Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs

<u>Thibauld Feneuil^{1,2}</u> Antoine Joux³ Matthieu Rivain¹

- 1. CryptoExperts, Paris, France
- Sorbonne Université, CNRS, INRIA, Institut de Mathématiques de Jussieu-Paris Rive Gauche, Ouragan, Paris, France
- 3. CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Seminar C2. June 10, 2022.

Table of Contents

- Introduction
- 2 Syndrome Decoding in the Head
 - Rephrase constraints
 - MPC Protocol
 - Sharings and MPC
 - Zero-Knowledge Proof
 - Comparison
- 3 Signature Scheme

Zero-Knowledge Proofs for Syndrome Decoding

Syndrome Decoding Problem

From (H, y), find $x \in \mathbb{F}^m$ such that

$$y = Hx$$
 and $\operatorname{wt}_H(x) \le w$.

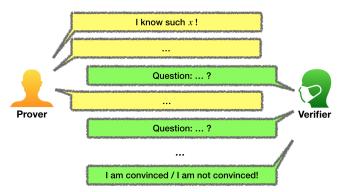
 $\operatorname{wt}_H(x) := nb \text{ of non-zero coordinates of } x$

Zero-Knowledge Proofs for Syndrome Decoding

Syndrome Decoding Problem

From (H, y), find $x \in \mathbb{F}^m$ such that

$$y = Hx$$
 and $\operatorname{wt}_H(x) \le w$.

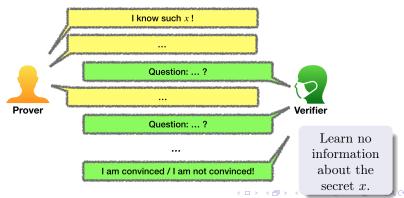


Zero-Knowledge Proofs for Syndrome Decoding

Syndrome Decoding Problem

From (H, y), find $x \in \mathbb{F}^m$ such that

$$y = Hx$$
 and $\operatorname{wt}_H(x) \leq w$.



- Generic technique to build zero-knowledge protocols using multi-party computation.
- Introduced in 2007 by:

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation. STOC 2007.

• Popularized in 2016 by *Picnic*, a candidate of the NIST Post-Quantum Cryptography Standardization.

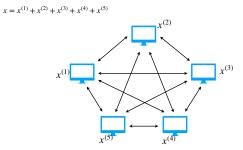
Sharing of the secret

The secret x satisfies

$$y = Hx$$
 and $\operatorname{wt}_H(x) \leq w$.

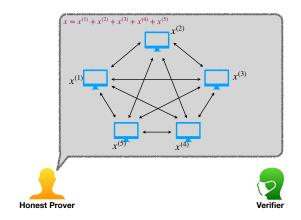
We share it in N parts:

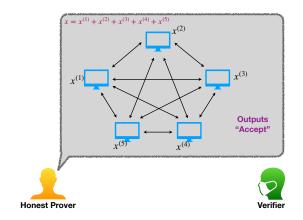
$$x = x^{(1)} + x^{(2)} + \dots + x^{(N-1)} + x^{(N)}.$$

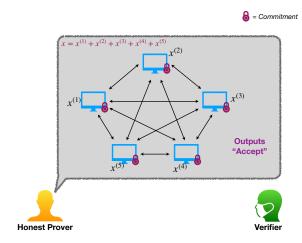


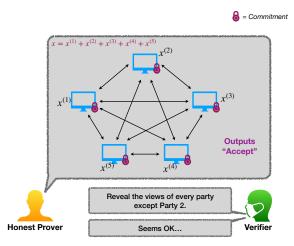
The multi-party computation outputs

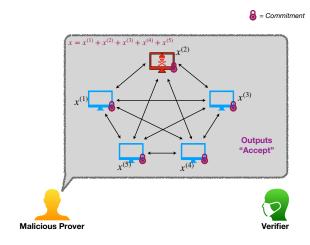
- Accept if x is a syndrome decoding solution,
- Reject otherwise.

