
Post-Quantum Signatures from
Secure Multiparty Computation

Thibauld Feneuil 

PhD Defense

October 23, 2023 — Paris (France)

Table of Contents

• Introduction

• MPC-in-the-Head: general principle

• From MPC-in-the-Head to signatures

‣ Achieving small signature sizes

‣ Achieving fast running times

• Conclusion

2

Introduction

3

Digital signatures

Alice Bob

Un email,

un PDF, …

Who sends this
document ?

4

Digital signatures

Alice’s private key

Alice’s public key

Alice Bob

4

Digital signatures

Alice’s private key
Alice’s public key

Alice’s public key

Alice Bob

4

Digital signatures

Alice’s private key
Alice’s public key

Alice’s public key

Alice Bob
uses the private key 

to sign the digital document.

4

Digital signatures

Alice’s private key
Alice’s public key

Alice’s public key

Alice Bob
uses the private key 

to sign the digital document.

4

Digital signatures

Alice’s private key
Alice’s public key

Alice’s public key

Alice Bob
uses the private key 

to sign the digital document.
uses the public key 

to verify the signature.

4

Digital signatures

Alice’s private key
Alice’s public key

Alice’s public key

Alice Bob
uses the private key 

to sign the digital document.
uses the public key 

to verify the signature.

Security Notion: Should be impossible to forge a valid signature

without the corresponding private key.

4

Digital signatures

A problem which is very hard to solve

The solution of the above problem

Given , find non-trivial

such that .
N (p, q)

N = pq
(p, q)

Example

Existing signature schemes

will be broken by the future

quantum computers.

Problematic: build new signature schemes which would
be secure even against quantum computers.

5

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

Very hard 
to compute

6

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

I know the
private key.

I am convinced.

Large(r) signatures

Short public key

Very hard 
to compute

From an
identification scheme

6

How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

From an
identification scheme

Large(r) signatures

Short public key

Very hard 

I know the
private key.

I am convinced.

Identification Scheme

• Completeness: Pr[verif ✓ | honest prover] = 1

• Soundness: Pr[verif ✓ | malicious prover] (e.g.)

• Zero-knowledge: verifier learns nothing on .

≤ ε 2−128

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier

I know .

I am convinced.

7

Identification Scheme

Challenge 1 = Hash(m, Commitment)

Prover

Verifier

Challenge = Hash(m, Response)n n − 1

⋮

I know .

Transcript

Fiat-Shamir

Transformation

7
m: message to sign

MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:

“Zero-knowledge from secure multiparty computation” (STOC 2007)

• Turn a multiparty computation (MPC) into an identification scheme

• Generic: can be apply to any cryptographic problem

8

One-way function

E.g. AES, MQ system,  
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing  
 

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

9

One-way function

E.g. AES, MQ system,  
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing  
 

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

9

One-way function

E.g. AES, MQ system,  
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing  
 

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

 s.t. [[x]] = ([[x]]1, …, [[x]]N) x = [[x]]1 + … + [[x]]N

9

One-way function

E.g. AES, MQ system,  
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing  
 

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

9

One-way function

E.g. AES, MQ system,  
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing  
 

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

9

One-way function

E.g. AES, MQ system,  
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing  
 

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

MPC-in-the-Head transform

9

MPCitH: general principle

10

MPC model

[[x]]1

• Jointly compute

• private: the views of any
parties provide no information on

• Semi-honest model: assuming that the
parties follow the steps of the protocol

• Broadcast model

‣ Parties locally compute on their shares

‣ Parties broadcast and recompute

‣ Parties start again (now knowing)

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

11

x = [[x]]1 + [[x]]2 + … + [[x]]N

MPC model

[[x]]1

• Jointly compute

• private: the views of any
parties provide no information on

• Semi-honest model: assuming that the
parties follow the steps of the protocol

• Broadcast model

‣ Parties locally compute on their shares

‣ Parties broadcast and recompute

‣ Parties start again (now knowing)

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

Public

domain

[[α]]1
[[α]]2

[[α]]3

[[α]]4

[[α]]5

11

x = [[x]]1 + [[x]]2 + … + [[x]]N

MPCitH transform

Prover Verifier

12

MPCitH transform

Prover Verifier

① Generate and commit shares  
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

12

MPCitH transform

Prover Verifier

① Generate and commit shares  
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

