Thibauld Feneuil

Master Parisien de Recherche en Informatique et Télécom Paris

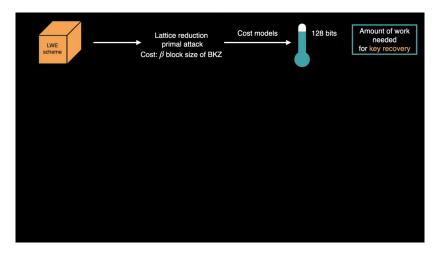
Mercredi 9 Septembre 2020

Une menace pour la cryptographie contemporaine

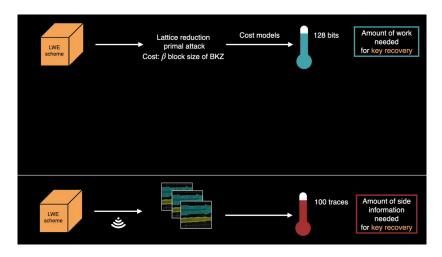
- Source : https://www.machinedesign.com/

Projet « Post-quantum cryptography »

Positionnement des travaux



Positionnement des travaux



Positionnement des travaux

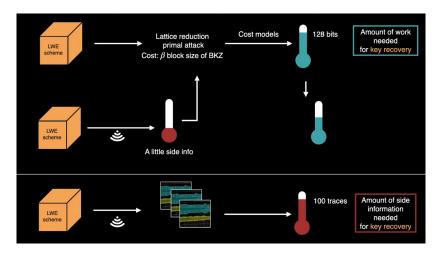


Table des matières

- Préliminaires
- 2 Le framework *Leaky-LWE-Estimator*
- 3 Améliorations du framework
- 4 Attaques pratiques avec le framework
- 6 Conclusion

Préliminaires

Table des matières

- Préliminaires
 - Réseaux euclidiens
 - Problème LWE
- 2 Le framework *Leaky-LWE-Estimator*
- 3 Améliorations du framework
- 4 Attaques pratiques avec le framework
- 6 Conclusion

Les réseaux euclidiens, qu'es aquò?

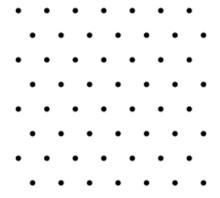


FIGURE – Un réseau de dimension 2

Les réseaux euclidiens, qu'es aquò?

Réseau euclidien

Sous-groupe discret additif de \mathbb{R}^m .

Réseau euclidien

Sous-groupe discret additif de \mathbb{R}^m .

Réseau euclidien (équivalent)

Ensemble des combinaisons linéaires à coefficients entiers de n vecteurs $\{\mathbf{b}_j\} \subset \mathbb{R}^m$ linéairement indépendants :

$$\Lambda := \left\{ \sum_{j} z_j \mathbf{b}_j : z_j \in \mathbb{Z} \right\}.$$

Nous appelons m la dimension de Λ et n son rang.

Un problème difficile sur les réseaux

Learning With Errors (LWE)

Soit une paire $(\mathbf{A} \in \mathbb{Z}_q^{n \times m}, \mathbf{b} = \mathbf{Az} + \mathbf{e} \in \mathbb{Z}_q^n)$ où

- $\mathbf{A} \leftarrow_{\$} \mathcal{M}_{n,m}(\mathbb{Z}_q),$
- $\begin{cases} \mathbf{z} \leftarrow_{\$} \chi^m \\ \mathbf{e} \leftarrow_{\$} \chi^n \end{cases}$, avec χ une petite distribution.

Trouver z.

Préliminaires

Un problème difficile sur les réseaux

Learning With Errors (LWE)

Soit une paire $(\mathbf{A} \in \mathbb{Z}_q^{n \times m}, \mathbf{b} = \mathbf{Az} + \mathbf{e} \in \mathbb{Z}_q^n)$ où

- $\mathbf{A} \leftarrow_{\$} \mathcal{M}_{n,m}(\mathbb{Z}_q),$
- $\begin{cases} \mathbf{z} \leftarrow_{\$} \chi^m \\ \mathbf{e} \leftarrow_{\$} \chi^n \end{cases}$, avec χ une petite distribution.

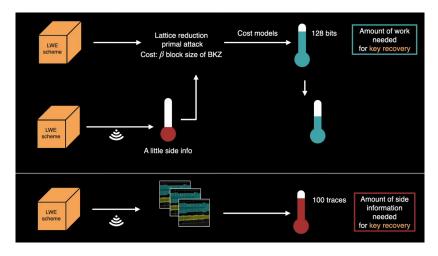
Trouver z.

Résoudre ce problème, pour certains choix de paramètres, est supposé difficile même avec l'usage de l'informatique quantique.

