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* |ntroduction

e MPC-in-the-Head: general principle

e From MPC-in-the-Head to signatures
» Achieving small signature sizes
> Achieving fast running times

e Conclusion
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Alice’s private key

O

Alice’s public key

O—x

Alice’s public key >
Alice Bob
uses the private key uses the public key
to sign the digital document. to verify the signature.

Security Notion: Should be impossible to forge a valid signature

without the corresponding private key.



Example

{ Given N, find non-trivial (p, q)

O=—=x A problem which is very hard to solve
such that N = pgq.

O=—x The solution of the above problem (P, q)

Existing signature schemes
will be broken by the future

quantum computers.

Problematic: build new signature schemes which would

be secure even against quantum computers.
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Identification Scheme

| lknow O—=. |

v Commitment )

Challenge 1
Response 1 >
Challenge n
Response n S
Prover A Veritier Q==

[ | am convinced. ]

® Completeness: Priverif v | honest prover] = 1
® Soundness: Prlverif v | malicious prover] < ¢ (e.g. 128

® Zero-knowledge: verifier learns nothing on Q=—=.



Identification Scheme

| know Q=—x.

> Challenge 1 = Hash(m, Commitment)

> Challenge n = Hash(m, Responsen — 1)
Prover \
-

ranscript

Fiat-Shamir
Transformation Verifier Q=

m: message to sign .



e [IKOSO07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai:
"Zero-knowledge from secure multiparty computation” (STOC 2007)

® Turn a multiparty computation (MPC) into an identification scheme
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® Generic: can be apply to any cryptographic problem
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One-way function Multiparty computation (MPC)

o Input sharing [[x]]
\ Joint evaluation of:

» Accept if F(x) =y
Reject it F(x) #y

F:x—y

E.g. AES, MQ system,
Syndrome decoding

Signature scheme

Zero-knowledge proof
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N
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[x] = (IxDy, ..o Dxlly) st x =[xl +... +[xly
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One-way function Multiparty computation (MPC)

o o Input sharing [[x]]

L X |
Fx Y ‘: M Joint evaluation of:
E.g. AES, MQ system, ‘. ° ; Accept it F(x) =y

:\},‘/ - 800 = {Reject it F(x) #y

MPC-in-the-Head transform

Syndrome decoding

Signature scheme f Zero-knowledge proof

/ msg

: X y
Hash | -
function —_— OK you
| er

Prover Verifi know x




MPCitH: general principle
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x = lIxlly + [[xl, + ... + [x]ly

Jointly compute

Accept if F(x) =1y
gx) = {R | |
eject if F(x) #y

(N — 1) private: the views of any N — 1
parties provide no information on x

Semi-honest model: assuming that the
parties follow the steps of the protocol

11



Ix]l, [x]l,

N

Public
%’ domain Q

o o~ @
[Lx]] 5 [[a]]4I [x]] 3

@
[[X]]4

X = [[X]]l + [[X]]2+ S [[X]]N

Jointly compute
Accept if F(x) =1y
gx) = | |
Reject if F(x) #y

(N — 1) private: the views of any N — 1
parties provide no information on x

Semi-honest model: assuming that the
parties follow the steps of the protocol

Broadcast model

» Parties locally compute on their shares

[x] ~ [l

» Parties broadcast [[a]] and recompute
a

» Parties start again (now knowing a)

11



Prover

Verifier
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(1) Generate and commit shares

[x]] = ([[x]]]’ ceey [[x]]N)

Prover

Com”'([[x]])

Coilol.pN( [x1ly)

Verifier

12



(1) Generate and commit shares

[x]] = ([[x]]]’ ceey [[x]]N)

@ Run MPC in their head

[[x]h N /f [[X]]z
Lxly o I)—Q‘ IxI;

[[x]]4

Prover

Com”([[x]],)

CoilolopN( [x1ly)

send broadcast

Lally, ..., [ally

Verifier
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(1) Generate and commit shares

[x]] = ([[x]]]’ ceey [[x]]N)

@ Run MPC in their head

[[x]h N /f [[X]]z
Lxly o I)—Q‘ IxI;

[[x]]4

Prover

Com”([[x]],)

CoilolopN( [x1ly)

send broadcast

Lally, ..., [ally

l'*

@ Choose a random party
i* <3 {1,... N}

Verifier
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(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

[x1 X // [x1l,
.

ok
® !