12

MPCitH transform

Prover Verifier

① Generate and commit shares  
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③ Choose a random party 
i* ←$ {1,…, N}i*

12

MPCitH transform

Prover Verifier

① Generate and commit shares  
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

② Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③ Choose a random party 
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

i*

12

MPCitH transform

Prover Verifier

① Generate and commit shares  
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③ Choose a random party 
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check

 - Commitments

 - MPC computation  
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

12

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares  
 

 

We have where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

13

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares  
 

 

We have where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast

 [[α]]1, …, [[α]]N

② Run MPC in their head

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

13

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares  
 

 

We have where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast

 [[α]]1, …, [[α]]N ③ Choose a random party 

i* ←$ {1,…, N}
i*

② Run MPC in their head

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

13

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares  
 

 

We have where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast

 [[α]]1, …, [[α]]N ③ Choose a random party 

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

② Run MPC in their head

④ Open parties {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

13

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares  
 

 

We have where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast

 [[α]]1, …, [[α]]N ③ Choose a random party 

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

⑤ Check

 - Commitments

 - MPC computation  
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

② Run MPC in their head

④ Open parties {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Cheating detected!

MPCitH transform

Malicious Prover Verifier

① Generate and commit shares  
 

 

We have where 

[[x]] = ([[x]]1, …, [[x]]N)

F(x) ≠ y
x := [[x]]1 + … + [[x]]N

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

send broadcast

 [[α]]1, …, [[α]]N ③ Choose a random party 

i* ←$ {1,…, N}
i*

([[x]]i, ρi)i≠i*

⑤ Check

 - Commitments

 - MPC computation  
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

② Run MPC in their head

④ Open parties {1,…, N}∖{i*}

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

Seems OK.

MPCitH transform

• Zero-knowledge MPC protocol is -private⟺ (N − 1)

14

MPCitH transform

• Zero-knowledge MPC protocol is -private

• Soundness:

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

14

MPCitH transform

• Zero-knowledge MPC protocol is -private

• Soundness:

• Parallel repetition

Protocol repeated times in parallel, soundness error

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

τ (1
N)

τ

14

From MPC-in-the-Head to signatures

15

20
07

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

Invention of the
MPC-in-the-Head

framework

LowMC

AES

Rain

32.1

12.1 12.3

6.6

30.9

13.0

9.7

5.0

6.8

Signature size
(in kilobytes)

SPHINCS+

Lo
ga

rit
hm

ic
 s

ca
le

16

SPHINCS+

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20
25

Signature size
(in kilobytes)

Lo
ga

rit
hm

ic
 s

ca
le

Syndrome Decoding Problem:
From a matrix and a vector , find such that

• ,
• has at most non-zero coordinates.

H y x
y = Hx
x w

17

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20
25

Signature size
(in kilobytes)

Lo
ga

rit
hm

ic
 s

ca
le

Binary field

37.4

31.7

SPHINCS+

Syndrome Decoding Problem:
From a matrix and a vector , find such that

• ,
• has at most non-zero coordinates.

H y x
y = Hx
x w

17

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20
25

Signature size
(in kilobytes)

Lo
ga

rit
hm

ic
 s

ca
le

Binary field

37.4

46.1

31.7

38.7 37.4

21.2

Medium-size field

SPHINCS+

Syndrome Decoding Problem:
From a matrix and a vector , find such that

• ,
• has at most non-zero coordinates.

H y x
y = Hx
x w

17

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20
25

Signature size
(in kilobytes)

Lo
ga

rit
hm

ic
 s

ca
le

Binary field

37.4

46.1

31.7

38.7 37.4

24.8

21.2

Medium-size field

22.5
Quasi-cyclic

SPHINCS+

Syndrome Decoding Problem:
From a matrix and a vector , find such that

• ,
• has at most non-zero coordinates.

H y x
y = Hx
x w

17

SPHINCS+

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20
25

Signature size
(in kilobytes)

Lo
ga

rit
hm

ic
 s

ca
le

Binary field

37.4

46.1

31.7

38.7 37.4

24.8

16.0

21.2

8.5

12.1

Medium-size field

22.5
Quasi-cyclic

MPC-in-the-Head

[FJR22] Feneuil, Joux, Rivain: “Syndrome Decoding
in the Head: Shorter Signatures from Zero-
Knowledge Proofs” (ePrint 2022/188, Crypto 2022)

[FJR23] Feneuil, Joux, Rivain: “Shared Permutation
for Syndrome Decoding: New Zero-Knowledge
Protocol and Code-Based Signature” (ePrint
2021/1576, Journal DCC)

Syndrome Decoding Problem:
From a matrix and a vector , find such that

• ,
• has at most non-zero coordinates.