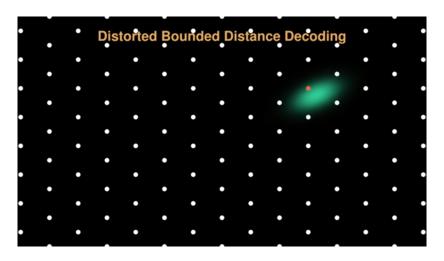
Préliminaires

- Préliminaires
- ${f 2}$ Le framework ${\it Leaky-LWE-Estimator}$
 - Distorted Bounded Distance Decoding
 - Intégration des indices
- 3 Améliorations du framework
- 4 Attaques pratiques avec le framework
- 6 Conclusion

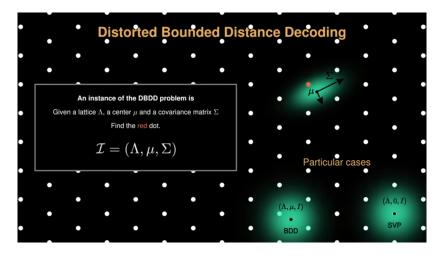
Le framework *Leaky-LWE-Estimator*



Distorted Bounded Distance Decoding (DBDD)



Distorted Bounded Distance Decoding (DBDD)

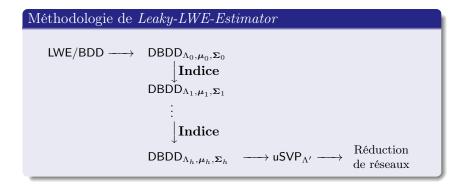


Exploiter des indices dans l'attaque primale

Intégration des indices :

Modification d'une instance DBDD $\mathcal{I} = (\Lambda, \mu, \Sigma)$.

Exploiter des indices dans l'attaque primale



Transformation en uSVP:

Le plus court vecteur est $\bar{\mathbf{s}} := (\mathbf{e}, \mathbf{z}, 1)$ en notant $(\mathbf{A}, \mathbf{b} = \mathbf{A}\mathbf{z} + \mathbf{e})$ le problème LWE initial.

Exploiter des indices dans l'attaque primale

Méthodologie de Leaky-LWE-Estimator

Réduction de réseau :

Algorithme β -BKZ : Base de $\Lambda \mapsto$ Vecteur court de Λ

Le β minimal nécessaire sera notre unité de mesure pour évaluer la sécurité des cryptosystèmes, nous appelerons bikz l'unité correspondante.

Préliminaires

Quatre types d'indices

- Indices parfaits : $\langle \mathbf{s}, \mathbf{v} \rangle = l$
- Indices modulaires : $\langle \mathbf{s}, \mathbf{v} \rangle \equiv l \pmod{k}$
- Indices bruités/approximés : $\langle \mathbf{s}, \mathbf{v} \rangle = l + \epsilon_{\sigma}$
- Vecteurs courts : $\mathbf{v} \in \Lambda$

 \square Chaque indice vont affecter le réseau Λ , le vecteur μ et la matrice de covariance de Σ d'une manière totalement prévisible.

Intégration des indices, formulaire

Type d'indices	Parfait	Modulaire
Formalisme	$\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle = 0$	$\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle \equiv 0 \pmod{k}$
Λ'	$\Lambda \cap \{\mathbf{x} : \langle \mathbf{x}, \bar{\mathbf{v}} \rangle = 0\}$	$\Lambda \cap \{\mathbf{x} : \langle \mathbf{x}, \bar{\mathbf{v}} \rangle \equiv 0 \pmod{k}\}$
μ'	$oldsymbol{\mu} - rac{\langle ar{\mathbf{v}}, oldsymbol{\mu} angle}{ar{\mathbf{v}}^T oldsymbol{\Sigma} ar{\mathbf{v}}} \cdot oldsymbol{\Sigma} ar{\mathbf{v}}$	μ
Σ'	$oldsymbol{\Sigma} - rac{(oldsymbol{\Sigma}ar{\mathbf{v}})(oldsymbol{\Sigma}ar{\mathbf{v}})^T}{ar{\mathbf{v}}^Toldsymbol{\Sigma}ar{\mathbf{v}}}$	Σ

