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Abstract
The ongoing effort to build a quantum computer urges the cryptography community to

develop new secure cryptosystems based on quantum-hard cryptographic problems. In this
thesis, we focus on the design of signature schemes built from zero-knowledge proofs of
knowledge. More precisely, we focus on the MPC-in-the-Head paradigm which provides
a generic way to build zero-knowledge proofs using techniques from secure multiparty
computation.

We propose several new signature schemes using the MPC-in-the-Head framework. Most
of these schemes are competitive with the existing schemes in the post-quantum literature.
They have signature sizes between 5 KB and 20 KB for 128-bit security, and have very small
public keys (less than 200 B). Their security relies on a large scope of hard problems. Some of
them rely on code-based assumptions, such as the hardness of solving the syndrome decoding
problem for random linear codes. Others rely on the multivariate quadratic problem, the
subset sum problem, and the MinRank problem.

We also develop two new MPC-in-the-Head techniques. The first one aims to efficiently
address a context of small secret values over large modulus. The second one consists of a new
way of transforming an MPC protocol into a zero-knowledge proof. This new transformation
provides new trade-offs in terms of communication costs vs running times. In particular, it
enables us to achieve small verification times.

Several submissions in the NIST call for additional post-quantum signatures rely (sometimes
partially) on ideas developed in this thesis.
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Résumé
Le développement actuel des ordinateurs quantiques pousse la communauté cryptographique

à mettre au point de nouveaux cryptosystèmes dont la sécurité se fonde sur la difficulté à
résoudre des problèmes cryptographiques résistant au calcul quantique. Dans le cadre de cette
thèse, nous nous sommes focalisés sur la conception de schémas de signatures électroniques
construits à partir de preuves à divulgation nulle de connaissance (zero-knowledge proofs
of knowledge en anglais). Plus précisément, nous nous sommes intéressés au paradigme
“MPC-in-the-Head” (littéralement, “calcul-multipartite-dans-la-tête” en français) qui fournit
une méthode générique de construire de telles preuves en utilisant des techniques de calcul
multipartite sécurisé.

Nous proposons plusieurs nouveaux schémas de signatures utilisant le paradigme “MPC-in-
the-Head”. La plupart d’entre eux sont compétitifs avec les schémas existants dans l’état de
l’art post-quantique. Ils produisent des signatures ayant des tailles entre 5 et 20 kilo-octets
(pour un niveau de sécurité de 128 bits) et possèdent de très petites clés (de moins de 200
octets). Les problèmes difficiles sur lesquels la sécurité de ces schémas se fonde sont très variés.
Certains schémas s’appuient sur des hypothèses de sécurité issues de la théorie des codes
correcteurs d’erreurs, telle que celle sur la difficulté à résoudre le problème de décodage par
syndrome pour des codes linéaires aléatoires. Les autres schémas s’appuient sur la difficultés
à résoudre un système d’équations quadratiques, le problème de la somme de sous-ensembles
ou le problème MinRank.

Nous avons également mis au point deux nouvelles techniques de MPC-in-the-Head. La
première vise à gérer efficacement les situations où le secret est de petite taille avec un grand
modulus. La seconde consiste en une nouvelle méthode pour transformer un protocole de calcul
multipartite en preuve de divulgation nulle de connaissance. Cette nouvelle transformation
offre des nouveaux compromis entre coût de communication et temps de calcul. En particulier,
elle permet de produire des algorithmes de vérification très rapides.

Plusieurs soumissions à l’appel du NIST pour des schémas de signatures post-quantiques
supplémentaires s’appuient (parfois partiellement) sur des idées développées dans le cadre de
cette thèse.

Mots-clés: preuves à divulgation nulle de connaissance, signatures post-quantiques, MPC-
in-the-Head.
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Chapter 1.
Introduction

1.1. Cryptology
How would you send a love declaration to someone who is far away while preventing curious
people from reading its content? How could you have the guarantee that nobody will change
it? And for the receiver, how can she/he be sure that the message is really sent by the right
person? Unfortunately, we are clearly not living in a world where everyone can be trusted. If
you want to declare your love without being troubled, two ways can be considered: either
you make the journey to meet the (wo)man of your heart, or you use the cryptography. The
latter provides many technological solutions to build secure communication over an insecure
channel (e.g. phone, internet, ...) with the following features:

• confidentiality: the message is unintelligible for anyone except the receiver (and the
sender),

• message authentication: the receiver can check the identity of the sender of the message,
• data integrity: the receiver can verify that the message has not been modified during

its transfer.

Cryptography consists in the conception of sets of algorithms, usually named cryptosystems,
which provide one or several of the above security features. On the other side, the cryptanalysis
consists in finding ways to break the security properties of those cryptosystems. Together
they form the “science of secrecy”, named cryptology.
There exist two types of cryptosystems:

• Symmetric cryptography: in that setting, the sender and the receiver know a common
secret key (it can be a number, a passphrase, ...). The sender will encrypt the message
using this key, and the receiver will also use it to put back the message in an intelligible
form.

• The asymmetric cryptography (or public-key cryptography): in that setting, the receiver
produces two keys, a public key and a secret key. She sends the first one to the sender.
Using it, the sender encrypts the message. Then using the private key, the receiver
decrypts it.

The symmetric setting has the drawback of requiring that both parties have a common secret.
For example, if you want to securely browse the website of a bank, you do not have a common

— 1 —
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secret to establish secure communication. Asymmetric cryptography addresses this issue.
The bank website can send you a public key and you can use it to encrypt the requests for
the website. However, the asymmetric schemes are quite heavy in terms of bandwidth and
computation. So, they will be used only to derive a common secret key. Then, using the
latter, the user and the bank website can securely communicate using symmetric schemes.

1.2. Post-quantum cryptography
The security of the current public-key cryptosystems (for example, on the Internet) relies on
the hardness of factorizing a composite number

“Given a number n, one needs to find non-trivial p and q such that n = p · q.”

and to solve the discrete logarithm problem

“Given a modulus n and two non-zero elements y and g, one needs to find x such
that y = gx mod n.”

