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Zero-Knowledge Protocol of Knowledge

Prover P Verifier V
inP inV

[...] Com−−−−−−−−−−−−→
Ch1←−−−−−−−−−−−−
Rsp1−−−−−−−−−−−−→

...

Chn←−−−−−−−−−−−−
Rspn−−−−−−−−−−−−→

Return out ∈ {0, 1}

The prover P wants to convince the verifier V of the correctness
of a statement. He can cheat with a probability up to the
soundness error.
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Which code-based assumption?

Syndrome Decoding Problem on Random Linear Code
Let H, x and y be such that:

☞ H is uniformly sampled from F(m−k)×m,
☞ x is uniformly sampled from {x ∈ Fm : wt(x) = w},
☞ y is defined as y := Hx.

From (H, y), find x.

The prover P wants to convince the verifier V that he knows the
solution x... without revealing any information about x.
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State of the art about ZK PoK for SD

Protocol Year Assumption Soundness err.
Stern’s 1993 SD 2/3
Véron’s 1997 SD 2/3
CVE’s 2010 SD on Fq ≈ 1/2

AGS’s 2011 QCSD ≈ 1/2
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State of the art about ZK PoK for SD

Protocol Year Assumption Soundness err.
Stern’s 1993 SD 2/3
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CVE’s 2010 SD on Fq ≈ 1/2

AGS’s 2011 QCSD ≈ 1/2

GPS’s 2021 SD on Fq ≈ 1/N

BGKS’s 2021 QCSD ≈ 1/2

FJR21’s 2021 SD ≈ 1/N

σ = σN ◦ σN−1 ◦ . . . ◦ σ3 ◦ σ2 ◦ σ1
[FJR21] Thibauld Feneuil, Antoine Joux, and Matthieu Rivain. Shared
Permutation for Syndrome Decoding: New Zero-Knowledge Protocol and
Code-Based Signature. Eprint 2021/1576.
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State of the art about ZK PoK for SD
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Code-based Signatures from New Proofs of Knowledge for the Syndrome Decoding
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Definition for sharing

Let have v ∈ Fm
q .

Sample JvK = (JvK1, . . . , JvKN ) ∈ (Fm
q )N such that

v = JvK1 + JvK2 + . . .+ JvKN

In practice, {
JvKi

$←− Fm
q for i < N

JvKN = v −
∑

i<N JvKi
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Multi-Party Computation

In the MPC context, an N -sharing is usually distributed to N
parties.

P1(JvK1) P2(JvK2) . . . PN (JvKN )
...

...
...

From those shares, the parties can perform distributed
computation.
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Multi-Party Computation

Addition: Jx+ yK = JxK + JyK

∀i, Jx+ yKi := JxKi + JyKi

Addition with a constant: Jx+ αK = JxK + α{
Jx+ αK1 := JxK1 + α
Jx+ αKi := JxKi for i ̸= 1

Multiplication by a constant: Jα · xK = α · JxK

∀i, Jα · xKi := α · JxKi

9 / 35



Introduction SD in the Head Signature Scheme

Multi-Party Computation

Addition: Jx+ yK = JxK + JyK

∀i, Jx+ yKi := JxKi + JyKi

Addition with a constant: Jx+ αK = JxK + α{
Jx+ αK1 := JxK1 + α
Jx+ αKi := JxKi for i ̸= 1

Multiplication by a constant: Jα · xK = α · JxK

∀i, Jα · xKi := α · JxKi

9 / 35



Introduction SD in the Head Signature Scheme

Multi-Party Computation

Addition: Jx+ yK = JxK + JyK

∀i, Jx+ yKi := JxKi + JyKi

Addition with a constant: Jx+ αK = JxK + α{
Jx+ αK1 := JxK1 + α
Jx+ αKi := JxKi for i ̸= 1

Multiplication by a constant: Jα · xK = α · JxK

∀i, Jα · xKi := α · JxKi

9 / 35



Introduction SD in the Head Signature Scheme

Sharing for polynomials

Let have P ∈ F[X] of degree at most d.

A sharing JP K for P is a N -tuple of (F[X])N such that
P =

∑N
i=1JP Ki, where each JP Ki is of degree at most d.

Evaluation: given r, JP (r)K = JP K(r)

∀i, JP (r)Ki := JP Ki(r) =
d∑

j=0

JPjKi · rj ,
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MPC Protocol

Let have a SD instance (H, y).
In the article, we propose a MPC protocol π where parties take
shares of a vector x as input,

P1(JxK1) P2(JxK2) . . . PN (JxKN )
...