@ Open parties {1,..., N}\{i*}

Prover

Com”([[x]],)

CoilolopN( [x1ly)

send broadcast

Lally, ..., [ally

l‘>l<

(IxT p)icei

@ Choose a random party
i* <3 {1,... N}

Verifier
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(1) Generate and commit shares Com”1([[x],)

[xI = (Ix1y, -, [xDy) CoilolopN( [xIly)

@ Run MPC in their head

send broadcast

[xTl, [x1l,
// [[05]]1,---,[[05]]]\/
> | @ Choose a random party

Ly O - i* = {1 N
N <
ﬂ;% [* ® Check Vi # i*
(T ) - Commitments Com”i([[x]],)
Xj» Pi)iix :
@ Open parties {1,..., N}\{i*} . > - MPC computation [lal; = ¢([x]];)
Check g(y, ) = Accept
Prover Veritier
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MPCitH transform

1) Generate and commit shares
[xI = (Ix1ly, ..., [xIy)
We have F(x) # y where

Com”1([[x],)

CO;I.I.pN ([T )

x =[xl + ... + [xlly

Malicious Prover

Verifier
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1) Generate and commit shares
[[x]] — ([[x]]17 R [[x]]N)

We have F(x) # y where
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X
2
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Verifier
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D Generate and commit shares
[l = (LxDys - TxDp)
We have F(x) # y where
x =[xl + ... + [xlly

@ Run MPC in their head

@ Open parties {1,..., N}\ {i*}

Malicious Prover

Com”1([[x],)

COLI.I.pN( [x]ly)

send broadcast

[ally, ..., [ally

l'>l<

([x1l;, pi)i;ﬁi*

@ Choose a random party
i* <% {1,....N}

Verifier
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D Generate and commit shares
[l = (LxDys - TxDp)
We have F(x) # y where
x =[xl + ... + [xlly

@ Run MPC in their head

@ Open parties {1,..., N}\ {i*}

Malicious Prover

Com”1([[x],)

COLI.I.pN( [x]ly)

send broadcast

[ally, ..., [ally

» | @ Choose a random party

l'>l<

i* <% {1,...,N}

([x1l;, pi)i;ﬁi*

® Check Vi # i*
- Commitments Com”i([[x],)

> - MPC computation [a]]; = ¢([[x],)
Check g(y, a) = Accept

Veritier
Q Cheating detected!




1) Generate and commit shares
[[x]] — ([[x]]la R [[x]]N)

We have F(x) # y where
x =[xl + ... + [xlly

@ Run MPC in their head

[xl X // [x1,

[x]]N ‘-.—/'/ Q [[x]]3

l’>l<

<

@ Open parties {1,..., N}\ {i*}

Malicious Prover

Com”1([[x],)

COLI.I.pN( [x]ly)

send broadcast

[ally, ..., [ally

l'>l<

([x1l;, pi)i;ﬁi*

@ Choose a random party
i* <% {1,...,N}

® Check Vi # i*
- Commitments Com”i([[x],)

- MPC computation [a]]; = ¢([[x],)
Check g(y, a) = Accept

Verifier

Q Seems OK.




MPCitH transform

® Zero-knowledge <<= MPC protocol is (N — 1)-private

14



MPCitH transform

e Zero-knowledge <= MPC protocolis (N — 1)-private

® Soundness:

P(malicious prover convinces the veritier)

= P(corrupted party remains hidden)
1

N

14



MPCitH transform

e Zero-knowledge <= MPC protocolis (N — 1)-private

® Soundness:

P(malicious prover convinces the veritier)

= P(corrupted party remains hidden)
1

N

® Parallel repetition

1
Protocol repeated 7 times in parallel, soundness error (—

N

>T

14
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Signature size
(in kilobytes)

Logarithmic scale

SPHINCS*

Syndrome Decoding Problem:
From a matrix H and a vector Yy, find x such that

® y= Hx,
e x has at most w non-zero coordinates.

