbracket_{2}^{q} + \ldots + \llbracket v \rrbracket_{N}^{q}.$$

Computing $\llbracket v^q \rrbracket$ from $\llbracket v \rrbracket$ is <u>free</u>.

The multi-party computation must check that a matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r. Rewrite M as $(x_1, \ldots, x_n) \in \mathbb{F}_{q^m}^n$.

A matrix $M \in \mathbb{F}_q^{n \times m}$ has a rank of at most r \Leftrightarrow there exists a linear subspace U of \mathbb{F}_{q^m} of dimension rsuch that $\{x_1, \dots, x_n\} \subset U$. \Rightarrow there exists a monic q-polynomial L_U of degree q^r such that $\overline{x_1, \dots, x_n}$ are roots of L_U .

The multi-party computation must check that a matrix $M \in \mathbb{F}_q^{m \times n}$ has a rank of at most r. Rewrite M as $(x_1, \ldots, x_n) \in \mathbb{F}_{q^m}^n$.

A matrix $M \in \mathbb{F}_q^{n \times m}$ has a rank of at most r \Leftrightarrow there exists a linear subspace U of \mathbb{F}_{q^m} of dimension rsuch that $\{x_1, \dots, x_n\} \subset U$. \Leftrightarrow there exists a monic q-polynomial L_U of degree q^r such that $\overline{x_1, \dots, x_n}$ are roots of L_U .

We have

$$L_{\boldsymbol{U}} := \prod_{\boldsymbol{u} \in \boldsymbol{U}} (X - \boldsymbol{u}) = X^{q^r} + \sum_{i=0}^{r-1} \beta_i X^{q^i}$$

We will check that

$$L_{\boldsymbol{U}}(\boldsymbol{x}_1) = \ldots = L_{\boldsymbol{U}}(\boldsymbol{x}_n) = 0.$$

MPC protocol (LP)

We have

$$L_{\boldsymbol{U}} := \prod_{\boldsymbol{u} \in \boldsymbol{U}} (X - \boldsymbol{u}) = X^{q^r} + \sum_{i=0}^{r-1} \beta_i X^{q^i}$$

We will check that

$$0 = \sum_{j=1}^{n} \gamma_j \cdot L_{\boldsymbol{U}}(\boldsymbol{x}_j).$$

4回 > 4日 > 4目 > 4目 > 目 のへで 31/49

We have

$$L_{\boldsymbol{U}} := \prod_{\boldsymbol{u} \in \boldsymbol{U}} (X - \boldsymbol{u}) = X^{q^r} + \sum_{i=0}^{r-1} \beta_i X^{q^i}$$

We will check that

<ロト < 部 > < 言 > < 言 > こ > つ < で 31 / 49

Inputs: \boldsymbol{x} and $L_{\boldsymbol{U}} := \prod_{\boldsymbol{u} \in \boldsymbol{U}} (X - \boldsymbol{u}) = X^{q^r} + \sum_{i=0}^{r-1} \beta_i X^{q^i}.$

- 1. Get random coefficients $\gamma_1, \ldots, \gamma_n$ from \mathbb{F}_{EXT} .
- 2. Compute $\boldsymbol{z} = -\sum_{j=1}^{n} \gamma_j \cdot \boldsymbol{x}_j^{q^r}$.
- 3. Compute $\boldsymbol{w}_i = \sum_{j=1}^n \gamma_j \cdot \boldsymbol{x}_j^{q^i}$ for $i \in \{0, \dots, r-1\}$.
- 4. Check that $z = \langle \beta, w \rangle$.

MinRank Problem

Instanco	nstance Protocol Name		Pa	ramet	ers	Sig. Size
Instance i rotocor Name		Variant	N	M	au	Sig. Size
	Cou01	-	-	-	219	52430 B
	Cou01	Optimized	-	-	219	$28575~\mathrm{B}$
	SINY22	-	-	-	128	50640 B
		Optimized	-	-	128	$28128~\mathrm{B}$
q = 16	BESV22	-	-	256	128	26 405 B
m = 16	BG22	Fast	8	187	49	13644 B
n = 16	DG22	Short	32	389	28	$10937~\mathrm{B}$
k = 142	ARZV22	Fast	32	-	28	10116 B
r = 4	ANZ V 22	Short	256	-	18	$7422~\mathrm{B}$
	Our scheme (RD)	Fast	32	-	33	9288 B
	Our scheme (RD)	Short	256	-	19	$7122~\mathrm{B}$
	Our ashana (LD)	Fast	32	-	28	7204 B
	Our scheme (LP)	Short	256	-	18	5518 B