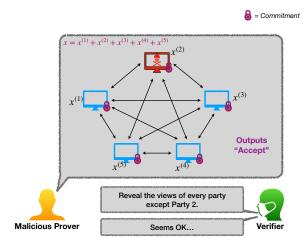


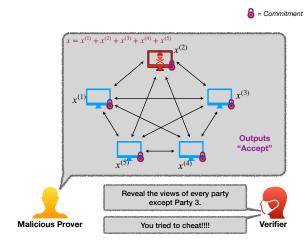












Soundness error:

 $\frac{1}{N}$

Proof size: depends on the multi-party computation protocol

Two possible trade-offs:

• Repeat the protocol many times:

fast proofs, but large proofs

 \circ Take a larger N:

short proofs, but slow proofs

Table of Contents

- 1 Introduction
- 2 Syndrome Decoding in the Head
 - Rephrase constraints
 - MPC Protocol
 - Sharings and MPC
 - Zero-Knowledge Proof
 - Comparison
- 3 Signature Scheme

The secret x satisfies

$$\underbrace{y = Hx}_{\text{linear, easy to prove}}$$

and

$$\underbrace{\operatorname{wt}_{H}(x) \leq w}_{\text{non-linear, hard to prove}}$$

Let $x \in \mathbb{F}_{SD}^m$. To show that $\operatorname{wt}_H(x) \leq w$, we prove there exists $Q \in \mathbb{F}_{\operatorname{poly}}[X]$ s.t.

$$\begin{cases} x_1 \cdot Q(\gamma_1) = 0 \\ x_2 \cdot Q(\gamma_2) = 0 \\ \vdots \\ x_m \cdot Q(\gamma_m) = 0 \end{cases}$$

where

the degree of Q is **exactly** w,

 \mathbb{F}_{poly} is a field extension of \mathbb{F}_{SD} ,

 $\gamma_1, \ldots, \gamma_m$ are distinct elements of \mathbb{F}_{poly} .

Let $x \in \mathbb{F}_{\mathrm{SD}}^m$.

To prove that $\operatorname{wt}_H(x) \leq w$, we prove there exists $Q \in \mathbb{F}_{\operatorname{poly}}[X]$ s.t.

$$\begin{cases} S(\gamma_1) \cdot Q(\gamma_1) = 0 \\ S(\gamma_2) \cdot Q(\gamma_2) = 0 \\ \vdots \\ S(\gamma_m) \cdot Q(\gamma_m) = 0 \end{cases}$$

where

the degree of Q is exactly w,

 \mathbb{F}_{poly} is a field extension of \mathbb{F}_{SD} ,

 $\gamma_1, \ldots, \gamma_m$ are distinct elements of \mathbb{F}_{poly} ,

S is built by interpolation such that

$$\forall i, \ S(\gamma_i) = x_i.$$

Let $x \in \mathbb{F}_{\mathrm{SD}}^m$.

To prove that $\operatorname{wt}_H(x) \leq w$, we prove there exists $Q \in \mathbb{F}_{\text{poly}}[X]$ s.t.

 $S \cdot Q$ is equal to zero on $\{\gamma_1, \ldots, \gamma_m\}$.

where

the degree of Q is exactly w,

 \mathbb{F}_{poly} is a field extension of \mathbb{F}_{SD} ,

 $\gamma_1, \ldots, \gamma_m$ are distinct elements of \mathbb{F}_{poly} ,

S is built by interpolation such that

$$\forall i, \ S(\gamma_i) = x_i.$$

If the prover convinces the verifier that there exists $Q, P \in \mathbb{F}_{\text{poly}}[X]$ s.t.

$$S \cdot Q = P \cdot F$$

where

the degree of Q is exactly w,

S is built by interpolation such that $\forall i, \ S(\gamma_i) = x_i$,

$$F := \prod_{i=1}^{m} (X - \gamma_i),$$

then, the verifier deduces that

$$\forall i \le m, (Q \cdot S)(\gamma_i) = P(\gamma_i) \cdot F(\gamma_i) = 0$$

$$\Rightarrow \forall i \le m, \ Q(\gamma_i) = 0 \text{ or } S(\gamma_i) = x_i = 0$$