H y x
y = Hx
x w

17

SPHINCS+

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20
25

Signature size
(in kilobytes)

Lo
ga

rit
hm

ic
 s

ca
le

Binary fi

37.4

46.1

31.7

38.7 37.4

24.8

16.0

21.2

8.5

12.1

Medium-size fi

22.5
Quasi-cyclic

MPC-in-the-Head

[FJR22] Feneuil, Joux, Rivain: “Syndrome Decoding
in the Head: Shorter Signatures from Zero-
Knowledge Proofs” (ePrint 2022/188, Crypto 2022)

[FJR23] Feneuil, Joux, Rivain: “Shared Permutation
for Syndrome Decoding: New Zero-Knowledge
Protocol and Code-Based Signature” (ePrint
2021/1576, Journal DCC)

Syndrome Decoding Problem:
From a matrix and a vector , find such that

• ,
• has at most non-zero coordinates.

H y x
y = Hx
x w

17

One-way function

E.g. AES, MQ system,  
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing  
 

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

 s.t. [[x]] = ([[x]]1, …, [[x]]N) x = [[x]]1 + … + [[x]]N

18

The multiparty computation must check that the vector
satisfies

 and .

x

y = Hx wH(x) ≤ w

linear, easy to check non-linear, hard to check

A MPC protocol for the SD problem

19

The multiparty computation must check that the vector
satisfies

and

 two polynomials : and

where

 is defined by interpolation such that ,

.

x

y = Hx

∃Q, P SQ = PF deg Q = w

S ∀i, S(γi) = xi

F :=
m

∏
i=1

(X − γi)

A MPC protocol for the SD problem

19

Let us assume that there exists such that

 and

where

 is defined by interpolation such that

.

Q, P ∈ 𝔽[X]

S ⋅ Q = P ⋅ F deg Q = w

S ∀i, S(γi) = xi

F :=
m

∏
i=1

(X − γi)

20

Let us assume that there exists such that

 and

where

 is defined by interpolation such that

.

Then, one can deduce that

Q, P ∈ 𝔽[X]

S ⋅ Q = P ⋅ F deg Q = w

S ∀i, S(γi) = xi

F :=
m

∏
i=1

(X − γi)

∀i ≤ m, (Q ⋅ S)(γi) = P(γi) ⋅ F(γi) = 0

20

Let us assume that there exists such that

 and

where

 is defined by interpolation such that

.

Then, one can deduce that

 or

Q, P ∈ 𝔽[X]

S ⋅ Q = P ⋅ F deg Q = w

S ∀i, S(γi) = xi

F :=
m

∏
i=1

(X − γi)

∀i ≤ m, (Q ⋅ S)(γi) = P(γi) ⋅ F(γi) = 0

⇒ ∀i ≤ m, Q(γi) = 0 S(γi) = xi = 0

20

Let us assume that there exists such that

 and

where

 is defined by interpolation such that

.

Then, one can deduce that

 or

i.e.,

Q, P ∈ 𝔽[X]

S ⋅ Q = P ⋅ F deg Q = w

S ∀i, S(γi) = xi

F :=
m

∏
i=1

(X − γi)

∀i ≤ m, (Q ⋅ S)(γi) = P(γi) ⋅ F(γi) = 0

⇒ ∀i ≤ m, Q(γi) = 0 S(γi) = xi = 0

wtH(x) = #{i : xi ≠ 0} ≤ w
20

Such polynomial can be built as

And since divides .

()

Q

Q := Q′￼⋅ ∏
i:xi≠0

(X − γi)

P :=
S ⋅ Q

F
F S ⋅ Q

∀i, S(γi) = xi

The non-zero positions of
are encoding as roots.

x

21

We want to build a MPC protocol which checks if some vector
is a syndrome decoding solution.

Let us assume that . We split as .

We have , so

.

H = (H′￼| I) x (xA
xB)

y = Hx

xB = y − H′￼xA

A MPC protocol for the SD problem

22

We want to build a MPC protocol which checks if some vector
is a syndrome decoding solution.

Let us assume that . We split as .

We have , so

.