17



Signature size
(in kilobytes)
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e x has at most w non-zero coordinates.
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From a matrix H and a vector Yy, find x such that

® y= Hx,
e x has at most w non-zero coordinates.
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[FIR23] Feneuil, Joux, Rivain: “Shared Permutation

46,1 for Syndrome Decoding: New Zero-Knowledge
: Protocol and Code-Based Signature” (ePrint
Signature size +.. , _ 2021/1576, Journal DCC)
o 38.7  Medium-size field 374
(in kilobytes) : . o .
g e + [FJR22] Feneuil, Joux, Rivain: “Syndrome Decoding
374 el in the Head: Shorter Signatures from Zero-
: + .......... Knowledge Proofs” (ePrint 2022/188, Crypto 2022)
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[x] = (IxDy, ..o Dxlly) st x =[xl +... +[xly

- » - ’ PP

One-way function Multiparty computation (MPC)

o Input sharing [[x]]

M Joint evaluation of:
®= ; Accept if F(x) =y "

800 = {Reject it F(x) #y ‘~

| F:x—y
| E.g. AES, MQ system,
t Syndrome decoding

h&til —— P o . o

Signature scheme Zero-knowledge proof

/ msg

X
Hash i | -
function - _—

OK you
F Prover Verifier | knowx

LL““‘ s SRR I Solselai-oms e

18



The multiparty computation must check that the vector x
satisfies

y = Hx and  wgyx) < w.

linear, easy to check non-linear, hard to check

19



The multiparty computation must check that the vector x
satisfies

y = Hx

and
30, P two polynomials : SQ = PFanddegQ =w

where

S is defined by interpolation such that Vi, S(y;) = x;,

F = ﬁ(X— 7).
i=1

19



Let us assume that there exists O, P € [F[X] such that
S-O0=P-F and degQ=w

where

S is defined by interpolation such that Vi, S(y,) = x;
F:= H(X —7).
i=1

20



Let us assume that there exists O, P € [F[X] such that

S-QP-F and degQ=w

Then, one can deduce that |

Vi <m,(Q-S)7) = P)-Fz) = 0

20



Let us assume that there exists O, P € [F[X] such that
S-O0=P-F and degQ=w

where

S is defined by interpolation such that Vi, S(y,) = x;
F:= H(X —7).
i=1

Then, one can deduce that

Vi<m,(Q-S)(y)=PQy) F(y)=0
=>Vi<m, Qr)=0 or S¥)=x =0
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Let us assume that there exists O, P € [F[X] such that

S-Q=P-F and degQ=w._

where

S is defined by interpolation such that Vi, S(y,) = x; .‘;

F=]l&x-wn.
=1

Then, one can deduce that

Vi <m,(Q-S)) = PG)-Fi) =0 /

> Vi<m, Q@) =0 or Sy = x. =0
e, /

20



Such polynomial Q can be built as

0=0"[]x-n

1:x70

The non-zero positions of x
are encoding as roots.

S0
F

And P =

since F divides S - O.
(Vi,5(r) = x;)

21



We want to build a MPC protocol which checks if some vector
is a syndrome decoding solution.

X
Let us assume that H = (H'|I). We split x as (XA).
B

We have y = Hx, so

22



We want to build a MPC protocol which checks if some vector
is a syndrome decoding solution.

X
Let us assume that H = (H'|I). We split x as <XA>.
B
We have y = Hx, so

Inputs of the MPC protocol: x4, O, P

Aim ot the MPC protocol:

Check that x4 corresponds to a syndrome decoding solution.

22



Inputs of the MPC protocol: x,, O, P

X
1. Build x5 :=y— H'x, and deduce x := ( A).

XB
We have

y = Hx.

23



Inputs of the MPC protocol: x,, O, P

X
1. Build x5 :=y— H'x, and deduce x := (xi)‘

2. Build the polynomial § by interpolation such that

Interpolation Formula:

S(X) = Z HX }’f

i C#i Vi~

23



Inputs of the MPC protocol: x,, O, P

X
1. Build x5 :=y— H'x, and deduce x := (Xz)

2. Build the polynomial S by interpolation such that
Vi, S(y;) = x;.
3. CheckthatS-QO=P-F.

23



Inputs of the MPC protocol: x,, O, P

1.