Rank Syndrome Decoding Problem

Instance	Protocol Name	Variant	Parameters			Sig. Size
Instance	1 IOUOCOI IVallie	variant	N	M	τ	Sig. Size
	Stern	-	-	-	219	31358 B
	Véron	-	-	-	219	27 115 B
q = 2	FJR21	Fast	8	187	49	19328 B
$\begin{array}{c} q-2\\ m=31 \end{array}$	F J1(21	Short	32	389	28	14181 B
n = 31 n = 30	BG22	Fast	8	187	49	15982 B
n = 30 k = 15	DG22	Short	32	389	28	$12274~\mathrm{B}$
$\kappa = 10$ r = 9	Our scheme (RD)	Fast	32	-	33	11000 B
7 - 9	Our scheme (RD)	Short	256	-	21	$8543~\mathrm{B}$
	Our scheme (LP)	Fast	32	-	30	7376 B
	Our scheme (L1)	Short	256	-	20	5899 B
Ideal RSL	BG22	Fast	32	-	27	9392 B
Ideal hol	BG22	Short	256	-	17	$6754~\mathrm{B}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● のへで

34 / 49

Cost Decomposition

For the Rank Syndrome Decoding Problem:

Component	RD	LP	
Seeds	2688 (31%)	2560 (43%)	
Secret x	1221 (14%)	1162 (20%)	
Auxiliary	1441 (17%)	697~(12%)	
$\Pi_{\rm MM}$	2457~(29%)	775 (13%)	
Commitments	736 (9%)	704 (12%)	
Total	8543 B	5899 B	

where the auxiliary values are

- the rank decomposition ${\cal T}, {\cal R}$ in the first case, and
- the q-polynomial L_U in the second case.

Summary

Hard Problem	Best scheme	Achieved sizes	
Multivariate Quadratic	Over \mathbb{F}_4 , [Wan22]	8.4 - 9.4 KB	
	Over \mathbb{F}_{256} , this work	$6.9-8.3~\mathrm{KB}$	
Min Rank	This work	5.4 - 7.0 KB	
Permuted Kernel	[BG22]	8.6 - 9.7 KB	
Subset Sum	[FMRV22]	21.1 - 33.2 KB	
SD (Hamming)	[FJR22]	$(\mathbb{F}_2) \ 10.9 - 15.6 \ \text{KB}$	
SD (Humming)	[1'51(22]	(\mathbb{F}_{256}) 8.3 – 11.5 KB	
SD (Rank)	This work	$5.8-7.2~\mathrm{KB}$	

Summary

Hard Problem	Best scheme	Achieved sizes	
Multivariate Quadratic	Over \mathbb{F}_4 , [Wan22]	8.4 - 9.4 KB	
	Over \mathbb{F}_{256} , this work	$6.9-8.3~\mathrm{KB}$	
Min Rank	This work	5.4 - 7.0 KB	
Permuted Kernel	[BG22]	8.6 - 9.7 KB	
Subset Sum	[FMRV22]	21.1 - 33.2 KB	
SD (Hamming)	[FJR22]	$(\mathbb{F}_2) \ 10.9 - 15.6 \ \text{KB}$	
SD (manining)	[1.01(22]	(\mathbb{F}_{256}) 8.3 – 11.5 KB	
SD (Rank)	This work	5.8-7.2 KB	

Future Work.

- \mathbb{I} Implement some of the schemes proposed in this work.
- \mathbb{I} Search parameter sets that provide better performances.

Table of Contents

Introduction

- MPC-in-the-Head
- SD in the Head

2 Exploring other problems

- Multivariate Quadratic Problem
- Permuted Kernel Problem
- MinRank & Rank SD
- Summary

MPC-in-the-Head Paradigm

MPC-in-the-Head Paradigm

- Generic technique to build *zero-knowledge protocols* using *multi-party computation*.
- $\circ\,$ Introduced in 2007 by:

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation. STOC 2007.

MPC-in-the-Head Paradigm

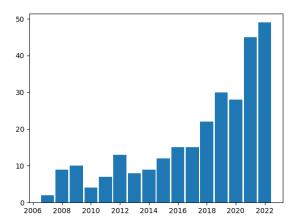


Figure: Number of citations of [IKOS07] (source: Semantic Scholar)

MPC-in-the-Head Paradigm

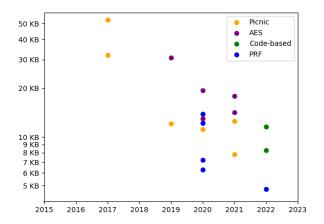


Figure: Evolution of the signature sizes (figure **not up-to-date**)

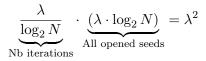
イロト イポト イヨト イヨト

MPC-in-the-Head History

2007. MPCitH has been introduced [IKOS07].
2016. First practical MPCitH-based scheme [GMO16].
2018. The current form of the MPCitH schemes [KKW18].
End 2021. MPCitH + Hard Problems (SD, MQ, ...)