If the prover convinces the verifier that there exists $Q, P \in \mathbb{F}_{\text{poly}}[X]$ s.t.

$$S \cdot Q = P \cdot F$$

where

the degree of Q is exactly w,

S is built by interpolation such that $\forall i, \ S(\gamma_i) = x_i$,

$$F := \prod_{i=1}^{m} (X - \gamma_i),$$

then, the verifier deduces that

$$\forall i \le m, (Q \cdot S)(\gamma_i) = P(\gamma_i) \cdot F(\gamma_i) = 0$$

$$\Rightarrow \forall i \le m, \ Q(\gamma_i) = 0 \ \text{or} \ S(\gamma_i) = x_i = 0$$

i.e.

$$\operatorname{wt}_H(x) \le w$$

The solution x of the syndrome decoding problem must satisfy

$$y = Hx$$

and

$$\exists \mathbf{Q}, \mathbf{P} \text{ two polynomials} : \mathbf{SQ} = \mathbf{PF} \text{ and } \deg \mathbf{Q} = \mathbf{w}$$

where

S is defined by interpolation such that
$$\forall i, \ S(\gamma_i) = x_i$$
, and $F := \prod_{i=1}^m (X - \gamma_i)$.

We want to build a MPC protocol which check if some vector is a syndrome decoding solution.

Let us assume
$$H = (H'|I)$$
. We split x as $\begin{pmatrix} x_A \\ x_B \end{pmatrix}$. We have $y = Hx$, so

$$x_B = y - H'x_A.$$

Inputs: x_A , Q, P.

1. Build $x_B := y - H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.

We have

$$y = Hx$$
.

Inputs: x_A , Q, P.

- 1. Build $x_B := y H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.
- 2. Build the polynomial S by interpolation such that

$$\forall i \in \{1,\ldots,m\}, \underline{S}(\gamma_i) = \underline{x_i}.$$

Inputs: x_A , Q, P.

- 1. Build $x_B := y H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.
- 2. Build the polynomial S by interpolation such that

$$\forall i \in \{1,\ldots,m\}, \underline{S}(\gamma_i) = \underline{x_i}.$$

3. Check that $S \cdot Q = P \cdot F$.

Inputs: x_A , Q, P.

- 1. Build $x_B := y H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.
- 2. Build the polynomial S by interpolation such that

$$\forall i \in \{1,\ldots,m\}, S(\gamma_i) = x_i.$$

3. Check that $S \cdot Q = P \cdot F$.

	Output of π	
	ACCEPT	Reject
A good witness	1	0
Not a good witness	0	1

Inputs: x_A , Q, P.

- 1. Build $x_B := y H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.
- 2. Build the polynomial S by interpolation such that

$$\forall i \in \{1,\ldots,m\}, S(\gamma_i) = x_i.$$

3. Get a random point $r \in \mathbb{F}_{points}$ and check that $S(r) \cdot Q(r) = P(r) \cdot F(r)$.

 \mathbb{F}_{points} is a field extension of \mathbb{F}_{poly} .

Inputs: x_A , Q, P.

- 1. Build $x_B := y H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.
- 2. Build the polynomial S by interpolation such that

$$\forall i \in \{1,\ldots,m\}, \underline{S}(\gamma_i) = \underline{x_i}.$$

3. Get a random point $r \in \mathbb{F}_{points}$ and check that $S(r) \cdot Q(r) = P(r) \cdot F(r)$.

Schwartz-Zippel Lemma: If $S \cdot Q \neq P \cdot F$, then

$$\Pr_{r \overset{\$}{\leftarrow} \mathbb{F}_{\text{coints}}} [S(r) \cdot Q(r) = P(r) \cdot F(r)] \le \frac{m + w - 1}{|\mathbb{F}_{\text{points}}|}$$

Inputs: x_A , Q, P.

