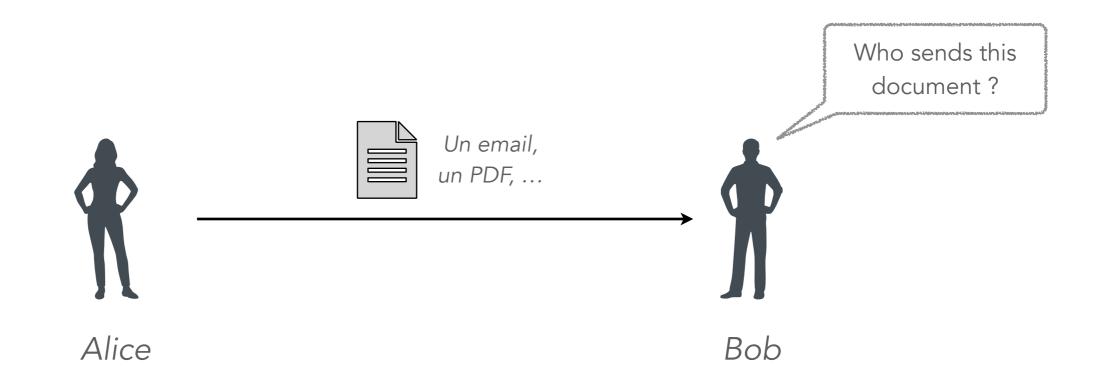
Post-Quantum Signatures from Secure Multiparty Computation

Thibauld Feneuil

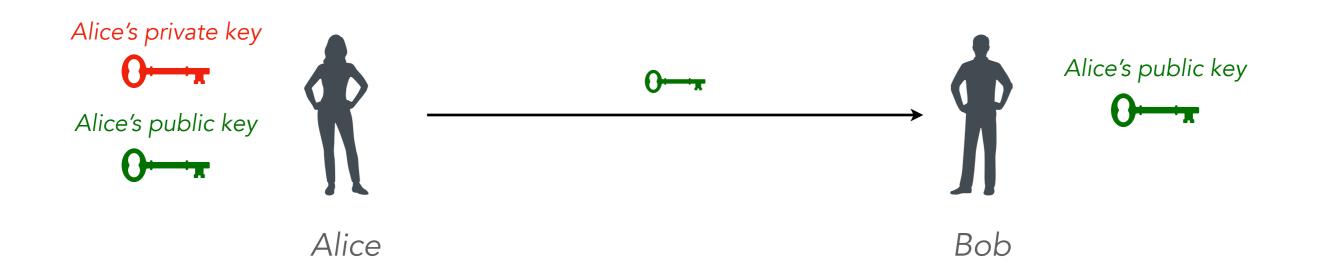
PhD Defense

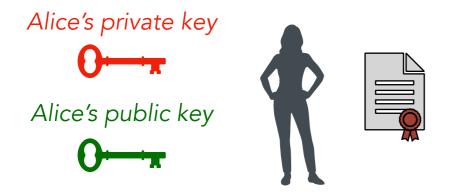
October 23, 2023 — Paris (France)

- Introduction
- MPC-in-the-Head: general principle
- From MPC-in-the-Head to signatures
 - Achieving small signature sizes
 - Achieving fast running times
- Conclusion

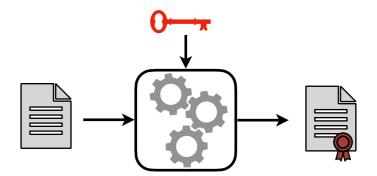


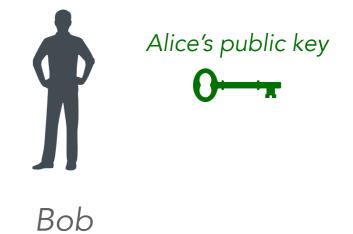
Alice

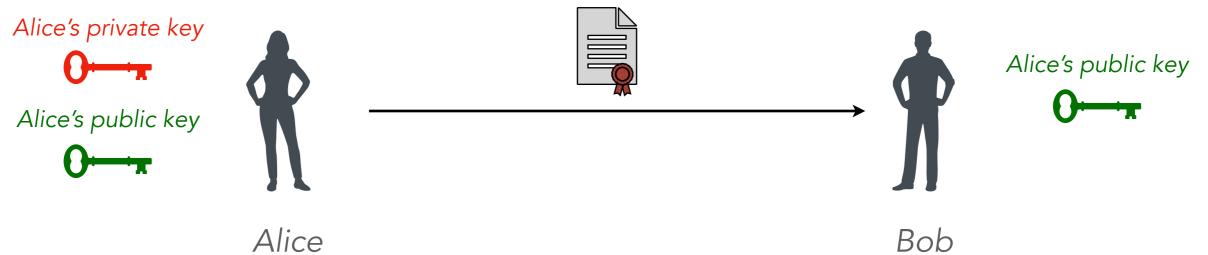




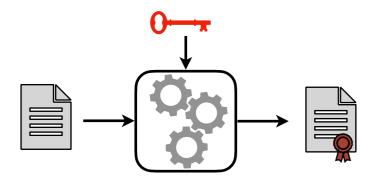
Alice uses the private key to **sign** the digital document.

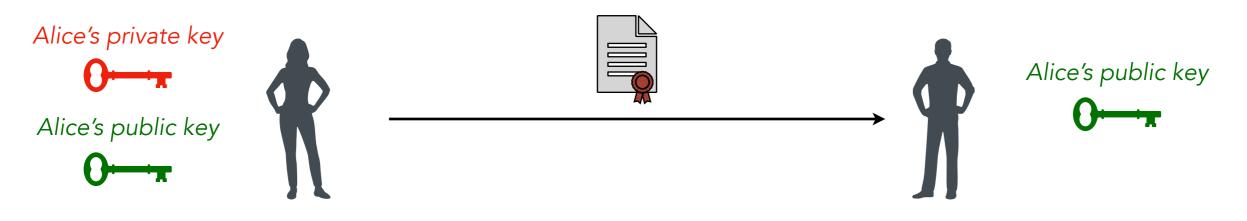




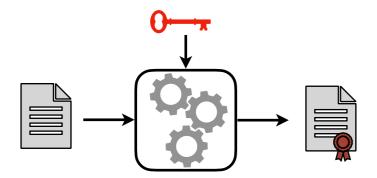


Alice uses the private key to **sign** the digital document.

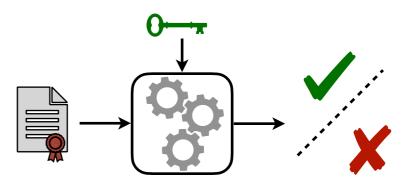


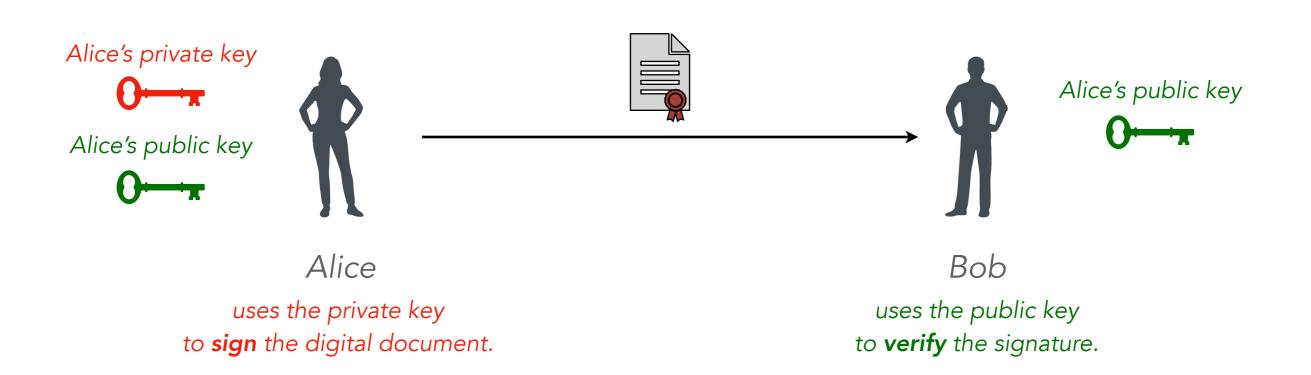


Alice uses the private key to **sign** the digital document.



Bob uses the public key to **verify** the signature.





<u>Security Notion</u>: Should be **impossible** to forge a valid signature **without** the corresponding private key.

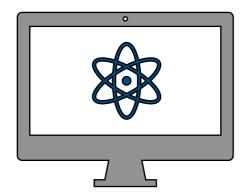
Digital signatures

Example

A problem which is very hard to solve

The solution of the above problem

Given N, find non-trivial (p,q)such that N = pq. (p,q)

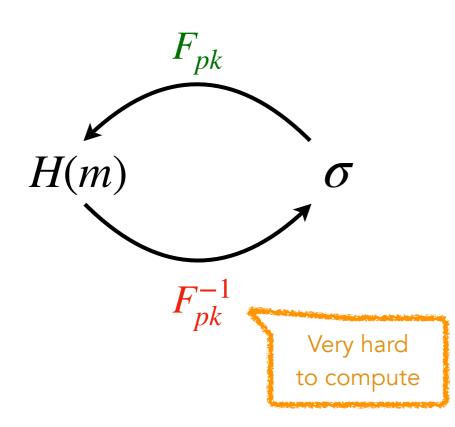


Existing signature schemes will be **broken** by the future quantum computers.

<u>Problematic</u>: build new signature schemes which would be **secure** even **against quantum computers**.

How to build signature schemes?

Hash & Sign



Short signatures

"Trapdoor" in the public key

How to build signature schemes?

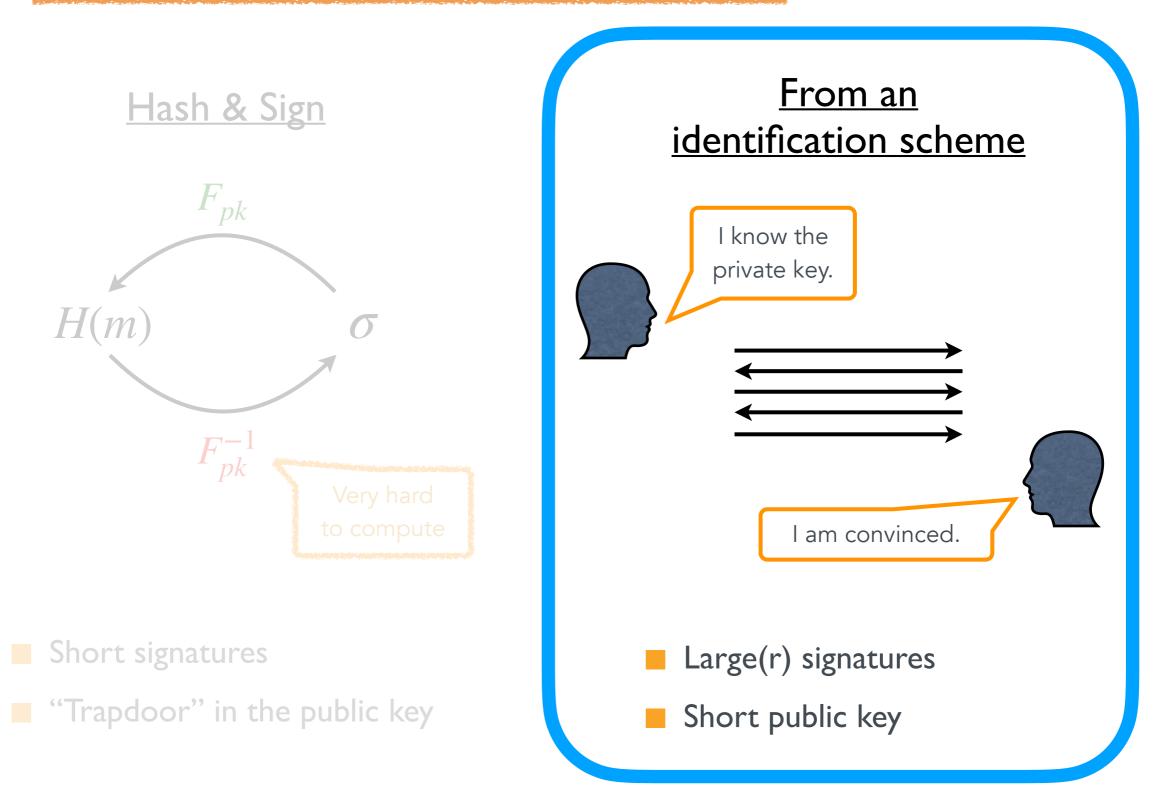
Hash & Sign F_{pk} H(m) F_{pk} F_{pk} F_{p

Short signatures

"Trapdoor" in the public key

- Large(r) signatures
- Short public key

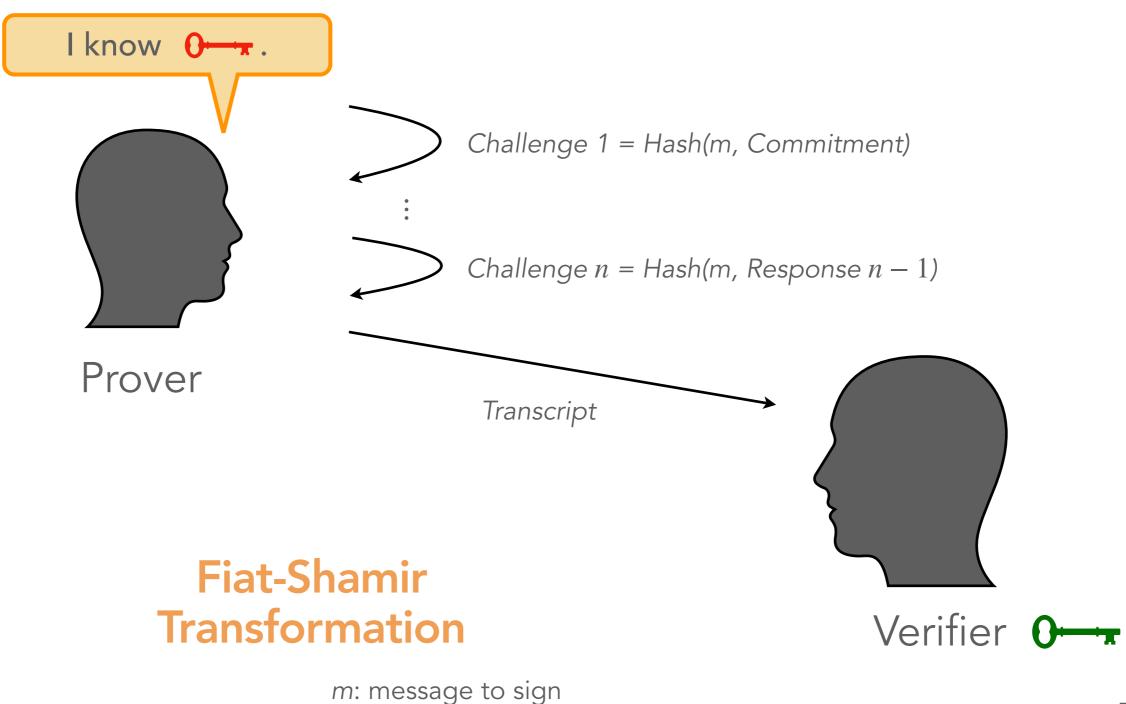
How to build signature schemes?