...
...

and which outputs{
Accept if y = Hx and wt(x) ≤ w,
Reject otherwise.
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MPC-in-the-Head paradigm

Prover P Verifier V
H, y, x such that H, y
y = Hx and wt(x) ≤ w

Run the MPC protocol π
for each party.

Comi ← Com(view Vi)
Com1,...,ComN−−−−−−−−−−−−→ i∗

$←− {1, . . . , N}
i∗←−−−−−−−−−−−−

all Vi for i ̸=i∗−−−−−−−−−−−−→
Check that the views are consistent
Check that the MPC output is Accept

View Vi of the party Pi =


party’s input share,
secret random tape,
sent and received messages.
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Construction

Let x ∈ Fm
SD.

To prove that wt(x) ≤ w, we prove there exists Q ∈ Fpoly[X] s.t.
x1
x2
...

xm

 ◦


Q(γ1)
Q(γ2)

...
Q(γm)

 =


0
0
...
0


where

Fpoly is a field extension of FSD,
the degree of Q is exactly w,
γ1, . . . , γm are distinct elements of Fpoly.

13 / 35
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In terms of polynomials

Let x ∈ Fm
SD.

To prove that wt(x) ≤ w, we prove there exists Q ∈ Fpoly[X] s.t.
S(γ1)
S(γ2)

...
S(γm)

 ◦


Q(γ1)
Q(γ2)

...
Q(γm)

 =


0
0
...
0


where

Fpoly is a field extension of FSD,
the degree of Q is exactly w,
γ1, . . . , γm are distinct elements of Fpoly,
S is built by interpolation such that

∀i, S(γi) = xi.
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In terms of polynomials

Let x ∈ Fm
SD.

To prove that wt(x) ≤ w, we prove there exists Q ∈ Fpoly[X] s.t.

S ·Q is equal to zero on {γ1, . . . , γm}.

where
Fpoly is a field extension of FSD,
the degree of Q is exactly w,
γ1, . . . , γm are distinct elements of Fpoly,
S is built by interpolation such that

∀i, S(γi) = xi.
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In terms of polynomials

If the prover convinces the verifier that there exists
Q,P ∈ Fpoly[X] s.t.

S ·Q = P · F

where
the degree of Q is exactly w,
S is built by interpolation such that ∀i, S(γi) = xi,
F :=

∏m
i=1(X − γi),

then, the verifier deduces that

∀i ≤ m, (Q · S)(γi) = P (γi) · F (γi) = 0

⇒ ∀i ≤ m, Q(γi) = 0 or S(γi) = xi = 0

i.e.
wt(x) ≤ w
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The MPC Protocol

Inputs of the party Pi: JxKi, JQKi and JP Ki.
1. Check that y = HJxK.
2. Compute JSK from JxK thanks to

JS(X)K =
∑
i

JxiK ·
∏
ℓ̸=i

X − γℓ
γi − γℓ

.

3. Check that S ·Q = P · F with F :=
∏m

i=1(X − γi).
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Linear constraint

Let us assume H = (H ′ | I). We split x as
(

xA
xB

)
.

We have y = Hx = xB +H ′xA. So

xB = y −H ′xA.
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The MPC Protocol

Inputs of the party Pi: JxAKi, JQKi and JP Ki.
1. Compute JxBK = y −H ′JxAK, and then deduce JxK.
2. Compute JSK from JxK thanks to

JS(X)K =
∑
i

JxiK ·
∏
ℓ̸=i

X − γℓ
γi − γℓ

.

3. Check that S ·Q = P · F with F :=
∏m

i=1(X − γi).

To check S ·Q = P ·F , we check the relation on a random point.
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The MPC Protocol

Inputs of the party Pi: JxAKi, JQKi and JP Ki.
1. Compute JxBK = y −H ′JxAK, and then deduce JxK.
2. Compute JSK from JxK thanks to

JS(X)K =
∑
i

JxiK ·
∏
ℓ̸=i

X − γℓ
γi − γℓ

.

3. Get a random point r ∈ Fpoly (from a trusted source) and
check that S(r) ·Q(r) = P (r) · F (r).

Schwartz-Zippel Lemma: If S ·Q ̸= P · F , then

Pr
r

$←−Fpoly

[S(r) ·Q(r) = P (r) · F (r)] ≤ m+ w − 1

|Fpoly|
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The MPC Protocol

Inputs of the party Pi: JxAKi, JQKi and JP Ki.
1. Compute JxBK = y −H ′JxAK, and then deduce JxK.
2. Compute JSK from JxK thanks to

JS(X)K =
∑
i

JxiK ·
∏
ℓ̸=i

X − γℓ
γi − γℓ

.