Inputs of the MPC protocol:

Aim of the MPC protocol:

Check that corresponds to a syndrome decoding solution.

H = (H′￼| I) x (xA
xB)

y = Hx

xB = y − H′￼xA

xA, Q, P

xA

A MPC protocol for the SD problem

22

Inputs of the MPC protocol:

1. Build and deduce .

We have

.

xA, Q, P

xB := y − H′￼xA x := (xA
xB)

y = Hx

A MPC protocol for the SD problem

23

Inputs of the MPC protocol:

1. Build and deduce .

2. Build the polynomial by interpolation such that

.

xA, Q, P

xB := y − H′￼xA x := (xA
xB)

S

∀i, S(γi) = xi

A MPC protocol for the SD problem

Interpolation Formula:

.S(X) = ∑
i

xi ⋅ ∏
ℓ≠i

X − γℓ

γi − γℓ
23

Inputs of the MPC protocol:

1. Build and deduce .

2. Build the polynomial by interpolation such that

.

3. Check that .

xA, Q, P

xB := y − H′￼xA x := (xA
xB)

S

∀i, S(γi) = xi

S ⋅ Q = P ⋅ F

A MPC protocol for the SD problem

23

Inputs of the MPC protocol:

1. Build and deduce .

2. Build the polynomial by interpolation such that

.

3. Get a random point from a field extension .

4. Compute , and .

5. Using [BN20], check that .

xA, Q, P

xB := y − H′￼xA x := (xA
xB)

S

∀i, S(γi) = xi

r 𝔽points

S(r) Q(r) P(r)

S(r) ⋅ Q(r) = P(r) ⋅ F(r)

A MPC protocol for the SD problem

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for
arithmetic circuits and their application to lattice-based cryptography. PKC 2020.

23

Even if does not describe a SD solution, implying that
, the MPC protocol can output Accept if

Case 1:

which occurs with probability (Schwartz-Zippel Lemma)

xA
S ⋅ Q ≠ P ⋅ F

S(r) ⋅ Q(r) = P(r) ⋅ F(r)

Pr
r←𝔽points

[S(r) ⋅ Q(r) = P(r) ⋅ F(r)] ≤
m + w − 1

|𝔽points |

A MPC protocol for the SD problem

24

Even if does not describe a SD solution, implying that
, the MPC protocol can output Accept if

Case 1:

which occurs with probability (Schwartz-Zippel Lemma)

Case 2: the [BN20] protocol failed, which occurs with probability

.

xA
S ⋅ Q ≠ P ⋅ F

S(r) ⋅ Q(r) = P(r) ⋅ F(r)

Pr
r←𝔽points

[S(r) ⋅ Q(r) = P(r) ⋅ F(r)] ≤
m + w − 1

|𝔽points |

1
|𝔽points |

A MPC protocol for the SD problem

24

The MPC protocol checks that describes a
solution of the SD instance .

(xA, Q, P)
(H, y)

A MPC protocol for the SD problem

where

p =
m + w − 1

|𝔽points |
+ (1 −

m + w − 1
|𝔽points |) ⋅

1
|𝔽points |

Protocol Output

Accept Reject

A good witness 1 0

Not a good witness p 1 − p

False positive 
from Schwartz-Zippel

False positive 
from [BN20]

One-way function

E.g. AES, MQ system,  
 Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing  
 

Joint evaluation of:

[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you
know x

x y
Signature scheme

x
Hash

function

msg

signature

MPC-in-the-Head transform

26

Soundness error:

To achieve negligible soundness error, we repeat the zero-
knowledge proof times such that .

ϵ :=
1
N

+ (1 −
1
N) ⋅ p

τ ϵτ < 2−λ

Resulting Zero-Knowledge Proof for SD

27

Soundness error:

To achieve negligible soundness error, we repeat the zero-
knowledge proof times such that .

ϵ :=
1
N

+ (1 −
1
N) ⋅ p

τ ϵτ < 2−λ

Resulting Zero-Knowledge Proof for SD

Signature scheme: to obtain the signature scheme, we just
need to apply the

Fiat-Shamir transform.

27

Parameter Selection (128-bit security):

Syndrome Decoding problem over

The MPCitH parameters:

Resulting size (short variant):

 kilobytes

𝔽256

N = 256, τ = 17

≈ 8,5

Signature Scheme

28

Using few optimisations

(Seed trees, …)

Signature Scheme

Notes:

We can apply to binary syndrome decoding problem, but it
requires a field lifting for the polynomials .