(or its variant on elliptic curves). However, Shor [Sho94] showed that a quantum computer
would be able to solve “easily” those two problems. It means that such a computer would
break all the current secure communications using asymmetric schemes (i.e. it would decrypt
the messages without the keys, impersonify people, etc...). Hopefully, this technology is not
functional yet, but it is improving constantly. Quantum computers may exist in a dozen
years1.

Because of this threat, the research community and standardization organizations are
searching for new cryptosystems that would be secure against quantum technology. These
schemes compose what is called the post-quantum cryptography (also known as the quantum-
safe/quantum-resilient cryptography). The goal is to replace the vulnerable algorithms with
post-quantum secure ones. In 2016, the National Institute of Standards and Technology (NIST)
opened a call for proposals for the future standards of post-quantum cryptosystems [NIS16].
In November 2017 (call deadline), 59 key encapsulation mechanisms (KEM) and 23 signature
schemes have been submitted. We are currently in the 4th round of the standardization
process. Most of the schemes have been eliminated. In July 2022, the NIST announced
that 4 candidates have been selected for standardization: the key encapsulation mechanism
Kyber [ABD+21], and the signature schemes Dilithium [BDK+21a], Falcon [FHK+20] and
SPHINCS+ [ABB+22]. In the 4th round, there are 4 KEM but no signature schemes.

Let us discuss the case of the signature schemes. There are no more signatures in the
selection process of the NIST. Three schemes will be standardized. The security of two of
them (Dilihium and Falcon) relies on the hardness of solving structured lattice problems. The
security of the last scheme (SPHINCS+) relies on the security of cryptographic hash functions.
One could say that lattice-based cryptography (the schemes for which the security relies on
the hardness of solving the lattice problems) is the true winner of the NIST post-quantum
standardization process. Those schemes have the best global performance. However, we
should avoid putting all our eggs in one basket. In case the cryptanalysis of the lattice-based
schemes would improve (for example, one finds a polynomial quantum attack against them),

1Technically, some quantum computers already exist, but are not powerful enough to be a threat to the
current cryptography.
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we should have backup solutions. For this reason, the NIST also selected SPHINCS+. The
latter is very conservative, however it is a heavy scheme: it has quite a large signature size
and a long signing time. Since there is no more scheme in the standardization process, the
NIST chose to re-open a call for additional proposals [NIS22], but only for the signature
schemes. In June 2023 (the deadline for the new call), 50 signature schemes have been
submitted. Among them, 40 have been kept for the first round of the new call.

1.3. Signature Schemes
In this thesis, we focus on post-quantum signature schemes. The goal of a (digital) signature
scheme is to verify the authenticity of messages or documents. A valid digital signature on a
message ensures that the message comes from a sender known to the recipient. The principle
is the following. The signer produces two keys: a public key pk and a secret key sk. Using the
secret key, she can sign a message m, i.e. she can generate a signature σ. She will broadcast
pk to everyone. Then, using this public key, everyone can check that σ is a valid signature
for the message m. The desired security property for a signature scheme is the existential
unforgeability: nobody should be able to produce a valid signature for a message (which has
not been already signed) for a public key without knowing the corresponding secret key2.

There exist two approaches to build a signature scheme. The first one is the hash-and-sign
paradigm. To use it, one needs to have a function F which is computationally impossible
to invert unless one knows a trapdoor. To sign a message m, the signer needs to hash the
message

h← Hash(m)

and then she uses her trapdoor (which corresponds to the secret key) to compute a pre-image
of h by the function F :

σ ← F−1(h).

This pre-image σ corresponds to the signature of m. Then to verify σ, one just needs to
compute the image of σ by F and check that it equals the hash digest of the message:

F (σ) ?= Hash(m).

Forging a valid signature without knowing the secret key consists in finding a pre-image
of F , which is computationally impossible by the definition of F . This technique leads to
short signature sizes, but since it relies on a trapdoor, the underlying problem must have
some structure and it is hence more sensitive to structural attacks. Moreover, the public key
consists of the description of a function with a trapdoor (i.e. the function F ), and thus, it is
often large.
The second approach to build signature schemes uses zero-knowledge proofs and the

Fiat-Shamir transformation. A zero-knowledge proof of knowledge is an interactive protocol
enabling a prover to convince the verifier that she knows a secret satisfying some properties
without revealing any information about the secret itself. For example, let us assume that
the prover wants to convince the verifier that she knows the solution to a system of quadratic
equations. One naive method for the prover would be to reveal this solution, but in the end,
the verifier will also know the solution. Thus, a zero-knowledge proof of knowledge consists

2And of course, nobody should be able to find the secret key from the public key and the produced signatures.



4 Chapter 1. Introduction

of a discussion between the prover and the verifier such that, at the end of this interaction,
the verifier will be convinced that the prover really knows such a solution without getting
any clue about the solution itself. There are two security properties for such protocols:

• Soundness: if the prover does not know the secret she is claiming to know, then the
verifier should not be convinced at the end of the discussion,

• Zero-Knowledge: if the prover really knows the secret, the discussion should not leak
any information (even partial) about the secret itself.

A signature could be considered as a proof that the signer is the holder of the secret key
which corresponds to the considered public key. However, between a signature scheme and a
zero-knowledge proof of knowledge of a secret key (which corresponds to an identification
scheme), there are two differences:

1. the proof of knowledge is a discussion (i.e. it is interactive), while a signature scheme
should not require interaction between the signer and possible verifiers;

2. the signature involves a message, not the proof of knowledge.

Hopefully, there exists the Fiat-Shamir transformation: it enables us to convert a proof of
knowledge into a signature scheme by removing the interactions of the proof system while
binding each proof to a message. Signature schemes built from a zero-knowledge proof tend
to lead to larger signatures (compared to the hash-and-sign approach). They do not rely on
a trapdoor, so their public keys are often very small and their security is often considered
conservative.

1.4. Contributions of this Thesis
In this thesis, we study how we can improve the state of the art of post-quantum signature
schemes built from zero-knowledge proofs. More precisely, we focus on one promising
framework of zero-knowledge proofs: the MPC-in-the-Head paradigm. The latter (presented
in Chapter 3) provides a generic method to build proof systems using techniques from secure
multiparty computation (MPC).
First of all, in Chapter 4 and in Chapter 5, we propose two new code-based signature

schemes relying on the hardness of the syndrome decoding problem for random linear codes
(in Hamming metric), one of the oldest problems of code-based cryptography. These schemes
outperform the former schemes based on the same assumptions and are highly competitive
with other code-based signature schemes.

