Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs

Thibauld Feneuil^{1,2} Antoine Joux³ Matthieu Rivain¹

- 1. CryptoExperts, Paris, France
- Sorbonne Université, CNRS, INRIA, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Ouragan, Paris, France
- 3. CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

ENSL/CWI/RHUL Joint Seminar. November 14, 2022.

Table of Contents

- Introduction
- 2 Syndrome Decoding in the Head
 - Rephrase the constraint
 - MPC Protocol
 - Zero-Knowledge Proof
 - Comparison
- 3 Signature Scheme

Zero-Knowledge Proofs for Syndrome Decoding

Syndrome Decoding Problem

From (H, y), find $x \in \mathbb{F}^m$ such that

$$y = Hx$$
 and $\operatorname{wt}_H(x) \le w$.

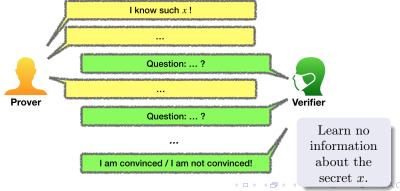
 $\operatorname{wt}_H(x) := \operatorname{nb} \ \operatorname{of} \ \operatorname{non-zero} \ \operatorname{coordinates} \ \operatorname{of} \ x$

Zero-Knowledge Proofs for Syndrome Decoding

Syndrome Decoding Problem

From (H, y), find $x \in \mathbb{F}^m$ such that

$$y = Hx$$
 and $\operatorname{wt}_H(x) \leq w$.



MPC-in-the-Head Paradigm

- Generic technique to build zero-knowledge protocols using multi-party computation.
- Introduced in 2007 by:

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation. STOC 2007.

• Popularized in 2016 by *Picnic*, a former candidate of the NIST Post-Quantum Cryptography Standardization.

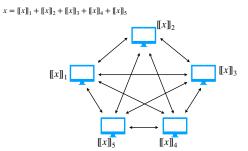
Sharing of the secret

The secret x satisfies

$$y = Hx$$
 and $\operatorname{wt}_H(x) \leq w$.

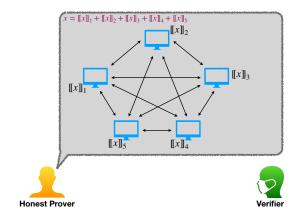
We share it in N parts:

$$x = [x]_1 + [x]_2 + \ldots + [x]_{N-1} + [x]_N.$$

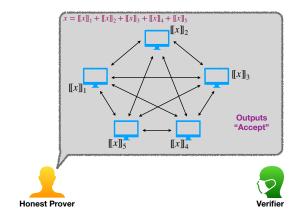


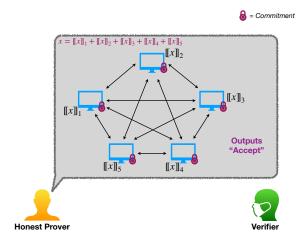
The multi-party computation outputs

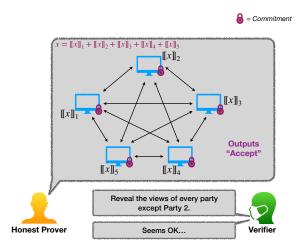
- Accept if x is a syndrome decoding solution,
- Reject otherwise.

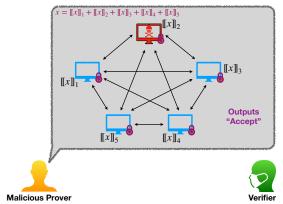


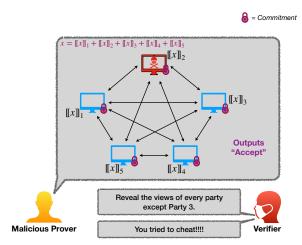
00000

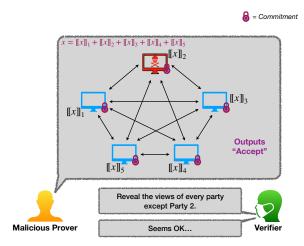












Soundness error:

 $\frac{1}{N}$

<u>Proof size</u>: depends on the multi-party computation protocol

Two possible trade-offs:

• Repeat the protocol many times:

fast proofs, but large proofs

 \circ Take a larger N:

short proofs, but slow proofs

Table of Contents

- 1 Introduction
- 2 Syndrome Decoding in the Head
 - Rephrase the constraint
 - MPC Protocol
 - Zero-Knowledge Proof
 - Comparison
- 3 Signature Scheme

Rephrase the constraint

The multi-party computation must check that the vector \boldsymbol{x} satisfies

$$\underbrace{y = Hx}_{\text{linear, easy to check}}$$

and

$$\underbrace{\operatorname{wt}_{H}(x) \leq w}_{\text{non-linear, hard to check}}$$

The multi-party computation must check that the vector x satisfies

$$y = H_x$$

and

$$\exists Q, P \text{ two polynomials} : SQ = PF \text{ and } \deg Q = w$$

where

S is defined by interpolation such that $\forall i, \ S(\gamma_i) = x_i$,

$$F := \prod_{i=1}^{m} (X - \gamma_i).$$

Rephrase the constraint

Let us assume that there exists $Q, P \in \mathbb{F}_{\text{poly}}[X]$ s.t.

$$S \cdot Q = P \cdot F$$
 and $\deg Q = w$

where

S is built by interpolation such that $\forall i, \ S(\gamma_i) = x_i$,

$$F := \prod_{i=1}^{m} (X - \gamma_i),$$

then, the verifier deduces that

$$\forall i \leq m, \ (\mathbf{Q} \cdot \mathbf{S})(\gamma_i) = \mathbf{P}(\gamma_i) \cdot F(\gamma_i) = 0$$

$$\Rightarrow \forall i \leq m, \ \mathbf{Q}(\gamma_i) = 0 \text{ or } \mathbf{S}(\gamma_i) = \mathbf{x}_i = 0$$

Let us assume that there exists $Q, P \in \mathbb{F}_{\text{poly}}[X]$ s.t.

$$S \cdot Q = P \cdot F$$
 and $\deg Q = w$

where

i.e.

S is built by interpolation such that $\forall i, \ S(\gamma_i) = x_i$,

$$F := \prod_{i=1}^{m} (X - \gamma_i),$$

then, the verifier deduces that

$$\forall i \leq m, \ (\mathbf{Q} \cdot \mathbf{S})(\gamma_i) = \mathbf{P}(\gamma_i) \cdot F(\gamma_i) = 0$$

$$\Rightarrow \ \forall i \leq m, \ \mathbf{Q}(\gamma_i) = 0 \ \text{or} \ \mathbf{S}(\gamma_i) = \mathbf{x}_i = 0$$

$$\operatorname{wt}_{H}(\mathbf{x}) := \#\{i : \mathbf{x}_{i} \neq 0\} \leq w$$

Rephrase the constraint

Such polynomial Q can be built as

$$Q := Q' \cdot \prod_{i:x_i \neq 0} (X - \gamma_i)$$

The non-zero positions of x are encoding as roots.

And
$$P := \frac{S \cdot Q}{F}$$
 since F divides $S \cdot Q$.

$$(\forall i, \mathbf{S}(\gamma_i) = \mathbf{x}_i)$$

Guidelines for the MPC Protocol

We want to build a MPC protocol which checks if some vector is a syndrome decoding solution.

SD in the Head

Let us assume
$$H = (H'|I)$$
. We split x as $\begin{pmatrix} x_A \\ x_B \end{pmatrix}$. We have $y = Hx$, so

$$x_B = y - H'x_A.$$

Guidelines for the MPC Protocol

We want to build a MPC protocol which checks if some vector is a syndrome decoding solution.

Let us assume
$$H = (H'|I)$$
. We split x as $\begin{pmatrix} x_A \\ x_B \end{pmatrix}$. We have $y = Hx$, so

$$x_B = y - H'x_A.$$

Inputs of the MPC protocol: x_A, Q, P . Aim of the MPC protocol:

Check that x_A corresponds to a syndrome decoding solution.