2.

b
Build x5 := y — H'x, and deduce x := (xz)

Build the polynomial § by interpolation such that
Vi, S(y,) = x.

Get a random point r from a field extension ;..

Compute S(r), O(r) and P(r).
Using [BN20], check that S(r) - O(r) = P(r) - F(r).

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for
arithmetic circuits and their application to lattice-based cryptography. PKC 2020.

23



Even if x, does not describe a SD solution, implying that
S-Q # P-F, the MPC protocol can output Accept if

Case 1:

5(r) - Q(r) = P(r) - F(r)

which occurs with probability (Schwartz-Zippel Lemma)

m+w-—1
Pr [S5(r) - Q(r) = P(r) - F(r)] <
r<,oints | [Fpoints |

24



Even if x, does not describe a SD solution, implying that
S-Q # P-F, the MPC protocol can output Accept if

Case 1:

5(r) - Q(r) = P(r) - F(r)

which occurs with probability (Schwartz-Zippel Lemma)

m+w-—1
Pr [S5(r) - Q(r) = P(r) - F(r)] <
r<,oints | [Fpoints |

Case 2: the [BN20] protocol failed, which occurs with probability
1

| [F

points |
24



The MPC protocol checks that (x4, O, P) describes a
solution of the SD instance (H, y).

Protocol Output
Accept Reject
A good witness 1 0
Not a good witness p l1—-p
where
m+w — 1 m+w-—1 1
p = +11- -
False positive ~ False positive

from Schwartz-Zippel from [BN20]



PC)

One-way function Multiparty computation (M

o o Input sharing

[Lx]]

L X |
Fx Y ‘: M Joint evaluation of:
E.g. AES, MQ system, ‘. ° ; Accept it F(x) =y

Syndrome decoding

:\},‘/ - 800 = {Reject it F(x) #y

MPC-in-the-Head transform

Signature scheme f Zero-knowledge proof

/ msg

i X
Hash | -
function -

Prover Verifi

OK you
er know x
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Resulting Zero-Knowledge Proof for SD

Soundness error:
1 (1 1
€ 1= — -] -
N N P

To achieve negligible soundness error, we repeat the zero-

knowledge proof 7 times such that €™ < 27,
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Resulting Zero-Knowledge Proof for SD

Soundness error:

1+ , 1
€= — —— -
N N o

To achieve negligible soundness error, we repeat the zero-
knowledge proof 7 times such that €™ < 27,

Signature scheme: to obtain the signature scheme, we just
need to apply the
Fiat-Shamir transform.

27



Signature Scheme

Parameter Selection (128-bit security):

m Syndrome Decoding problem over [Fys¢

m The MPCitH parameters: N = 256, v = 17

Resulting size (short variant):

~ 8,5 kilobytes

Using few optimisations
(Seed trees, ...)

28



Sinatre She

Parameter Selection (128-bit security):

m Syndrome Decoding problem over [Fys¢

m The MPCitH parameters: N = 256, v = 17

Resulting size (short variant): Using few optimisations

~ 85 kilobytes (Seed trees, ...)

Notes:

m We can apply to binary syndrome decoding problem, but it
requires a field lifting for the polynomials S, Q, P, F.

m |n the thesis, we propose also another approach, namely
the shared-permutation framework,

but it leads to larger sizes for the SD problem. .



Exploring other assumptions

e Subset Sum Problem: > 100 KB = 19.1 KB

» Problem over a very large modulo g ~ 22°°

» Key Idea: Sharing over integers, signature with aborts

[FMRV22] Feneuil, Maire, Rivain, Vergnaud. Zero-Knowledge Protocols for the Subset
Sum Problem from MPC-in-the-Head with Rejection. Asiacrypt 2022.
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Exploring other assumptions