3. Get a random point r ∈ Fpoints (from a trusted source) and
check that S(r) ·Q(r) = P (r) · F (r).

Schwartz-Zippel Lemma: If S ·Q ̸= P · F , then

Pr
r

$←−Fpoints

[S(r) ·Q(r) = P (r) · F (r)] ≤ m+ w − 1

|Fpoints|

Fpoints is a field extension of Fpoly.
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The MPC Protocol

Inputs of the party Pi: JxAKi, JQKi and JP Ki.
1. Compute JxBK = y −H ′JxAK, and then deduce JxK.
2. Compute JSK from JxK.
3. Get a random point r ∈ Fpoints.
4. Compute 

JS(r)K = JSK(r)
JQ(r)K = JQK(r)
JP (r)K = JP K(r)

5. Using [BN20], check that S(r) ·Q(r) = P (r) · F (r).

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge
arguments for arithmetic circuits and their application to lattice-based
cryptography. PKC 2020.
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BN20 Checking Protocol

Inputs: (JxK, JyK, JzK) and (JaK, JbK, JcK).
1. The parties get a random ε ∈ Fpoints.
2. The parties locally set JαK = εJxK + JaK and JβK = JyK + JbK
3. The parties broadcast JαK and JβK to obtain α and β.
4. The parties locally set

JvK = εJzK− JcK + α · JbK + β · JaK− α · β.
5. The parties broadcast JvK to obtain v.
6. The parties output Accept if v = 0 and Reject otherwise.

(z = x · y) and (c = a · b) =⇒ v = 0

(z ̸= x · y) or (c ̸= a · b) =⇒ v = 0 with proba
1

|Fpoints|
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The MPC Protocol

Inputs of the party Pi:
JxAKi, JQKi and JP Ki
(JaKi, JbKi, JcKi) such that c = a · b

MPC Protocol:
1. Compute JxBK = y −H ′JxAK, and then deduce JxK.
2. Compute JSK from JxK.
3. Get a random point r, ε ∈ Fpoints.
4. Compute 

JS(r)K = JSK(r)
JQ(r)K = JQK(r)
JP (r)K = JP K(r)

5. Using [BN20], check that S(r) ·Q(r) = P (r) · F (r)

using (JaK, JbK, JcK) and ε.
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Summary

The MPC protocol π checks that (JxAK, JQK, JP K) describes a
solution of the SD instance (H, y).

Output of π
Accept Reject

A good witness 1 0
Not a good witness p 1− p

where

p =
m+ w − 1

|Fpoints|︸ ︷︷ ︸
false positive

from Schwartz-Zippel

+

(
1− m+ w − 1

|Fpoints|

)
· 1

|Fpoints|︸ ︷︷ ︸
false positive
from [BN20]
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MPC-in-the-Head paradigm

Prover P Verifier V
H, y, x such that H, y
y = Hx and wt(x) ≤ w

Prepare Q, P and (a, b, c).
Comi ← Com(inputs of Pi)

Com1,...,ComN−−−−−−−−−−−−→ r, ε ∈ Fpoints

Run the MPC protocol π r,ε←−−−−−−−−−−−−
for each party.

broadcast messages−−−−−−−−−−−−→ i∗
$←− {1, . . . , N}

i∗←−−−−−−−−−−−−
all Vi for i ̸=i∗−−−−−−−−−−−−→

Check that the views are consistent
Check that the MPC output is Accept
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Zero-Knowledge Protocol

Soundness error:

p+ (1− p) · 1
N

Proof size:
◦ Inputs of N − 1 parties:

- Party i < N : a seed of λ bits
- Last party:

k · log2 |FSD|︸ ︷︷ ︸
JxAKN

+2w · log2 |Fpoly|︸ ︷︷ ︸
JQKN ,JP KN

+ λ︸︷︷︸
JaKN ,JbKN

+ log2 |Fpoints|︸ ︷︷ ︸
JcKN

◦ Communication between parties: 2 elements of Fpoints.
◦ 2 hash digests (2× 2λ bits),
◦ Some commitment randomness + comi∗
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Comparison Zero-Knowledge Protocol for SD

Name Protocol Year Instance 1 Instance 2
Stern 1993 37.4 KB 46.1 KB
Véron 1997 31.7 KB 38.7 KB
CVE10 2010 - 37.4 KB