Identification Scheme

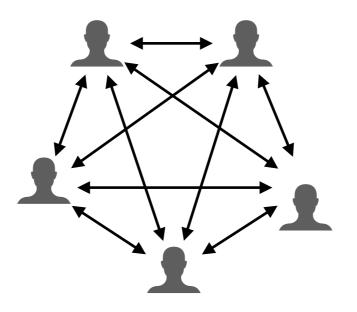
- Completeness: Pr[verif ✓ | honest prover] = 1
- Soundness: $\Pr[\text{verif } I \text{ malicious prover}] \leq \varepsilon$ (e.g. 2^{-128})
- Zero-knowledge: verifier learns nothing on 0-----

Identification Scheme

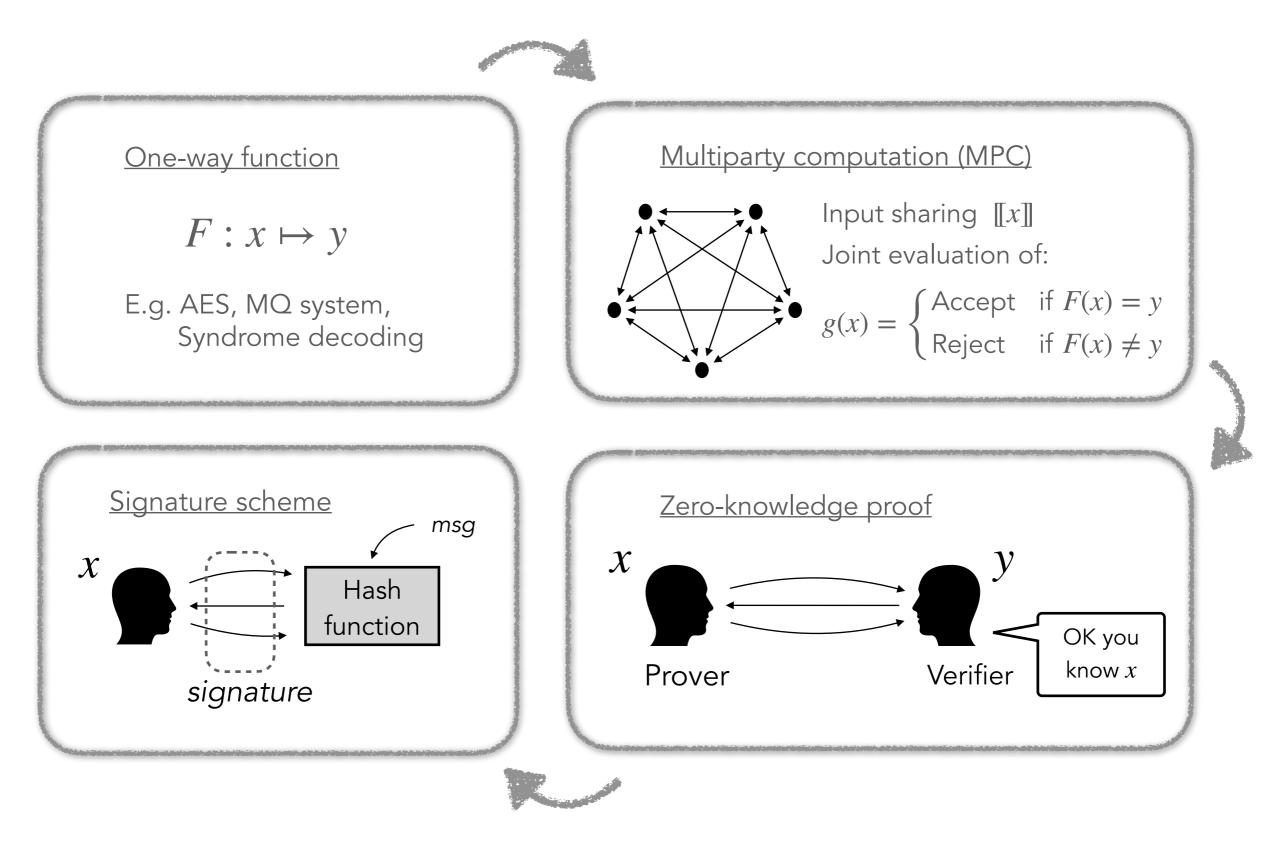


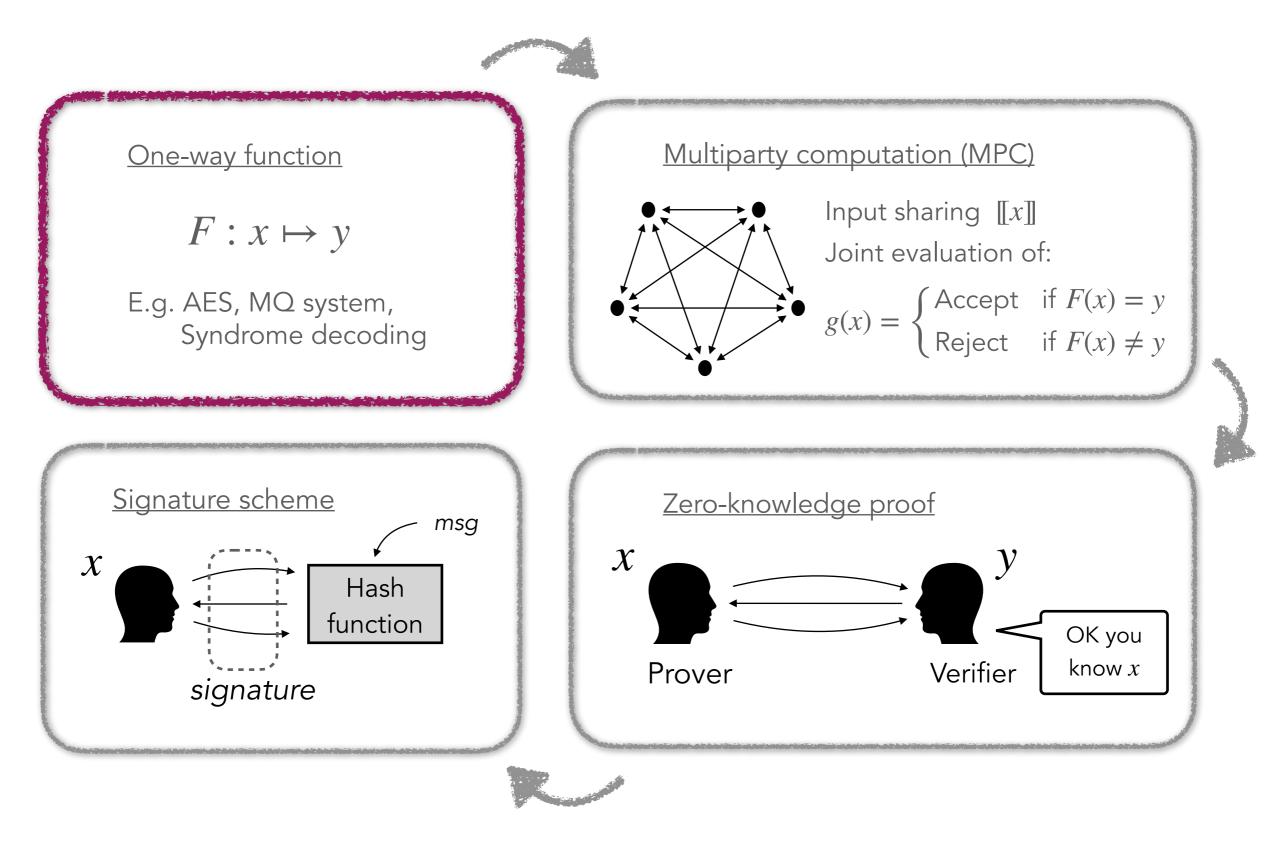
MPC in the Head

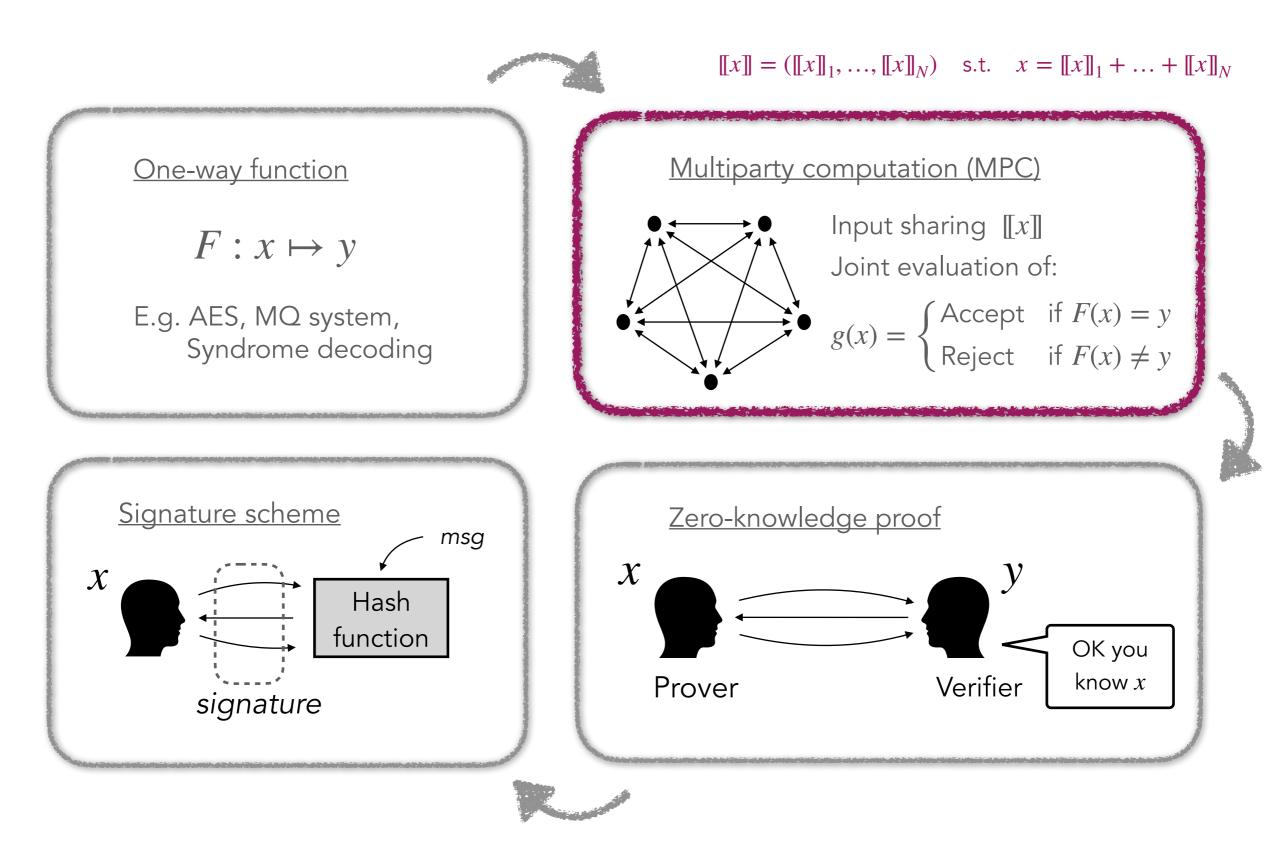
- **[IKOS07]** Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: "Zero-knowledge from secure multiparty computation" (STOC 2007)
- Turn a *multiparty computation* (MPC) into an identification scheme

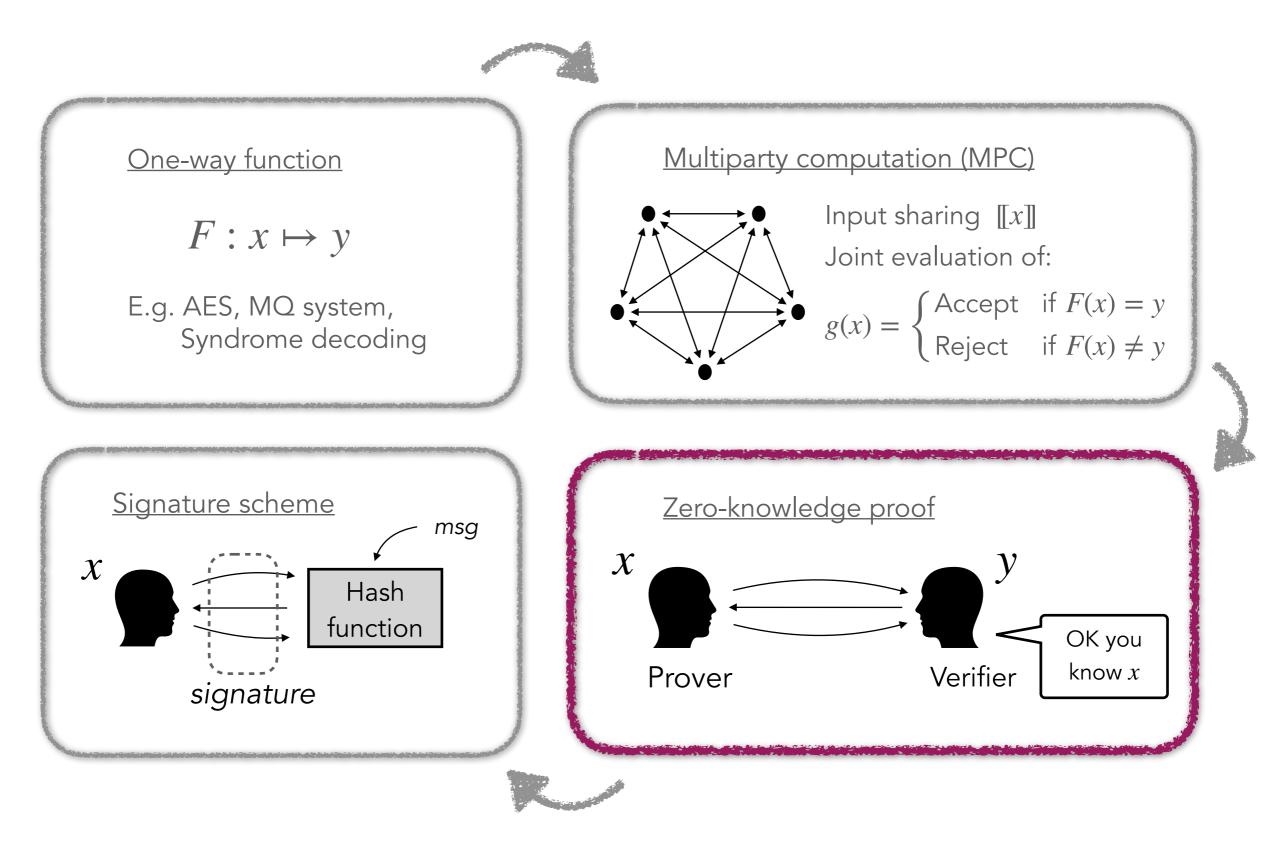


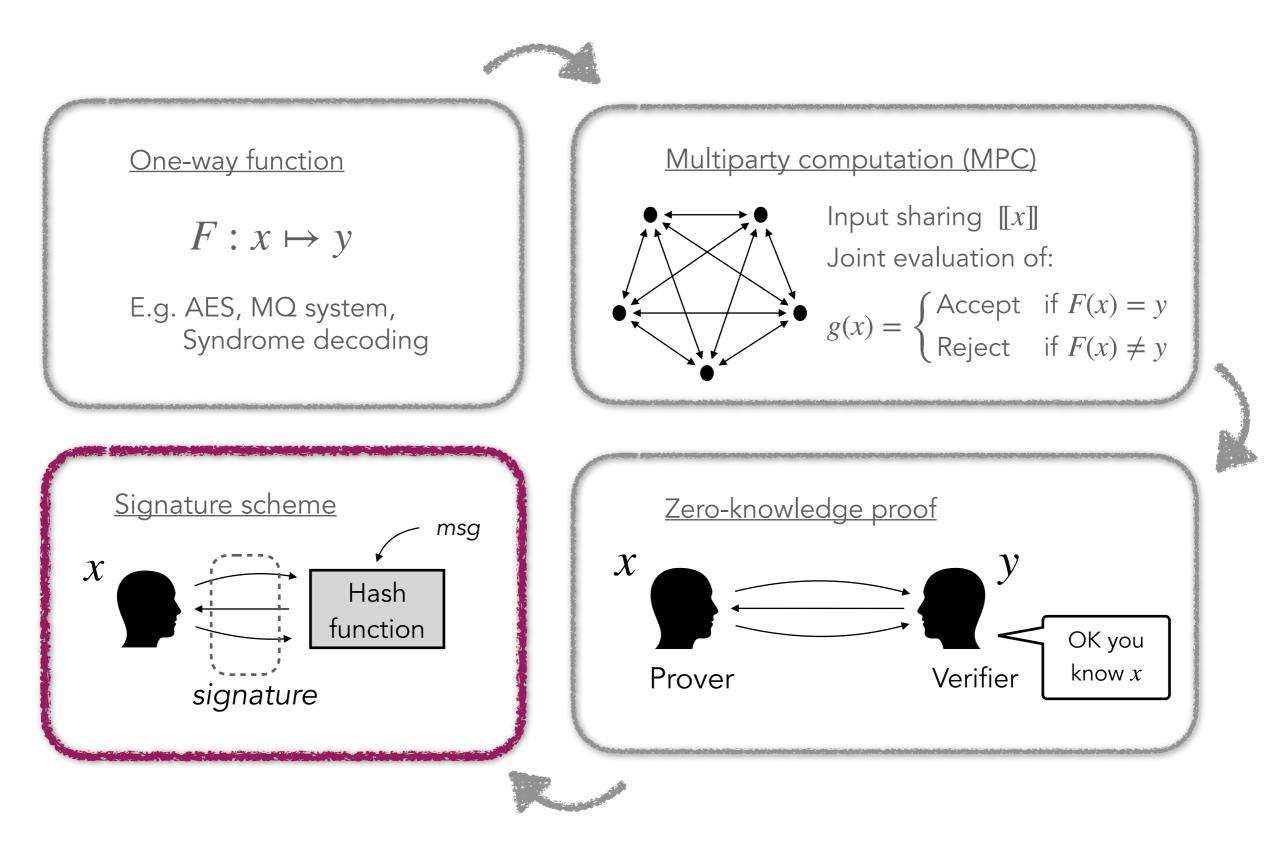
• **Generic**: can be apply to any cryptographic problem