e Subset Sum Problem: > 100 KB = 19.1 KB

» Problem over a very large modulo g ~ 22°°

» Key Idea: Sharing over integers, signature with aborts

e Multivariate Quadratic Problem: 6.3 — 7.3 KB

» Problem with a cubic number of multiplications

» Key ldea: Batching over all the quadratic equations

[Fen22] Feneuil. Building MPCitH-based Signatures from MQ, MinRank, and Rank

SD. To appear to ACNS 2024. P



Exploring other assumptions

e Subset Sum Problem: > 100 KB = 19.1 KB

» Problem over a very large modulo g ~ 22°°

» Key Idea: Sharing over integers, signature with aborts

e Multivariate Quadratic Problem: 6.3 — 7.3 KB

» Problem with a cubic number of multiplications

» Key ldea: Batching over all the quadratic equations

e MinRank Problem / Rank Syndrome Decoding Problem: =~ 5.5 KB

> Problems relying on the rank metric

» Key |ldea: Usage of g-polynomials

[Fen22] Feneuil. Building MPCitH-based Signatures from MQ, MinRank, and Rank
SD. To appear to ACNS 2024.
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Exploring other assumptions

e Subset Sum Problem: > 100 KB = 19.1 KB

» Problem over a very large modulo g ~ 22°°

» Key Idea: Sharing over integers, signature with aborts

e Multivariate Quadratic Problem: 6.3 — 7.3 KB

» Problem with a cubic number of multiplications

» Key ldea: Batching over all the quadratic equations

e MinRank Problem / Rank Syndrome Decoding Problem: =~ 5.5 KB

> Problems relying on the rank metric

» Key |ldea: Usage of g-polynomials

“ What about the computational cost ?
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(1) Generate and commit shares Com”1([[x],)

[xI = (Ix1y, -, [xDy) CoilolopN( [xIly)

@ Run MPC in their head

send broadcast

[xTl, [x1l,
// [[05]]1,---,[[05]]]\/
> | @ Choose a random party

Ly O - i* = {1 N
N <
ﬂ;% [* ® Check Vi # i*
(T ) - Commitments Com”i([[x]],)
Xj» Pi)iix :
@ Open parties {1,..., N}\{i*} . > - MPC computation [lal; = ¢([x]];)
Check g(y, ) = Accept
Prover Veritier
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Computational Cost

e Syndrome-Decoding-in-the-Head:

N =256,7=17

Number of party emulations: 7+ N = 4352

Signing Time: 78 ms, with emulation phase of around 75 ms
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Computational Cost

e Syndrome-Decoding-in-the-Head:
N =256,7=17

Number of party emulations: 7+ N = 4352

Signing Time: 78 ms, with emulation phase of around 75 ms

e To deal with this issue, we propose the threshold approach:

[FR22] Feneuil, Rivain. Threshold Linear Secret Sharing to the
Rescue of MPC-in-the-Head. To appear at Asiacrypt 2023.
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In the threshold approach, we use a low-threshold linear
sharing scheme. For example, the Shamir’s (£ + 1,N)-secret

sharing scheme.

To share a value x,
m sample 7,75, ..., I, uniformly at random,

4
" build the polynomial P(X) = x + Z r - XK,
k=0

m Set the share [x]]; < P(e;), where e; is publicly known.

32



In the threshold approach, we use a low-threshold linear
sharing scheme. For example, the Shamir’s (£ + 1,N)-secret

sharing scheme.

Properties:
B |Linearity: [[x]| + [[v]l = [x + v
m Any set of £ shares is random and independent of x
B Any set of £ + 1 shares — all the shares (and the secret)
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In the threshold approach, we use a low-threshold linear
sharing scheme. For example, the Shamir’s (£ + 1,N)-secret

sharing scheme.

Properties:
B |Linearity: [[x]| + [[v]l = [x + v
m Any set of £ shares is random and independent of x
B Any set of £ + 1 shares — all the shares (and the secret)

Zero-Knowledge:
The prover opens only £ parties (instead of N — 1).

In practice, £ € {1,2,3}



(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

[x N // [x1,

[Ty .('/ I)Q x5
ﬂx]]4

@ Open parties in [

Prover

Com”([[x]],)

CO;I.{pN( [x1ly)

send broadcast

Lally, ..., [ally

(Ixl;s 29 ier

@) Choose a random set of parties
IC{l,...N}, st |I|=7.