1. Build
$$x_B := y - H'x_A$$
 and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.

2. Build the polynomial S by interpolation such that

$$\forall i \in \{1,\ldots,m\}, \underline{S}(\gamma_i) = \underline{x_i}.$$

3. Get a random point $r \in \mathbb{F}_{points}$ and check that $S(r) \cdot Q(r) = P(r) \cdot F(r)$.

	Output of π	
	ACCEPT	Reject
A good witness	1	0
Not a good witness	p	1-p

with $p \leq \frac{m+w-1}{|\mathbb{F}_{points}|}$ by the **Schwartz-Zippel Lemma**.

Inputs: x_A , Q, P.

- 1. Build $x_B := y H'x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.
- 2. Build the polynomial S by interpolation such that

$$\forall i \in \{1,\ldots,m\}, \underline{S}(\gamma_i) = \underline{x_i}.$$

- 3. Get a random point $r \in \mathbb{F}_{points}$.
- 4. Compute S(r), Q(r) and P(r).
- 5. Using [BN20], check that $S(r) \cdot Q(r) = P(r) \cdot F(r)$.

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. PKC 2020.

Sharing of the MPC input

$$\mathcal{P}_{1} \qquad \mathcal{P}_{2} \qquad \dots \qquad \mathcal{P}_{N} \\
x_{A} &= [x_{A}]_{1} + [x_{A}]_{2} + \dots + [x_{A}]_{N} \in \mathbb{F}_{SD}^{k} \\
Q &= [Q]_{1} + [Q]_{2} + \dots + [Q]_{N} \in \mathbb{F}_{poly}[X] \\
P &= [P]_{1} + [P]_{2} + \dots + [P]_{N} \in \mathbb{F}_{poly}[X]$$

Operations on sharings

Addition:
$$[v_1 + v_2] = [v_1] + [v_2]$$

 $\forall i, [v_1 + v_2]_i := [v_1]_i + [v_2]_i$

Operations on sharings

Addition:
$$[v_1 + v_2] = [v_1] + [v_2]$$

 $\forall i, [v_1 + v_2]_i := [v_1]_i + [v_2]_i$

Addition with a constant:
$$[v + \alpha] = [v] + \alpha$$

$$\left\{ \begin{array}{l} \llbracket v + \alpha \rrbracket_1 := \llbracket v \rrbracket_1 + \alpha \\ \llbracket v + \alpha \rrbracket_i := \llbracket v \rrbracket_i \text{ for } i \neq 1 \end{array} \right.$$

Operations on sharings

Addition:
$$[v_1 + v_2] = [v_1] + [v_2]$$

 $\forall i, [v_1 + v_2]_i := [v_1]_i + [v_2]_i$

Addition with a constant: $[v + \alpha] = [v] + \alpha$

$$\left\{ \begin{array}{l} \llbracket v + \alpha \rrbracket_1 := \llbracket v \rrbracket_1 + \alpha \\ \llbracket v + \alpha \rrbracket_i := \llbracket v \rrbracket_i \ \text{ for } i \neq 1 \end{array} \right.$$

Multiplication by a constant: $[\![\alpha \cdot v]\!] = \alpha \cdot [\![v]\!]$

$$\forall i, \ [\![\alpha \cdot v]\!]_i := \alpha \cdot [\![v]\!]_i$$

Inputs of the party \mathcal{P}_i : $[x_A]_i$, $[Q]_i$ and $[P]_i$.

1. Compute $\llbracket x_B \rrbracket = y - H' \llbracket x_A \rrbracket$, and then deduce $\llbracket x \rrbracket$.

Inputs of the party \mathcal{P}_i : $[x_A]_i$, $[Q]_i$ and $[P]_i$.

- 1. Compute $[x_B] = y H'[x_A]$, and then deduce [x].
- 2. Compute [S] from [x] by interpolation such that

$$\forall i \in \{1,\ldots,m\}, S(\gamma_i) = x_i.$$

Inputs of the party \mathcal{P}_i : $[x_A]_i$, $[Q]_i$ and $[P]_i$.