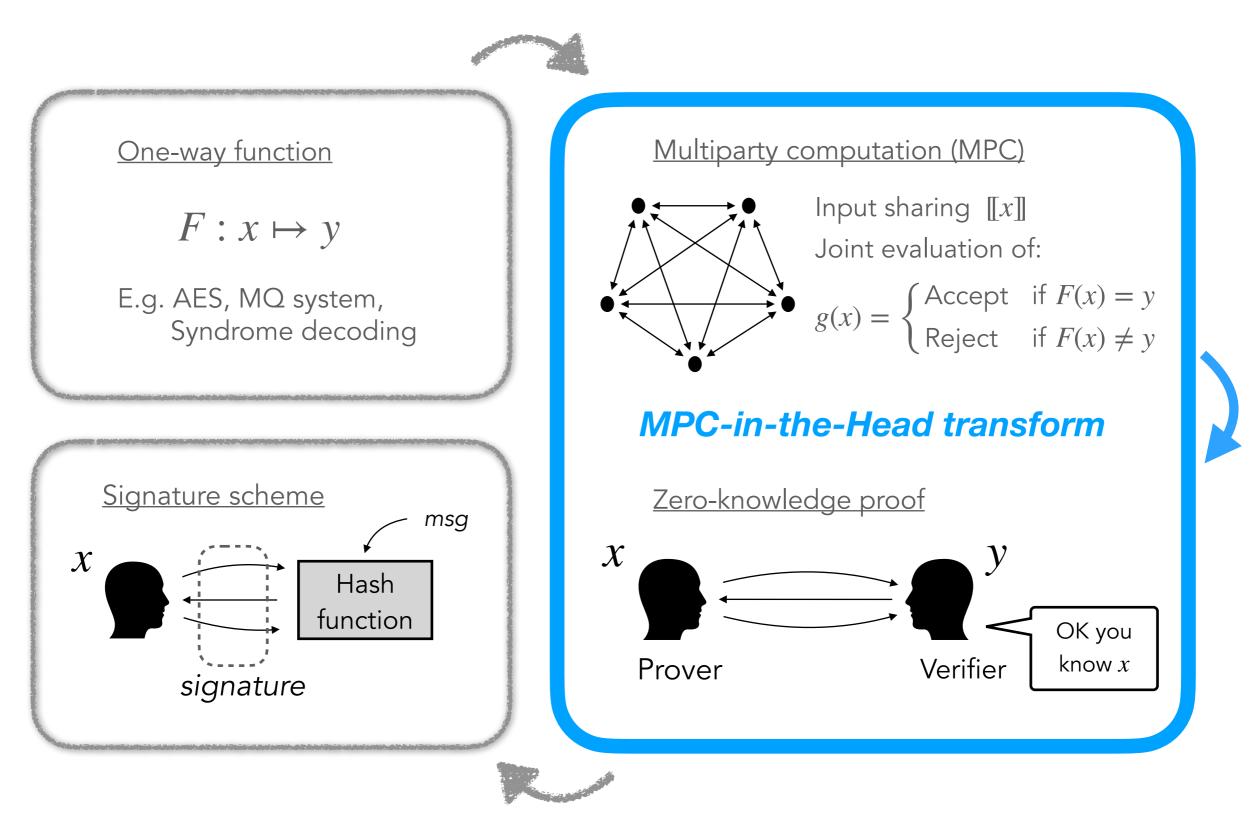






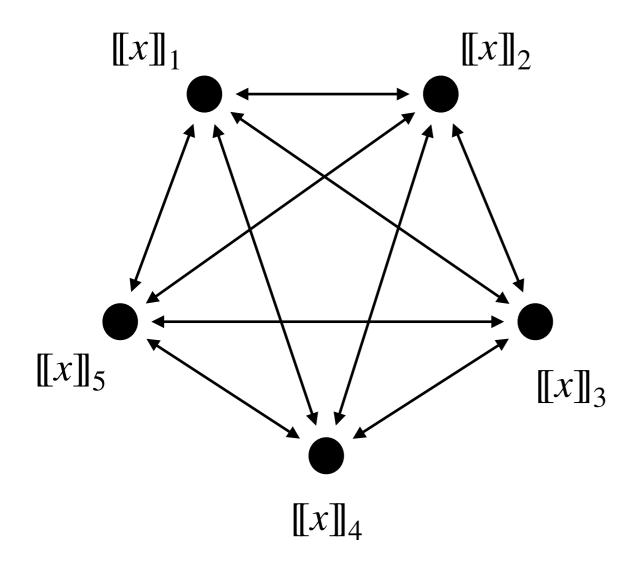






MPCitH: general principle

MPC model



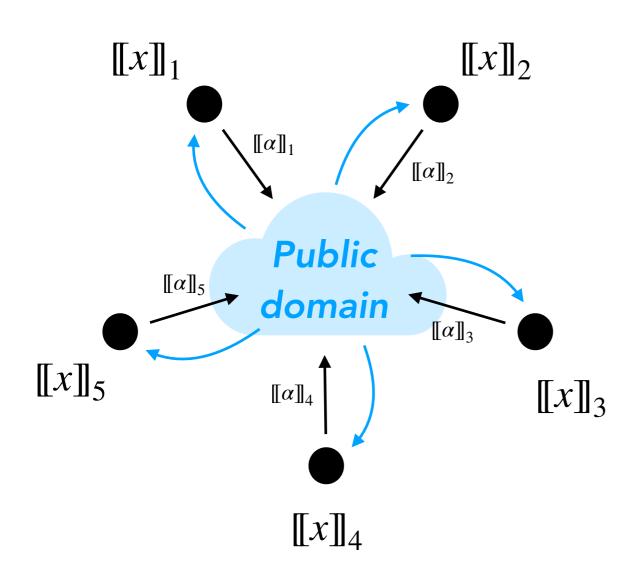
• Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

- (N-1) private: the views of any N-1 parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol

 $x = [[x]]_1 + [[x]]_2 + \dots + [[x]]_N$

MPC model



 $x = [[x]]_1 + [[x]]_2 + \ldots + [[x]]_N$

• Jointly compute

$$g(x) = \begin{cases} \text{Accept} & \text{if } F(x) = y \\ \text{Reject} & \text{if } F(x) \neq y \end{cases}$$

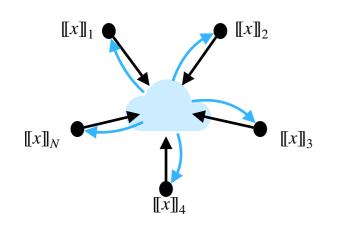
- (N-1) private: the views of any N-1 parties provide no information on x
- Semi-honest model: assuming that the parties follow the steps of the protocol
- Broadcast model
 - Parties locally compute on their shares $\llbracket x \rrbracket \mapsto \llbracket \alpha \rrbracket$
 - Parties broadcast [[α]] and recompute
 α
 - Parties start again (now knowing α)

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

1	$\operatorname{Com}^{\rho_1}([[x]]_1)$
	$\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$

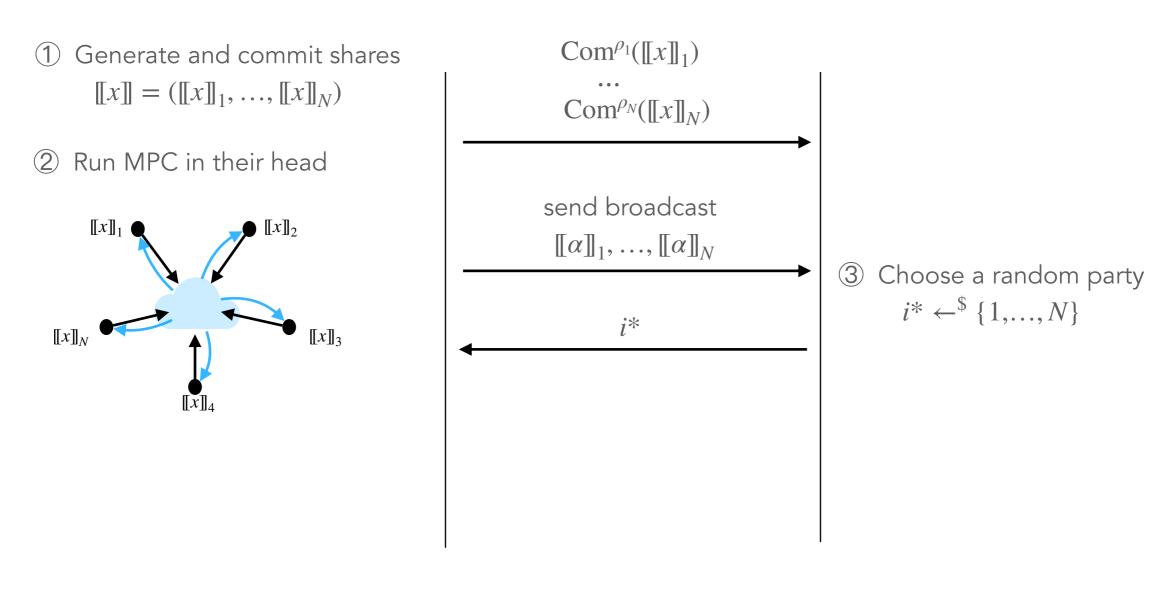
① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

② Run MPC in their head



$\operatorname{Com}^{\rho_1}(\llbracket x \rrbracket_1)$	
$\operatorname{Com}^{\rho_N}(\llbracket x \rrbracket_N)$	→
send broadcast $\llbracket \alpha \rrbracket_1, \dots, \llbracket \alpha \rrbracket_N$	

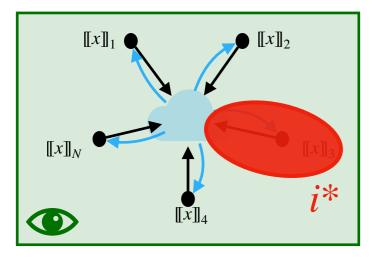
<u>Prover</u>



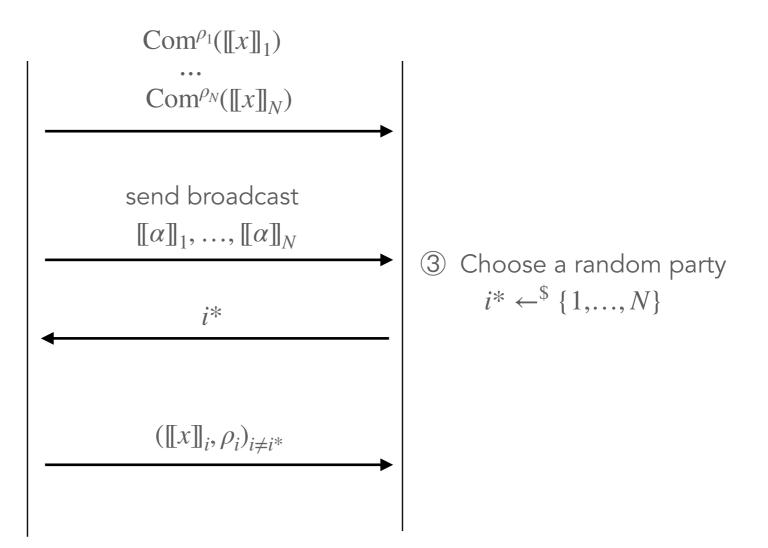
<u>Prover</u>

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

② Run MPC in their head



④ Open parties $\{1, ..., N\} \setminus \{i^*\}$

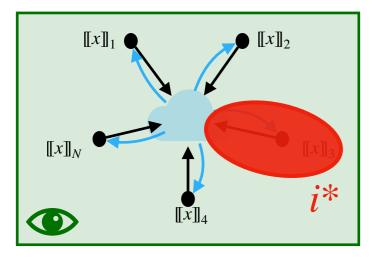


<u>Prover</u>

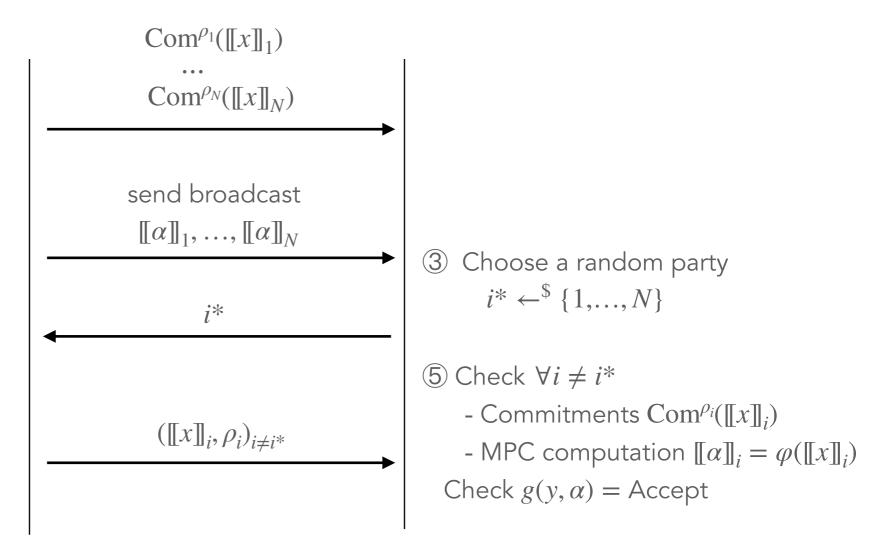
<u>Verifier</u>

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

2 Run MPC in their head

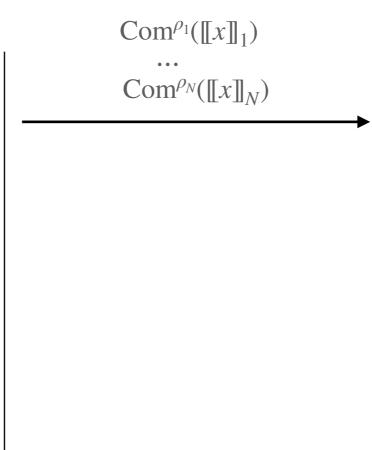


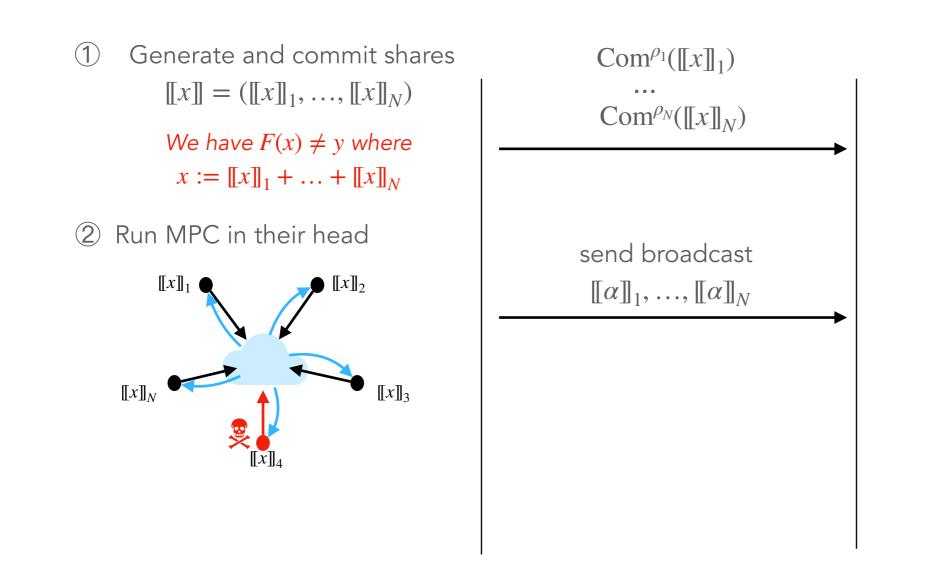
④ Open parties $\{1, ..., N\} \setminus \{i^*\}$