Type d'indices	Bruité	Approximé
Formalisme	$\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle + \epsilon_{\sigma_e} = 0$	$\langle ar{\mathbf{s}}, ar{\mathbf{v}} angle \sim \mathcal{D}_{ap}$
Λ'	Λ	Λ
μ'	$\mu - rac{\langle ar{\mathbf{v}}, oldsymbol{\mu} angle}{ar{\mathbf{v}}^T oldsymbol{\Sigma} ar{\mathbf{v}} + \sigma_e^2} \cdot oldsymbol{\Sigma} ar{\mathbf{v}}$	$\Pi_{\bar{\mathbf{v}}}^{\perp} \boldsymbol{\mu} + \mu_{ap} \cdot \frac{\bar{\mathbf{v}}}{\ \bar{\mathbf{v}}\ ^2}$
Σ'	$\mathbf{\Sigma} - rac{(\mathbf{\Sigma}ar{\mathbf{v}})(\mathbf{\Sigma}ar{\mathbf{v}})^T}{ar{\mathbf{v}}^T\mathbf{\Sigma}ar{\mathbf{v}} + \sigma_e^2}$	$\Pi_{\bar{\mathbf{v}}}^{\perp} \cdot \mathbf{\Sigma} \cdot (\Pi_{\bar{\mathbf{v}}}^{\perp})^{T} + \sigma_{ap}^{2} \cdot \frac{\bar{\mathbf{v}}\bar{\mathbf{v}}^{T}}{\ \bar{\mathbf{v}}\ ^{4}}$

Table des matières

Préliminaires

- 1 Préliminaires
- 2 Le framework Leaky-LWE-Estimator
- 3 Améliorations du framework
 - Vers une amélioration des performances
 - Intégration des indices approximés
 - ullet Intégration des indices q-modulaires
- 4 Attaques pratiques avec le framework
- 6 Conclusion

Prenons un indice parfait « $\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle = 0$ » et étudions-le...

Prenons un indice parfait « $\langle \bar{\bf s},\bar{\bf v}\rangle=0$ » et étudions-le...

 \square Une instance LWE est un système d'équations q-modulaires :

$$\mathbf{b} \equiv \mathbf{A}\mathbf{z} + \mathbf{e} \pmod{q}$$

Prenons un indice parfait « $\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle = 0$ » et étudions-le...

$$\mathbf{b} \equiv \mathbf{A}\mathbf{z} + \mathbf{e} \pmod{q}$$

Nous pouvons utiliser $\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle = 0$ pour **retirer une équation**, et avec la transformation en DBDD, nous obtenons un Λ' tel que

$$\operatorname{rank}(\Lambda') = \operatorname{rank}(\Lambda) - 1$$
 et $\dim(\Lambda') = \dim(\Lambda) - 1$.

Préliminaires

Prenons un **indice parfait** « $\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle = 0$ » et étudions-le...

 \square Une instance LWE est un système d'équations q-modulaires :

$$\mathbf{b} \equiv \mathbf{Az} + \mathbf{e} \pmod{q}$$

Nous pouvons utiliser $\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle = 0$ pour **retirer une équation**, et avec la transformation en DBDD, nous obtenons un Λ' tel que

$$\operatorname{rank}(\Lambda') = \operatorname{rank}(\Lambda) - 1$$
 et $\dim(\Lambda') = \dim(\Lambda) - 1$.

™ Dans le framework, l'indice modifie le réseau avec

$$\Lambda' \leftarrow \Lambda \cap \{ \mathbf{x} : \langle \mathbf{x}, \bar{\mathbf{v}} \rangle = 0 \}.$$

eauction de aimension

Prenons un indice parfait « $\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle = 0$ » et étudions-le...

 \square Une instance LWE est un système d'équations q-modulaires :

$$\mathbf{b} \equiv \mathbf{Az} + \mathbf{e} \pmod{q}$$

Nous pouvons utiliser $\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle = 0$ pour **retirer une équation**, et avec la transformation en DBDD, nous obtenons un Λ' tel que

$$\operatorname{rank}(\Lambda') = \operatorname{rank}(\Lambda) - 1$$
 et $\dim(\Lambda') = \dim(\Lambda) - 1$.

Dans le framework, l'indice modifie le réseau avec

$$\Lambda' \leftarrow \Lambda \cap \{ \mathbf{x} : \langle \mathbf{x}, \bar{\mathbf{v}} \rangle = 0 \}.$$

Nous avons $\operatorname{rank}(\Lambda') = \operatorname{rank}(\Lambda) - 1$ et $\dim(\Lambda') = \dim(\Lambda)$.

Réduction de dimension

Soit une instance DBDD $\mathcal{I} = (\Lambda, \boldsymbol{\mu}, \boldsymbol{\Sigma})$. Il est possible de transformer \mathcal{I} en une instance $\mathcal{I}' = (\Lambda', \boldsymbol{\mu}', \boldsymbol{\Sigma}')$ dont le réseau est de rang maximal.

