
Post-Quantum Signatures from 
Secure Multiparty Computation

Thibauld Feneuil 

PhD Defense


October 23, 2023 — Paris (France)



Table of Contents

• Introduction


• MPC-in-the-Head: general principle


• From MPC-in-the-Head to signatures


‣  Achieving small signature sizes


‣  Achieving fast running times


• Conclusion

2



Introduction

3



Digital signatures

Alice Bob

Un email,

un PDF, …

Who sends this 
document ?
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Digital signatures

Alice’s private key
Alice’s public key

Alice’s public key

Alice Bob
uses the private key 

to sign the digital document. 
uses the public key 

to verify the signature. 

Security Notion: Should be impossible to forge a valid signature

without the corresponding private key.
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Digital signatures

A problem which is very hard to solve

The solution of the above problem

Given , find non-trivial 

such that .
N (p, q)

N = pq
(p, q)

Example

Existing signature schemes

will be broken by the future


quantum computers.  

Problematic: build new signature schemes which would 
be secure even against quantum computers.
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How to build signature schemes?

Hash & Sign

H(m) σ

Fpk

F−1
pk

Short signatures

“Trapdoor” in the public key

Very hard 
to compute
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Identification Scheme

• Completeness: Pr[verif ✓ | honest prover] = 1


• Soundness: Pr[verif ✓ | malicious prover]   (e.g.  )


• Zero-knowledge: verifier learns nothing on          .

≤ ε 2−128

Commitment

Challenge 1
Response 1

⋮
Challenge n
Response n

Prover Verifier

I know           .

I am convinced.
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Identification Scheme

Challenge 1 = Hash(m, Commitment)

Prover

Verifier

Challenge  = Hash(m, Response )n n − 1

⋮

I know           .

Transcript

Fiat-Shamir

Transformation

7
m: message to sign 



MPC in the Head
• [IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai: 

“Zero-knowledge from secure multiparty computation” (STOC 2007)


• Turn a multiparty computation (MPC) into an identification scheme


• Generic: can be apply to any cryptographic problem
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One-way function


        


E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of:


[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature
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Zero-knowledge proof
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OK you 
know x
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Signature scheme
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function

msg

signature

MPC-in-the-Head transform
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MPCitH: general principle
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MPC model

[[x]]1

• Jointly compute





•  private: the views of any  
parties provide no information on 


• Semi-honest model: assuming that the 
parties follow the steps of the protocol


• Broadcast model


‣ Parties locally compute on their shares 



‣ Parties broadcast  and recompute 



‣ Parties start again (now knowing )

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

11
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‣ Parties start again (now knowing )

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

(N − 1) N − 1
x

[[x]] ↦ [[α]]

[[α]]
α

α

[[x]]2

[[x]]5

[[x]]4

[[x]]3

Public

domain

[[α]]1
[[α]]2

[[α]]3

[[α]]4

[[α]]5
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x = [[x]]1 + [[x]]2 + … + [[x]]N



MPCitH transform

Prover Verifier
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MPCitH transform

Prover Verifier

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)
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MPCitH transform

Malicious Prover Verifier
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• Zero-knowledge       MPC protocol is -private⟺ (N − 1)
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MPCitH transform

• Zero-knowledge       MPC protocol is -private


• Soundness:


⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N
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MPCitH transform

• Zero-knowledge       MPC protocol is -private


• Soundness:





• Parallel repetition 


Protocol repeated  times in parallel, soundness error 

⟺ (N − 1)

ℙ(malicious prover convinces the verifier)
= ℙ(corrupted party remains hidden)

=
1
N

τ ( 1
N )

τ
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One-way function


        


E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of:


[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature

    s.t.    [[x]] = ([[x]]1, …, [[x]]N) x = [[x]]1 + … + [[x]]N
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The multiparty computation must check that the vector  
satisfies


       and     .

x

y = Hx wH(x) ≤ w

linear, easy to check non-linear, hard to check

A MPC protocol for the SD problem
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The multiparty computation must check that the vector  
satisfies





and


 two polynomials :  and 


where


 is defined by interpolation such that ,


.

x

y = Hx

∃Q, P SQ = PF deg Q = w

S ∀i, S(γi) = xi

F :=
m

∏
i=1

(X − γi)

A MPC protocol for the SD problem
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Let us assume that there exists  such that


   and    


where


 is defined by interpolation such that 


.