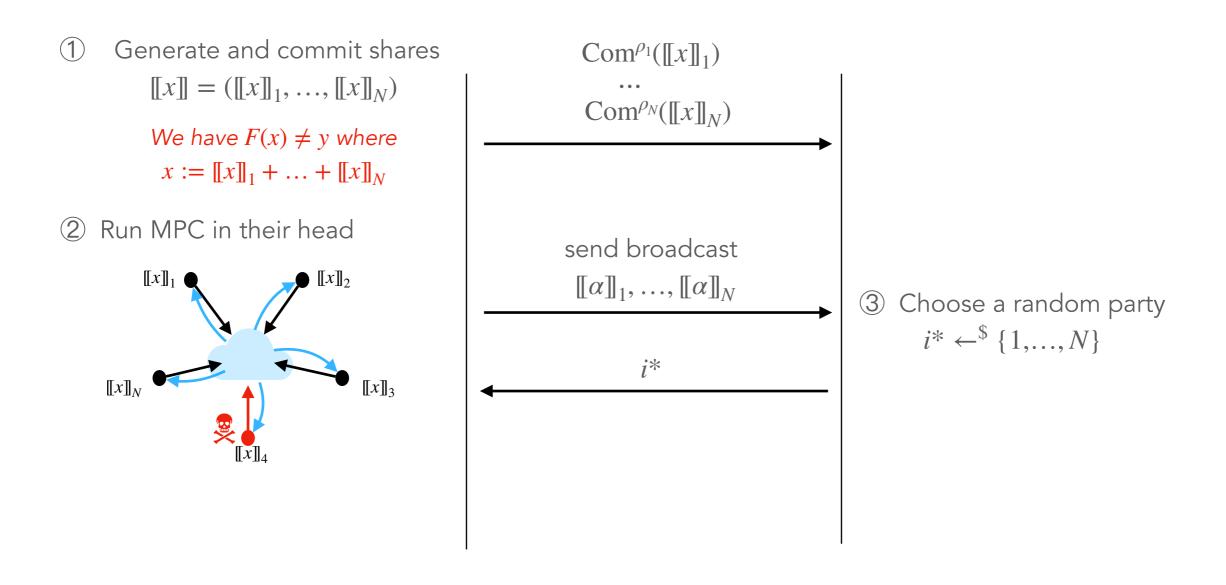
<u>Verifier</u>

1 Generate and commit shares $\llbracket x \rrbracket = (\llbracket x \rrbracket_1, \dots, \llbracket x \rrbracket_N)$ We have $F(x) \neq y$ where $x := \llbracket x \rrbracket_1 + \dots + \llbracket x \rrbracket_N$

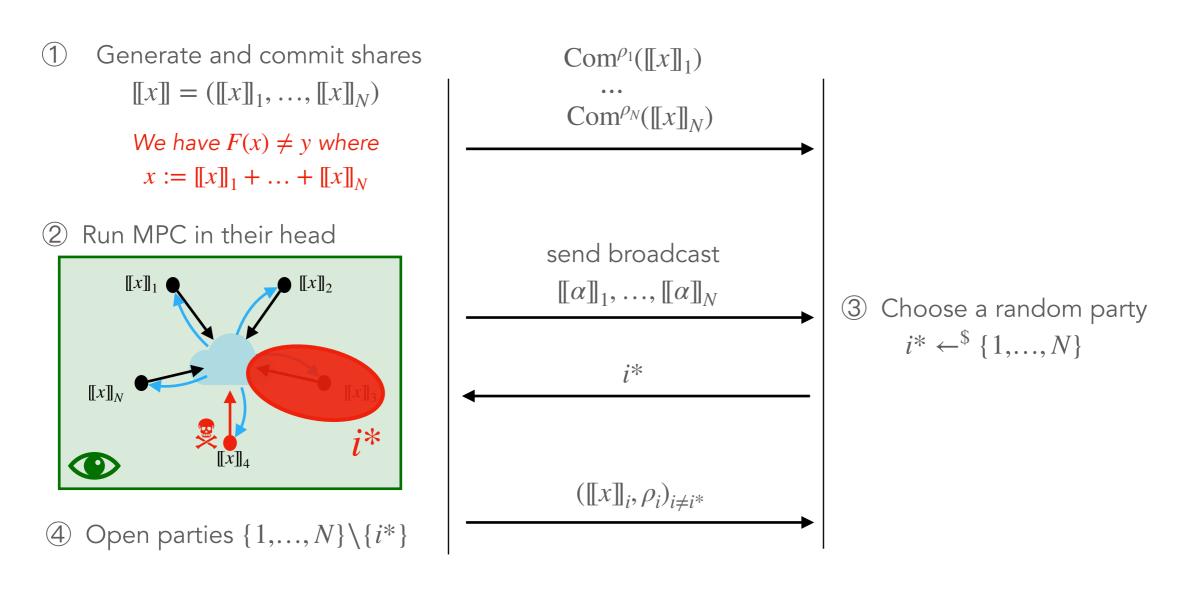




Malicious Prover



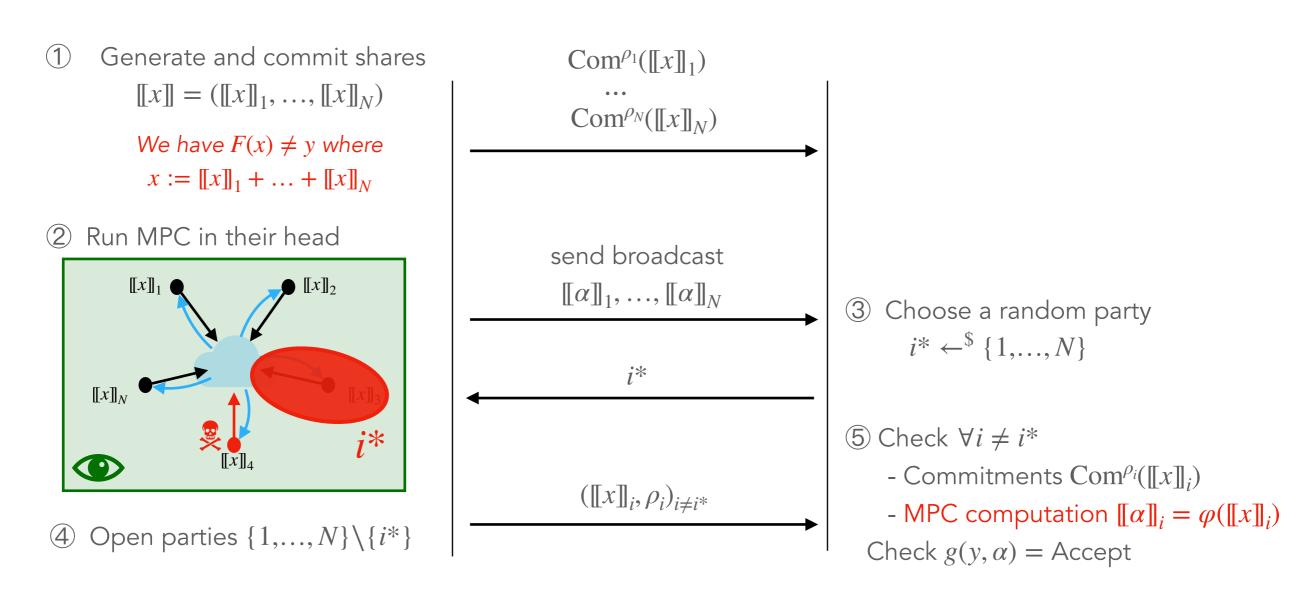
Malicious Prover



Malicious Prover

<u>Verifier</u>

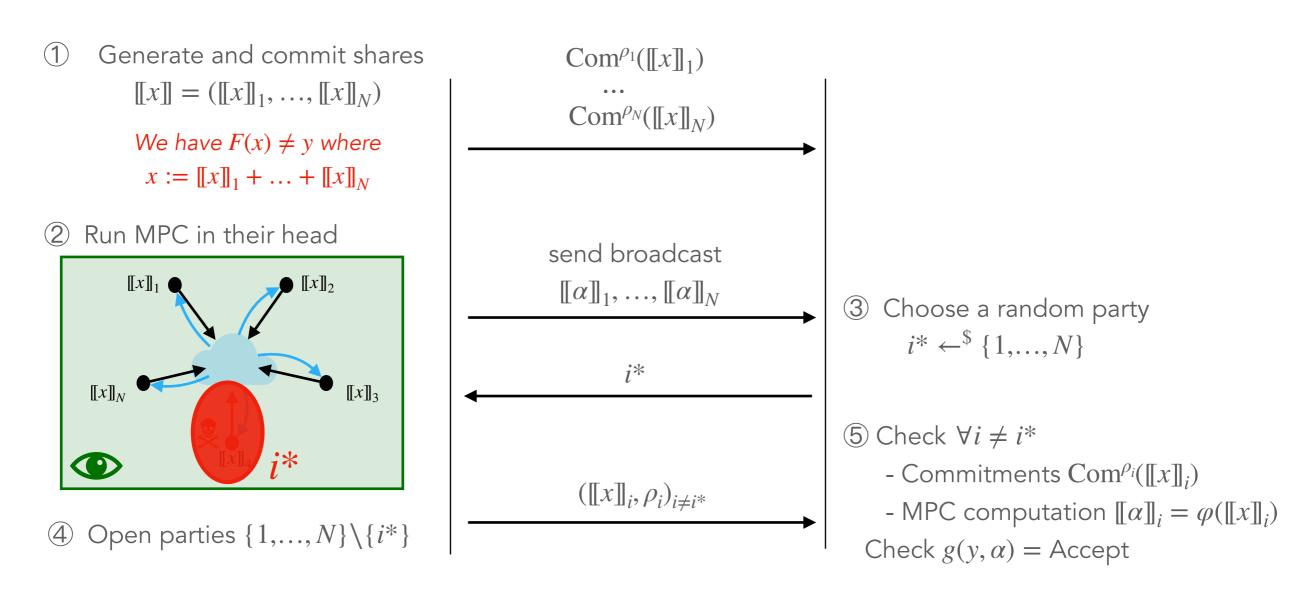
MPCitH transform



Malicious Prover

<u>Verifier</u>

MPCitH transform



Malicious Prover

• **Zero-knowledge** \iff MPC protocol is (N-1)-private

- **Zero-knowledge** \iff MPC protocol is (N-1)-private
- Soundness:

 $\mathbb{P}(\text{malicious prover convinces the verifier}) = \mathbb{P}(\text{corrupted party remains hidden}) = \frac{1}{N}$

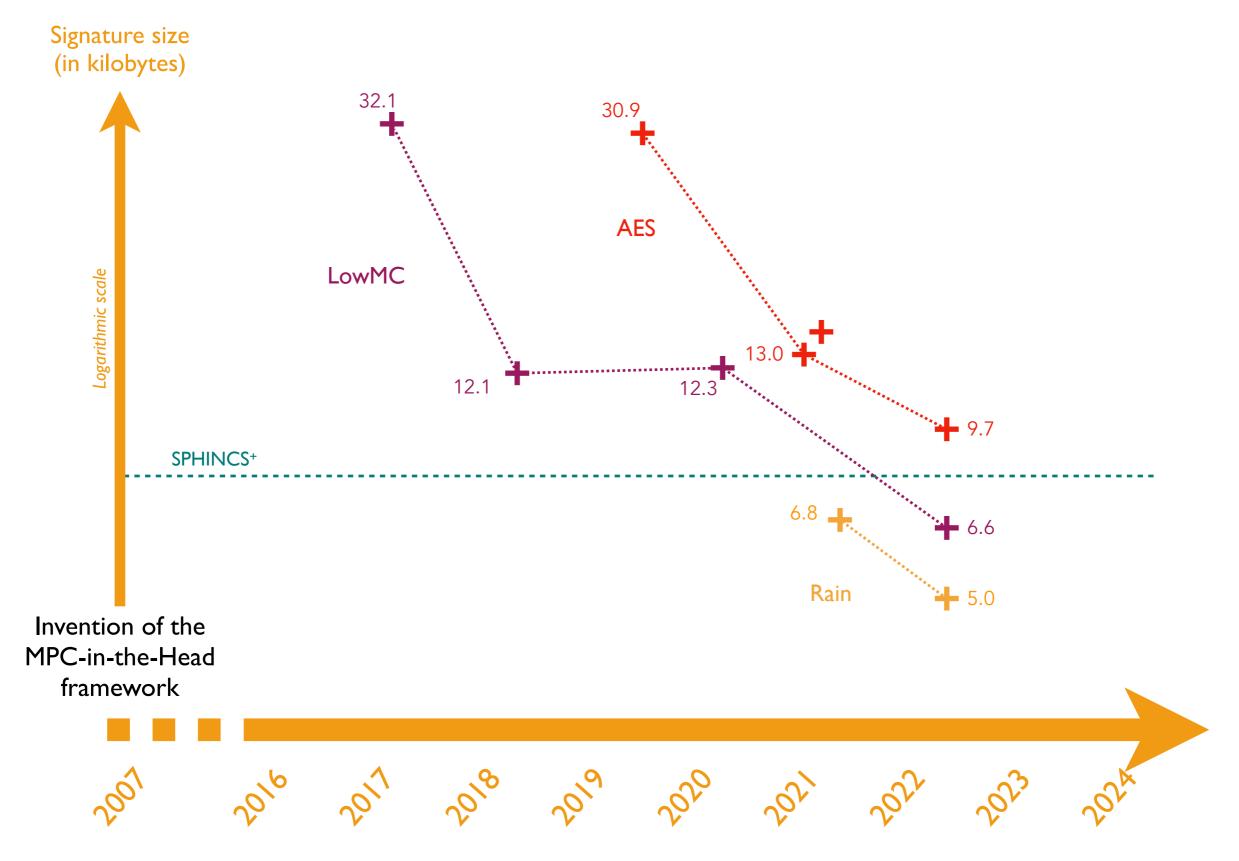
- **Zero-knowledge** \iff MPC protocol is (N-1)-private
- Soundness:

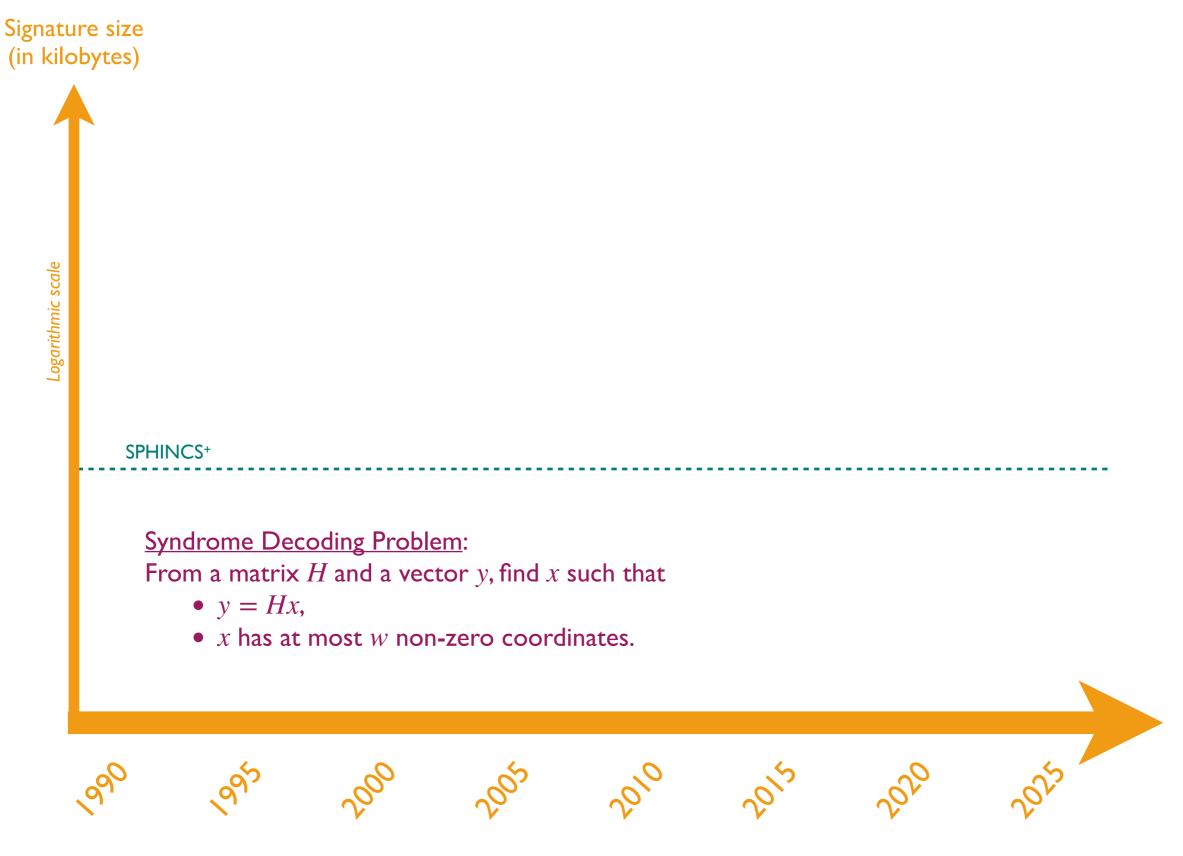
 $\mathbb{P}(\text{malicious prover convinces the verifier}) = \mathbb{P}(\text{corrupted party remains hidden}) = \frac{1}{N}$