Inputs: x_A , Q, P.

1. Build
$$x_B := y - H'x_A$$
 and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.

We have

$$y = H\mathbf{x}$$
.

Guidelines for the MPC Protocol

Inputs: x_A , Q, P.

- 1. Build $x_B := y H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.
- 2. Build the polynomial S by interpolation such that

$$\forall i \in \{1, \ldots, m\}, S(\gamma_i) = x_i$$
.

Interpolation Formula:

$$S(X) = \sum_{i} x_{i} \cdot \prod_{\ell \neq i} \frac{X - \gamma_{\ell}}{\gamma_{i} - \gamma_{\ell}}.$$

Inputs: x_A , Q, P.

- 1. Build $x_B := y H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.
- 2. Build the polynomial S by interpolation such that

$$\forall i \in \{1,\ldots,m\}, \underline{S}(\gamma_i) = \underline{x_i}.$$

3. Check that $S \cdot Q = P \cdot F$.

Guidelines for the MPC Protocol

Inputs: x_A , Q, P.

- 1. Build $x_B := y H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.
- 2. Build the polynomial S by interpolation such that

$$\forall i \in \{1,\ldots,m\}, \underline{S}(\gamma_i) = \underline{x_i}.$$

- 3. Get a random point r from \mathbb{F}_{points} (field extension of \mathbb{F}_{poly}).
- 4. Compute S(r), Q(r) and P(r).
- 5. Using [BN20], check that $S(r) \cdot Q(r) = P(r) \cdot F(r)$.

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. PKC 2020.

MPC Protocol

Inputs of the party \mathcal{P}_i : $[x_A]_i$, $[Q]_i$ and $[P]_i$.

- 1. Compute $\llbracket x_B \rrbracket := y H' \llbracket x_A \rrbracket$ and deduce $\llbracket x \rrbracket := \begin{pmatrix} \llbracket x_A \rrbracket \\ \llbracket x_B \rrbracket \end{pmatrix}$.
- 2. Compute [S] from [x] thanks to

$$[S(X)] = \sum_{i} [x_i] \cdot \prod_{\ell \neq i} \frac{X - \gamma_{\ell}}{\gamma_i - \gamma_{\ell}}.$$

- 3. Get a random point r from \mathbb{F}_{points} (field extension of \mathbb{F}_{poly}).
- 4. Compute

5. Using [BN20], check that $S(r) \cdot Q(r) = P(r) \cdot F(r)$.

Analysis

Even if x_A does not describe a SD solution (implying that $S \cdot Q \neq P \cdot F$), the MPC protocol can output ACCEPT if

Case 1:

$$S(r) \cdot Q(r) = P(r) \cdot F(r)$$

which occurs with probability (Schwartz-Zippel Lemma)

$$\Pr_{\substack{r \overset{\$}{\leftarrow} \mathbb{F}_{\text{points}}}} \left[\underline{S}(r) \cdot \underline{Q}(r) = \underline{P}(r) \cdot F(r) \right] \le \frac{m + w - 1}{\left| \mathbb{F}_{\text{points}} \right|}$$

Analysis

Even if x_A does not describe a SD solution (implying that $S \cdot Q \neq P \cdot F$), the MPC protocol can output ACCEPT if

Case 1:

$$S(r) \cdot Q(r) = P(r) \cdot F(r)$$

which occurs with probability (Schwartz-Zippel Lemma)

$$\Pr_{r \overset{\$}{\leftarrow} \mathbb{F}_{\text{points}}} \left[\underline{S}(r) \cdot \underline{Q}(r) = \underline{P}(r) \cdot F(r) \right] \leq \frac{m + w - 1}{|\mathbb{F}_{\text{points}}|}$$

 ${\bf Case~2} : {\bf the~[BN20]~protocol~fails,~which~occurs~with~probability} \\$

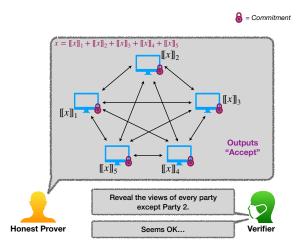
$$\frac{1}{|\mathbb{F}_{\text{points}}|}$$

The MPC protocol π checks that (x_A, Q, P) describes a solution of the SD instance (H, y).