In the thesis, we propose also another approach, namely

the shared-permutation framework,

but it leads to larger sizes for the SD problem.

S, Q, P, F

28

Parameter Selection (128-bit security):

Syndrome Decoding problem over

The MPCitH parameters:

Resulting size (short variant):

 kilobytes

𝔽256

N = 256, τ = 17

≈ 8,5
Using few optimisations

(Seed trees, …)

Exploring other assumptions

• Subset Sum Problem: KB KB

‣ Problem over a very large modulo

‣ Key Idea: Sharing over integers, signature with aborts

≥ 100 ⇒ 19.1
q ≈ 2256

29

[FMRV22] Feneuil, Maire, Rivain, Vergnaud. Zero-Knowledge Protocols for the Subset
Sum Problem from MPC-in-the-Head with Rejection. Asiacrypt 2022.

Exploring other assumptions

• Subset Sum Problem: KB KB

‣ Problem over a very large modulo

‣ Key Idea: Sharing over integers, signature with aborts

• Multivariate Quadratic Problem: KB

‣ Problem with a cubic number of multiplications

‣ Key Idea: Batching over all the quadratic equations

≥ 100 ⇒ 19.1
q ≈ 2256

6.3 − 7.3

29

[Fen22] Feneuil. Building MPCitH-based Signatures from MQ, MinRank, and Rank
SD. To appear to ACNS 2024.

Exploring other assumptions

• Subset Sum Problem: KB KB

‣ Problem over a very large modulo

‣ Key Idea: Sharing over integers, signature with aborts

• Multivariate Quadratic Problem: KB

‣ Problem with a cubic number of multiplications

‣ Key Idea: Batching over all the quadratic equations

• MinRank Problem / Rank Syndrome Decoding Problem: KB

‣ Problems relying on the rank metric

‣ Key Idea: Usage of -polynomials

≥ 100 ⇒ 19.1
q ≈ 2256

6.3 − 7.3

≈ 5.5

q

29

[Fen22] Feneuil. Building MPCitH-based Signatures from MQ, MinRank, and Rank
SD. To appear to ACNS 2024.

Exploring other assumptions

• Subset Sum Problem: KB KB

‣ Problem over a very large modulo

‣ Key Idea: Sharing over integers, signature with aborts

• Multivariate Quadratic Problem: KB

‣ Problem with a cubic number of multiplications

‣ Key Idea: Batching over all the quadratic equations

• MinRank Problem / Rank Syndrome Decoding Problem: KB

‣ Problems relying on the rank metric

‣ Key Idea: Usage of -polynomials

≥ 100 ⇒ 19.1
q ≈ 2256

6.3 − 7.3

≈ 5.5

q

What about the computational cost ?

29

Computational Cost

Prover Verifier

① Generate and commit shares  
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③ Choose a random party 
i* ←$ {1,…, N}i*

④ Open parties {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check

 - Commitments

 - MPC computation  
 Check

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

30

• Syndrome-Decoding-in-the-Head:

Number of party emulations: !

Signing Time: 78 ms, with emulation phase of around 75 ms

N = 256, τ = 17

τ ⋅ N = 4352

31

Computational Cost

• Syndrome-Decoding-in-the-Head:

Number of party emulations: !

Signing Time: 78 ms, with emulation phase of around 75 ms

N = 256, τ = 17

τ ⋅ N = 4352

• To deal with this issue, we propose the threshold approach:

[FR22] Feneuil, Rivain. Threshold Linear Secret Sharing to the
Rescue of MPC-in-the-Head. To appear at Asiacrypt 2023.

31

Computational Cost

The Threshold Approach

In the threshold approach, we use a low-threshold linear
sharing scheme. For example, the Shamir’s -secret
sharing scheme.

To share a value ,

sample uniformly at random,

build the polynomial ,

Set the share , where is publicly known.

(ℓ + 1,N)

x
r1, r2, …, rℓ

P(X) = x +
ℓ

∑
k=0

rk ⋅ Xk

[[x]]i ← P(ei) ei

32

The Threshold Approach

In the threshold approach, we use a low-threshold linear
sharing scheme. For example, the Shamir’s -secret
sharing scheme.