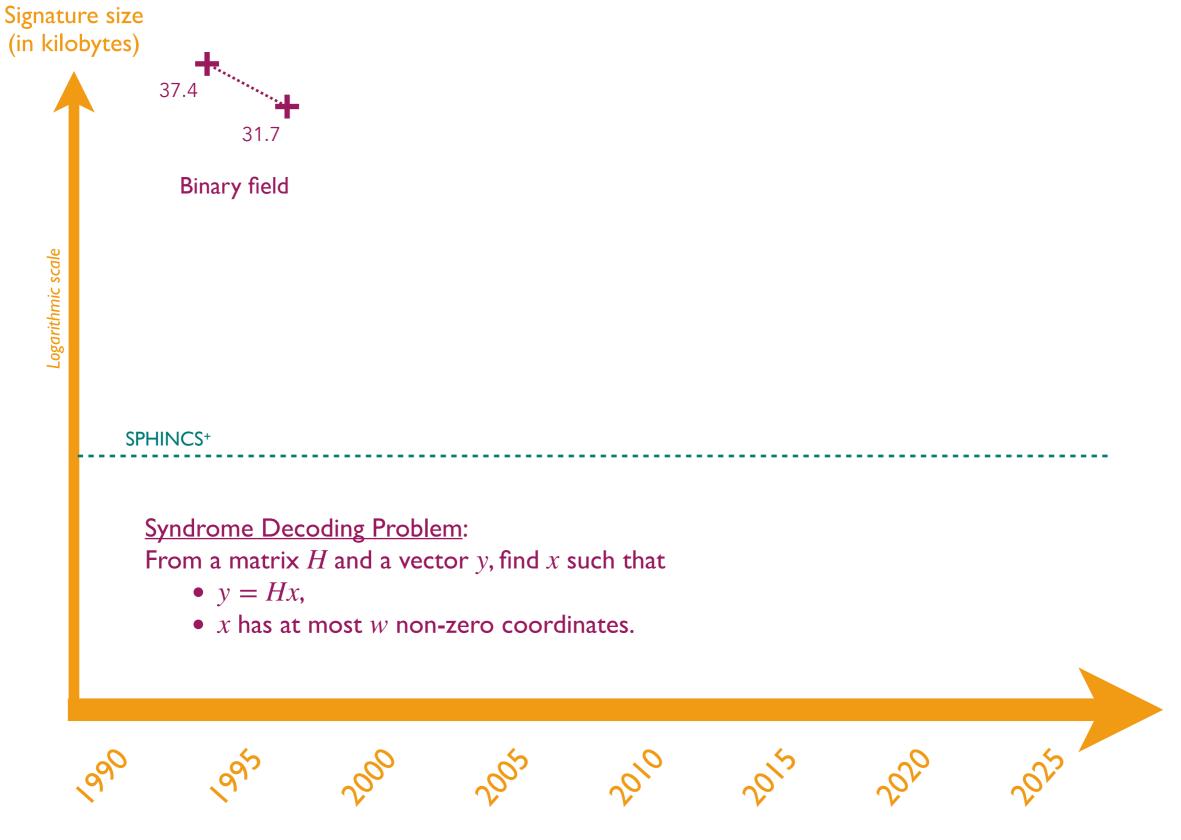
• Parallel repetition

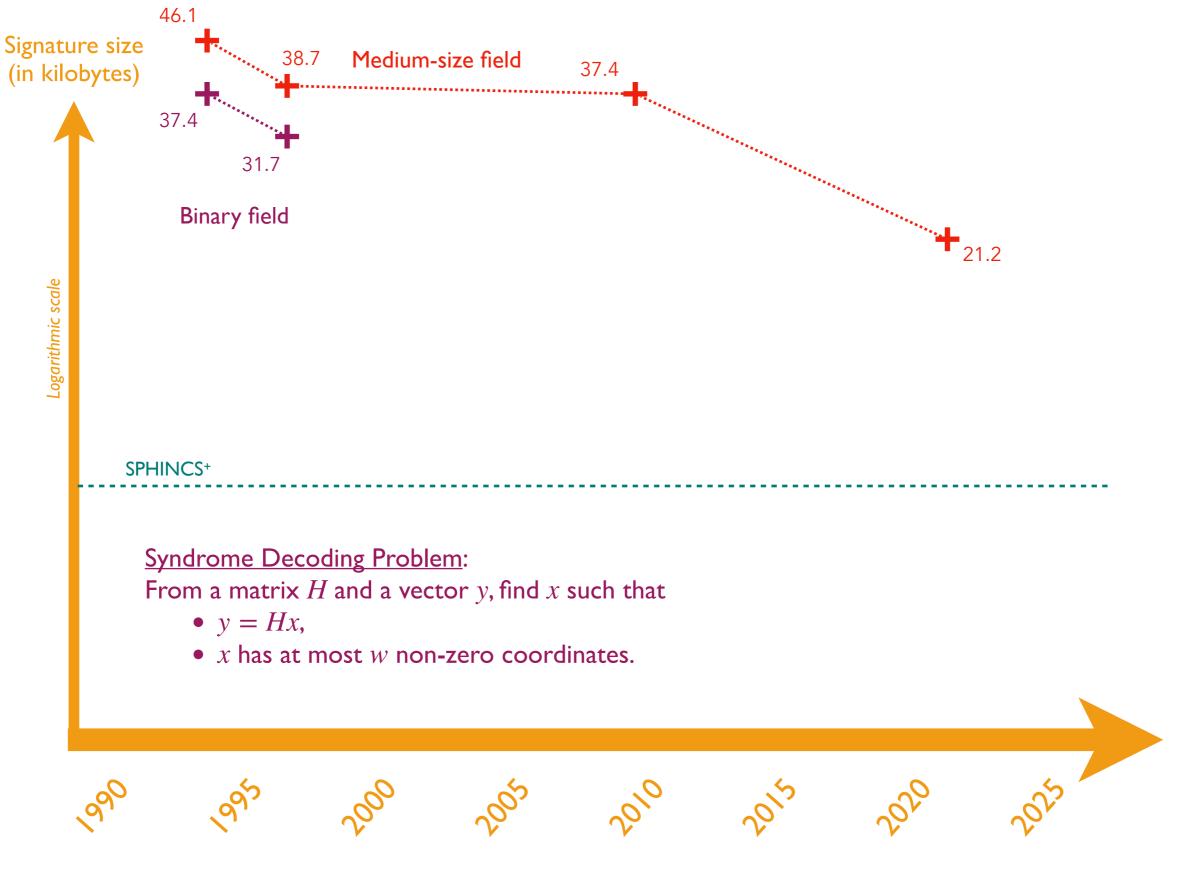
Protocol repeated τ times in parallel, soundness error $\left(\frac{1}{N}\right)^{\tau}$