	Output of π	
	Accept	Reject
A good witness	1	0
Not a good witness	p	1-p

where

$$p = \underbrace{\frac{m+w-1}{|\mathbb{F}_{\text{points}}|}}_{\text{false positive from Schwartz-Zippel}} + \left(1 - \frac{m+w-1}{|\mathbb{F}_{\text{points}}|}\right) \cdot \underbrace{\frac{1}{|\mathbb{F}_{\text{points}}|}}_{\text{false positive from [BN20]}}$$



$\underline{\text{Prover }\mathcal{P}}$		Verifier \mathcal{V}
H, y, x such that		H, y
$y = Hx$ and $\operatorname{wt}_H(x) \le w$		
Prepare Q, P .		
$Com_i \leftarrow Com(inputs of \mathcal{P}_i)$		
	$\xrightarrow{\operatorname{Com}_1,,\operatorname{Com}_N}$	$r \in \mathbb{F}_{ ext{noints}}$
Run the MPC protocol π	r	, C = points
for each party.	,	
lor each party.	broadcast messages	$i^* \stackrel{\$}{\leftarrow} \{1, \dots, N\}$
		$i^* \leftarrow \{1, \dots, N\}$
	<	
	$\xrightarrow{\text{all } V_i \text{ for } i \neq i^*}$	
		Check that the views are consistent
		Check that the MPC output is ACCEPT

Zero-Knowledge Protocol

Soundness error:

$$p + (1 - p) \cdot \frac{1}{N}$$

Zero-Knowledge Protocol

Soundness error:

$$p + (1 - p) \cdot \frac{1}{N}$$

Proof size:

 \circ Inputs of N-1 parties:

Soundness error:

$$p + (1 - p) \cdot \frac{1}{N}$$

Proof size:

- \circ Inputs of N-1 parties:
 - Party i < N: a seed of λ bits
 - Last party:

$$\underbrace{k \cdot \log_2 |\mathbb{F}_{\mathrm{SD}}|}_{\llbracket x_A \rrbracket_N} + \underbrace{2w \cdot \log_2 |\mathbb{F}_{\mathrm{poly}}|}_{\llbracket Q \rrbracket_N, \llbracket P \rrbracket_N} + \underbrace{\lambda}_{\llbracket a \rrbracket_N, \llbracket b \rrbracket_N} + \underbrace{\log_2 |\mathbb{F}_{\mathrm{points}}|}_{\llbracket c \rrbracket_N}$$

Zero-Knowledge Protocol

Soundness error:

$$p + (1 - p) \cdot \frac{1}{N}$$

Proof size:

- \circ Inputs of N-1 parties:
 - Party i < N: a seed of λ bits
 - Last party:

$$\underbrace{k \cdot \log_2 |\mathbb{F}_{\mathrm{SD}}|}_{\llbracket x_A \rrbracket_N} + \underbrace{2w \cdot \log_2 |\mathbb{F}_{\mathrm{poly}}|}_{\llbracket Q \rrbracket_N, \llbracket P \rrbracket_N} + \underbrace{\lambda}_{\llbracket a \rrbracket_N, \llbracket b \rrbracket_N} + \underbrace{\log_2 |\mathbb{F}_{\mathrm{points}}|}_{\llbracket c \rrbracket_N}$$

- \circ Communication between parties: 2 elements of \mathbb{F}_{points} .
- \circ 2 hash digests (2 \times 2 λ bits),
- \circ Some commitment randomness + COM_{i*}

Only for unstructured syndrome decoding problems.