Limitations of the MPCitH paradigm (size)

- \mathbb{R} N-additive sharing + MPC protocol
- ${\tt reveal} \ (N-1)$ parties' inputs: a seed of λ bits per party
- Solution: $\log_2 N$ seeds, soundess error of 1/N.
- Incompressible cost: Incompressible cost:



Numerical Application:

128-bit	2 KB
192-bit	$4.5~\mathrm{KB}$
256-bit	8 KB

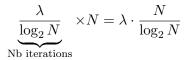
イロト イロト イヨト イヨト 二日

Limitations of the MPCitH paradigm (size)

- For 128-bit security and using 256 parties:
 - IS Well-known symmetric primitives: ≈ 10 KB (AES)
 - IS MPC-friendly primitives: ≈ 5 KB (Rain, ...)
 - IS Well-known hard problems: ≤ 6 KB (MinRank, RSD)

2023. Stabilization of the MPCitH?My quess: 4 - 5 KB when using 256 parties.

- \mathbb{R} N-additive sharing + MPC protocol
- \blacksquare The Signer emulates N parties by iteration



IS The <u>Verifier</u> emulates N - 1 parties by iteration

$$\underbrace{\frac{\lambda}{\log_2 N}}_{\text{Nb iterations}} \times (N-1) = \lambda \cdot \frac{N-1}{\log_2 N}$$

For 256 parties:

	Signer	Verifier	
128-bit	4096	4080	\rightarrow 4-30 ms
192-bit	6144	6120	-
256-bit	8192	8160	-

For 256 parties:

	Signer	Verifier	
128-bit	4096	4080	\rightarrow 4-30 ms
192-bit	6144	6120	-
256-bit	8192	8160	-

Signing time \approx Verification time

For 256 parties:

	Signer	Verifier			
128-bit	4096	4080	$\rightarrow 430 \text{ ms}$		
192-bit	6144	6120	-		
256-bit	8192	8160	#Matrix Mult.:		
			- Stern94: 219		
			- SDitH (fast): 864		
			- SDitH (short): 4352		

Signing time \approx Verification time

Some challenges for the MPCitH paradigm

MPCitH-based Signatures:

- **r**^𝔅</sup> Fast verification timing (≤ 1 ms)</sup>
- **r** Fast signing timing (≤ 1 ms)
- \blacksquare Exploit problem structures
- \blacksquare Decrease the communication cost

Some challenges for the MPCitH paradigm

MPCitH-based Signatures:

- **r**^𝔅</sup> Fast verification timing (≤ 1 ms)</sup>
- **r** Fast signing timing (≤ 1 ms)
- \blacksquare Exploit problem structures
- \blacksquare Decrease the communication cost

MPCitH-based Proof Systems:

- **r**^𝔅</sup> Fast verification timing (≤ 1 ms)</sup>
- **F**ast proving timing $(\leq 1 \text{ ms})$
- \blacksquare Achieve sublinear communication

Many directions to optimize

- **™** The proved statement,
- r The used MPC protocol,
- \blacksquare The used sharing scheme.

Changing the sharing scheme...

[FMRV22] Thibauld Feneuil, Jules Maire, Matthieu Rivain and Damien Vergnaud. Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection. Asiacrypt 2022.

 \square Decrease cost when using large modulus.

[FR22] Thibauld Feneuil and Matthieu Rivain. Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head. Eprint 2022/1407.

- \mathbb{R} New trade-offs.
- Fast verification timing.

Scheme Name	sgn	pk	t_{sgn}	$t_{\sf verif}$
FJR22 - \mathbb{F}_{256} (fast)	11.5 KB	0.14 KB	6 ms	6 ms
FJR22 - \mathbb{F}_{256} (short)	$8.26~\mathrm{KB}$	0.14 KB	30 ms	$27 \mathrm{ms}$
FJR22 - \mathbb{F}_{256} (SSS)	9.97 KB	0.14 KB	2.2 ms	$0.38 \mathrm{ms}$

Changing the sharing scheme...

[FMRV22] Thibauld Feneuil, Jules Maire, Matthie Vergnaud. Zero-Knowledge Protocols for the Subsy MPC-in-the-Head with Rejection. Asiacrypt 2022.

 \square Decrease cost when using large mo

- Stern94: 219
- SDitH (fast): 864
- SDitH (short): 4352
- SDitH (SSS): 24

[FR22] Thibauld Feneuil and Matthieu Rivain. Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head. Eprint 2022/1407.

- \mathbb{R} New trade-offs.
- Fast verification timing.

Scheme Name	sgn	pk	t_{sgn}	$t_{\sf verif}$
FJR22 - \mathbb{F}_{256} (fast)	$11.5~\mathrm{KB}$	0.14 KB	6 ms	6 ms
$FJR22 - \mathbb{F}_{256}$ (short)	$8.26~\mathrm{KB}$	0.14 KB	30 ms	27 ms
FJR22 - \mathbb{F}_{256} (SSS)	9.97 KB	0.14 KB	2.2 ms	$0.38 \mathrm{ms}$

Conclusion

2007. MPCitH has been introduced [IKOS07].
2016. First practical MPCitH-based scheme [GMO16].
2018. The current form of the MPCitH schemes [KKW18].
End 2021. MPCitH + Hard Problems (SD, MQ, ...)

My guess:

2023-...

- Optimizations of the current MPCitH form,
- Development of new MPCitH techniques,
- Advanced functionalities.