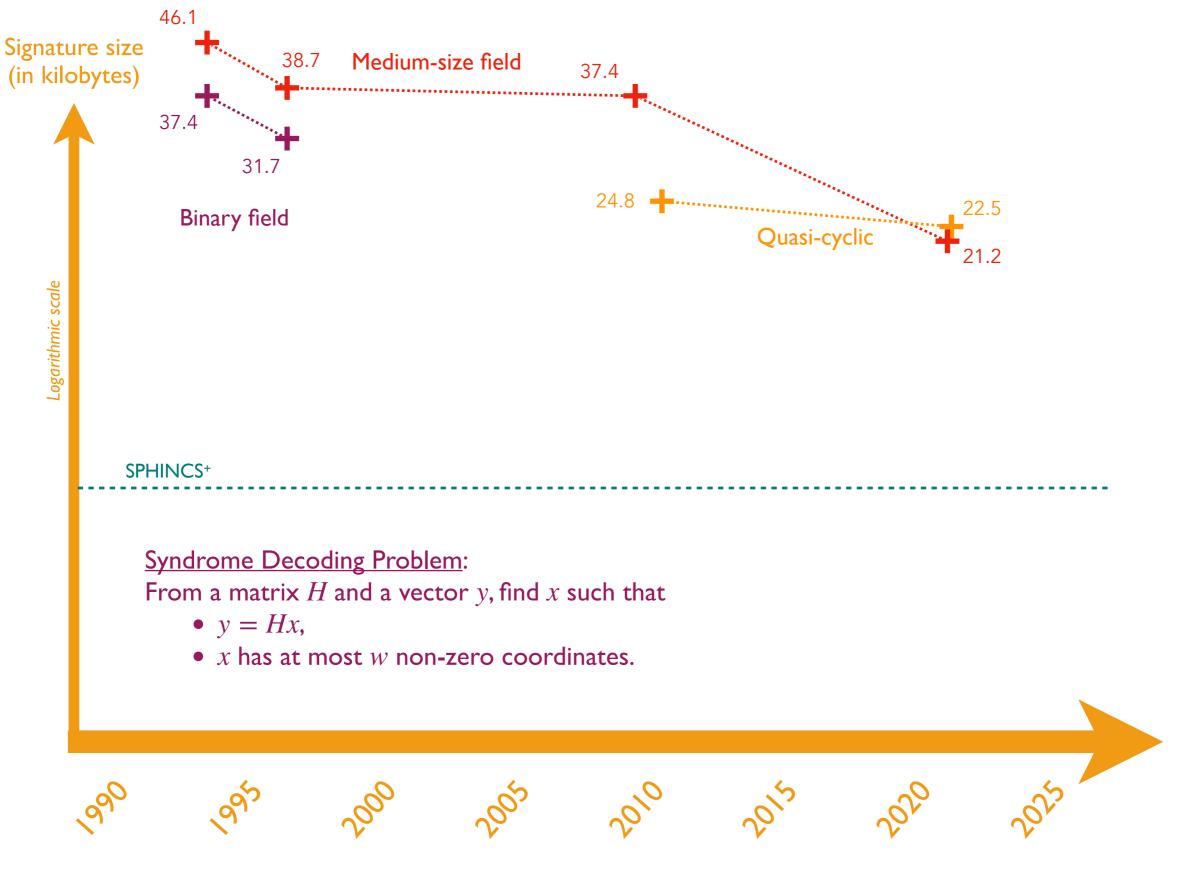
From MPC-in-the-Head to signatures

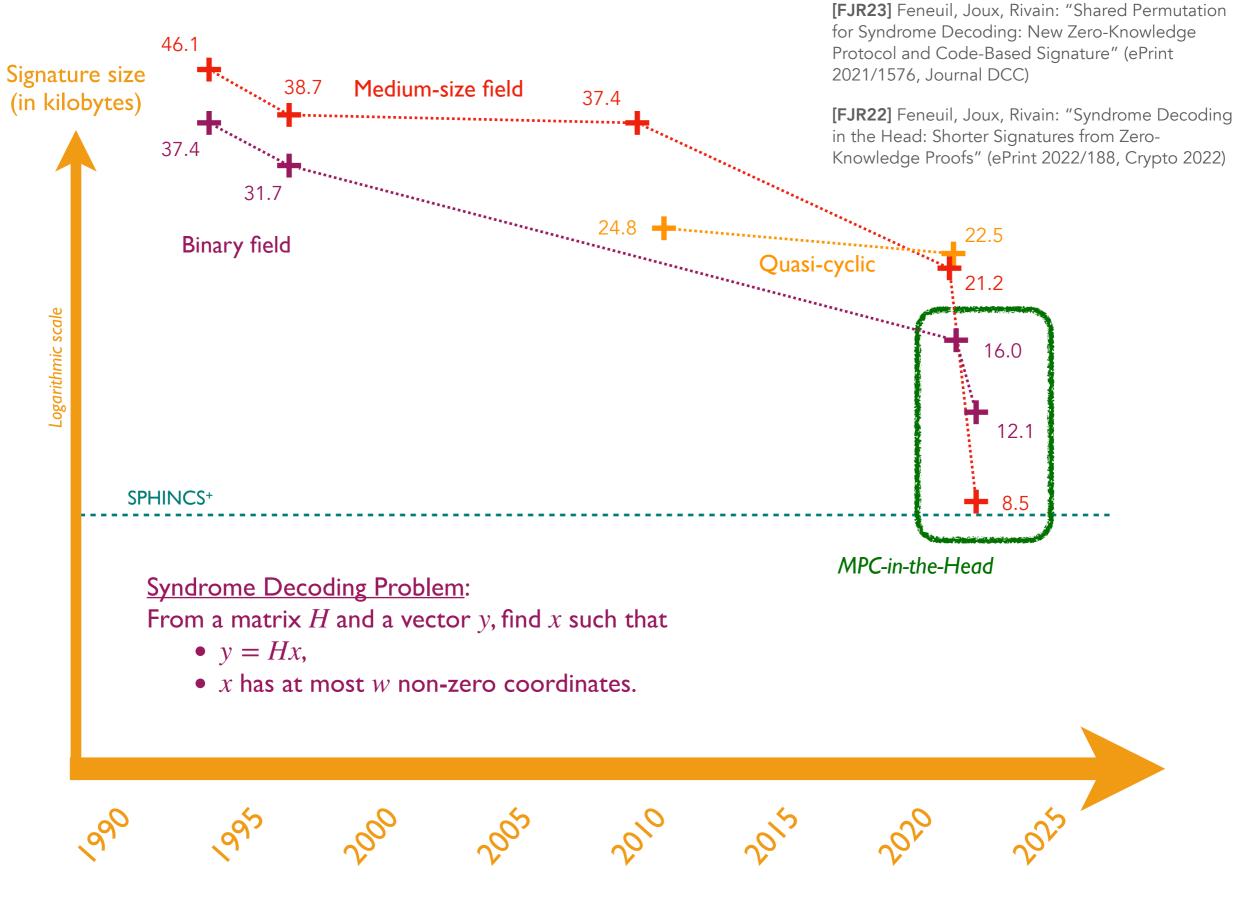


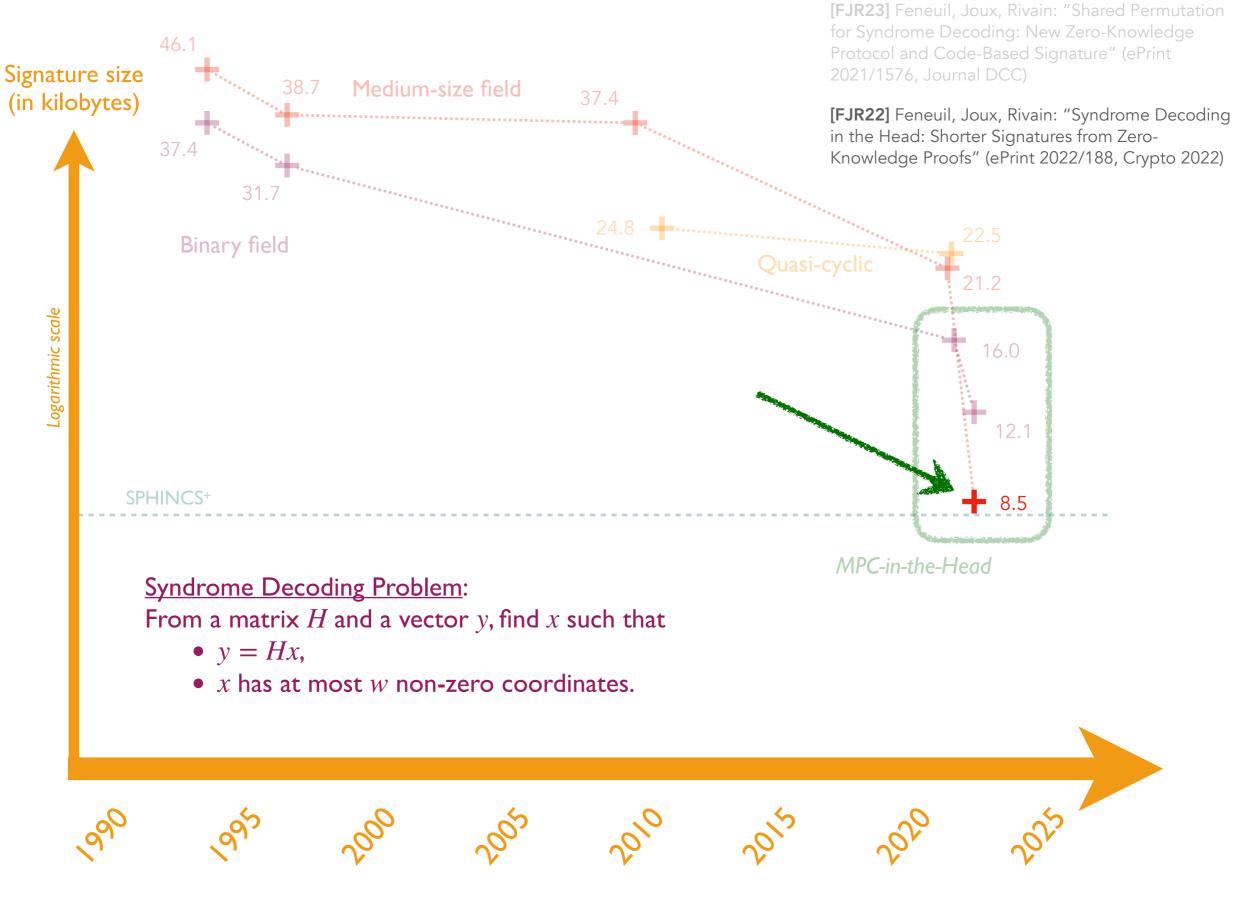


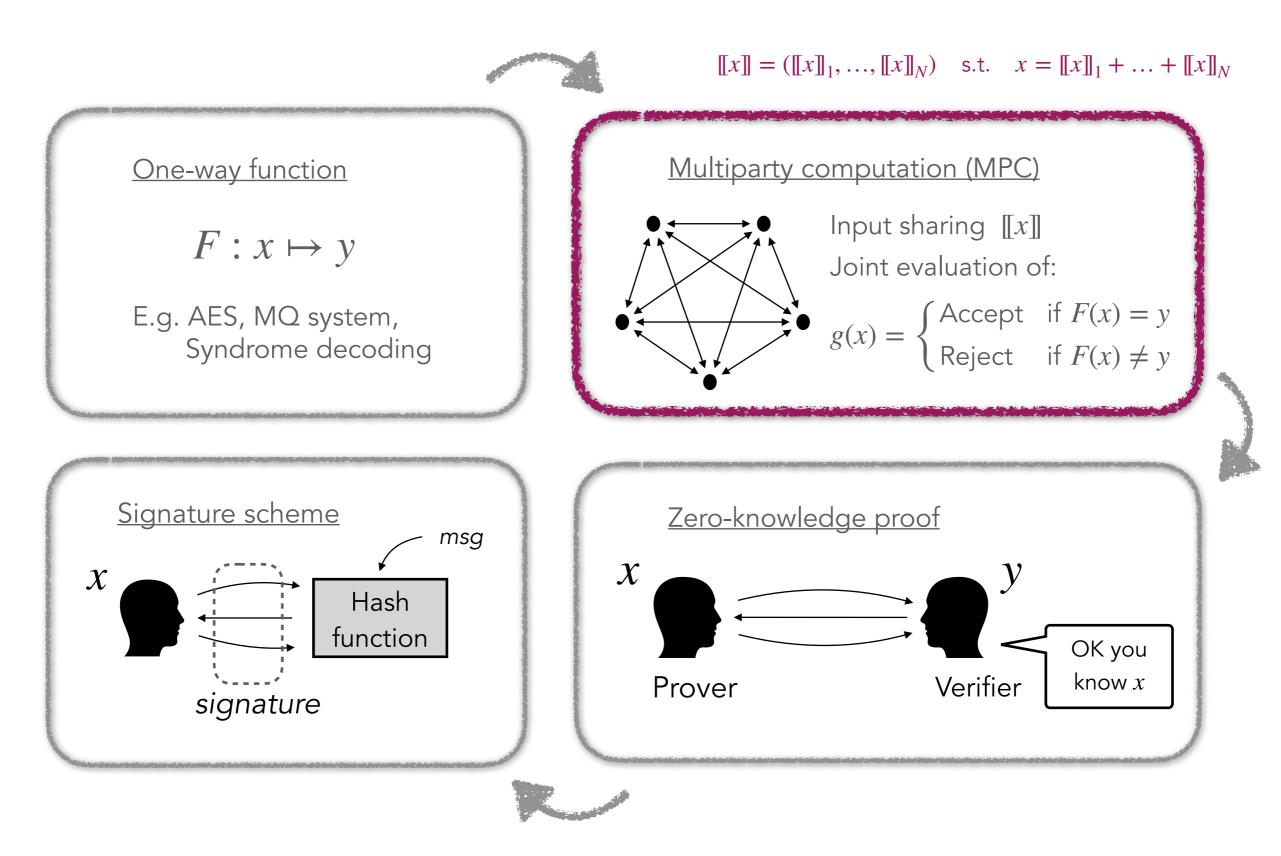












The multiparty computation must check that the vector \boldsymbol{x} satisfies

The multiparty computation must check that the vector \boldsymbol{x} satisfies

$$y = H\mathbf{x}$$

and

 $\exists Q, P$ two polynomials : SQ = PF and $\deg Q = w$

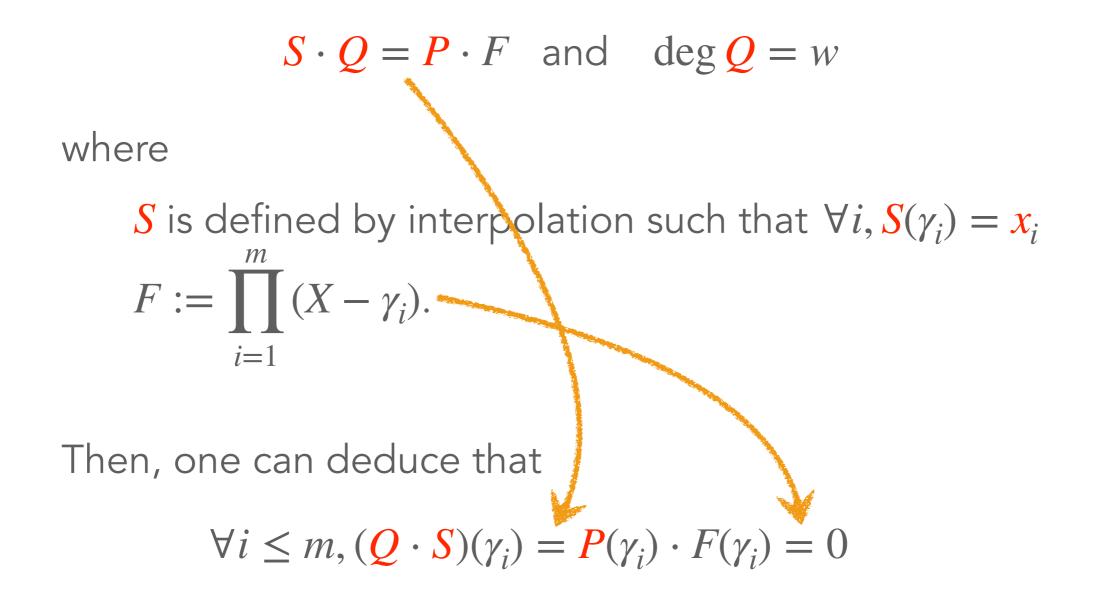
where

S is defined by interpolation such that $\forall i, S(\gamma_i) = x_i$, $F := \prod_{i=1}^{m} (X - \gamma_i).$

$$S \cdot Q = P \cdot F$$
 and $\deg Q = w$

where

S is defined by interpolation such that $\forall i, S(\gamma_i) = x_i$ $F := \prod_{i=1}^{m} (X - \gamma_i).$



$$S \cdot Q = P \cdot F$$
 and $\deg Q = w$

where

S is defined by interpolation such that $\forall i, S(\gamma_i) = x_i$ $F := \prod_{i=1}^{m} (X - \gamma_i).$

Then, one can deduce that

$$\forall i \le m, (\boldsymbol{Q} \cdot \boldsymbol{S})(\gamma_i) = \boldsymbol{P}(\gamma_i) \cdot F(\gamma_i) = 0$$

$$\Rightarrow \forall i \le m, \ \boldsymbol{Q}(\gamma_i) = 0 \quad \text{or} \quad \boldsymbol{S}(\gamma_i) = \boldsymbol{x}_i = 0$$

$$S \cdot Q = P \cdot F$$
 and $\deg Q = w$.

where

S is defined by interpolation such that $\forall i, S(\gamma_i) = x_i$ $F := \prod_{i=1}^{m} (X - \gamma_i).$

Then, one can deduce that

$$\begin{aligned} \forall i \leq m, (\boldsymbol{Q} \cdot \boldsymbol{S})(\gamma_i) &= \boldsymbol{P}(\gamma_i) \cdot F(\gamma_i) = 0 \\ \Rightarrow \forall i \leq m, \ \boldsymbol{Q}(\gamma_i) = 0 \quad \text{or} \quad \boldsymbol{S}(\gamma_i) = \boldsymbol{x}_i = 0 \end{aligned}$$

i.e.,
$$wt_H(\boldsymbol{x}) = \#\{i : \boldsymbol{x}_i \neq 0\} \leq w \end{aligned}$$

Such polynomial Q can be built as

$$\begin{aligned} Q &:= Q' \cdot \prod_{i:x_i \neq 0} \left(X - \gamma_i \right) \\ \end{aligned}$$
 The non-zero positions of x are encoding as roots.

And
$$P := \frac{S \cdot Q}{F}$$
 since F divides $S \cdot Q$.

$$(\forall i, \mathbf{S}(\gamma_i) = \mathbf{x}_i)$$

We want to build a *MPC protocol* which checks if some vector is a syndrome decoding solution.

Let us assume that H = (H'|I). We split x as $\begin{pmatrix} x_A \\ x_B \end{pmatrix}$.

We have y = Hx, so

$$x_{B} = y - H' x_{A}.$$

We want to build a *MPC protocol* which checks if some vector is a syndrome decoding solution.

Let us assume that H = (H'|I). We split x as $\begin{pmatrix} x_A \\ x_B \end{pmatrix}$.

We have y = Hx, so

$$x_{B} = y - H' x_{A}.$$

Inputs of the MPC protocol: x_A, Q, P Aim of the MPC protocol:

Check that x_A corresponds to a syndrome decoding solution.

Inputs of the MPC protocol: x_A , Q, P

1. Build
$$x_B := y - H' x_A$$
 and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.

We have

$$y = H\mathbf{x}$$
.

Inputs of the MPC protocol: x_A , Q, P

1. Build
$$x_B := y - H' x_A$$
 and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.

2. Build the polynomial S by interpolation such that

$$\forall i, \ \mathbf{S}(\gamma_i) = \mathbf{x}_i.$$

Interpolation Formula:

$$\mathbf{S}(X) = \sum_{i} \mathbf{x}_{i} \cdot \prod_{\ell \neq i} \frac{X - \gamma_{\ell}}{\gamma_{i} - \gamma_{\ell}}.$$

Inputs of the MPC protocol: x_A , Q, P

- 1. Build $x_B := y H' x_A$ and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.
- 2. Build the polynomial S by interpolation such that

$$\forall i, \ \mathbf{S}(\gamma_i) = \mathbf{x}_i.$$

3. Check that $S \cdot Q = P \cdot F$.

Inputs of the MPC protocol: x_A , Q, P

1. Build
$$x_B := y - H' x_A$$
 and deduce $x := \begin{pmatrix} x_A \\ x_B \end{pmatrix}$.

2. Build the polynomial S by interpolation such that

 $\forall i, \ \mathbf{S}(\gamma_i) = \mathbf{x}_i.$

- 3. Get a random point r from a field extension \mathbb{F}_{points} .
- 4. Compute S(r), Q(r) and P(r).
- 5. Using [BN20], check that $S(r) \cdot Q(r) = P(r) \cdot F(r)$.

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits and their application to lattice-based cryptography. PKC 2020.

Even if x_A does not describe a SD solution, implying that $S \cdot Q \neq P \cdot F$, the MPC protocol can output **Accept** if

Case 1:

 $S(r) \cdot Q(r) = P(r) \cdot F(r)$

which occurs with probability (Schwartz-Zippel Lemma)

$$\Pr_{r \leftarrow \mathbb{F}_{points}} \left[\mathbf{S}(r) \cdot \mathbf{Q}(r) = \mathbf{P}(r) \cdot F(r) \right] \le \frac{m + w - 1}{|\mathbb{F}_{points}|}$$

Even if x_A does not describe a SD solution, implying that $S \cdot Q \neq P \cdot F$, the MPC protocol can output **Accept** if

Case 1:

 $S(r) \cdot Q(r) = P(r) \cdot F(r)$

which occurs with probability (Schwartz-Zippel Lemma)

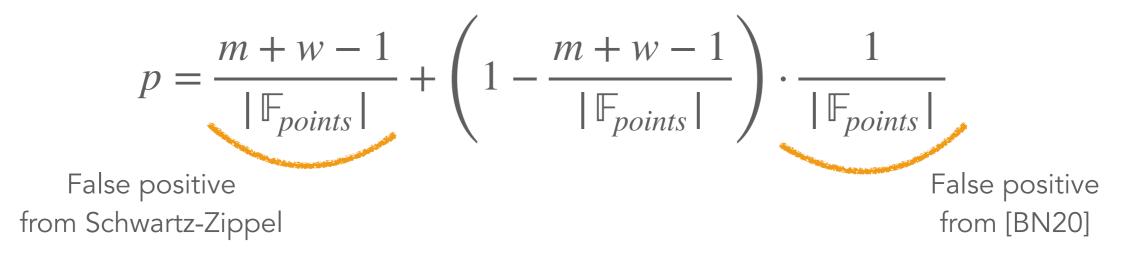
$$\Pr_{r \leftarrow \mathbb{F}_{points}} \left[\mathbf{S}(r) \cdot \mathbf{Q}(r) = \mathbf{P}(r) \cdot F(r) \right] \le \frac{m + w - 1}{|\mathbb{F}_{points}|}$$

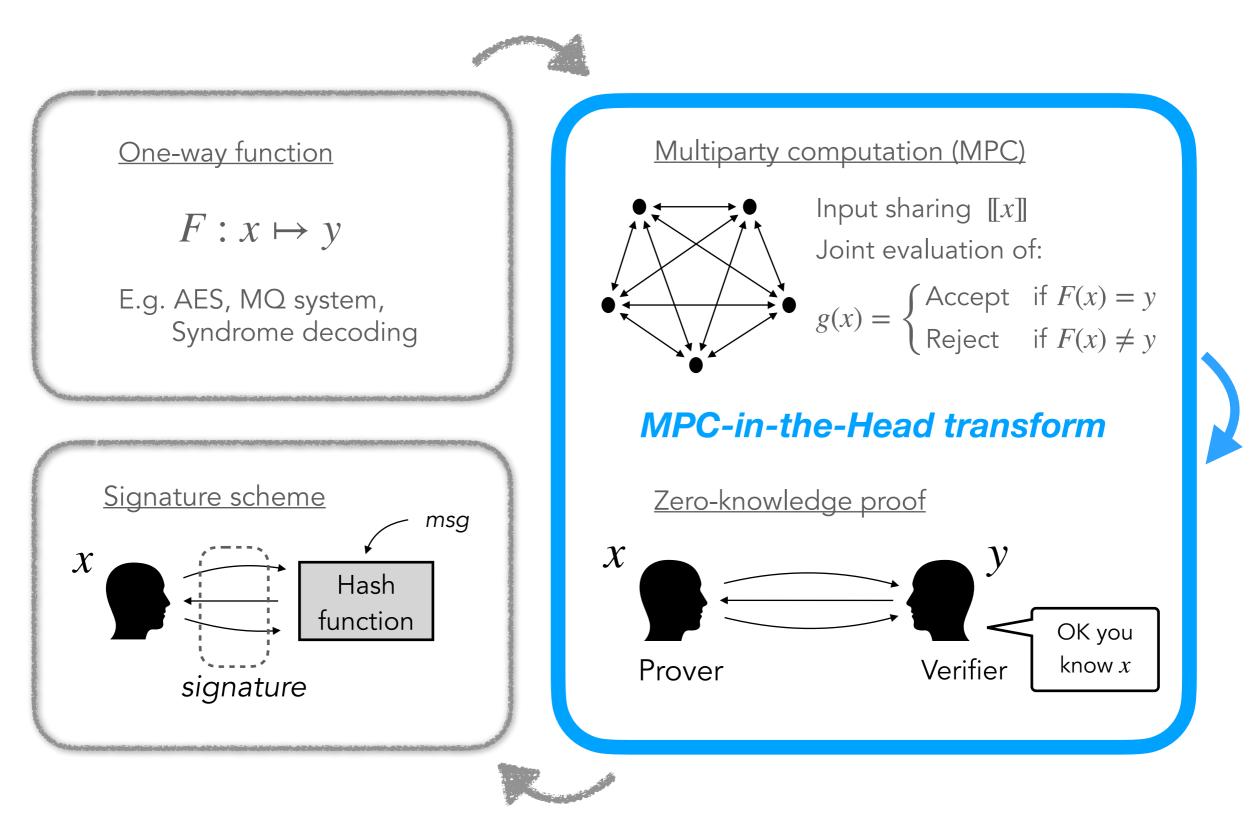
<u>**Case 2</u>**: the [BN20] protocol failed, which occurs with probability $\frac{1}{|\mathbb{F}_{points}|}$ </u>

The MPC protocol checks that (x_A, Q, P) describes a solution of the SD instance (H, y).

	Protocol Output	
	Accept	Reject
A good witness	1	0
Not a good witness	р	1 – <i>p</i>

where





Resulting Zero-Knowledge Proof for SD

<u>Soundness error</u>:

$$\varepsilon := \frac{1}{N} + \left(1 - \frac{1}{N}\right) \cdot p$$

To achieve negligible soundness error, we repeat the zeroknowledge proof τ times such that $e^{\tau} < 2^{-\lambda}$.

Resulting Zero-Knowledge Proof for SD

<u>Soundness error</u>:

$$\varepsilon := \frac{1}{N} + \left(1 - \frac{1}{N}\right) \cdot p$$

To achieve negligible soundness error, we repeat the zero-knowledge proof τ times such that $e^{\tau} < 2^{-\lambda}$.