Then, in Chapter 6, we describe a new MPC-in-the-Head technique to efficiently handle
the case where we should manipulate small secret values over a large modulus. We use this
technique to propose two signature schemes: one relying on the hardness of the subset sum
problem, the other one relying on the security of the BHH pseudo-random function [BHH01].
While improving drastically the schemes based on the same assumption, the first proposal is
unfortunately not competitive with the post-quantum literature. The performance of the
second proposal is highly competitive, but its security is much less mature (regarding the
state of quantum cryptanalysis).

In Chapter 7, we apply a systematic methodology to build signature schemes using the MPC-
in-the-Head paradigm. We propose several schemes relying on the multivariate quadratic
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problem, the MinRank problem, the rank syndrome decoding problem and the permuted
kernel problem. For most of them, we improve the existing literature.

In Chapter 8, we propose a new MPC-in-the-Head technique to transform an MPC protocol
into a zero-knowledge proof. Instead of relying on additive sharing as all the existing MPCitH-
based signature schemes, we show how using a low-threshold linear secret sharing can provide
interesting trade-offs in terms of communication costs vs running times. While slightly
increasing the signature size, it drastically improves the running times, especially for the
verifier.

Finally, in Chapter 9, we describe the process we follow to transform theoretical schemes
described in research articles into practical implementations. We also briefly present some
signature schemes submitted to the recent NIST call for additional post-quantum signa-
tures [NIS22] designed in the context of this thesis.

In this manuscript, most of the theorems deal with the security properties of the proposed
zero-knowledge proofs of knowledge and the signature schemes. Formally proving such
theorems is verbose, with proofs taking many pages. Moreover, the contributions of this
thesis are minor in these proofs since the latter correspond to standard proof techniques. For
example, proving the security of a signature scheme consists of game transitions which are
quite the same between all the MPCitH-based schemes. We thus refer the interested reader
to the corresponding articles for the security proofs. In this manuscript, we only provide
the security proofs of the theorems of Chapter 8 since these proofs differ from what we can
find in other articles. However, because of the verbosity of the proofs, we provide them in
appendices and we give the proof intuition in the body of the manuscript.

In what follows, you can find the articles (published or not yet) and the NIST submissions
related to this thesis.
Publications in peer-reviewed venues:

• [FJR23] T. Feneuil, A. Joux, and M. Rivain. Shared Permutation for Syndrome
Decoding: New Zero-Knowledge Protocol and Code-based Signature. Des. Codes
Cryptogr. 91, 563-608 (2023). Content of this work appears in Chapter 4.

• [FJR22b] T. Feneuil, A. Joux, and M. Rivain. Syndrome Decoding in the Head: Shorter
Signatures from Zero-Knowledge Proofs. Published in the proceedings of Crypto 2022.
Content of this work appears in Chapter 5.

• [FMRV22b] T. Feneuil, J. Maire, M. Rivain, and D. Vergnaud. Zero-Knowledge
Protocols for the Subset Sum Problem from MPC-in-the-Head with Rejection. Published
in the proceedings of Asiacrypt 2022. Content of this work appears in Chapter 6.

• [Fen22] T. Feneuil. Building MPCitH-based Signatures from MQ, MinRank, Rank
SD and PKP. To appear in the proceedings of the 22nd International Conference on
Applied Cryptography and Network Security, ACNS 2024. Content of this work appears
in Chapter 7.

• [FR22] T. Feneuil, and M. Rivain. Threshold Linear Secret Sharing to the Rescue of
MPC-in-the-Head. To appear in the proceedings of Asiacrypt 2023. Content of this
work appears in Chapter 8.



6 Chapter 1. Introduction

Submissions to the NIST call for additional post-quantum signatures [NIS22]:

• C. Aguilar Melchor, T. Feneuil, N. Gama, S. Gueron, J. Howe, D. Joseph, A. Joux, E.
Persichetti, T. Randrianarisoa, M. Rivain, and D. Yue. The Syndrome Decoding in the
Head (SD-in-the-Head) Signature Scheme.

• N. Aragon, M. Bardet, L. Bidoux, J.-J. Chi-Domínguez, V. Dyseryn, T. Feneuil, P.
Gaborit, R. Neveu, M. Rivain, and J.-P. Tillich. MIRA (MIn RAnk) Signature Scheme

• N. Aragon, M. Bardet, L. Bidoux, J.-J. Chi-Domínguez, V. Dyseryn, T. Feneuil, P.
Gaborit, A. Joux, M. Rivain, J.-P. Tillich, and A. Vinçotte. RYDE (Rank sYndrome
DEcoding) Signature Scheme

• T. Feneuil and M. Rivain. MQOM: MQ on my Mind.
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Chapter 2.
Technical Background

In this chapter, we will introduce all the technical background required to understand the
following chapters. After introducing some notations and vocabulary, we will present some
useful standard cryptographic primitives such as the hash functions and the pseudo-random
generators. Then we will explain the notions of the zero-knowledge proofs of knowledge
and of the multiparty computation, which are fundamental to understand the MPC-in-the-
Head paradigm. To finish, we will define the notion of signature schemes and present the
Fiat-Shamir transformation.

Contents

2.1. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
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2.4. Secure Multiparty Computation . . . . . . . . . . . . . . . . . . . . 15
2.5. Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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2.1. Notations
Throughout the manuscript, F shall denote a finite field. We denote Fq the field of order q.
For any m ∈ N∗, the integer set {1, . . . ,m} is denoted [1 : m]. For a probability distribution
D, the notation s← D means that s is sampled from D. For a finite set S, the notation s← S
means that s is uniformly sampled at random from S. For an algorithm A, out ← A(in)
further means that out is obtained by a call to A on input in (using uniform random coins
whenever A is probabilistic). Along the paper, probabilistic polynomial time is abbreviated
PPT.

All the vectors are written as column vectors. For any matrix H ∈ Fm×n, the kernel of H
denoted Ker(H), is the set of solutions to the equations Hx = 0. For any vector x ∈ Fn, the
Hamming weight of x, denoted wtH(x), is the number of non-zero coordinates of x.