Si nous avons Γ tel que $\Lambda = \Gamma \Lambda'$ avec Λ' de rang maximal et rank $(\Lambda) = \text{rank}(\Lambda')$, alors

$$\begin{split} \boldsymbol{\mu}' &\leftarrow (\boldsymbol{\Gamma}^T \boldsymbol{\Gamma})^{-1} \boldsymbol{\Gamma}^T \cdot \boldsymbol{\mu}, \\ \boldsymbol{\Sigma}' &\leftarrow (\boldsymbol{\Gamma}^T \boldsymbol{\Gamma})^{-1} \boldsymbol{\Gamma}^T \cdot \boldsymbol{\Sigma} \cdot \boldsymbol{\Gamma} (\boldsymbol{\Gamma}^T \boldsymbol{\Gamma})^{-1}, \end{split}$$

Réduction de dimension

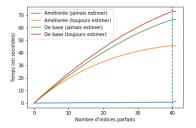
Soit une instance DBDD $\mathcal{I} = (\Lambda, \boldsymbol{\mu}, \boldsymbol{\Sigma})$. Il est possible de transformer \mathcal{I} en une instance $\mathcal{I}' = (\Lambda', \boldsymbol{\mu}', \boldsymbol{\Sigma}')$ dont le réseau est de rang maximal.

Si nous avons Γ tel que $\Lambda = \Gamma \Lambda'$ avec Λ' de rang maximal et rank $(\Lambda) = \text{rank}(\Lambda')$, alors

$$\begin{split} & \boldsymbol{\mu}' \leftarrow (\boldsymbol{\Gamma}^T \boldsymbol{\Gamma})^{-1} \boldsymbol{\Gamma}^T \cdot \boldsymbol{\mu}, \\ & \boldsymbol{\Sigma}' \leftarrow (\boldsymbol{\Gamma}^T \boldsymbol{\Gamma})^{-1} \boldsymbol{\Gamma}^T \cdot \boldsymbol{\Sigma} \cdot \boldsymbol{\Gamma} (\boldsymbol{\Gamma}^T \boldsymbol{\Gamma})^{-1}, \end{split}$$

À présent, les instances DBDD manipulées ont toutes leur réseau de rang maximal.

Amélioration des performances



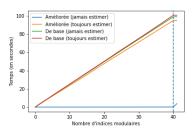


FIGURE – Comparaison de la vitesse de la version de base avec celle de la version améliorée de *Leaky-LWE-Estimator*.

Intégration des indices approximés

🖙 Étudions à présent les indices approximés...

Intégration des indices approximés

🖙 Étudions à présent les indices approximés...

Effet sur l'instance DBDD $\mathcal{I} = (\Lambda, \boldsymbol{\mu}, \boldsymbol{\Sigma})$

Nous connaissons la distribution a posteriori \mathcal{D}_{ap} de $\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle$, de moyenne μ_{ap} et de variance σ_{ap} . Pour prendre en compte cet indice, nous devons transformer \mathcal{I} en $\mathcal{I}' = (\Lambda, \boldsymbol{\mu}', \boldsymbol{\Sigma}')$ avec

$$\boldsymbol{\mu}' = \boldsymbol{\Pi}_{\bar{\mathbf{v}}}^{\perp} \boldsymbol{\mu} + \mu_{ap} \cdot \frac{\bar{\mathbf{v}}}{\|\bar{\mathbf{v}}\|^2}$$
$$\boldsymbol{\Sigma}' = (\boldsymbol{\Pi}_{\bar{\mathbf{v}}}^{\perp}) \cdot \boldsymbol{\Sigma} \cdot (\boldsymbol{\Pi}_{\bar{\mathbf{v}}}^{\perp})^T + \sigma_{ap}^2 \cdot \frac{\bar{\mathbf{v}}\bar{\mathbf{v}}^T}{\|\bar{\mathbf{v}}\|^4}$$

tegration des maices approximes

Étudions à présent les indices approximés...

Effet sur l'instance DBDD $\mathcal{I} = (\Lambda, \boldsymbol{\mu}, \boldsymbol{\Sigma})$

Nous connaissons la distribution a posteriori \mathcal{D}_{ap} de $\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle$, de moyenne μ_{ap} et de variance σ_{ap} . Pour prendre en compte cet indice, nous devons transformer \mathcal{I} en $\mathcal{I}' = (\Lambda, \mu', \Sigma')$ avec

$$\boldsymbol{\mu}' = \boldsymbol{\Pi}_{\bar{\mathbf{v}}}^{\perp} \boldsymbol{\mu} + \mu_{ap} \cdot \frac{\bar{\mathbf{v}}}{\|\bar{\mathbf{v}}\|^2}$$

$$\mathbf{\Sigma}' = (\Pi_{\bar{\mathbf{v}}}^{\perp}) \cdot \mathbf{\Sigma} \cdot (\Pi_{\bar{\mathbf{v}}}^{\perp})^T + \sigma_{ap}^2 \cdot \frac{\bar{\mathbf{v}}\bar{\mathbf{v}}^T}{\|\bar{\mathbf{v}}\|^4}$$

Problème...