Protocol	Year	Assumption	Soundness err.
Stern's	1993	SD	2/3
Véron's	1997	SD	2/3
CVE's	2010	SD on \mathbb{F}_q	$\approx 1/2$

 $Only\ for\ unstructured\ syndrome\ decoding\ problems.$

Protocol	Year	Assumption	Soundness err.
Stern's	1993	SD	2/3
Véron's	1997	SD	2/3
CVE's	2010	SD on \mathbb{F}_q	$\approx 1/2$
GPS's	2021	SD on \mathbb{F}_q	$\approx 1/N$

[GPS21] Shay Gueron, Edoardo Persichetti, and Paolo Santini. Designing a Practical Code-based Signature Scheme from Zero-Knowledge Proofs with Trusted Setup. Cryptography 2022.

Only for unstructured syndrome decoding problems.

Protocol	Year	Assumption	Soundness err.
Stern's	1993	SD	2/3
Véron's	1997	SD	2/3
CVE's	2010	SD on \mathbb{F}_q	$\approx 1/2$
GPS's	2021	SD on \mathbb{F}_q	$\approx 1/N$
FJR21's	2021	SD	$\approx 1/N$

$$\sigma = \sigma_N \circ \sigma_{N-1} \circ \ldots \circ \sigma_3 \circ \sigma_2 \circ \sigma_1$$

[FJR21] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared Permutation for Syndrome Decoding: New Zero-Knowledge Protocol and Code-Based Signature. Designs, Codes and Cryptography, 2022.

 $Only\ for\ unstructured\ syndrome\ decoding\ problems.$

Protocol	Year	Assumption	Soundness err.
Stern's	1993	SD	2/3
Véron's	1997	SD	2/3
CVE's	2010	SD on \mathbb{F}_q	$\approx 1/2$
GPS's	2021	SD on \mathbb{F}_q	$\approx 1/N$
FJR21's	2021	SD	$\approx 1/N$
BGKM's	2022	SD	$\approx 1/N$

[BGKM22] Loïc Bidoux, Philippe Gaborit, Mukul Kulkarni, Victor Mateu. Code-based Signatures from New Proofs of Knowledge for the Syndrome Decoding Problem. arXiv 2110.05005.

Only for unstructured syndrome decoding problems.

Protocol	Year	Assumption	Soundness err.
Stern's	1993	SD	2/3
Véron's	1997	SD	2/3
CVE's	2010	SD on \mathbb{F}_q	$\approx 1/2$
GPS's	2021	SD on \mathbb{F}_q	$\approx 1/N$
FJR21's	2021	SD	$\approx 1/N$
BGKM's	2022	SD	$\approx 1/N$
FJR22's	2022	SD	$\approx 1/N$

Prove
$$\operatorname{wt}_H(x) \le w$$
, not $\operatorname{wt}_H(x) = w$.

$$Q(X) = \prod_{i:x_i \neq 0} (X - \gamma_i), \quad \deg Q = w$$

[FJR22] Thibauld Feneuil, Antoine Joux, Matthieu Rivain. Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs. Crypto 2022.

 $Only\ for\ unstructured\ syndrome\ decoding\ problems.$

Protocol	Year	Assumption	Soundness err.
Stern's	1993	SD	2/3
Véron's	1997	SD	2/3
CVE's	2010	SD on \mathbb{F}_q	$\approx 1/2$
GPS's	2021	SD on \mathbb{F}_q	$\approx 1/N$
FJR21's	2021	SD	$\approx 1/N$
BGKM's	2022	SD	$\approx 1/N$
FJR22's	2022	SD	$\approx 1/N$
BG's	2022	SD	$\approx 1/N$

[BG22] Loïc Bidoux, Philippe Gaborit. Compact Post-Quantum Signatures from Proofs of Knowledge leveraging Structure for the PKP, SD and RSD Problems. arXiv 2204.02915.