Properties:

Linearity:

Any set of shares is random and independent of

Any set of shares all the shares (and the secret)

(ℓ + 1,N)

[[x]] + [[y]] = [[x + y]]
ℓ x
ℓ + 1 →

32

The Threshold Approach

In the threshold approach, we use a low-threshold linear
sharing scheme. For example, the Shamir’s -secret
sharing scheme.

Properties:

Linearity:

Any set of shares is random and independent of

Any set of shares all the shares (and the secret)

Zero-Knowledge:

The prover opens only parties (instead of).

(ℓ + 1,N)

[[x]] + [[y]] = [[x + y]]
ℓ x
ℓ + 1 →

ℓ N − 1

In practice, ℓ ∈ {1,2,3}

MPCitH Transform with Threshold LSSS

Prover Verifier

① Generate and commit shares  
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③ Choose a random set of parties

, s.t. .I ⊆ {1,…, N} | I | = ℓI

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check

 - Commitments

 - MPC computation  
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

33

Prover Verifier

① Generate and commit shares  
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

② Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③ Choose a random set of parties

, s.t. .I ⊆ {1,…, N} | I | = ℓI

④ Open parties in I
([[x]]i, ρi)i∈I

⑤ Check

 - Commitments

 - MPC computation  
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

Threshold LSSS cannot
generate shares from seeds

⇒

33

MPCitH Transform with Threshold LSSS

Prover Verifier

① Generate and commit shares  
[[x]] = ([[x]]1, …, [[x]]N)

② Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③ Choose a random set of parties

, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check

 - Commitments

 - MPC computation  
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④ Open parties in I

Merkle
root

authentication path

33

MPCitH Transform with Threshold LSSS

Prover Verifier

① Generate and commit shares  
[[x]] = ([[x]]1, …, [[x]]N)

② Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③ Choose a random set of parties

, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check

 - Commitments

 - MPC computation  
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④ Open parties in I

Merkle
root

authentication path

 is redundant

 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

33

MPCitH Transform with Threshold LSSS

Prover Verifier

① Generate and commit shares  
[[x]] = ([[x]]1, …, [[x]]N)

② Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③ Choose a random set of parties

, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check

 - Commitments

 - MPC computation  
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④ Open parties in I

Merkle
root

authentication path

 only party

computations required

⇒ ℓ + 1

 is redundant

 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

33

MPCitH Transform with Threshold LSSS

Prover Verifier

① Generate and commit shares  
[[x]] = ([[x]]1, …, [[x]]N)

② Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③ Choose a random set of parties

, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check

 - Commitments

 - MPC computation  
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④ Open parties in I

Merkle
root

authentication path

 only party

computations required

⇒ ℓ + 1

 parties opened
instead of
ℓ

N − 1

 is redundant

 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

33

MPCitH Transform with Threshold LSSS

Prover

① Generate and commit shares  
[[x]] = ([[x]]1, …, [[x]]N)

② Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③ Choose a random set of parties

, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check

 - Commitments

 - MPC computation  
 Check

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④ Open parties in I

Merkle
root

authentication path

 only party

computations required

⇒ ℓ + 1

 parties opened
instead of
ℓ

N − 1

 is redundant

 shares fully

determine the sharing

[[α]]
⇒ ℓ + 1

only party
computations required

ℓ

MPCitH Transform with Threshold LSSS

The Threshold Approach - Soundness

34

• Soundness error (for any):

• Soundness error (for):

instead of .

ℓ

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

ℓ = 1

1
N

+ p ⋅
(N − 1)

2

1
N

+ p ⋅ (1 −
1
N)