GPS21 (short) 2021 - 15.2 KB
GPS21 (fast) 2021 - 19.9 KB
FJR21 (short) 2021 13.6 KB 16.4 KB
FJR21 (fast) 2021 20.7 KB 25.6 KB
FJR22 (short) 2022 9.7 KB 6.9 KB
FJR22 (fast) 2022 14.4 KB 9.7 KB

Field size q 2 256
Code length m 1280 208

Code dimension k m/2 m/2
Hamming weight w 132 78

Security level λ 128 128

27 / 35
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Fiat-Shamir Transform

Signature algorithm:
Inputs:

- x such that y = Hx and wt(x) ≤ w
- the message mess to sign

1. Prepare the witness, i.e. the polynomials P and Q.
2. Commit to party’s inputs in distinct commitments

com1, . . . ,comN .
3. r, ε = Hash(mess, salt,com1, . . . ,comN ).
4. Run the MPC protocol π for each party.
5. i∗ = Hash(mess, salt, r, ε, broadcast messages).
6. Build the signature with the views of all the parties except

the party i∗.
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Security of the signature

5-round Identification Scheme ⇒ Signature

Attack of [KZ20]:

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1

(
τ
i

)
pi(1− p)τ−i

+N τ2

}

[KZ20] Daniel Kales and Greg Zaverucha. An attack on some signature schemes
constructed from five-pass identification schemes. CANS 2020.
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Parameters selected

Variant 1: SD over F2,

(m, k,w) = (1280, 640, 132)

We have Fpoly = F211.

Variant 2: SD over F2,

(m, k,w) = (1536, 888, 120)

but we split x := (x1 | . . . | x6) into 6 chunks and we prove
that wt(xi) ≤ w

6 for all i.
We have Fpoly = F28.
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Parameters selected

Variant 3: SD over F28 ,

(m, k,w) = (256, 128, 80)

We have Fpoly = F28.
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Performances

Security Assumption Computation Field
Variant 1 Over F2 F2048

Variant 2 Over F2 F256

Variant 3 Over F256 F256

Two trade-offs:
Fast: N = 32, τ = 27

Short: N = 256, τ = 17
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Comparison Code-based Signatures (1/2)

Scheme Name |sgn| |pk| tsgn tverif

BGS21 24.1 KB 0.1 KB - -
BGS21 22.5 KB 1.7 KB - -

GPS21 - 256 22.2 KB 0.11 KB - -
GPS21 - 1024 19.5 KB 0.12 KB - -
FJR21 (fast) 22.6 KB 0.09 KB 13 ms 12 ms
FJR21 (short) 16.0 KB 0.09 KB 62 ms 57 ms

BGKM22 - Sig1 23.7 KB 0.1 KB - -
BGKM22 - Sig2 20.6 KB 0.2 KB - -
BGKM22 - Sig3 17.0 KB 0.2 KB - -
FJR22 (v1-fast) 15.6 KB 0.09 KB - -
FJR22 (v1-short) 10.9 KB 0.09 KB - -
FJR22 (v2-fast) 17.0 KB 0.09 KB 13 ms 13 ms
FJR22 (v2-short) 11.8 KB 0.09 KB 64 ms 61 ms
FJR22 (256-fast) 11.5 KB 0.14 KB 6 ms 6 ms
FJR22 (256-short) 8.26 KB 0.14 KB 30 ms 27 ms
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Comparison Code-based Signatures (2/2)

Scheme Name |sgn| |pk| tsgn tverif

Durandal - I 3.97 KB 14.9 KB 4 ms 5 ms
Durandal - II 4.90 KB 18.2 KB 5 ms 6 ms
LESS-FM - I 15.2 KB 9.78 KB - -
LESS-FM - II 5.25 KB 205 KB - -
LESS-FM - III 10.39 KB 11.57 KB - -

Wave 2.07 KB 3.2 MB 300 ms -
FJR22 (v1-fast) 15.6 KB 0.09 KB - -
FJR22 (v1-short) 10.9 KB 0.09 KB - -
FJR22 (v2-fast) 17.0 KB 0.09 KB 13 ms 13 ms
FJR22 (v2-short) 11.8 KB 0.09 KB 64 ms 61 ms
FJR22 (256-fast) 11.5 KB 0.14 KB 6 ms 6 ms
FJR22 (256-short) 8.26 KB 0.14 KB 30 ms 27 ms
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Conclusion

Summary
☞ New signature scheme with Syndrome Decoding
☞ Small “signature size + public key size”

Future Work
☞ Optimize the signature implementation.
☞ Search parameter sets which provide better performances.
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