Comparison Zero-Knowledge Protocol for SD

Name Protocol	Year	Instance 1	Instance 2
Stern	1993	37.4 KB	46.1 KB
Véron	1997	$31.7~\mathrm{KB}$	38.7 KB
CVE10	2010	-	37.4 KB
GPS21 (short)	2021	-	15.2 KB
GPS21 (fast)	2021	-	19.9 KB
FJR21 (short)	2021	12.9 KB	15.6 KB
FJR21 (fast)	2021	20.0 KB	24.7 KB
FJR22 (short)	2022	9.7 KB	6.9 KB
FJR22 (fast)	2022	14.4 KB	9.7 KB
BG22 (short)	2022	10.7 KB	12.8 KB
BG22 (fast)	2022	16.2 KB	19.8 KB
Fiel	$\overline{\mathrm{d}}$ size q	2	256
Code le	$\operatorname{ngth} m$	1280	208
Code dimension k		m/2	m/2
Hamming w	eight w	132	78
Security	level λ	128	128

Prove only an inequality

Table of Contents

- 1 Introduction
- 2 Syndrome Decoding in the Head
 - Rephrase the constraint
 - MPC Protocol
 - Zero-Knowledge Proof
 - Comparison
- 3 Signature Scheme

Fiat-Shamir Transform

Signature algorithm:

Inputs:

- x such that y = Hx and $\operatorname{wt}_H(x) \leq w$
- the message mess to sign
- 1. Prepare the witness, *i.e.* the polynomials P and Q.
- 2. Commit to party's inputs in distinct commitments COM_1, \ldots, COM_N .
- 3. $r = \operatorname{Hash}(\mathsf{mess}, \mathsf{salt}, \mathsf{COM}_1, \dots, \mathsf{COM}_N)$.
- 4. Run the MPC protocol π for each party.
- 5. $i^* = \text{Hash}(\mathsf{mess}, \mathsf{salt}, r, \text{broadcast messages}).$
- 6. Build the signature with the views of all the parties except the party i^* .

Security of the signature

5-round Identification Scheme \Rightarrow Signature

Attack of [KZ20]:

$$cost_{forge} := \min_{\tau_1, \tau_2 : \tau_1 + \tau_2 = \tau} \left\{ \frac{1}{\sum_{i=\tau_1}^{\tau} {\tau \choose i} p^i (1-p)^{\tau-i}} + N^{\tau_2} \right\}$$

[KZ20] Daniel Kales and Greg Zaverucha. An attack on some signature schemes constructed from five-pass identification schemes. CANS 2020.

Parameters selected

Variant 1: SD over \mathbb{F}_2 ,

$$(m, k, w) = (1280, 640, 132)$$

We have $\mathbb{F}_{poly} = \mathbb{F}_{2^{11}}$.

Parameters selected

Variant 1: SD over \mathbb{F}_2 ,

$$(m, k, w) = (1280, 640, 132)$$

We have $\mathbb{F}_{poly} = \mathbb{F}_{2^{11}}$.

Variant 2: SD over \mathbb{F}_2 ,

$$(m, k, w) = (1536, 888, 120)$$

but we split $x := (x_1 \mid \ldots \mid x_6)$ into 6 chunks and we prove that $\operatorname{wt}_H(x_i) \leq \frac{w}{6}$ for all i.

We have $\mathbb{F}_{poly} = \mathbb{F}_{2^8}$.

Parameters selected

Variant 3: SD over \mathbb{F}_{2^8} ,

$$(m, k, w) = (256, 128, 80)$$

We have $\mathbb{F}_{poly} = \mathbb{F}_{2^8}$.

Obtained Performances

Scheme Name	sgn	pk	$t_{\sf sgn}$	t_{verif}
$FJR22 - \mathbb{F}_2$ (fast)	15.6 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2 (short)	10.9 KB	$0.09~\mathrm{KB}$	-	-
FJR22 - \mathbb{F}_2 (fast)	17.0 KB	0.09 KB	13 ms	$13 \mathrm{\ ms}$
$FJR22 - \mathbb{F}_2$ (short)	11.8 KB	$0.09~\mathrm{KB}$	$64~\mathrm{ms}$	$61 \mathrm{\ ms}$
$FJR22 - \mathbb{F}_{256}$ (fast)	11.5 KB	0.14 KB	$6~\mathrm{ms}$	$6~\mathrm{ms}$
$FJR22 - \mathbb{F}_{256}$ (short)	8.26 KB	$0.14~\mathrm{KB}$	$30~\mathrm{ms}$	27 ms