- 1. Compute $[x_B] = y H'[x_A]$, and then deduce [x].
- 2. Compute [S] from [x] thanks to

$$[S(X)] = \sum_{i} [x_i] \cdot \prod_{\ell \neq i} \frac{X - \gamma_{\ell}}{\gamma_i - \gamma_{\ell}}.$$

Inputs of the party \mathcal{P}_i : $[x_A]_i$, $[Q]_i$ and $[P]_i$.

- 1. Compute $[x_B] = y H'[x_A]$, and then deduce [x].
- 2. Compute [S] from [x] thanks to

$$[S(X)] = \sum_{i} [x_i] \cdot \prod_{\ell \neq i} \frac{X - \gamma_{\ell}}{\gamma_i - \gamma_{\ell}}.$$

- 3. Get a random point $r \in \mathbb{F}_{points}$ from a trusted source.
- 4. Compute

$$\left\{ \begin{array}{l} \llbracket S(r) \rrbracket = \llbracket S \rrbracket(r) \\ \llbracket Q(r) \rrbracket = \llbracket Q \rrbracket(r) \\ \llbracket P(r) \rrbracket = \llbracket P \rrbracket(r) \end{array} \right.$$

5. Using [BN20], check that $S(r) \cdot Q(r) = P(r) \cdot F(r)$.

Summary

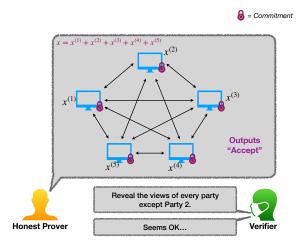
The MPC protocol π checks that ($[x_A], [Q], [P]$) describes a solution of the SD instance (H, y).

	Output of π			
	ACCEPT REJECT			
A good witness	1	0		
Not a good witness	p	1-p		

where

$$p = \underbrace{\frac{m+w-1}{|\mathbb{F}_{\text{points}}|}}_{\text{false positive from Schwartz-Zippel}} + \left(1 - \frac{m+w-1}{|\mathbb{F}_{\text{points}}|}\right) \cdot \underbrace{\frac{1}{|\mathbb{F}_{\text{points}}|}}_{\text{false positive from [BN20]}}$$

MPC-in-the-Head paradigm



MPC-in-the-Head paradigm

Prover P		Verifier \mathcal{V}
H, y, x such that $y = Hx \text{ and } \text{wt}_H(x) \le w$		H, y
Prepare Q, P .		
$Com_i \leftarrow Com(inputs of \mathcal{P}_i)$		
, -	$\xrightarrow{\operatorname{Com}_1,\dots,\operatorname{Com}_N}$	$r \in \mathbb{F}_{\mathrm{points}}$
Run the MPC protocol π	$\longleftarrow \stackrel{r}{\longleftarrow}$	pomes
for each party.		
	broadcast messages	$i^* \stackrel{\$}{\leftarrow} \{1, \dots, N\}$
	<i>i</i> *	
	all V_i for $i \neq i^*$	
		Check that the views are consistent
		Check that the MPC output is ACCEPT

Soundness error:

$$p + (1 - p) \cdot \frac{1}{N}$$

Soundness error:

$$p + (1 - p) \cdot \frac{1}{N}$$

Proof size:

 \circ Inputs of N-1 parties:

Soundness error:

$$p + (1-p) \cdot \frac{1}{N}$$

Proof size:

- \circ Inputs of N-1 parties:
 - Party i < N: a seed of λ bits
 - Last party:

$$\underbrace{k \cdot \log_2 |\mathbb{F}_{\mathrm{SD}}|}_{\llbracket x_A \rrbracket_N} + \underbrace{2w \cdot \log_2 |\mathbb{F}_{\mathrm{poly}}|}_{\llbracket Q \rrbracket_N, \llbracket P \rrbracket_N} + \underbrace{\lambda}_{\llbracket a \rrbracket_N, \llbracket b \rrbracket_N} + \underbrace{\log_2 |\mathbb{F}_{\mathrm{points}}|}_{\llbracket c \rrbracket_N}$$