A function µ : N→ R is said negligible if, for every positive polynomial p(·), there exists
an integer Np > 0 such that for every λ > Np, we have |µ(λ)| < 1/p(λ). When not made
explicit, a negligible function in λ is denoted negl(λ) while a polynomial function in λ is
denoted poly(λ). We further use the notation poly(λ1, λ2, ...) for a polynomial function in
several variables.

Two distributions {Dλ}λ and {Eλ}λ indexed by a security parameter λ are (t, ε)-indistin-
guishable (where t and ε are N → R functions) if, for any algorithm A running in time at
most t(λ) we have ∣∣Pr[ADλ() = 1]− Pr[AEλ() = 1]

∣∣ ≤ ε(λ) ,

with ADist meaning that A has access to a sampling oracle of distribution Dist. The two
distributions are said

• computationally indistinguishable if ε ∈ negl(λ) for every t ∈ poly(λ);

• statistically indistinguishable if ε ∈ negl(λ) for every (unbounded) t;

• perfectly indistinguishable if ε = 0 for every (unbounded) t.

2.2. Cryptographic Building Blocks

2.2.1. Hash Functions

A hash function is an efficient function that maps data of arbitrary size to a fixed-size
bitstring. A cryptographic hash function h must be resistant to collisions, i.e. it should be
very hard to find x and x′ such that h(x) = h(x′).

Definition 2.2.1 (Collision-Resistant Hash Functions). A family of functions {Hashk :
{0, 1}∗ → {0, 1}`(λ) ; k ∈ {0, 1}κ(λ)}λ indexed by a security parameter λ is collision-resistant,
for some `, κ : N→ N, if there exists a negligible function ν such that, for any PPT algorithm
A, we have

Pr
[

x 6= x′

∩ Hashk(x) = Hashk(x′)
k ← {0, 1}κ(λ);
(x, x′)← A(k)

]
≤ ν(λ) .

Cryptographic hash functions are central in cryptography. They can be used to build
other cryptographic primitives such as message authentication codes (MAC), block ciphers,
pseudo-random generators, commitment schemes, ...
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2.2.2. Pseudo-Random Generator
A pseudo-random generator (PRG) is a deterministic algorithm that takes an initial value
named seed and produces a bitstring that looks like a random string. Formally, it is defined
as below.

Definition 2.2.2 (Pseudorandom Generator (PRG)). Let G : {0, 1}∗ → {0, 1}∗ and let `(·)
be a polynomial such that for any input s ∈ {0, 1}λ we have G(s) ∈ {0, 1}`(λ). Then, G is a
(t, ε)-secure pseudorandom generator if the following two conditions hold:

• Expansion: `(λ) > λ;

• Pseudorandomness: the distributions

{G(s) | s← {0, 1}λ} and {r | r ← {0, 1}`(λ)}

are computationally (t, ε)-indistinguishable.

The first condition simply states that the algorithm must produce more bits than those
received as input. The second condition states that there exists no efficient algorithm which
can distinguish the PRG output from true randomness, as soon as we choose the seed
randomly.

This primitive is very useful in cryptography. One reason is that producing true randomness
is very expensive (since we need to rely on physical phenomena). If we need to have a large
quantity of randomness, it can be an issue. A solution would be to produce a seed using true
randomness and to rely on a secure PRG initialized with this seed to get the desired data.
Another reason could be to save communication. In some cryptosystems, we need to send
large random data. If we generate the latter thanks to a pseudo-random generator, we just
need to send the used seed.

Another interesting primitive we will use in the following chapters is puncturable pseudo-
random functions (puncturable PRF).

Definition 2.2.3 (Puncturable PRF). A puncturable PRF family F on the set [1 : N ] is a
set of functions

{Fk : [1 : N ]→ {0, 1}∗}k
indexed by a key k such that

• for all k and index i, there exists a punctured key k∗i together with an efficient evaluation
algorithm A such that

∀j ∈ [1 : N ]\{i}, A(k∗i , j) = Fk(j);

• given the punctured key k∗i , the value Fk(i) should remain indistinguishable from a
random value.

Intuitively, such a primitive produces N pseudo-random values and provides a way to reveal
all the values but one. The naive way to proceed would be to reveal the N − 1 values directly,
but it could lead to large communication. The challenge when building such primitives is to
minimize the communication needed to reveal those N − 1 values.
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A standard construction of puncturable PRFs can be derived from the tree-based con-
struction of [GGM86], usually named the GGM construction. The idea is to use a tree PRG
in which one uses a pseudorandom generator to expand a root seed mseed into N subseeds
in a structured way. The principle is to label the root of a binary tree of depth dlog2Ne
with mseed. Then, one inductively labels the children of each node with the output of a
standard PRG applied to the node’s label. The subseeds (seedi)i∈[N ] are defined as the
labels of the N leaves of the tree. To reveal N − 1 subseeds, one reveals the siblings of all
nodes in the path from the punctured seed to the tree root, it will be the punctured key.
Thus, the communication cost scales with dlog2(N)e, and not N − 1. We can generalize this
process to reveal all the subseeds but a small subset E ⊂ [1 : N ] by only revealing at most
|E| · log(N/|E|) labels of the tree. The idea is to reveal the labels on the siblings of the paths
from the root of the tree to leaves i ∈ E (excluding the labels of those paths themselves).
Those labels allow someone to reconstruct (seedi)i 6∈E while still hiding (seedi)i∈E .

2.2.3. Commitment Schemes

We now formally introduce the notion of commitment scheme which is instrumental in many
zero-knowledge protocols. Such schemes allow one to commit a chosen value while keeping
it hidden to other people, with the ability to reveal the committed value later. Informally,
they can be seen as the digital equivalent of a sealed envelope: whenever someone wants to
commit to a message m, she puts m in the envelope. At a later moment, she can open the
envelope to publicly reveal the message she committed to.

Definition 2.2.4 (Commitment Scheme). A commitment scheme is a triplet of algorithms
(KeyGen,Com,Verif) such that

• KeyGen is a PPT algorithm that, on input 1λ, outputs some public parameters pp ∈
{0, 1}poly(λ) containing a definition of the message space, the randomness space and the
commitment space.