Préliminaires

Il s'est révélé par la suite que ces formules sont valides uniquement dans le cas où le vecteur $\bar{\mathbf{v}}$ est un vecteur propre de Σ .

Intégration des indices approximés

Effet sur l'instance DBDD $\mathcal{I} = (\Lambda, \mu, \Sigma)$, version corrigée

Nous connaissons la distribution a posteriori \mathcal{D}_{ap} de $\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle$, de moyenne μ_{ap} et de variance σ_{ap} . Pour prendre en compte cet indice, nous devons transformer \mathcal{I} en $\mathcal{I}' = (\Lambda, \mu', \Sigma')$ avec

$$\mu' = \mu + \frac{\mu_{ap} - \langle \bar{\mathbf{v}}, \mu \rangle}{\bar{\mathbf{v}}^T \mathbf{\Sigma} \bar{\mathbf{v}}} \mathbf{\Sigma} \bar{\mathbf{v}}$$
$$\mathbf{\Sigma}' = \mathbf{\Sigma} + \left(\frac{\sigma_{ap}^2}{(\bar{\mathbf{v}}^T \mathbf{\Sigma} \bar{\mathbf{v}})^2} - \frac{1}{\bar{\mathbf{v}}^T \mathbf{\Sigma} \bar{\mathbf{v}}} \right) (\mathbf{\Sigma} \bar{\mathbf{v}}) (\mathbf{\Sigma} \bar{\mathbf{v}})^T$$

Intégration des indices approximés

Effet sur l'instance DBDD $\mathcal{I} = (\Lambda, \mu, \Sigma)$, version corrigée

Nous connaissons la distribution a posteriori \mathcal{D}_{ap} de $\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle$, de moyenne μ_{ap} et de variance σ_{ap} . Pour prendre en compte cet indice, nous devons transformer \mathcal{I} en $\mathcal{I}' = (\Lambda, \mu', \Sigma')$ avec

$$\mu' = \mu + \frac{\mu_{ap} - \langle \bar{\mathbf{v}}, \mu \rangle}{\bar{\mathbf{v}}^T \mathbf{\Sigma} \bar{\mathbf{v}}} \mathbf{\Sigma} \bar{\mathbf{v}}$$
$$\mathbf{\Sigma}' = \mathbf{\Sigma} + \left(\frac{\sigma_{ap}^2}{(\bar{\mathbf{v}}^T \mathbf{\Sigma} \bar{\mathbf{v}})^2} - \frac{1}{\bar{\mathbf{v}}^T \mathbf{\Sigma} \bar{\mathbf{v}}} \right) (\mathbf{\Sigma} \bar{\mathbf{v}}) (\mathbf{\Sigma} \bar{\mathbf{v}})^T$$

Les auteurs ont confirmé et corrigé leur article.

Intégration des indices q-modulaires

 $\ ^{\ }$ Étudions à présent un cas particulier des indices modulaires...

Intégration des indices q-modulaires

🖻 Étudions à présent un cas particulier des indices modulaires...

LWE = Système d'équations q-modulaires

Indice q-modulaire $\langle \langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle \equiv 0 \pmod{q} \rangle$ permet de retirer une équation.

⇒ Aussi « puissant » que les indices parfaits.

Intégration des indices q-modulaires

Effet sur l'instance DBDD $\mathcal{I} = (\Lambda, \boldsymbol{\mu}, \boldsymbol{\Sigma})$

Nous connaissons $\mathbf{v} \in \mathbb{Z}^{m+n}$ et $l \in \mathbb{Z}$ tels que $\langle \mathbf{s}, \mathbf{v} \rangle \equiv l \pmod{q}$. Pour prendre en compte cet indice, nous devons transformer \mathcal{I} en $\mathcal{I}' = (\Lambda', \mu', \Sigma')$ avec

$$\Lambda' = \mathbf{\Pi} \cdot (\Lambda \cap \{\mathbf{x} \in \mathbb{Z}^{m+n+1} : \langle \mathbf{x}, \bar{\mathbf{v}} \rangle \equiv 0 \pmod{q} \}),$$

$$\mu' = \mathbf{\Pi} \cdot \boldsymbol{\mu},$$

$$\Sigma' = \mathbf{\Pi} \cdot \boldsymbol{\Sigma} \cdot \mathbf{\Pi}^T,$$

où $\bar{\mathbf{v}} := (\mathbf{v}; -l)$ et $\mathbf{\Pi}$ est la matrice retirant la $p^{\text{ième}}$ coordonnée avec p un pivot possible de $\bar{\mathbf{v}}$ $(i.e.\ \bar{\mathbf{v}}_p \neq 0)$.