® Check Vie I
- Commitments Com”i([[x]],)

- MPC computation [[a]]; = ¢([[x],)
Check g(y, ) = Accept

Verifier
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(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

[[x]]l X / [[x]]2

|Ix]]4

@ Open parties in [

Prover

__ Threshold LSSS = cannot

Com”([[x]],)

Cogl.pN ([LxIly)
_—

send broadcast

Lally, ..., [ally

(x1;, Picr

generate shares from seeds

@ Choose a random set of parties
IC{l,..,N},st. |I|=7.

® Check Vi e I
- Commitments Com”i([[x]],)
- MPC computation [[a]]; = ¢([x],)
Check g(y, ) = Accept

Verifier
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(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

@ Run MPC in their head

[x X // [x1,

Lxlly o I)—Q. I

ﬂx]]4

@ Open parties in [

Prover

Merkle
root

send broadcast

Lally, ..., [ally

(IxTI; iel

/

authentication path

@ Choose a random set of parties
IC{l,..,N},st. |I|=7.

® Check Vi e I
- Commitments Com”i([[x]].)

- MPC computation [[a]]; = ¢([[x],)
Check g(y, ) = Accept

Verifier
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[a] is redundant

(D Generate and commit shares Merkle _— = ¢ + 1 shares fully
[x] = (IxIys - [[x]]N) root

determine the sharing

@ Run MPC in their head

[x X // [x1,

send broadcast

Lally, ..., [ally

@ Choose a random set of parties

IC{l,.. N}, st |I|=7¢.
[x]N"//'I)—Q‘mg < I C{ st |1
&, ®) Check Vi e I
- Commitments Com”i([[x]],)
([[x]]iiel MPC - _
@ Open parties in I > - computation [[a]l; = @([[x],)
/ Check g(y, ) = Accept
authentication path
Prover Veritier
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[a] is redundant

(D Generate and commit shares Merkle _— = ¢ + 1 shares fully
[x] = (IxIys - [[x]]N) root

determine the sharing

= only 7 + 1 party
computations required

@ Run MPC in their head

[x X // [x1,

send broadcast

Lally, ..., [ally

@ Choose a random set of parties

IC{l,.. N}, st |I|=7¢.
[x]N"//'I)—Q‘mg < I C{ st |1
&, ®) Check Vi e I
- Commitments Com”i([[x]],)
([[x]]iiel MPC - _
@ Open parties in I > - computation [[a]l; = @([[x],)
/ Check g(y, ) = Accept
authentication path
Prover Veritier
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VPG Transtorm with Threshold 1555

[a] is redundant

(D Generate and commit shares Merkle _— = ¢ + 1 shares fully
[x] = (IxIys - [[x]]N) root

determine the sharing
= only £ + 1 party

@ Run MPC in their head

14 '
@

O

computations required

send broadcast

Lally, ..., [ally

®) Check Vi e I

- Commitments Com”i([[x]],)

Lauth;).
([[x]]lzel - MPC computation [[a]l; = ¢([[x]];)

/ Check g(y, ) = Accept
authentication path

@ Open parties in [

Prover

£ parties opened Veritier

instead of N — 1 33



VPG Transtorm with Threshold 1555

(1) Generate and commit shares

[xIl = (LxIly, -, [xDly)

Merkle
root

@ Run MPC in their head

send broadcast

Lally, ..., [ally

@

®

([[x]]iiel

@ Open parties in [

Prover

£ parties opened
instead of N — 1

authentication path

/

[a] is redundant
= £ + 1 shares fully

determine the sharing

= only 7 + 1 party
computations required

®) Check Vi e I

- Commitments Com”i([[x]].)