• Com is a deterministic polynomial-time algorithm that, on input the public parameters
pp, a message x and the randomness ρ, outputs a commitment c.

• Verif is a deterministic polynomial-time algorithm that, on input the public parameters
pp, a message x, a commitment c and the randomness ρ, outputs a bit b ∈ {0, 1}.

It should verify the following properties:

• Correctness: for any message x and any randomness ρ:

Pr[Verifpp(x, c, ρ) = 1 | c← Compp(x; ρ)] = 1 .

• Hiding: for any two messages x0 and x1, the following distributions

{c | c← Compp(x0; ρ), ρ random} and {c | c← Compp(x1; ρ), ρ random}

are indistinguishable.
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• Binding: there exists a negligible function ν such that, for every (PPT) algorithm A,
we have

Pr

 x 6= x′

∩ Verifpp(x, c, ρ) = 1
∩ Verifpp(x′, c, ρ′) = 1

pp← KeyGen();
(x, x′, ρ, ρ′, c)← A(pp)

 ≤ ν(λ) ,

where the probability is taken over the randomness of A and KeyGen. If we restrict A
to being PPT, then the scheme is computationally binding. If the computation time of
A is unbounded, then the scheme is statistically binding.

In this manuscript, the public parameter input pp will be made implicit in the calls to
Com and Verif.

Remark 2.2.5. We can build a commitment scheme from a cryptographic hash function h.
To commit a value v, we sample a random string ρ and we compute

c← h(v ‖ ρ).

To open the commitment c, we just need to reveal v and ρ, and the verifier can check that c
has been well-built. The binding property of the obtained scheme comes from the collision
resistance of the hash function while the hiding property comes from the randomness ρ and
the pre-image resistance. We denote this scheme as the hash-based commitment scheme. In
some settings in which we need a weaker hiding property, when the value v has a large enough
entropy, we can omit the randomness ρ.

A vector commitment scheme is a commitment scheme enabling to commit a vector of
values (v1, . . . , vn). Then, instead of revealing all those values, one can decide to reveal a
subset of them. A naive method would consist in committing all these values separately:

ci ← Commit(vi; ρi),

but sending (c1, . . . , cn) could be too expensive. We can use a collision-resistant hash function
to have a more efficient solution thanks to the Merkle trees (also known as hash trees) [Mer88].
A Merkle tree is a binary tree in which every leaf node is labelled with the commitment
digest of the data block vi, and every non-leaf node is labelled with the cryptographic hash
of the labels of its child nodes. Given a collision-resistant hash function Hash(·), the Merkle
hash root for N = 2n input data blocks v1, . . . , vN , denoted MerkleTree(v1, . . . , vN ), is hence
defined as

MerkleTree(v1, . . . , vN ) ={
Hash

(
MerkleTree(v1, . . . , vN/2) ‖ MerkleTree(vN/2+1, . . . , vN )

)
if N > 1

Com(v1; ρ) if N = 1

A Merkle tree makes it possible to show the consistency of a small subset E ⊂ [N ] of revealed
inputs (vi)i∈E with the hash root h = MerkleTree(v1, . . . , vN ) without having to communicate
all the other inputs (vi)i/∈E (or their corresponding hash). The principle is to reveal the
sibling paths of (vi)i∈E in the Merkle tree, that we shall denote auth((v1, . . . , vN ), E), and
which contains at most |E| · log(N/|E|) hash values.
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2.3. Zero-Knowledge Proofs
2.3.1. Interactive Protocols
A two-party protocol is a triplet Π = (Init,A,B) where Init is an initialization algorithm
that, on input 1λ, produces a pair (inA, inB), and where A and B are two stateful algorithms,
called the parties. The parties originally receive their inputs inA and inB then interact
by exchanging messages, and finally one of the parties, say B, produces the output of the
protocol. More formally, an execution of the protocol consists of a sequence:

stateA ← A(inA)

stateB ← B(inB)

(MsgA[0], stateA)← A(stateA)

...

(MsgB[i], stateB)← B(stateB,MsgA[i− 1])

(MsgA[i], stateA)← A(stateA,MsgB[i])

...

out← B(stateB,MsgA[n])

The sequence of exchanged messages is called the transcript of the execution, which is denoted

View(〈A(inA),B(inB)〉) := (MsgA[0],MsgB[1], . . . ,MsgA[n]) .

An execution producing an output out is further denoted

〈A(inA),B(inB)〉 → out .

In our exposition, the state of the parties shall be made implicit. We shall then say that
an algorithm has rewindable black-box access to a party A if this algorithm can copy the
state of A at any moment, relaunch A from a previously copied state, and query A (with
its current state) on input messages. A variable x is said to be extractable from A if there
exists a PPT algorithm E which, given a rewindable black-box access to A, returns x after a
polynomial number of queries to A.

2.3.2. Proofs of Knowledge
We will focus on a special kind of two-party protocol called an interactive proof which involves
a prover P and a verifier V. In such a protocol, P tries to prove a statement to V. The
first message sent by P is called a commitment, denoted Com. From this commitment V
produces a first challenge Ch1 to which P answers with a response Rsp1, followed by a next
challenge Ch2 from V, and so on. After receiving the last response Rspn, V produces a
binary output: either Accept, meaning that she was convinced by P , or Reject otherwise.
Such an m-round interactive proof with m = 2n+ 1 (1 commitment + n challenge-response
pairs) is illustrated on Protocol 1.
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P V
inP inV

[...] Com−−−−−−−−−−−−→
Ch1←−−−−−−−−−−−−

Rsp1−−−−−−−−−−−−→
...

Chn←−−−−−−−−−−−−
Rspn−−−−−−−−−−−−→

Return out ∈ {Accept,Reject}

Protocol 1: Structure of a m-round interactive proof with m = 2n+ 1.

The sequence of exchanged messages is called the transcript of the execution, which is
denoted

View(〈P(inP),V(inV)〉) := (Com,Ch1,Rsp1, . . . ,Chn,Rspn)

where inP and inV respectively denote the prover and verifier inputs. An execution producing
an output out ∈ {Accept,Reject} is further denoted

〈P(inP),V(inV)〉 → out .