Table des matières

- 1 Préliminaires
- 2 Le framework Leaky-LWE-Estimator
- 3 Améliorations du framework
- 4 Attaques pratiques avec le framework
 - Attaques par gabarits
 - Attaque contre Kyber
 - Attaque contre Dilithium
- 6 Conclusion

Les cryptosystèmes de Crystals

Mécanisme d'encapsulation de clé

Signature

Mécanisme d'encapsulation de clé

Signature

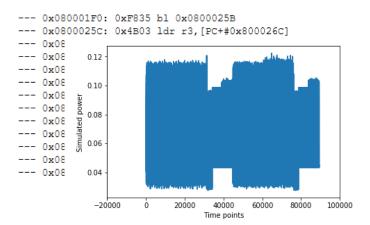
S'appuient sur un problème LWE structuré.

Attaques

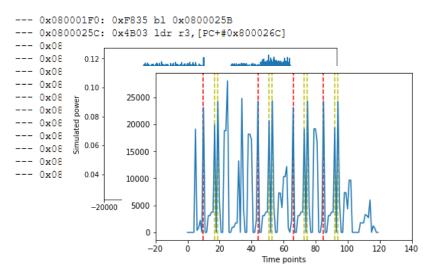
Utilisation de ELMO, un outil de simulation

```
--- 0x080001F0: 0xF835 bl 0x0800025B
--- 0x0800025C: 0x4B03 ldr r3, [PC+#0x800026C]
--- 0x0800025C: 0x4B03 ldr r3, [PC+#0x800026C]
--- 0x0800025E: 0x4A04 ldr r2, [PC+#0x8000270]
--- 0x0800025E: 0x4A04 ldr r2, [PC+#0x8000270]
--- 0x08000260: 0x4343 muls r3,r0
--- 0x08000262: 0x169B asrs r3,r3,#0x1A
--- 0x08000264: 0x4353 muls r3,r2
--- 0x08000268: 0x1AC0 subs r0,r0,r3
--- 0x08000268: 0xB200 sxth r0,r0
--- 0x0800026A: 0x4770 bx r14
--- 0x080001F2: 0x8020 strh r0,[r4,#0x200015E8]
--- 0x080001F2: 0x8020 strh r0,[r4,#0x200015E8]
```

Utilisation de ELMO, un outil de simulation



Utilisation de ELMO, un outil de simulation



Attaques par gabarits (template attacks)

Instruction assembleur étudiée : la multiplication.

En pratique, multiplication entre

- une variable connue $\omega \in \Omega$ et
- une variable inconnue dépendant du secret $a \in \Delta$.

Attaques par gabarits (template attacks)

Instruction assembleur étudiée : la multiplication.

En pratique, multiplication entre

- une variable connue $\omega \in \Omega$ et
- une variable inconnue dépendant du secret $a \in \Delta$.

```
Un « Gabarit » : la consommation moyenne de courant de la multiplication pour \omega et a fixés
```

 \square Pré-déterminons les gabarits pour tous les a et ω possibles.

Préliminaires

Attaques par gabarits (template attacks)

Instruction assembleur étudiée : la multiplication.

En pratique, multiplication entre

- une variable connue $\omega \in \Omega$ et
- une variable inconnue dépendant du secret $a \in \Delta$.

Un « Gabarit » : la consommation **moyenne** de courant de la multiplication pour ω et a fixés

 $\ ^{\ }$ Pré-déterminons les gabarits pour tous les a et ω possibles.

L'attaque par canaux auxiliaires va nous fournir une consommation pour la multiplication pour un certain ω . Par **maximum de vraisemblance**, nous pourrons extrapoler la valeur de a.

Attaque contre Kyber

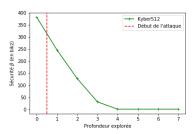
Mais que pouvons-nous attaquer?

- Objectifs possibles : restauration de la clé privée ou du message;
- Contextes possibles : génération de clé, chiffrement, déchiffrement ;
- Cibles possibles : multiplication matricielle, NTT, InvNTT, ...

Attaque contre Kyber

Attaque

- Contexte : la génération de clé
- Cible: la NTT (Number Theoretic Transform)
- Instruction assembleur attaquée : la multiplication
- Composant attaqué : Processeur ARM Cortex M0



Attaque contre Dilithium

Attaque

- Contexte : le processus de signature
- Cible: la NTT (Number Theoretic Transform)
- Instruction assembleur attaquée : la multiplication
- Composant attaqué : Processeur ARM Cortex M0

Attaque contre Dilithium

Attaque

- Contexte : le processus de signature
- Cible: la NTT (Number Theoretic Transform)
- Instruction assembleur attaquée : la multiplication
- Composant attaqué : Processeur ARM Cortex M0

Principe

Même attaque que celle contre la NTT de la génération de clé de Kyber :

- NTT(s) effectué à chaque signature, multi-traces possible;
- q = 8 380 417, restriction aux deux premières itérations de la NTT.