<u>Signature scheme</u>: to obtain the signature scheme, we just need to apply the

Fiat-Shamir transform.

Signature Scheme

Parameter Selection (128-bit security):

- Syndrome Decoding problem over \mathbb{F}_{256}
- The MPCitH parameters: N = 256, $\tau = 17$

<u>Resulting size (short variant)</u>:

 $\approx 8,5$ kilobytes

Using few optimisations (Seed trees, ...) Parameter Selection (128-bit security):

- Syndrome Decoding problem over \mathbb{F}_{256}
- The MPCitH parameters: N = 256, $\tau = 17$

<u>Resulting size (short variant)</u>:

Using few optimisations (Seed trees, ...)

pprox 8,5 kilobytes

Notes:

- We can apply to binary syndrome decoding problem, but it requires a field lifting for the polynomials S, Q, P, F.
- In the thesis, we propose also another approach, namely the shared-permutation framework,
 but it leads to larger sizes for the SD problem.

Exploring other assumptions

- Subset Sum Problem: $\geq 100 \text{ KB} \Rightarrow 19.1 \text{ KB}$
 - Problem over a very large modulo $q \approx 2^{256}$
 - Key Idea: Sharing over integers, signature with aborts

[FMRV22] Feneuil, Maire, Rivain, Vergnaud. Zero-Knowledge Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection. Asiacrypt 2022.

Exploring other assumptions

- Subset Sum Problem: $\geq 100 \text{ KB} \Rightarrow 19.1 \text{ KB}$
 - Problem over a very large modulo $q \approx 2^{256}$
 - *Key Idea*: Sharing over integers, signature with aborts
- Multivariate Quadratic Problem: 6.3 7.3 KB
 - Problem with a cubic number of multiplications
 - Key Idea: Batching over all the quadratic equations

[Fen22] Feneuil. Building MPCitH-based Signatures from MQ, MinRank, and Rank SD. To appear to ACNS 2024.

Exploring other assumptions

- Subset Sum Problem: $\geq 100 \text{ KB} \Rightarrow 19.1 \text{ KB}$
 - Problem over a very large modulo $q \approx 2^{256}$
 - Key Idea: Sharing over integers, signature with aborts
- Multivariate Quadratic Problem: 6.3 7.3 KB
 - Problem with a cubic number of multiplications
 - Key Idea: Batching over all the quadratic equations
- MinRank Problem / Rank Syndrome Decoding Problem: ≈ 5.5 KB
 - Problems relying on the rank metric
 - ► Key Idea: Usage of *q*-polynomials

[Fen22] Feneuil. Building MPCitH-based Signatures from MQ, MinRank, and Rank SD. To appear to ACNS 2024.

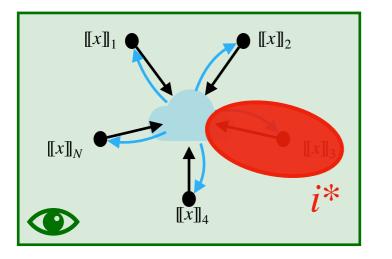
Exploring other assumptions

- Subset Sum Problem: $\geq 100 \text{ KB} \Rightarrow 19.1 \text{ KB}$
 - Problem over a very large modulo $q \approx 2^{256}$
 - Key Idea: Sharing over integers, signature with aborts
- Multivariate Quadratic Problem: 6.3 7.3 KB
 - Problem with a cubic number of multiplications
 - Key Idea: Batching over all the quadratic equations
- MinRank Problem / Rank Syndrome Decoding Problem: ≈ 5.5 KB
 - Problems relying on the rank metric
 - ► Key Idea: Usage of *q*-polynomials

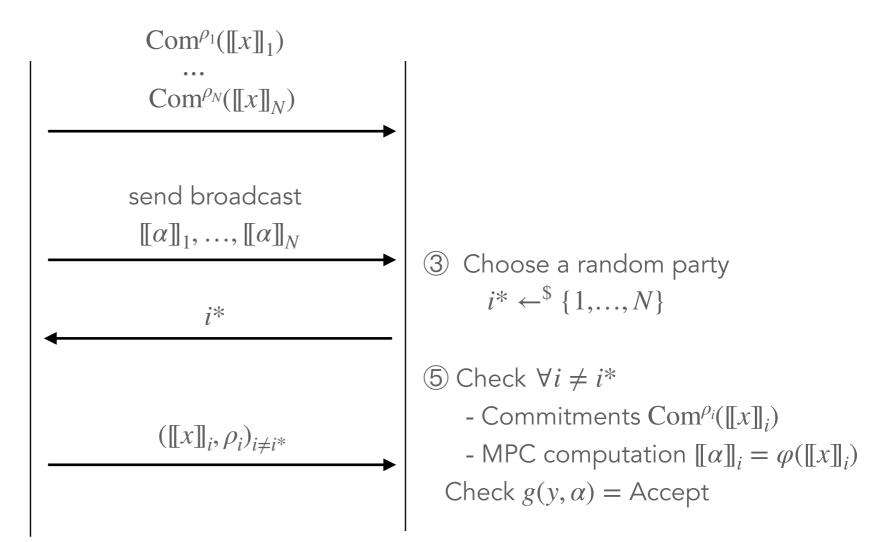
Computational Cost

① Generate and commit shares $[[x]] = ([[x]]_1, ..., [[x]]_N)$

2 Run MPC in their head



④ Open parties $\{1, ..., N\} \setminus \{i^*\}$



• <u>Syndrome-Decoding-in-the-Head</u>:

 $N = 256, \tau = 17$

Number of party emulations: $\tau \cdot N = 4352$!

Signing Time: 78 ms, with emulation phase of around 75 ms

• <u>Syndrome-Decoding-in-the-Head</u>:

 $N = 256, \tau = 17$

Number of party emulations: $\tau \cdot N = 4352$!

Signing Time: 78 ms, with emulation phase of around 75 ms

• To deal with this issue, we propose the <u>threshold approach</u>: [FR22] Feneuil Rivain Threshold Linear Secret Sharing to the

[FR22] Feneuil, Rivain. *Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head*. To appear at Asiacrypt 2023.

In the *threshold* approach, we use a **low-threshold** linear sharing scheme. For example, the Shamir's $(\ell + 1, N)$ -secret sharing scheme.

To share a value x,

- sample $r_1, r_2, ..., r_{\ell}$ uniformly at random,
- build the polynomial $P(X) = x + \sum_{k=0}^{\nu} r_k \cdot X^k$,
- Set the share $[[x]]_i \leftarrow P(e_i)$, where e_i is publicly known.

In the *threshold* approach, we use a **low-threshold** linear sharing scheme. For example, the Shamir's $(\ell + 1, N)$ -secret sharing scheme.

Properties:

- Linearity: [x] + [y] = [x + y]
- Any set of ℓ shares is random and independent of x
- Any set of $\ell + 1$ shares \rightarrow all the shares (and the secret)

In the *threshold* approach, we use a **low-threshold** linear sharing scheme. For example, the Shamir's $(\ell + 1, N)$ -secret sharing scheme.

Properties:

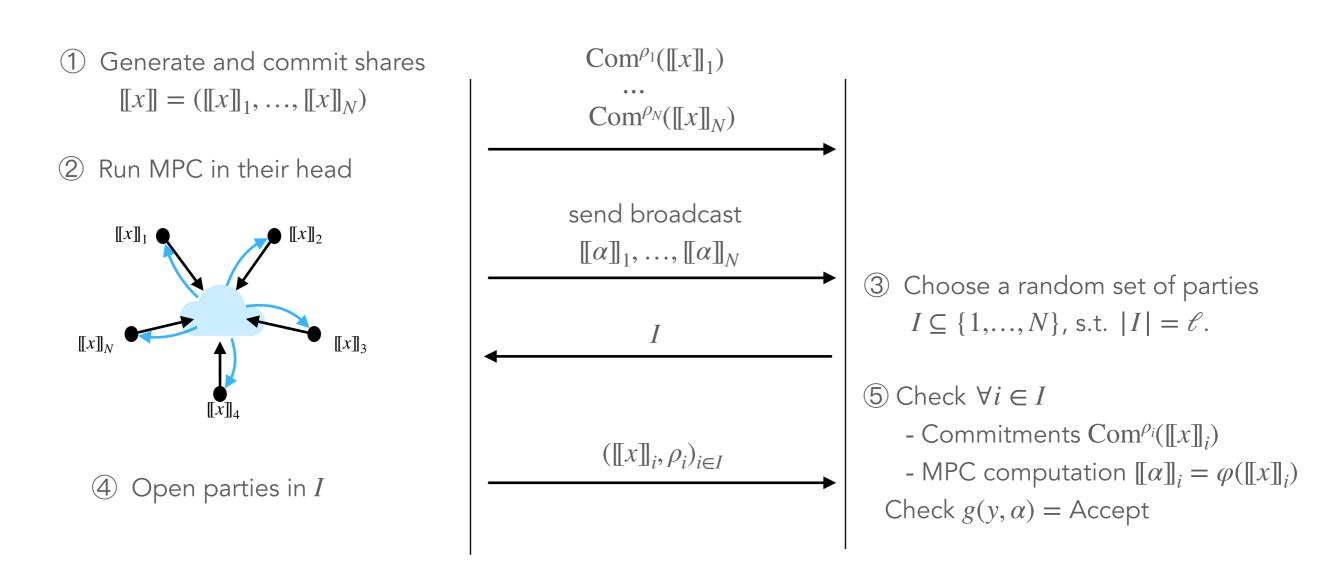
- Linearity: [x] + [y] = [x + y]
- Any set of ℓ shares is random and independent of x
- Any set of $\ell + 1$ shares \rightarrow all the shares (and the secret)

Zero-Knowledge:

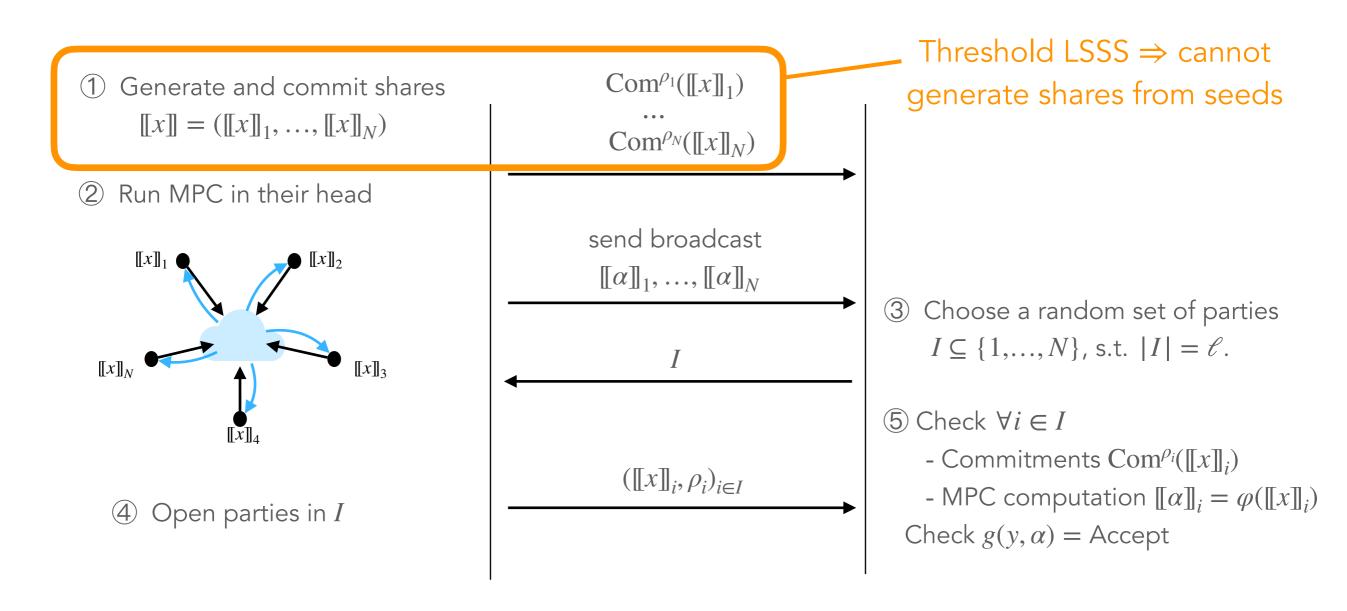
The prover opens only ℓ parties (instead of N-1).