Definition 2.3.1 (Proof of Knowledge). Let x be a statement of language L in NP, and
W (x) the set of witnesses for x such that the following relation holds:

R = {(x,w) : x ∈ L,w ∈W (x)} .

A proof of knowledge for relation R with soundness error ε is a two-party protocol between a
prover P and a verifier V with the following two properties:

• Perfect completeness: If (x,w) ∈ R, then a prover P who knows a witness w for x
succeeds in convincing the verifier V of his knowledge. More formally:

Pr[〈P(x,w),V(x)〉 → Accept] = 1,

i.e. given the interaction between the prover P and the verifier V, the probability that
the verifier is convinced is 1.

• Soundness: If there exists a PPT prover P̃ such that

ε̃ := Pr[〈P̃(x),V(x)〉 → Accept] > ε,

then there exists an algorithm E (called an extractor) which, given rewindable black-box
access to P̃, outputs a witness w′ for x in time poly(λ, (ε̃ − ε)−1) with probability at
least 1/2.
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Informally, a proof of knowledge has soundness error ε if a prover P̃ without knowledge
of the witness cannot convince the verifier with probability greater than ε assuming that
the underlying problem (recovering a witness for the input statement) is hard. Indeed, if a
prover P̃ can succeed with a probability greater than ε, then the existence of the extractor
(algorithm E) implies that P̃ can be used to compute a witness w′ ∈ W (x) in polynomial
time.

We now recall the notion of honest-verifier zero-knowledge proof:

Definition 2.3.2 (Honest-Verifier Zero-Knowledge Proof). A proof of knowledge is {com-
putationally, statistically, perfectly} honest-verifier zero-knowledge (HVZK) if there exists a
PPT algorithm S (called simulator) whose output distribution is {computationally, statisti-
cally, perfectly} indistinguishable from the distribution View(〈P(x,w),V(x)〉) obtained with
an honest V.

Informally, the previous definition says that a genuine execution of the protocol can be
simulated without any knowledge of the witness. In other words, the transcript of an execution
between the prover and an honest verifier does not reveal any information about the witness.

Definition 2.3.3 (Public-Coin Proof). A proof of knowledge is said public-coin if the verifier
challenges Ch1, . . . , Chn are chosen following a public probability distribution.

In practice, the challenges of most of the public-coin proofs of knowledge are chosen
uniformly at random from public challenge sets.

2.3.3. Schwartz-Zippel Lemma and Variants
In some of our zero-knowledge proofs, we will rely on the Schwartz-Zippel Lemma or one
of its variants. This lemma is a common probabilistic tool to determine whether a given
polynomial is the zero polynomial. It states that, if we evaluate a non-zero polynomial into a
random point, we obtain zero only with a small probability.

Lemma 2.3.4 (Schwartz-Zippel). Let P ∈ F[X] be a polynomial of degree d > 0; for any
S ⊂ F,

Pr
r←S

[P (r) = 0] ≤ d

|S|
.

Proof. There are |S| possible different draws when we uniformly sample an element in S. But
P can have at most d roots, so the studied event occurs for at most d of these draws.

Lemma 2.3.5 (Schwartz-Zippel, multi-point variant). Let P ∈ F[X] be a polynomial of
degree d > 0; for any S ⊂ F and any t ≥ 1,

Pr
r1,...,rt←S

[P (r1) = 0 ∩ . . . ∩ P (rt) = 0 | {ri} are distinct ] ≤
(d
t

)(|S|
t

) .
Proof. There are

(|S|
t

)
possible different draws when we uniformly sample t distinct elements

in S. But P can have at most d roots, so the studied event occurs for at most
(d
t

)
of these

draws.
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Lemma 2.3.6 (Schwartz-Zippel, multi-point variant 2). Let P ∈ F[X] be a polynomial of
degree d > 0; for any S ⊂ F and any t, ` ≥ 1,

Pr
r1,...,rt←S

[#{i : P (ri) = 0} = ` | {ri} are distinct ] ≤
maxi≤d

{(i
`

)
·
(|S|−i
t−`

)}
(|S|
t

) .

Proof. There are
(|S|
t

)
possible different draws when we uniformly sample t distinct elements

in S. But P can have at most d roots. Let us denote i ≤ d the number of roots of P in S.
The studied event occurs for

(i
`

)
·
(|S|−i
t−`

)
possible draws. We thus get

Pr
r1,...,rt←S

[#{i : P (ri) = 0} = ` | {ri} are distinct ] ≤
maxi≤d

{(i
`

)
·
(|S|−i
t−`

)}
(|S|
t

) .

2.4. Secure Multiparty Computation
2.4.1. Secret Sharing Schemes
Along the thesis, the sharing of a value s is denoted JsK := (JsK1, . . . , JsKN ) with JsKi denoting
the share of index i for every i ∈ [1 : N ]. For any subset of indices J ⊆ [1 : N ], we shall
further denote JsKJ :=

(
JsKi

)
i∈J .

Definition 2.4.1 (Threshold LSSS). Let F be a finite field and let V1 and V2 be two vector
spaces over F. Let t and N be integers such that 1 < t ≤ N . A (t,N)-threshold linear secret
sharing scheme is a method to share a secret s ∈ V1 into N shares JsK := (JsK1, . . . , JsKN ) ∈ VN2
such that the secret can be reconstructed from any t shares while no information is revealed
on the secret from the knowledge of t− 1 shares.

Formally, an (t,N)-threshold LSSS consists of a pair of algorithms:{
Share : V1 ×R→ VN2
ReconstructJ : Vt2 → V1

where R ⊆ {0, 1}∗ denotes some randomness space and where ReconstructJ is indexed by a
set (and defined for every) J ⊂ [1 : N ] such that |J | = t. This pair of algorithms satisfies the
three following properties:

1. Correctness: for every s ∈ V1, r ∈ R, and J ⊂ [1 : N ] s.t. |J | = t, and for
JsK← Share(s; r), we have:

ReconstructJ(JsKJ) = s.