Q, P ∈ 𝔽[X]

S ⋅ Q = P ⋅ F deg Q = w

S ∀i, S(γi) = xi

F :=
m

∏
i=1

(X − γi)
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Q, P ∈ 𝔽[X]

S ⋅ Q = P ⋅ F deg Q = w

S ∀i, S(γi) = xi

F :=
m

∏
i=1

(X − γi)

∀i ≤ m, (Q ⋅ S)(γi) = P(γi) ⋅ F(γi) = 0
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Let us assume that there exists  such that


   and    


where


 is defined by interpolation such that 


.


Then, one can deduce that





         or   

i.e.,


Q, P ∈ 𝔽[X]

S ⋅ Q = P ⋅ F deg Q = w

S ∀i, S(γi) = xi

F :=
m

∏
i=1

(X − γi)

∀i ≤ m, (Q ⋅ S)(γi) = P(γi) ⋅ F(γi) = 0

⇒ ∀i ≤ m, Q(γi) = 0 S(γi) = xi = 0

wtH(x) = #{i : xi ≠ 0} ≤ w
20



Such polynomial  can be built as





And  since  divides .


( )

Q

Q := Q′￼⋅ ∏
i:xi≠0

(X − γi)

P :=
S ⋅ Q

F
F S ⋅ Q

∀i, S(γi) = xi

The non-zero positions of  
are encoding as roots.

x

21



We want to build a MPC protocol which checks if some vector 
is a syndrome decoding solution.


Let us assume that . We split  as .


We have , so


.


H = (H′￼| I) x (xA
xB)

y = Hx

xB = y − H′￼xA

A MPC protocol for the SD problem
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We want to build a MPC protocol which checks if some vector 
is a syndrome decoding solution.


Let us assume that . We split  as .


We have , so


.


Inputs of the MPC protocol: 


Aim of the MPC protocol:


Check that  corresponds to a syndrome decoding solution.

H = (H′￼| I) x (xA
xB)

y = Hx

xB = y − H′￼xA

xA, Q, P

xA

A MPC protocol for the SD problem
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Inputs of the MPC protocol: 


1. Build  and deduce .


We have


.


xA, Q, P

xB := y − H′￼xA x := (xA
xB)

y = Hx

A MPC protocol for the SD problem
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Inputs of the MPC protocol: 


1. Build  and deduce .


2. Build the polynomial  by interpolation such that


.


xA, Q, P

xB := y − H′￼xA x := (xA
xB)

S

∀i, S(γi) = xi

A MPC protocol for the SD problem

Interpolation Formula:


.S(X) = ∑
i

xi ⋅ ∏
ℓ≠i

X − γℓ

γi − γℓ
23



Inputs of the MPC protocol: 


1. Build  and deduce .


2. Build the polynomial  by interpolation such that


.


3. Check that .

xA, Q, P

xB := y − H′￼xA x := (xA
xB)

S

∀i, S(γi) = xi

S ⋅ Q = P ⋅ F

A MPC protocol for the SD problem
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Inputs of the MPC protocol: 


1. Build  and deduce .


2. Build the polynomial  by interpolation such that


.


3. Get a random point  from a field extension .


4. Compute ,  and .


5. Using [BN20], check that .

xA, Q, P

xB := y − H′￼xA x := (xA
xB)

S

∀i, S(γi) = xi

r 𝔽points

S(r) Q(r) P(r)

S(r) ⋅ Q(r) = P(r) ⋅ F(r)

A MPC protocol for the SD problem

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for 
arithmetic circuits and their application to lattice-based cryptography. PKC 2020. 
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Even if  does not describe a SD solution, implying that 
, the MPC protocol can output Accept if


Case 1:





which occurs with probability (Schwartz-Zippel Lemma)





xA
S ⋅ Q ≠ P ⋅ F

S(r) ⋅ Q(r) = P(r) ⋅ F(r)

Pr
r←𝔽points

[S(r) ⋅ Q(r) = P(r) ⋅ F(r)] ≤
m + w − 1

|𝔽points |

A MPC protocol for the SD problem
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Even if  does not describe a SD solution, implying that 
, the MPC protocol can output Accept if


Case 1:





which occurs with probability (Schwartz-Zippel Lemma)





Case 2: the [BN20] protocol failed, which occurs with probability


.

xA
S ⋅ Q ≠ P ⋅ F

S(r) ⋅ Q(r) = P(r) ⋅ F(r)

Pr
r←𝔽points

[S(r) ⋅ Q(r) = P(r) ⋅ F(r)] ≤
m + w − 1

|𝔽points |

1
|𝔽points |

A MPC protocol for the SD problem
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The MPC protocol checks that  describes a 
solution of the SD instance .