Obtained Performances

Scheme Name	sgn	pk	$t_{\sf sgn}$	t_{verif}
$FJR22 - \mathbb{F}_2$ (fast)	15.6 KB	0.09 KB	-	-
$FJR22 - \mathbb{F}_2$ (short)	10.9 KB	0.09 KB	-	-
FJR22 - \mathbb{F}_2 (fast)	17.0 KB	0.09 KB	$13 \mathrm{\ ms}$	13 ms
$FJR22 - \mathbb{F}_2$ (short)	11.8 KB	0.09 KB	$64 \mathrm{\ ms}$	61 ms
FJR22 - \mathbb{F}_{256} (fast)	11.5 KB	0.14 KB	$6 \mathrm{\ ms}$	$6~\mathrm{ms}$
FJR22 - \mathbb{F}_{256} (short	8.26 KB	0.14 KB	30 ms	27 ms

Number of parties: N = 256Number of repetitions: $\tau = 17$

Obtained Performances

Scheme Name	sgn	pk	$t_{\sf sgn}$	t_{verif}
$FJR22 - \mathbb{F}_2$ (fast)	15.6 KB	0.09 KB	-	-
$FJR22 - \mathbb{F}_2$ (short)	10.9 KB	0.09 KB	-	-
$FJR22 - \mathbb{F}_2$ (fast)	17.0 KB	0.09 KB	13 ms	13 ms
$FJR22 - \mathbb{F}_2 $ (short)	11.8 KB	0.09 KB	$64 \mathrm{\ ms}$	61 ms
$FJR22 - \mathbb{F}_{256}$ (fast)	11.5 KB	0.14 KB	6 ms	6 ms
$FJR22 - \mathbb{F}_{256} \overline{(short)}$	8.26 KB	0.14 KB	30 ms	27 ms

Number of parties: N = 32Number of repetitions: $\tau = 27$

Comparison Code-based Signatures (1/2)

Scheme Name	sgn	pk	$t_{\sf sgn}$	t_{verif}
BGS21	24.1 KB	0.1 KB	-	-
BGS21	22.5 KB	1.7 KB	-	-
GPS21 - 256	22.2 KB	0.11 KB	-	-
GPS21 - 1024	19.5 KB	0.12 KB	-	-
FJR21 (fast)	22.6 KB	0.09 KB	13 ms	12 ms
FJR21 (short)	16.0 KB	0.09 KB	62 ms	$57 \mathrm{\ ms}$
BGKM22 - Sig1	23.7 KB	0.1 KB	-	-
BGKM22 - Sig2	20.6 KB	0.2 KB	-	-
$FJR22 - \mathbb{F}_2$ (fast)	15.6 KB	0.09 KB	-	-
$FJR22 - \mathbb{F}_2 \text{ (short)}$	10.9 KB	0.09 KB	-	-
$FJR22 - \mathbb{F}_2$ (fast)	17.0 KB	0.09 KB	13 ms	13 ms
$FJR22 - \mathbb{F}_2 \text{ (short)}$	11.8 KB	0.09 KB	$64 \mathrm{\ ms}$	$61 \mathrm{\ ms}$
FJR22 - \mathbb{F}_{256} (fast)	11.5 KB	0.14 KB	6 ms	$6 \mathrm{\ ms}$
$FJR22 - \mathbb{F}_{256}$ (short)	$8.26~\mathrm{KB}$	0.14 KB	30 ms	$27 \mathrm{\ ms}$

Comparison Code-based Signatures (2/2)