2. Perfect (t − 1)-privacy: for every s0, s1 ∈ V1 and I ⊂ [1 : N ] s.t. |I| = t − 1, the
two distributions{

Js0KI |
r ← R

Js0K← Share(s0; r)

}
and

{
Js1KI |

r ← R
Js1K← Share(s1; r)

}

are perfectly indistinguishable.
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3. Linearity: for every v0, v1 ∈ Vt2, α ∈ F, and J ⊂ [1 : N ] s.t. |J | = t,

ReconstructJ(α · v0 + v1) = α · ReconstructJ(v0) + ReconstructJ(v1).

Definition 2.4.2 (Threshold Ramp LSSS). Let F be a finite field and let V1 and V2 be
two vector spaces over F. Let t1, t2 and N be integers such that 1 ≤ t1 < t2 ≤ N . A
(t1, t2, N)-threshold ramp linear secret sharing scheme is a method to share a secret s ∈ V1
into N shares JsK := (JsK1, . . . , JsKN ) ∈ VN2 such that the secret can be reconstructed from
any t2 shares while no information is revealed on the secret from the knowledge of t1 shares.

The formal definition of (t1, t2, N)-threshold ramp LSSS is similar to Definition 2.4.1 with
the ReconstructJ function defined over Vt22 (instead of Vt2) and with cardinalities |I| = t1 and
|J | = t2 (instead of |I| = t − 1 and |J | = t). In particular an (t − 1, t, N)-threshold ramp
LSSS is an (t,N)-threshold LSSS.

Definition 2.4.3 (Additive Secret Sharing). An additive secret sharing scheme over F is an
(N,N)-threshold LSSS for which the Share algorithm is defined as

Share :
(
s ; (r1, . . . , rN−1)

)
7→ JsK :=

(
r1, . . . rN−1, s−

N−1∑
i=1

ri
)
,

with randomness space R = FN−1, and the Reconstruct[1:N ] algorithm simply outputs the sum
of all the input shares.

Definition 2.4.4 (Shamir’s Secret Sharing). The Shamir’s Secret Sharing over F is an
(` + 1, N)-threshold LSSS for which the Share algorithm builds a sharing JsK of s ∈ F as
follows:

• sample r1, . . . , r` uniformly in F,

• build the polynomial P as P (X) := s+∑`
i=1 riX

i,

• build the shares JsKi as evaluations P (ei) of P for each i ∈ {1, . . . , N}, where e1, . . . , eN
are public non-zero distinct points of F.

For any subset J ⊆ [1 : N ], s.t. |J | = ` + 1, the ReconstructJ algorithm interpolates the
polynomial P from the input ` + 1 evaluation points JsKJ = (P (ei))i∈J and outputs the
constant term s.

In the following chapters, we shall frequently use the following notions:

• Sharing of a tuple. If v is a tuple, a secret sharing JvK is defined coordinate-wise.
The algorithms Share and Reconstruct further apply coordinate-wise.

• Valid sharing. We say that a sharing JvK is valid when there exists v such that

∀J s.t. |J | = `+ 1,ReconstructJ(JvKJ) = v.

• Consistent shares. We say that shares JvKi1 , . . . , JvKiz are consistent when there exist
other shares JvK[1:N ]\{i1,...,iz} such that JvK is a valid sharing.

For a polynomial P ∈ F[X] of degree at most d, we define its sharing JP K as the sharing of
the d-tuple of its coefficients.
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2.4.2. Multiparty computation
A multiparty computation (MPC) protocol is an interactive protocol (as formally introduced
in Section 2.3.1) involving multiple –possibly more than two– parties P1, . . . , PN . Each
of these parties receives as input one share of a sharing JxK. All together, the parties run
the MPC protocol to compute f(x) for some function f . At the end of the protocol, each
party Pi outputs its own computed value of f(x), denoted fi(x). In this paper, we only
consider complete protocols for which an execution with honest parties results in all the
parties outputting the right value f(x). The view of a party Pi is composed of its input share
JxKi, its random tape and all its received messages from the other parties (the sent messages
can further be deterministically deduced from the other elements of the view).

We simply recall hereafter the notion of t-privacy for an MPC protocol in the semi-honest
model.

Definition 2.4.5 (Privacy in the Semi-Honest Model). Let t and N be integers such that
1 ≤ t < N . Let Πf be an MPC protocol with N parties P1, . . . , PN , computing a function
f . The protocol Πf is t-private in the semi-honest model if for all I ⊂ [N ] such that |I| ≤ t,
there exists a PPT algorithm S such that S(I, JxKI , fI(x)) is perfectly indistinguishable from
the joint distributions of the views of the parties in I, where fI(x) := {fi(x) | i ∈ I}.

As explained above, an N -sharing is usually distributed to N parties, meaning that each
party gets one of the N shares. From those shares, the parties can perform distributed
computations. Let assume that each party i ∈ [N ] receives the shares JxKi, JyKi and JP Ki
corresponding to shared values x, y ∈ F and polynomial P ∈ F[X]. If these sharings are
linear, they can perform the following operations:

• Addition: the parties locally compute Jx+ yK by adding their respective shares:

∀i, Jx+ yKi := JxKi + JyKi .

This process is denoted Jx+ yK = JxK + JyK.

• Addition with a constant: for a given constant α, the parties locally compute Jx+αK
by doing:

∀i, Jx+ αKi := JxKi + JαKi
where JαK is a public sharing of α. For example, JαK can be (α, 0, . . . , 0) when using
additive sharings, while it can be (α, . . . , α) when using Shamir’s secret sharings. The
process to add a constant is denoted Jx+ αK = JxK + α.

• Multiplication by a constant: for a given constant α, the parties locally compute
Jα · xK by multiplying their respective shares:

∀i, Jα · xKi := α · JxKi .

This process is denoted Jα · xK = α · JxK.

• Polynomial evaluation: for a given r, the parties can locally compute JP (r)K by:

∀i, JP (r)Ki := JP Ki(r) =
d∑
j=0

JPjKi · rj ,

where {JPjKi}j denotes the coefficients of JP Ki. This process is denoted JP (r)K = JP K(r).
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2.5. Signature Schemes
In this thesis, we focus on signature schemes. Such schemes are formally defined as below.