(xA, Q, P)
(H, y)

A MPC protocol for the SD problem

where


p =
m + w − 1

|𝔽points |
+ (1 −

m + w − 1
|𝔽points | ) ⋅

1
|𝔽points |

Protocol Output

Accept Reject

A good witness 1 0

Not a good witness p 1 − p

False positive 
from Schwartz-Zippel

False positive 
from [BN20]



One-way function


        


E.g. AES, MQ system,  
       Syndrome decoding

F : x ↦ y

Multiparty computation (MPC)

Input sharing   
 

Joint evaluation of:


[[x]]

g(x) = {Accept if F(x) = y
Reject if F(x) ≠ y

Zero-knowledge proof

Prover Verifier
OK you 
know x

x y
Signature scheme

x
Hash 

function

msg

signature

MPC-in-the-Head transform

26



Soundness error:





To achieve negligible soundness error, we repeat the zero-
knowledge proof  times such that .

ϵ :=
1
N

+ (1 −
1
N ) ⋅ p

τ ϵτ < 2−λ

Resulting Zero-Knowledge Proof for SD
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Soundness error:





To achieve negligible soundness error, we repeat the zero-
knowledge proof  times such that .

ϵ :=
1
N

+ (1 −
1
N ) ⋅ p

τ ϵτ < 2−λ

Resulting Zero-Knowledge Proof for SD

Signature scheme: to obtain the signature scheme, we just 
need to apply the


Fiat-Shamir transform.

27



Parameter Selection (128-bit security):


Syndrome Decoding problem over 


The MPCitH parameters: 


Resulting size (short variant):


 kilobytes

𝔽256

N = 256, τ = 17

≈ 8,5

Signature Scheme

28

Using few optimisations

(Seed trees, …)



Signature Scheme

Notes:


We can apply to binary syndrome decoding problem, but it 
requires a field lifting for the polynomials .


In the thesis, we propose also another approach, namely


the shared-permutation framework,


but it leads to larger sizes for the SD problem.

S, Q, P, F

28

Parameter Selection (128-bit security):


Syndrome Decoding problem over 


The MPCitH parameters: 


Resulting size (short variant):


 kilobytes

𝔽256

N = 256, τ = 17

≈ 8,5
Using few optimisations


(Seed trees, …)



Exploring other assumptions

• Subset Sum Problem:  KB   KB


‣ Problem over a very large modulo 


‣ Key Idea: Sharing over integers, signature with aborts

≥ 100 ⇒ 19.1
q ≈ 2256

29

[FMRV22] Feneuil, Maire, Rivain, Vergnaud. Zero-Knowledge Protocols for the Subset 
Sum Problem from MPC-in-the-Head with Rejection. Asiacrypt 2022. 
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• Multivariate Quadratic Problem:  KB

‣ Problem with a cubic number of multiplications


‣ Key Idea: Batching over all the quadratic equations
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Exploring other assumptions

• Subset Sum Problem:  KB   KB


‣ Problem over a very large modulo 


‣ Key Idea: Sharing over integers, signature with aborts


• Multivariate Quadratic Problem:  KB

‣ Problem with a cubic number of multiplications


‣ Key Idea: Batching over all the quadratic equations


• MinRank Problem / Rank Syndrome Decoding Problem:  KB


‣ Problems relying on the rank metric


‣ Key Idea: Usage of -polynomials

≥ 100 ⇒ 19.1
q ≈ 2256

6.3 − 7.3

≈ 5.5

q

What about the computational cost ?

29



Computational Cost

Prover Verifier

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

②  Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③  Choose a random party 
i* ←$ {1,…, N}i*

④  Open parties  {1,…, N}∖{i*}
([[x]]i, ρi)i≠i*

⑤ Check 

      - Commitments 

      - MPC computation  
   Check 

∀i ≠ i*
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

i*

30



• Syndrome-Decoding-in-the-Head:





Number of party emulations:   !