Scheme Name	sgn	pk	$t_{\sf sgn}$	t_{verif}
Durandal - I	3.97 KB	14.9 KB	4 ms	5 ms
Durandal - II	4.90 KB	18.2 KB	5 ms	$6 \mathrm{\ ms}$
LESS-FM - I	15.2 KB	9.78 KB	-	-
LESS-FM - II	5.25 KB	$205~\mathrm{KB}$	-	-
LESS-FM - III	10.39 KB	11.57 KB	-	-
Wave	$2.07~\mathrm{KB}$	3.1 MB	$\geq 300 \text{ ms}$	2 ms
Wavelet	0.91 KB	3.1 MB	$\geq 300 \text{ ms}$	$\leq 1 \text{ ms}$
$FJR22 - \mathbb{F}_2$ (fast)	15.6 KB	0.09 KB	-	-
$FJR22 - \mathbb{F}_2 \text{ (short)}$	10.9 KB	0.09 KB	-	-
$FJR22 - \mathbb{F}_2$ (fast)	17.0 KB	0.09 KB	13 ms	$13 \mathrm{\ ms}$
$FJR22 - \mathbb{F}_2 \text{ (short)}$	11.8 KB	0.09 KB	64 ms	$61 \mathrm{ms}$
FJR22 - \mathbb{F}_{256} (fast)	11.5 KB	0.14 KB	6 ms	$6~\mathrm{ms}$
FJR22 - \mathbb{F}_{256} (short)	8.26 KB	0.14 KB	30 ms	$27 \mathrm{\ ms}$

Conclusion

Summary

- New signature scheme with Syndrome Decoding
- Conservative scheme (SD on random linear codes)
- Small "signature size + public key size"

Scheme Name	sgn	$t_{\sf sgn}$	t_{verif}	Assumption
FJR22 v3 (fast)	11.5 KB	6 ms	$6~\mathrm{ms}$	SD on \mathbb{F}_{256}
FJR22 v3 (short)	8.26 KB	30 ms	$27~\mathrm{ms}$	SD On ₽256

Scheme Name	sgn	$t_{\sf sgn}$	t_{verif}	Assumption
FJR22 v3 (fast)	11.5 KB	$6 \mathrm{\ ms}$	$6 \mathrm{\ ms}$	SD on \mathbb{F}_{256}
FJR22 v3 (short)	8.26 KB	30 ms	27 ms	SD 011 F 256
FR22 (SSS)	9.92 KB	3.2 ms	$0.38~\mathrm{ms}$	SD on \mathbb{F}_{256}

[FR22] Thibauld Feneuil, Matthieu Rivain. Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head. Eprint 2022/1407.

Scheme Name	sgn	$t_{\sf sgn}$	t_{verif}	Assumption
FJR22 v3 (fast) FJR22 v3 (short)	11.5 KB 8.26 KB	6 ms $30 ms$	6 ms 27 ms	SD on \mathbb{F}_{256}
FR22 (SSS)	9.92 KB	$3.2~\mathrm{ms}$	$0.38~\mathrm{ms}$	SD on \mathbb{F}_{256}
BG22 (short)	6.6 KB	-	-	Ideal RSL

[BG22] Loïc Bidoux, Philippe Gaborit. Compact Post-Quantum Signatures from Proofs of Knowledge leveraging Structure for the PKP, SD and RSD Problems. arXiv 2204.02915.

Scheme Name	sgn	$t_{\sf sgn}$	t_{verif}	Assumption
FJR22 v3 (fast)	11.5 KB	$6~\mathrm{ms}$	$6 \mathrm{\ ms}$	SD on \mathbb{F}_{256}
FJR22 v3 (short)	8.26 KB	30 ms	27 ms	
FR22 (SSS)	9.92 KB	$3.2~\mathrm{ms}$	$0.38~\mathrm{ms}$	SD on \mathbb{F}_{256}
BG22 (short)	6.6 KB	-	-	Ideal RSL
Fen22 (short)	5.8 KB	-	-	Rank SD
Fen22 (short)	5.4 KB	-	-	MinRank
Fen22 (short)	6.9 KB	-	-	MQ on \mathbb{F}_{256}

[Fen22] Thibauld Feneuil. Building MPCitH-based Signatures from MQ, MinRank, Rank SD and PKP. Eprint 2022/1512.

Conclusion

Summary

- New signature scheme with Syndrome Decoding
- Conservative scheme (SD on random linear codes)
- Small "signature size + public key size"

Future Work

- Optimize the signature implementation.
- Search parameter sets that provide better performances.

More details in https://eprint.iacr.org/2022/188.