Attaque contre Dilithium

Attaque

- Contexte : le processus de signature
- Cible : la NTT (Number Theoretic Transform)
- Instruction assembleur attaquée : la multiplication
- Composant attaqué : Processeur ARM Cortex M0

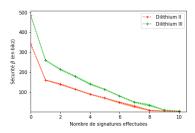


Table des matières

- 6 Conclusion

Conclusion

Les contributions du stage :

- Framework *Leaky-LWE-Estimator* plus complet et plus performant utilisable par un cryptanalyste ne maîtrisant pas la notion de réduction de réseaux;
- Utilité du framework démontrée à travers diverses attaques réalistes.

Travaux prochainement disponibles sur https://github.com/lducas/leaky-LWE-Estimator

Conclusion

Merci pour votre attention.

Avez-vous des questions?

Le projet « Post-Quantum Cryptography » du NIST

Le Mercredi 22 Juillet 2020,

$Passage \ au \ stade \ 3 \ du \ processus \ de \ standardisation$

Les finalistes sont

Type	PKE/KEM	Signature	
A base de réseaux	 Crystals-Kyber NTRU Saber	 Crystals-Dilithium Falcon	
A base de codes	Classic McEliece		
Multivarié		Rainbow	

Exemples de sécurité

Problème LWE : $(A \in \mathbb{Z}_q^{n \times m}, b = Az + e)$ avec $z \in \chi^m$ et $e \in \chi^n$.

	q	n	m	σ_{χ}	Sécurité	Sécurité
Frodo640	2^{15}	640	640	2.75	484 bikz	144-178 bits
Frodo1344	2^{16}	1344	1344	2.75	930 bikz	277-342 bits
Kyber512	3329	512	512	1.0	380 bikz	113-140 bits
Kyber1024	3329	1024	1024	1.0	880 bikz	262-324 bits
DilithiumII	8380417	1024	768	3.6	340 bikz	101-125 bits
DilithiumIV	8380417	1536	1280	1.1	605 bikz	180-222 bits

Indices utiles?

Fuites par canaux auxiliaires:

- rarement linéaire par rapport à \bar{s} ;
- souvent une information binaire (ex. poids de Hamming).

Indices utiles?

Fuites par canaux auxiliaires:

- rarement linéaire par rapport à **s**;
- souvent une information binaire (ex. poids de Hamming).

Leaky-LWE-Estimator prend en charge:

- Fuite directe d'un coefficient de $\bar{\mathbf{s}} : \bar{\mathbf{s}}_0 = l$;
- Fuite des bits de poids faible : $\bar{\mathbf{s}}_0 \equiv l \pmod{2}$;

Indices utiles?

Fuites par canaux auxiliaires:

- rarement linéaire par rapport à **s**;
- souvent une information binaire (ex. poids de Hamming).

Leaky-LWE-Estimator prend en charge:

- Fuite directe d'un coefficient de $\bar{\mathbf{s}} : \bar{\mathbf{s}}_0 = l$;
- Fuite des bits de poids faible : $\bar{\mathbf{s}}_0 \equiv l \pmod{2}$;
- Informations linéaires d'une fuite non-linéaire : $H(\bar{\mathbf{s}}_0) = 2$ Alors si supp $(s_i) = \{-5, ..., 5\}$, alors $\bar{\mathbf{s}}_0 \in \{3, 5\}$.
 - Un indice modulaire : $\bar{\mathbf{s}}_0 \equiv 2 \pmod{2}$
 - Un indice approximé : $\bar{\mathbf{s}}_0 = 4 + \varepsilon$ avec $\sigma_{\varepsilon}^2 = 1$

Réduction de dimension

Réduction de dimension

Soit une instance DBDD $\mathcal{I} = (\Lambda, \boldsymbol{\mu}, \boldsymbol{\Sigma})$. Il est possible de transformer \mathcal{I} en une instance $\mathcal{I}' = (\Lambda', \boldsymbol{\mu}', \boldsymbol{\Sigma}')$ dont le réseau est de rang maximal.

Si nous avons Γ tel que $\Lambda = \Gamma \Lambda'$ avec Λ' de rang maximal et rank $(\Lambda) = \text{rank}(\Lambda')$, alors

$$\begin{split} & \boldsymbol{\mu}' \leftarrow (\boldsymbol{\Gamma}^T \boldsymbol{\Gamma})^{-1} \boldsymbol{\Gamma}^T \cdot \boldsymbol{\mu}, \\ & \boldsymbol{\Sigma}' \leftarrow (\boldsymbol{\Gamma}^T \boldsymbol{\Gamma})^{-1} \boldsymbol{\Gamma}^T \cdot \boldsymbol{\Sigma} \cdot \boldsymbol{\Gamma} (\boldsymbol{\Gamma}^T \boldsymbol{\Gamma})^{-1}, \end{split}$$