Signing Time: 78 ms, with emulation phase of around 75 ms

N = 256, τ = 17

τ ⋅ N = 4352

31
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• Syndrome-Decoding-in-the-Head:





Number of party emulations:   !


Signing Time: 78 ms, with emulation phase of around 75 ms

N = 256, τ = 17

τ ⋅ N = 4352

• To deal with this issue, we propose the threshold approach:

[FR22] Feneuil, Rivain. Threshold Linear Secret Sharing to the 
Rescue of MPC-in-the-Head. To appear at Asiacrypt 2023. 
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The Threshold Approach

In the threshold approach, we use a low-threshold linear 
sharing scheme. For example, the Shamir’s -secret 
sharing scheme.


To share a value ,

sample  uniformly at random,


build the polynomial ,


Set the share , where  is publicly known.

(ℓ + 1,N)

x
r1, r2, …, rℓ

P(X) = x +
ℓ

∑
k=0

rk ⋅ Xk

[[x]]i ← P(ei) ei

32



The Threshold Approach

In the threshold approach, we use a low-threshold linear 
sharing scheme. For example, the Shamir’s -secret 
sharing scheme.


Properties:

Linearity: 

Any set of  shares is random and independent of 

Any set of  shares  all the shares (and the secret)


(ℓ + 1,N)

[[x]] + [[y]] = [[x + y]]
ℓ x
ℓ + 1 →
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The Threshold Approach

In the threshold approach, we use a low-threshold linear 
sharing scheme. For example, the Shamir’s -secret 
sharing scheme.


Properties:

Linearity: 

Any set of  shares is random and independent of 

Any set of  shares  all the shares (and the secret)


Zero-Knowledge:

The prover opens only  parties (instead of ).


(ℓ + 1,N)

[[x]] + [[y]] = [[x + y]]
ℓ x
ℓ + 1 →

ℓ N − 1

In practice, ℓ ∈ {1,2,3}



MPCitH Transform with Threshold LSSS

Prover Verifier

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

②  Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③  Choose a random set of parties

, s.t. .I ⊆ {1,…, N} | I | = ℓI

④  Open parties in  I
([[x]]i, ρi)i∈I

⑤ Check 

      - Commitments 

      - MPC computation  
   Check 

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N
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Prover Verifier

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

Comρ1([[x]]1)
⋯

ComρN([[x]]N)

②  Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③  Choose a random set of parties

, s.t. .I ⊆ {1,…, N} | I | = ℓI

④  Open parties in  I
([[x]]i, ρi)i∈I

⑤ Check 

      - Commitments 

      - MPC computation  
   Check 

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

Threshold LSSS  cannot 
generate shares from seeds

⇒

33
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Prover Verifier

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

②  Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③  Choose a random set of parties

, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check 

      - Commitments 

      - MPC computation  
   Check 

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④  Open parties in  I

Merkle
root

authentication path

33

MPCitH Transform with Threshold LSSS



Prover Verifier

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

②  Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③  Choose a random set of parties

, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check 

      - Commitments 

      - MPC computation  
   Check 

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④  Open parties in  I

Merkle
root

authentication path

 is redundant

  shares fully


determine the sharing

[[α]]
⇒ ℓ + 1

33
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Prover

①  Generate and commit shares   
[[x]] = ([[x]]1, …, [[x]]N)

②  Run MPC in their head

send broadcast

 [[α]]1, …, [[α]]N

③  Choose a random set of parties

, s.t. .I ⊆ {1,…, N} | I | = ℓI

([[x]]i, authi)i∈I

⑤ Check 

      - Commitments 

      - MPC computation  
   Check 

∀i ∈ I
Comρi([[x]]i)

[[α]]i = φ([[x]]i)
g(y, α) = Accept

[[x]]1 [[x]]2

[[x]]3

[[x]]4

[[x]]N

④  Open parties in  I

Merkle
root

authentication path

 only  party

computations required

⇒ ℓ + 1

 parties opened 
instead of 
ℓ

N − 1

 is redundant

  shares fully


determine the sharing

[[α]]
⇒ ℓ + 1

only  party 
computations required

ℓ

MPCitH Transform with Threshold LSSS



The Threshold Approach - Soundness

34

• Soundness error (for any ):





• Soundness error (for ):





instead of  . 