Soundness error:

$$p + (1 - p) \cdot \frac{1}{N}$$

Proof size:

- \circ Inputs of N-1 parties:
 - Party i < N: a seed of λ bits
 - Last party:

$$\underbrace{k \cdot \log_2 |\mathbb{F}_{\mathrm{SD}}|}_{\llbracket x_A \rrbracket_N} + \underbrace{2w \cdot \log_2 |\mathbb{F}_{\mathrm{poly}}|}_{\llbracket Q \rrbracket_N, \llbracket P \rrbracket_N} + \underbrace{\lambda}_{\llbracket a \rrbracket_N, \llbracket b \rrbracket_N} + \underbrace{\log_2 |\mathbb{F}_{\mathrm{points}}|}_{\llbracket c \rrbracket_N}$$

- \circ Communication between parties: 2 elements of \mathbb{F}_{points} .
- 2 hash digests $(2 \times 2\lambda \text{ bits})$,
- Some commitment randomness + COM_{i*}

 $Only\ for\ unstructured\ syndrom\ decoding\ problems.$

Protocol	Year	Assumption	Soundness err.
Stern's	1993	SD	2/3
Véron's	1997	SD	2/3
CVE's	2010	SD on \mathbb{F}_q	$\approx 1/2$

 $Only\ for\ unstructured\ syndrom\ decoding\ problems.$

Protocol	Year	Assumption	Soundness err.
Stern's	1993	SD	2/3
Véron's	1997	SD	2/3
CVE's	2010	SD on \mathbb{F}_q	$\approx 1/2$
GPS's	2021	SD on \mathbb{F}_q	$\approx 1/N$

[GPS21] Shay Gueron, Edoardo Persichetti, and Paolo Santini. Designing a Practical Code-based Signature Scheme from Zero-Knowledge Proofs with Trusted Setup. Cryptography 2022.

 $Only\ for\ unstructured\ syndrom\ decoding\ problems.$

Protocol	Year	Assumption	Soundness err.	
Stern's	1993	SD	2/3	
Véron's	1997	SD	2/3	
CVE's	2010	SD on \mathbb{F}_q	$\approx 1/2$	
GPS's	2021	SD on \mathbb{F}_q	$\approx 1/N$	
FJR21's	2021	SD	$\approx 1/N$	

$$\sigma = \sigma_N \circ \sigma_{N-1} \circ \ldots \circ \sigma_3 \circ \sigma_2 \circ \sigma_1$$

[FJR21] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared Permutation for Syndrome Decoding: New Zero-Knowledge Protocol and Code-Based Signature. Eprint 2021/1576.

 $Only\ for\ unstructured\ syndrom\ decoding\ problems.$

Protocol	Year	Assumption	Soundness err.
Stern's	1993	SD	2/3
Véron's	1997	SD	2/3
CVE's	2010	SD on \mathbb{F}_q	$\approx 1/2$
GPS's	2021	SD on \mathbb{F}_q	$\approx 1/N$
FJR21's	2021	SD	$\approx 1/N$
BGKM's	2022	SD	$\approx 1/N$

[BGKM22] Loïc Bidoux, Philippe Gaborit, Mukul Kulkarni, Victor Mateu. Code-based Signatures from New Proofs of Knowledge for the Syndrome Decoding Problem. arXiv 2110.05005.

Only for unstructured syndrom decoding problems.