In practice, $\ell \in \{1,2,3\}$

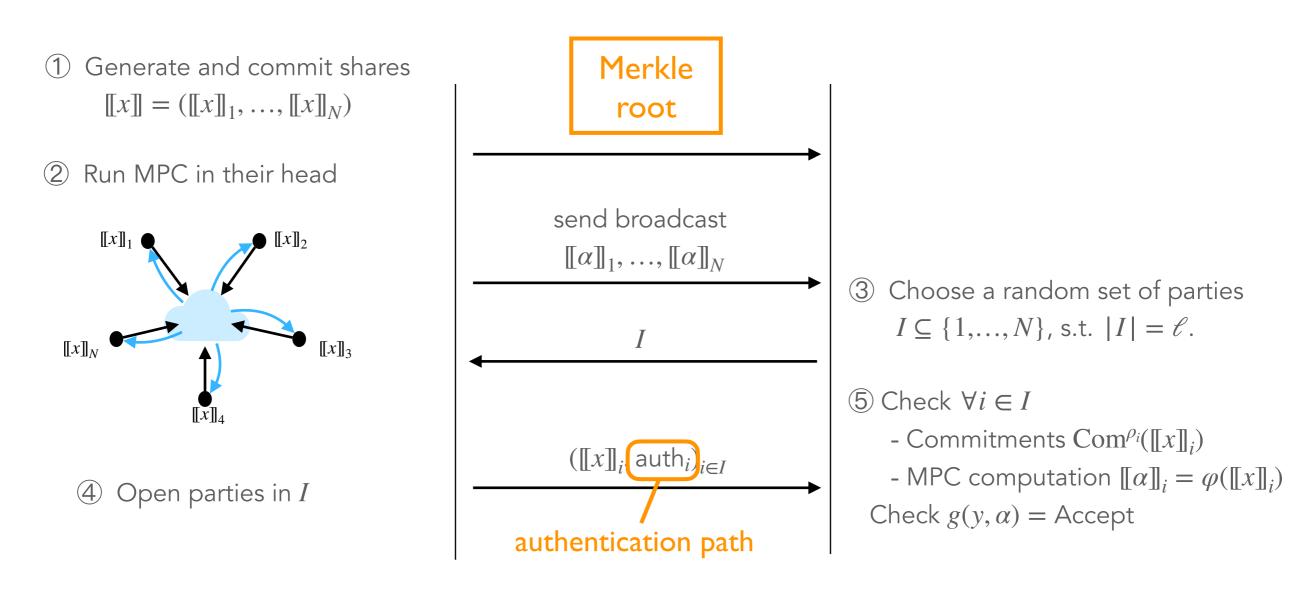
<u>Prover</u>



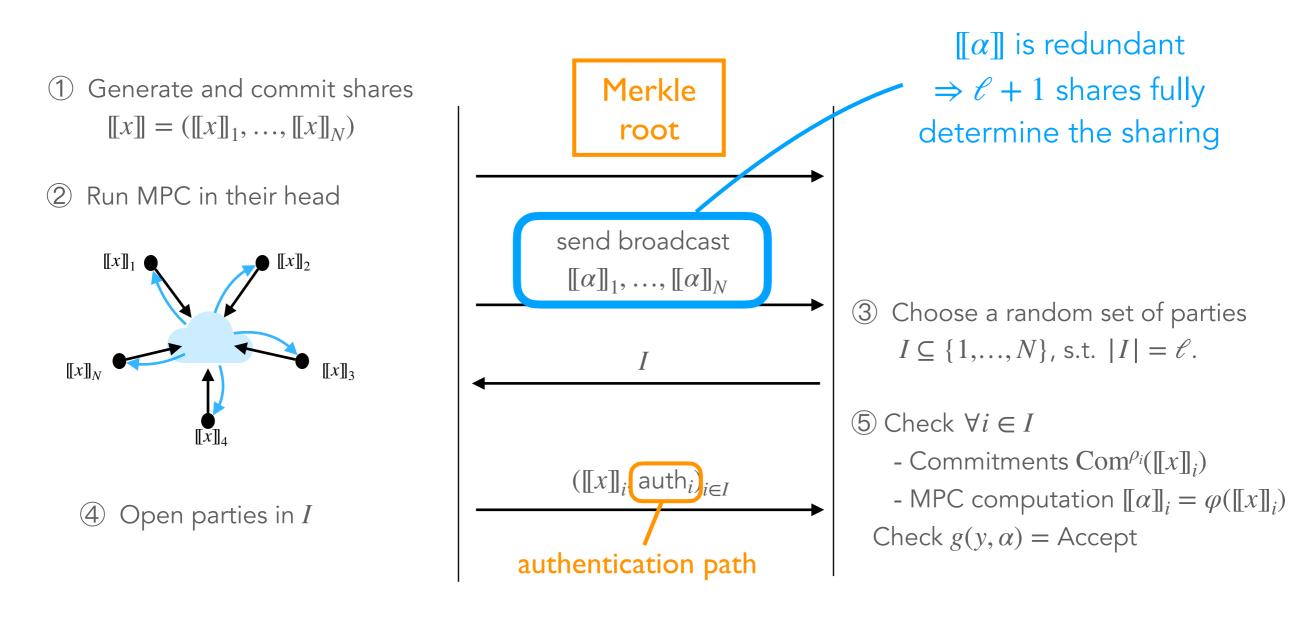
<u>Prover</u>



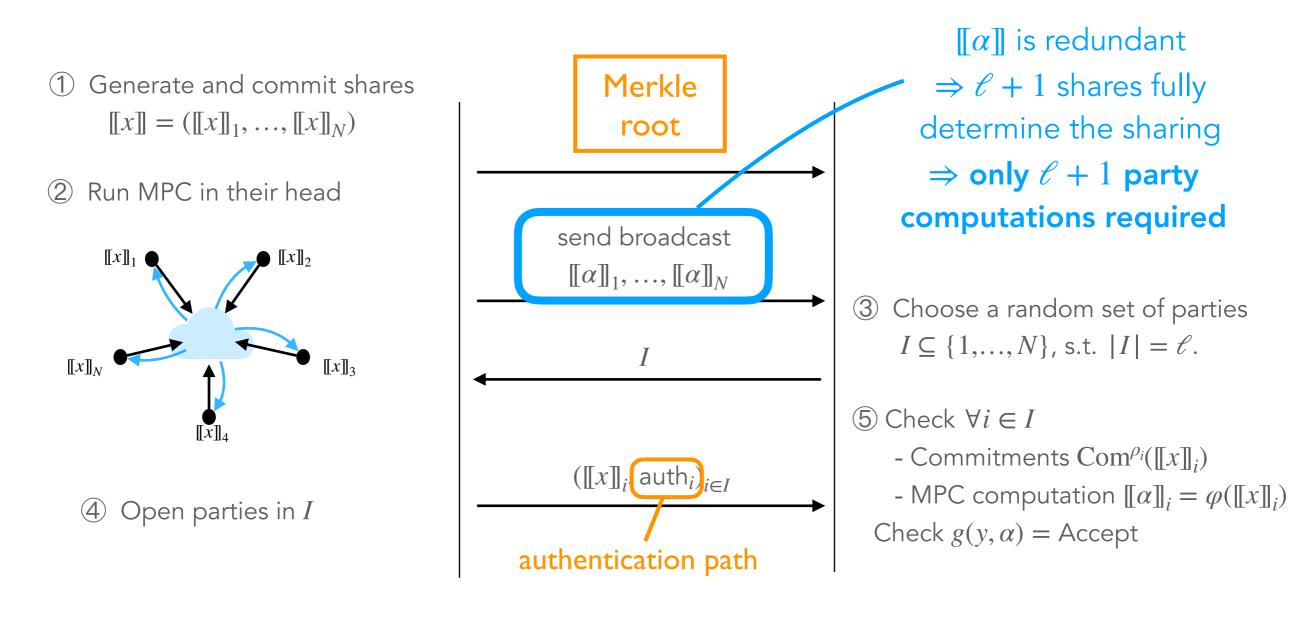
<u>Prover</u>

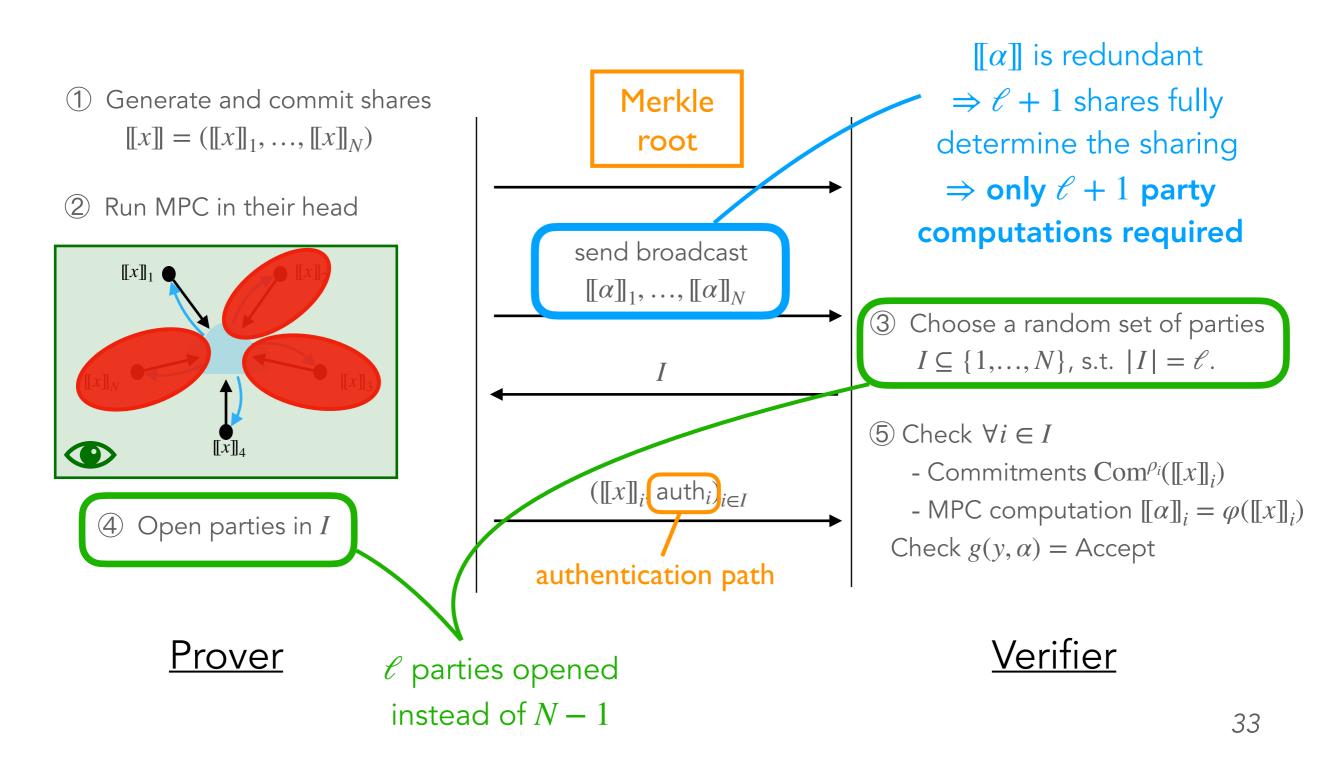


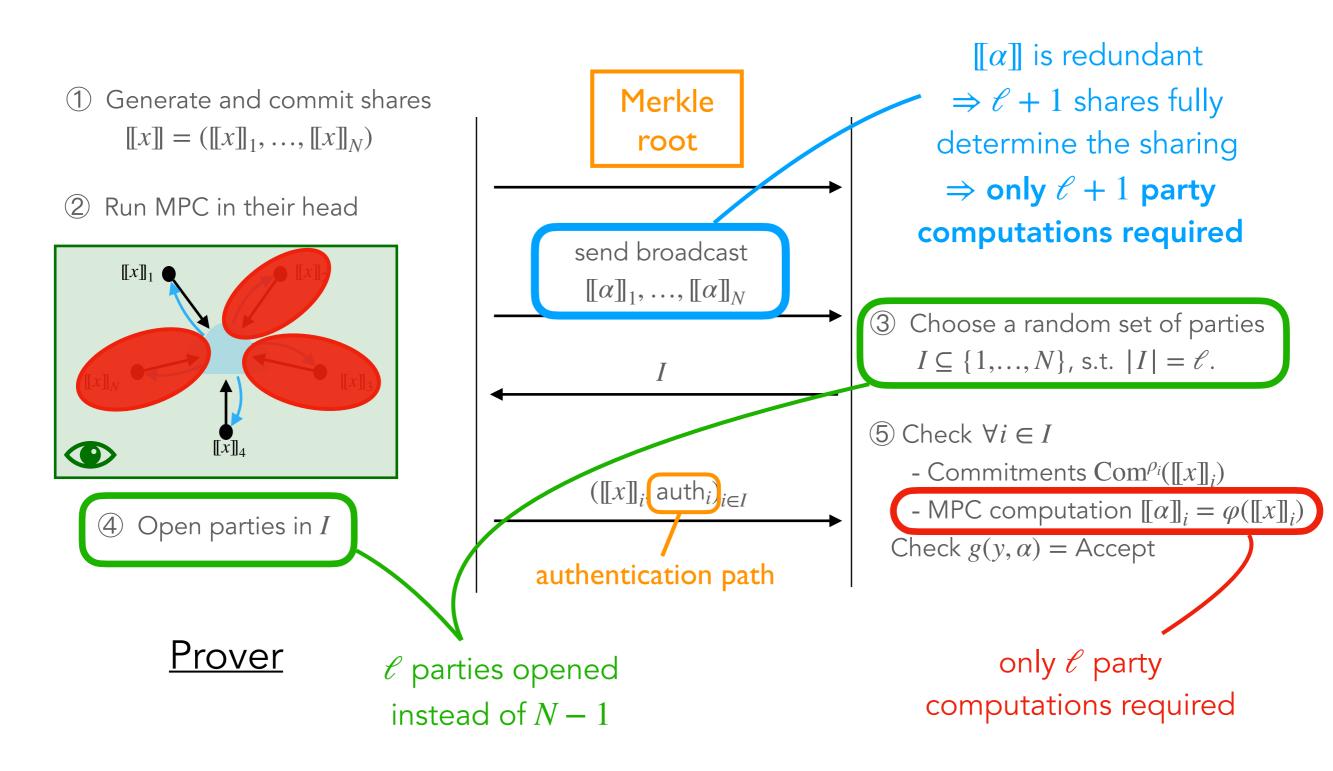
<u>Prover</u>



<u>Prover</u>







The Threshold Approach - Soundness

• Soundness error (for any ℓ):

$$\frac{1}{\binom{N}{\ell}} + p \cdot \frac{\ell(N-\ell)}{\ell+1}$$

• Soundness error (for $\ell = 1$):

$$\frac{1}{N} + p \cdot \frac{(N-1)}{2}$$

instead of
$$\frac{1}{N} + p \cdot \left(1 - \frac{1}{N}\right)$$
.

	Additive sharing + seed trees	Threshold LSSS with $\ell = 1$
Soundness error	$\frac{1}{N} + p \cdot \left(1 - \frac{1}{N}\right)$	$\frac{1}{N} + p \cdot \frac{(N-1)}{2}$
Prover # party computations	N	2
Verifier # party computations	N - 1	1
Sharing Generation and Commitment	Seed tree $\lambda \cdot \log N$	$\frac{\text{Merkle tree}}{2\lambda \cdot \log N}$

	Additive sharingThreshold LSSS+ seed treeswith $\ell = 1$	
Soundness error	$\frac{1}{N} + p \cdot \left(1 - \frac{1}{N}\right)$	$\frac{1}{N} + p \cdot \frac{(N-1)}{2}$
Prover # party computations	N	2
Verifier # party computations	N - 1 1	
Sharing Generation and Commitment	Seed treeMerkle tree $\lambda \cdot \log N$ $2\lambda \cdot \log N$	

	Additive sharingThreshold LSSS+ seed treeswith $\ell = 1$	
Soundness error	$\frac{1}{N} + p \cdot \left(1 - \frac{1}{N}\right)$	$\frac{1}{N} + p \cdot \frac{(N-1)}{2}$
Prover # party computations	N	2
Verifier # party computations	N - 1	1
Sharing Generation and Commitment	Seed tree $\lambda \cdot \log N$	$\frac{\text{Merkle tree}}{2\lambda \cdot \log N}$

Fast verification

algorithm

35

	Additive sharing + seed trees	Threshold LSSS with $\ell = 1$	
Soundness error	$\frac{1}{N} + p \cdot \left(1 - \frac{1}{N}\right)$	$\frac{1}{N} + p \cdot \frac{(N-1)}{2}$	
Prover # party computations	N	2	
Verifier # party computations	N - 1	1	
Sharing Generation and Commitment	Seed tree $\lambda \cdot \log N$	$\frac{\text{Merkle tree}}{2\lambda \cdot \log N}$	

Larger signature sizes

Require $N \leq |\mathbb{F}|$

	Additive sharingThreshold LSSS+ seed treeswith $\ell = 1$	
Soundness error	$\frac{1}{N} + p \cdot \left(1 - \frac{1}{N}\right)$	$\frac{1}{N} + p \cdot \frac{(N-1)}{2}$
Prover # party computations	N	2
Verifier # party computations	N - 1	1
Sharing Generation and Commitment	Seed tree $\lambda \cdot \log N$	$\frac{\text{Merkle tree}}{2\lambda \cdot \log N}$

	Additive sharing + seed trees	Threshold LSSSwith $\ell = 1$	
Soundness error	$\frac{1}{N} + p \cdot \left(1 - \frac{1}{N}\right)$	$\frac{1}{N} + p \cdot \frac{(N-1)}{2}$	
Prover # party computations	$N = 1 + \log_2 N$	2	
Verifier # party computations	$N = 1 \log_2 N$	1	
Sharing Generation and Commitment	Seed tree $\lambda \cdot \log N$	Merkle tree $2\lambda \cdot \log N$	
[AGHHJY23] Aguilar-M Howe, Hülsing, Joseph Return of the SDitH" (E	The Hypercube technique		

dditive sharing percube optimisation)	Size	Signing time	Verification time
SDitH-gf256-L1	0 240 P	5.18 ms	4.81 ms
SDitH-gf251-L1	8 260 B	8.51 ms	8.16 ms
SDitH-gf256-L1	I0 424 B	1.97 ms	0.62 ms
SDitH-gf251-L1		1.71 ms	0.23 ms

Threshold LSSS

Benchmark of the SDitH submission package of the NIST call

Many signature schemes using MPC-in-the-Head, for which the security relies on the hardness of

Syndrome decoding problem Subset sum problem Multivariate quadratic problem MinRank problem Rank syndrome decoding problem

Many signature schemes using MPC-in-the-Head, for which the security relies on the hardness of

Syndrome decoding problem Subset sum problem Multivariate quadratic problem MinRank problem Rank syndrome decoding problem

A new technique to <u>deal small secrets with large modulus</u> in MPCitH: MPCitH with rejection, with sharings over integers

A new MPCitH transformation <u>targeting fast running times</u>:

the Threshold approach

- 4 schemes directly rely on this thesis: MIRA, MQOM, RYDE, SDitH
- 2 schemes partially use ideas of this thesis: MiRitH, PERK

- 4 schemes directly rely on this thesis: MIRA, MQOM, RYDE, SDitH
- 2 schemes partially use ideas of this thesis: MiRitH, PERK
- Popularising the MPCitH paradigm to other cryptography communities
- For example, the code-based community

- 4 schemes directly rely on this thesis: MIRA, MQOM, RYDE, SDitH
- 2 schemes partially use ideas of this thesis: MiRitH, PERK
- Popularising the MPCitH paradigm to other cryptography communities
- For example, the code-based community
- A low-level library dedicated to the MPC-in-the-Head paradigm
 - Available at https://github.com/CryptoExperts/libmpcith

- 4 schemes directly rely on this thesis: MIRA, MQOM, RYDE, SDitH
- 2 schemes partially use ideas of this thesis: MiRitH, PERK
- Popularising the MPCitH paradigm to other cryptography communities
 - For example, the code-based community
- A low-level library dedicated to the MPC-in-the-Head paradigm
 - Available at https://github.com/CryptoExperts/libmpcith
- Some of the thesis results are not limited to the context of signatures
 - Can be applied to zero-knowledge proofs/arguments

More efficient MPCitH transformations / more efficient MPC protocols

- already some new works
 - Crypto 2023: the VOLE-in-the-Head construction
 - ePrint 2023/1573: improved Threshold approach

More efficient MPCitH transformations / more efficient MPC protocols

- already some new works
 - Crypto 2023: the VOLE-in-the-Head construction
 - ePrint 2023/1573: improved Threshold approach

Signature schemes with advanced functionalities

ring signatures, threshold signatures, multi-signatures,

blind signatures, ...

More efficient MPCitH transformations / more efficient MPC protocols

- already some new works
 - Crypto 2023: the VOLE-in-the-Head construction
 - ePrint 2023/1573: improved Threshold approach

Signature schemes with advanced functionalities

ring signatures, threshold signatures, multi-signatures,

blind signatures, ...

Thank you for your attention !