- MPC computation [[a]]; = ¢([[x],)

Check g(y, ) = Accept

only £ party
computations required



e Soundness error (for any £):

| (N —1)
_+ o
NPT

1
instead of —+p - <
N

1
] — —
N

)
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Additive sharing

Threshold LSSS

+ seed trees with 2 =1
S d i_|_ <1_i> l_|_ (N_l)
oundness error ~ TP N YRLANE
Prover
# party computations N 2
Verifier
# party computations N-1 1
Sharing Generation Seed tree Merkle tree
and Commitment A-log N 24 - log N
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Additive sharing
+ seed trees

Threshold LSSS
with =1

Soundness error

Lo, ]
NP N

1, W=D

N 2

Prover N
# party computations
Verifier
# party computations N-1
Sharing Generation Seed tree Merkle tree
and Commitment A-log N 24 -log N

Much cheaper
emulation
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Additive sharing

Threshold LSSS

+ seed trees with 2 =1
] 1 1 (N —1)
— 1 == _ :
Soundness error ~ TP < N> YRR
Prover
# party computations N 2
Verifier
# party computations N-1 1
Sharing Generation Seed tree Merkle tree
and Commitment A-log N 24 -log N

Fast verification

algorithm




Additive sharing Threshold LSSS
+ seed trees with 2 =1
1 N <1 1 > 1
Soundness error ~ TP N ~ P
Prover
" . N
party computations
Verifier | N—1
# party computations
Sharing Generation Seed tree Merkle tree
and Commitment A-log N 24 -log N

Larger signature sizes
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Require N < | F|

Additive sharing Threshold LSSS
+ seed trees with =1
Sound e (1-5)
oundness error ~ TP Y
Prover
# party computations N 2
Verifi
. erifier N—1] 1
party computations
Sharing Generation Seed tree Merkle tree
and Commitment A-log N 24 - log N




Additive sharing

Threshold LSSS

+ seed trees with Z=1
S d i_|_ <1_i> i-l— (N—l)
oundness error ~+p - Lip- OO
Prover
# party computations N~ 1+log, N 2
Verifier
# party computations N=1 log, N 1
Sharing Generation Seed treg Merkle tree
and Commitment A-log N 21 - log N

[AGHHJY23] Aguilar-Melchor, Gama,
Howe, Hulsing, Joseph, Yue: “The
Return of the SDitH" (Eurocrypt 2023)
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Size Signing time Verification time
SDitH-gf256-1L1 5.18 ms 481 ms
8260 B
SDitH-gf251-1L1 8.51 ms 8.16 ms
SDitH-gf256-L1 .97 ms 0.62 ms
10 424 B
SDitH-gf251-L1 .71 ms 0.23 ms

/

Threshold LSSS

Benchmark of the SDitH submission package of the NIST call
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Many signature schemes using MPC-in-the-Head, for which the security
relies on the hardness of

Syndrome decoding problem
Subset sum problem
Multivariate quadratic problem
MinRank problem

Rank syndrome decoding problem
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Many signature schemes using MPC-in-the-Head, for which the security

relies on the hardness of
Syndrome decoding problem
Subset sum problem
Multivariate quadratic problem
MinRank problem

Rank syndrome decoding problem

A new technique to deal small secrets with large modulus in MPCitH:

MPCitH with rejection, with sharings over integers

A new MPCitH transformation targeting fast running times:

the Threshold approach
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Conclusion

W NIST call for additional post-quantum signatures

m 4 schemes directly rely on this thesis: MIRA, MQOM, RYDE, SDitH

m 2 schemes partially use ideas of this thesis: MiRitH, PERK
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NIST call for additional post-quantum signatures

m 4 schemes directly rely on this thesis: MIRA, MQOM, RYDE, SDitH

m 2 schemes partially use ideas of this thesis: MiRitH, PERK

Popularising the MPCitH paradigm to other cryptography communities

m For example, the code-based community

A low-level library dedicated to the MPC-in-the-Head paradigm

m Available at https://github.com/CryptoExperts/libmpcith

Some of the thesis results are not limited to the context of signatures

m Can be applied to zero-knowledge proofs/arguments
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Perspectives

B More efficient MPCitH transformations / more efficient MPC protocols
m already some new works
» Crypto 2023: the VOLE-in-the-Head construction
> ePrint 2023/1573: improved Threshold approach
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Perspectives

B More efficient MPCitH transformations / more efficient MPC protocols

m already some new works
» Crypto 2023: the VOLE-in-the-Head construction
> ePrint 2023/1573: improved Threshold approach

W Signature schemes with advanced functionalities

ring signatures, threshold signatures, multi-signatures,

blind signatures, ...

Thank you for your attention !

40