Protocol	Year	Assumption	Soundness err.
Stern's	1993	SD	2/3
Véron's	1997	SD	2/3
CVE's	2010	SD on \mathbb{F}_q	$\approx 1/2$
GPS's	2021	SD on \mathbb{F}_q	$\approx 1/N$
FJR21's	2021	SD	$\approx 1/N$
BGKM's	2022	SD	$\approx 1/N$
FJR22's	2022	SD	$\approx 1/N$

Prove
$$\operatorname{wt}_H(x) \leq w$$
, not $\operatorname{wt}_H(x) = w$.

$$Q(X) = \prod_{i:x_i \neq 0} (X - \gamma_i), \quad \deg Q = w$$

[FJR22] Thibauld Feneuil, Antoine Joux, Matthieu Rivain. Syndrome Decoding in the Head: Shorter Signatures from Zero-Knowledge Proofs. Crypto 2022.

Comparison Zero-Knowledge Protocol for SD

1 Cai	mstance i	mstance 2
1993	37.4 KB	46.1 KB
1997	$31.7~\mathrm{KB}$	38.7 KB
2010	-	37.4 KB
2021	-	15.2 KB
2021	-	19.9 KB
2021	13.6 KB	16.4 KB
2021	$20.7~\mathrm{KB}$	25.6 KB
2022	9.7 KB	6.9 KB
2022	14.4 KB	9.7 KB
d size q	2	256
Code length m		208
Code dimension k		m/2
Hamming weight w		78
Security level λ		128
	1997 2010 2021 2021 2021 2021 2022 2022 d size q angth m ansion k eight w	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Name Protocol Year Instance 1 Instance 2

Prove only an inequality

Table of Contents

- 1 Introduction
- 2 Syndrome Decoding in the Head
 - Rephrase constraints
 - MPC Protocol
 - Sharings and MPC
 - Zero-Knowledge Proof
 - Comparison
- 3 Signature Scheme

Fiat-Shamir Transform

Signature algorithm:

Inputs:

- x such that y = Hx and $\operatorname{wt}_H(x) \leq w$
- the message mess to sign
- 1. Prepare the witness, *i.e.* the polynomials P and Q.
- 2. Commit to party's inputs in distinct commitments COM_1, \ldots, COM_N .
- 3. $r = \operatorname{Hash}(\mathsf{mess}, \mathsf{salt}, \mathsf{COM}_1, \dots, \mathsf{COM}_N)$.
- 4. Run the MPC protocol π for each party.
- 5. $i^* = \text{Hash}(\mathsf{mess}, \mathsf{salt}, r, \text{broadcast messages}).$
- 6. Build the signature with the views of all the parties except the party i^* .

Security of the signature

5-round Identification Scheme \Rightarrow Signature

Attack of [KZ20]:

$$cost_{forge} := \min_{\tau_1, \tau_2 : \tau_1 + \tau_2 = \tau} \left\{ \frac{1}{\sum_{i=\tau_1}^{\tau} {\tau \choose i} p^i (1-p)^{\tau-i}} + N^{\tau_2} \right\}$$

[KZ20] Daniel Kales and Greg Zaverucha. An attack on some signature schemes constructed from five-pass identification schemes. CANS 2020.

Parameters selected

Variant 1: SD over \mathbb{F}_2 ,

$$(m, k, w) = (1280, 640, 132)$$

We have $\mathbb{F}_{poly} = \mathbb{F}_{2^{11}}$.

Parameters selected

Variant 1: SD over \mathbb{F}_2 ,

$$(m, k, w) = (1280, 640, 132)$$

We have $\mathbb{F}_{poly} = \mathbb{F}_{2^{11}}$.

Variant 2: SD over \mathbb{F}_2 ,

$$(m, k, w) = (1536, 888, 120)$$

but we split $x := (x_1 \mid \ldots \mid x_6)$ into 6 chunks and we prove that $\operatorname{wt}_H(x_i) \leq \frac{w}{6}$ for all i.

We have $\mathbb{F}_{poly} = \mathbb{F}_{2^8}$.

Parameters selected

Variant 3: SD over \mathbb{F}_{2^8} ,

$$(m, k, w) = (256, 128, 80)$$

We have $\mathbb{F}_{poly} = \mathbb{F}_{2^8}$.