The Threshold Approach

Additive sharing

+ seed trees

Threshold LSSS 
with

Soundness error

Prover 
party computations

Verifier 
party computations

Sharing Generation 
and Commitment

Seed tree  Merkle tree 

N

N − 1

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

35

ℓ = 1

Additive sharing

+ seed trees

Threshold LSSS 
with

Soundness error

Prover 
party computations

Verifier 
party computations

Sharing Generation 
and Commitment

Seed tree  Merkle tree 

N

N − 1

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

The Threshold Approach

Much cheaper
emulation 35

Additive sharing

+ seed trees

Threshold LSSS 
with

Soundness error

Prover 
party computations

Verifier 
party computations

Sharing Generation 
and Commitment

Seed tree  Merkle tree 

N

N − 1

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

The Threshold Approach

Fast verification 
algorithm 35

Additive sharing

+ seed trees

Threshold LSSS 
with

Soundness error

Prover 
party computations

Verifier 
party computations

Sharing Generation 
and Commitment

Seed tree  Merkle tree 

N

N − 1

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

The Threshold Approach

Larger signature sizes

35

Additive sharing

+ seed trees

Threshold LSSS 
with

Soundness error

Prover 
party computations

Verifier 
party computations

Sharing Generation 
and Commitment

Seed tree  Merkle tree 

N

N − 1

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

The Threshold Approach Require N ≤ |𝔽 |

35

Additive sharing

+ seed trees

Threshold LSSS 
with

Soundness error

Prover 
party computations

Verifier 
party computations

Sharing Generation 
and Commitment

Seed tree  Merkle tree 

1 + log2 N 2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

The Threshold Approach

N

N − 1 log2 N

[AGHHJY23] Aguilar-Melchor, Gama,
Howe, Hülsing, Joseph, Yue: “The
Return of the SDitH” (Eurocrypt 2023)

The Hypercube
technique

35

The Threshold Approach

Size Signing time Verification time

SDitH-gf256-L1
8 260 B

5.18 ms 4.81 ms

SDitH-gf251-L1 8.51 ms 8.16 ms

SDitH-gf256-L1
10 424 B

1.97 ms 0.62 ms

SDitH-gf251-L1 1.71 ms 0.23 ms

Benchmark of the SDitH submission package of the NIST callThreshold LSSS

Additive sharing

(with hypercube optimisation)

36

Conclusion

37

Many signature schemes using MPC-in-the-Head, for which the security
relies on the hardness of

Syndrome decoding problem

Subset sum problem

Multivariate quadratic problem

MinRank problem

Rank syndrome decoding problem

Conclusion

38

Many signature schemes using MPC-in-the-Head, for which the security
relies on the hardness of

Syndrome decoding problem

Subset sum problem

Multivariate quadratic problem

MinRank problem

Rank syndrome decoding problem

A new technique to deal small secrets with large modulus in MPCitH:

 MPCitH with rejection, with sharings over integers

A new MPCitH transformation targeting fast running times:

the Threshold approach

Conclusion

38

NIST call for additional post-quantum signatures

4 schemes directly rely on this thesis: MIRA, MQOM, RYDE, SDitH

2 schemes partially use ideas of this thesis: MiRitH, PERK

Conclusion

39

NIST call for additional post-quantum signatures

4 schemes directly rely on this thesis: MIRA, MQOM, RYDE, SDitH

2 schemes partially use ideas of this thesis: MiRitH, PERK

Popularising the MPCitH paradigm to other cryptography communities

For example, the code-based community

Conclusion

39

NIST call for additional post-quantum signatures

4 schemes directly rely on this thesis: MIRA, MQOM, RYDE, SDitH

2 schemes partially use ideas of this thesis: MiRitH, PERK

Popularising the MPCitH paradigm to other cryptography communities

For example, the code-based community

A low-level library dedicated to the MPC-in-the-Head paradigm

Available at https://github.com/CryptoExperts/libmpcith

Conclusion

39

NIST call for additional post-quantum signatures

4 schemes directly rely on this thesis: MIRA, MQOM, RYDE, SDitH

2 schemes partially use ideas of this thesis: MiRitH, PERK

Popularising the MPCitH paradigm to other cryptography communities

For example, the code-based community

A low-level library dedicated to the MPC-in-the-Head paradigm

Available at https://github.com/CryptoExperts/libmpcith

Some of the thesis results are not limited to the context of signatures

Can be applied to zero-knowledge proofs/arguments

Conclusion

39

More efficient MPCitH transformations / more efficient MPC protocols

already some new works

‣ Crypto 2023: the VOLE-in-the-Head construction

‣ ePrint 2023/1573: improved Threshold approach

Perspectives

40

More efficient MPCitH transformations / more efficient MPC protocols

already some new works

‣ Crypto 2023: the VOLE-in-the-Head construction

‣ ePrint 2023/1573: improved Threshold approach

Signature schemes with advanced functionalities

ring signatures, threshold signatures, multi-signatures,

blind signatures, …

Perspectives

40

More efficient MPCitH transformations / more efficient MPC protocols

already some new works

‣ Crypto 2023: the VOLE-in-the-Head construction

‣ ePrint 2023/1573: improved Threshold approach

Signature schemes with advanced functionalities

ring signatures, threshold signatures, multi-signatures,

blind signatures, …

Perspectives

Thank you for your attention !
40