Réduction de dimension

Après l'intégration d'un indice parfait « $\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle = 0$ », le Γ suivant vérifie les hypothèses du théorème.

$$oldsymbol{\Gamma} = \left(egin{array}{ccc} oldsymbol{\mathrm{I}} & oldsymbol{\mathrm{O}} \ -\mathbf{v}_1^T & -\mathbf{v}_2^T \ oldsymbol{\mathrm{O}} & oldsymbol{\mathrm{I}} \end{array}
ight)$$

où \mathbf{v}_1 et \mathbf{v}_2 sont définis par la relation $\bar{\mathbf{v}}^T = (\mathbf{v}_1^T, 1, \mathbf{v}_2^T)$.

Réduction de dimension

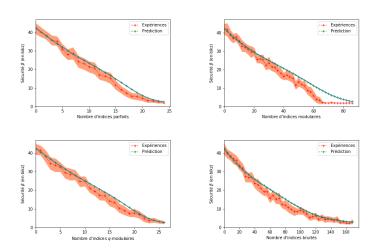
Après l'intégration d'un indice parfait « $\langle \bar{\mathbf{s}}, \bar{\mathbf{v}} \rangle = 0$ », le Γ suivant vérifie les hypothèses du théorème.

$$oldsymbol{\Gamma} = \left(egin{array}{ccc} oldsymbol{\mathrm{I}} & oldsymbol{\mathrm{O}} \ -oldsymbol{\mathrm{v}}_1^T & -oldsymbol{\mathrm{v}}_2^T \ oldsymbol{\mathrm{O}} & oldsymbol{\mathrm{I}} \end{array}
ight)$$

où \mathbf{v}_1 et \mathbf{v}_2 sont définis par la relation $\bar{\mathbf{v}}^T = (\mathbf{v}_1^T, 1, \mathbf{v}_2^T)$.

À présent, les instances DBDD manipulées ont toutes leur réseau de rang maximal.

Validations des améliorations



ELMO, un outil de simulation

Qu'est-ce que ELMO?

Outil permettant de simuler la consommation de courant d'un programme exécuté sur un processeur ARM Cortex M0.

Le modèle de fuite

$$y = \delta + [\mathbf{I_p}|\mathbf{I_s}|\mathbf{D}|\mathbf{DxIp}|\mathbf{DxIs}]\boldsymbol{\beta} + \varepsilon$$

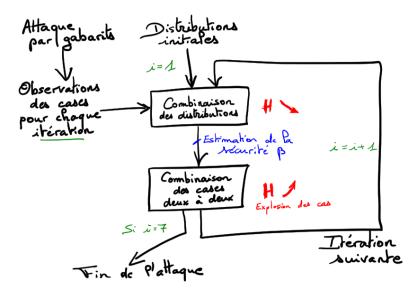
Qualitativement

La consommation d'énergie d'une instruction dépend :

- du type de l'instruction précédente et de ses deux opérandes ;
- du type de l'instruction courante et de ses deux opérandes;
- du type de l'instruction suivante.

Attaque

- Contexte : la génération de clé
- Cible: la NTT (Number Theoretic Transform)
- Instruction assembleur attaquée : la multiplication
- Composant attaqué : Processeur ARM Cortex M0



Attaque 1

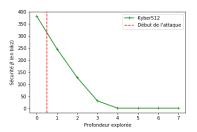
- Contexte : la génération de clé
- Cible : la NTT (Number Theoretic Transform)
- Instruction assembleur attaquée : la multiplication
- Composant attaqué : Processeur ARM Cortex M0

Principe

L'attaque consiste donc à trouver un juste milieu entre la divergence provoquée par la combinaison des cases deux à deux et une élimination modérée des possibilités.

Attaque 1

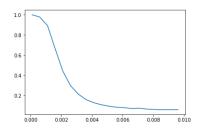
- Contexte : la génération de clé
- Cible: la NTT (Number Theoretic Transform)
- Instruction assembleur attaquée : la multiplication
- Composant attaqué : Processeur ARM Cortex M0



Autre attaque contre Kyber

Attaque contre Kyber

- Contexte : la génération de clé
- Cible: la multiplication matricielle points par points
- Instruction assembleur attaquée : la multiplication
- Composant attaqué : Processeur ARM Cortex M0

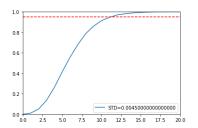


Taux de restauration de la NTT du secret

Autre attaque contre Kyber

Attaque contre Kyber

- Contexte : le déchiffrement
- Cible : la multiplication matricielle points par points
- Instruction assembleur attaquée : la multiplication
- Composant attaqué : Processeur ARM Cortex M0



Taux de restauration de la NTT du secret en fonction du nombre de déchiffrements.