Performances

	Security Assumption	Computation Field
Variant 1	Over \mathbb{F}_2	\mathbb{F}_{2048}
Variant 2	Over \mathbb{F}_2	\mathbb{F}_{256}
Variant 3	Over \mathbb{F}_{256}	\mathbb{F}_{256}

Two trade-offs:

Fast: N = 32, $\tau = 27$

Short: N = 256, $\tau = 17$

Comparison Code-based Signatures (1/2)

Scheme Name	sgn	pk	$t_{\sf sgn}$	t_{verif}
BGS21	24.1 KB	0.1 KB	-	-
BGS21	22.5 KB	1.7 KB	-	-
GPS21 - 256	22.2 KB	0.11 KB	-	-
GPS21 - 1024	19.5 KB	$0.12~\mathrm{KB}$	-	-
FJR21 (fast)	22.6 KB	0.09 KB	13 ms	12 ms
FJR21 (short)	16.0 KB	$0.09~\mathrm{KB}$	$62 \mathrm{\ ms}$	$57 \mathrm{\ ms}$
BGKM22 - Sig1	23.7 KB	0.1 KB	-	-
BGKM22 - Sig2	20.6 KB	$0.2~\mathrm{KB}$	-	-
$FJR22 - \mathbb{F}_2$ (fast)	15.6 KB	0.09 KB	-	-
$FJR22 - \mathbb{F}_2 \text{ (short)}$	10.9 KB	$0.09~\mathrm{KB}$	-	-
$FJR22 - \mathbb{F}_2$ (fast)	17.0 KB	0.09 KB	13 ms	13 ms
$FJR22 - \mathbb{F}_2 \text{ (short)}$	11.8 KB	$0.09~\mathrm{KB}$	$64 \mathrm{\ ms}$	61 ms
$FJR22 - \mathbb{F}_{256}$ (fast)	11.5 KB	0.14 KB	6 ms	6 ms
$FJR22 - \mathbb{F}_{256}$ (short)	$8.26~\mathrm{KB}$	$0.14~\mathrm{KB}$	30 ms	27 ms

Comparison Code-based Signatures (2/2)

Scheme Name	sgn	pk	$t_{\sf sgn}$	t_{verif}
Durandal - I	3.97 KB	14.9 KB	4 ms	5 ms
Durandal - II	4.90 KB	$18.2~\mathrm{KB}$	5 ms	6 ms
LESS-FM - I	15.2 KB	9.78 KB	-	-
LESS-FM - II	5.25 KB	$205~\mathrm{KB}$	-	-
LESS-FM - III	10.39 KB	11.57 KB	-	-
Wave	$2.07~\mathrm{KB}$	3.1 MB	$\geq 300 \text{ ms}$	2 ms
Wavelet	0.91 KB	3.1 MB	$\geq 300 \text{ ms}$	$\leq 1 \text{ ms}$
$FJR22 - \mathbb{F}_2$ (fast)	15.6 KB	0.09 KB	-	-
$FJR22 - \mathbb{F}_2 \text{ (short)}$	10.9 KB	$0.09~\mathrm{KB}$	-	-
$FJR22 - \mathbb{F}_2$ (fast)	17.0 KB	0.09 KB	13 ms	13 ms
$FJR22 - \mathbb{F}_2 \text{ (short)}$	11.8 KB	$0.09~\mathrm{KB}$	64 ms	$61 \mathrm{\ ms}$
$FJR22 - \mathbb{F}_{256}$ (fast)	11.5 KB	0.14 KB	6 ms	6 ms
$FJR22 - \mathbb{F}_{256}$ (short)	8.26 KB	$0.14~\mathrm{KB}$	30 ms	$27 \mathrm{\ ms}$

Conclusion

Summary

- New signature scheme with Syndrome Decoding
- Conservative scheme (SD on random linear codes)
- Small "signature size + public key size"

Future Work

- © Optimize the signature implementation.
- Search (aggressive) parameter sets which provide better performances.

More details in https://eprint.iacr.org/2022/188. Contact: thibauld.feneuil@cryptoexperts.com