ℓ

1

(N
ℓ)

+ p ⋅
ℓ(N − ℓ)

ℓ + 1

ℓ = 1

1
N

+ p ⋅
(N − 1)

2

1
N

+ p ⋅ (1 −
1
N )



The Threshold Approach

Additive sharing

+ seed trees

Threshold LSSS 
with 

Soundness error

Prover 
# party computations

Verifier 
# party computations

Sharing Generation 
and Commitment

Seed tree  Merkle tree 

N

N − 1

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N ) 1

N
+ p ⋅

(N − 1)
2

35

ℓ = 1



Additive sharing

+ seed trees

Threshold LSSS 
with 

Soundness error

Prover 
# party computations

Verifier 
# party computations

Sharing Generation 
and Commitment

Seed tree  Merkle tree 

N

N − 1

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N ) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

The Threshold Approach

Much cheaper 
emulation 35



Additive sharing

+ seed trees

Threshold LSSS 
with 

Soundness error

Prover 
# party computations

Verifier 
# party computations

Sharing Generation 
and Commitment

Seed tree  Merkle tree 

N

N − 1

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N ) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

The Threshold Approach

Fast verification 
algorithm 35



Additive sharing

+ seed trees

Threshold LSSS 
with 

Soundness error

Prover 
# party computations

Verifier 
# party computations

Sharing Generation 
and Commitment

Seed tree  Merkle tree 

N

N − 1

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N ) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

The Threshold Approach

Larger signature sizes
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Additive sharing

+ seed trees

Threshold LSSS 
with 

Soundness error

Prover 
# party computations

Verifier 
# party computations

Sharing Generation 
and Commitment

Seed tree  Merkle tree 

N

N − 1

2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N ) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

The Threshold Approach Require N ≤ |𝔽 |

35



Additive sharing

+ seed trees

Threshold LSSS 
with 

Soundness error

Prover 
# party computations

Verifier 
# party computations

Sharing Generation 
and Commitment

Seed tree  Merkle tree 

1 + log2 N 2

1

λ ⋅ log N 2λ ⋅ log N

1
N

+ p ⋅ (1 −
1
N ) 1

N
+ p ⋅

(N − 1)
2

ℓ = 1

The Threshold Approach

N

N − 1 log2 N

[AGHHJY23] Aguilar-Melchor, Gama, 
Howe, Hülsing, Joseph, Yue: “The 
Return of the SDitH” (Eurocrypt 2023)

The Hypercube 
technique

35



The Threshold Approach

Size Signing time Verification time

SDitH-gf256-L1
8 260 B

5.18 ms 4.81 ms

SDitH-gf251-L1 8.51 ms 8.16 ms

SDitH-gf256-L1
10 424 B

1.97 ms 0.62 ms

SDitH-gf251-L1 1.71 ms 0.23 ms

Benchmark of the SDitH submission package of the NIST callThreshold LSSS

Additive sharing

(with hypercube optimisation)
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Conclusion
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Many signature schemes using MPC-in-the-Head, for which the security 
relies on the hardness of


Syndrome decoding problem


Subset sum problem


Multivariate quadratic problem


MinRank problem


Rank syndrome decoding problem

Conclusion
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Many signature schemes using MPC-in-the-Head, for which the security 
relies on the hardness of


Syndrome decoding problem


Subset sum problem


Multivariate quadratic problem


MinRank problem


Rank syndrome decoding problem


A new technique to deal small secrets with large modulus in MPCitH:


 MPCitH with rejection, with sharings over integers


A new MPCitH transformation targeting fast running times:


the Threshold approach

Conclusion

38



NIST call for additional post-quantum signatures


4 schemes directly rely on this thesis: MIRA, MQOM, RYDE, SDitH


2 schemes partially use ideas of this thesis: MiRitH, PERK

Conclusion
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NIST call for additional post-quantum signatures


4 schemes directly rely on this thesis: MIRA, MQOM, RYDE, SDitH


2 schemes partially use ideas of this thesis: MiRitH, PERK


Popularising the MPCitH paradigm to other cryptography communities


For example, the code-based community


A low-level library dedicated to the MPC-in-the-Head paradigm


Available at https://github.com/CryptoExperts/libmpcith


Some of the thesis results are not limited to the context of signatures


Can be applied to zero-knowledge proofs/arguments

Conclusion
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More efficient MPCitH transformations / more efficient MPC protocols
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‣ Crypto 2023: the VOLE-in-the-Head construction


‣ ePrint 2023/1573: improved Threshold approach
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Perspectives

Thank you for your attention !
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