Definition 2.5.1 (Signature scheme). A signature scheme is a triplet of polynomial-time
algorithms (KeyGen,Sign,Verif) such that:

• KeyGen outputs a random pair (pk, sk) where pk is a public key and sk is a secret key;

• given a secret key sk and a message m ∈ {0, 1}∗, Sign produces a signature σ;

• given a public key pk, a message m ∈ {0, 1}∗ and a signature σ, Verif outputs 1 if σ is
a valid signature for m under pk (meaning that it is a possible output σ ← Sign(sk,m)
for the corresponding sk) and it outputs 0 otherwise.

The standard security property for a signature scheme is the existential unforgeability
against chosen message attacks (EUF-CMA): an adversary A given pk and oracle access to
Sign(sk, ·) should not be able to produce a pair (σ,m) satisfying Verif(pk, σ,m) = 1 (for a
message m which was not queried to the signing oracle).
Fiat-Shamir transformation. We can transform a public-coin honest-verifier zero-knowledge
proof of knowledge into a signature scheme thanks to the famous Fiat-Shamir transforma-
tion [FS87]. The latter consists in removing the interactions of the proof systems while
binding a proof transcript with the message to sign. The goal is that, even if we remove the
interaction, a malicious signer should not be able to control the randomness used to generate
the verifier challenges Ch1, . . . , Chn. The Fiat-Shamir heuristic consists in generating the
challenge Chi as (using the same notations as in Protocol 1)

hi ← Hash(m,com,Rsp1, . . . ,Rspi−1)
Chi ← XOF(hi)

where XOF is an extendable output function (a hash function with an arbitrary output size)
and m is the message to sign. Since the output of a hash function looks like random bits, a
malicious prover will not be able to forge easily valid signatures.
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Chapter 3.
The MPC-in-the-Head Paradigm

Zero-knowledge proofs are an important tool for many cryptographic protocols and appli-
cations. To build them, many techniques exist. In this chapter, we will present one of them:
the MPC-in-the-Head framework, introduced in 2007 by [IKOS07], which provides a generic
way to build zero-knowledge proofs of knowledge using techniques from secure multiparty
computation. Moreover, we will provide a complete overview of the recent techniques in the
state of the art of this framework.
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3.1. Generic Transformations

3.1.1. General Setting

In the seminal work [IKOS07], Ishai, Kushilevitz, Ostrovsky and Sahai propose a framework
to build zero-knowledge proofs for an arbitrary NP relation R using techniques from secure
multi-party computation (MPC). More precisely, they show how to use an MPC protocol Π
verifying the relation R in a black-box way to get such a proof.

Assume we want to build a zero-knowledge proof of knowledge of a witness w for a statement
x such that (x,w) ∈ R for some relation R. To proceed, we shall use an MPC protocol in
which N parties P1, . . . ,PN securely and correctly evaluate a function fx on a secret witness
w with the following properties:

• each party Pi takes a share JwKi as input, where JwK is a sharing of w;

• the function fx on input w outputs Accept when (x,w) ∈ R and Reject otherwise;

• the protocol is t-private in the semi-honest model, meaning that the views of any t
parties leak no information about the secret witness (see Definition 2.4.5 for a formal
definition).

• the protocol is r-robust in the malicious model, meaning that the protocol outputs the
right values as soon as there are at most r dishonest parties.

We can use this MPC protocol to build a zero-knowledge proof of knowledge of a witness w
satisfying (x,w) ∈ R. The prover proceeds as follows:

• she builds a random sharing JwK of w;

• she simulates locally (“in her head”) all the parties of the MPC protocol;

• she sends a commitment of each party’s view to the verifier, where such a view includes
the party’s input share, its random tape, and its received messages (the sent messages
can further be deterministically derived from those elements);

• she sends the output shares Jf(w)K of the parties, which should correspond to a sharing
of Accept.

Then the verifier randomly chooses t parties and asks the prover to reveal their views. After
receiving them, the verifier checks that they are consistent with an honest execution of the
MPC protocol and with the commitments. Since only t parties are opened, the revealed views
leak no information about the secret witness w, which ensures the zero-knowledge property.
On the other hand, the random choice of the opened parties ensures the soundness of the
proof system. Indeed, a prover that does not know a witness w satisfying (x,w) ∈ R will need
to corrupt the computation of some parties such that the emulated MPC protocol indicates
that fx(w) = Accept (while it is not true), but then the verifier will catch the malicious
prover as soon as she will ask to open one of these corrupted parties (see Figure 3.1), which
occurs with constant probability.
The probability that a malicious prover can convince a verifier is named the soundness

error of the proof of knowledge and it is usually denoted ε (or ε in some articles). To decrease
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Figure 3.1.: Let us assume that we have a 2-private MPC protocol involving N := 5 parties.
A malicious prover does not know a witness such that the MPC protocol outputs
Accept, thus she needs to cheat when emulating the MPC protocol. The optimal
cheating strategy (when r := 0) is to corrupt the communication between two
parties. For example, in the figure, the party P2 sends the message “4” but
the party P3 gets “−2” as message from P2. The verifier will ask to reveal the
computation of t := 2 parties. The verifier will catch the malicious behavior
as soon as the two parties involved in the corrupted communication are open,
implying that the probability that the verifier detects the cheating is (N−2

t−2 )
(Nt )

:= 1
10 .

this cheating probability, the zero-knowledge proof is repeated several times (we denote this
number τ in this manuscript) using fresh randomness.

The exact security of the IKOS framework1 is analyzed in [GMO16]. The soundness error
of the construction is given by the following theorem.

Theorem 3.1.1 ([GMO16]). Let us consider a NP relation R. We assume that we have
a t-private and r-robust MPC protocol Π evaluating a function fx such that ∀w, fx(w) =
Accept ⇔ (x,w) ∈ R. Then the zero-knowledge protocol built from Π using the MPCitH
paradigm has a soundness error

ε := max


(r
t

)(N
t

) , k∑
j=0

2j
(k
j

)(N−2k
t−j

)(N
t

)


with k = br/2c+ 1.

Remark 3.1.2. Let us consider the case where the MPC protocol is only passively-secure,
meaning that the protocol is ensured to produce the correct output only when there is no
corrupted parties (i.e. r = 0 where r is the robustness threshold). In that case, Theorem 3.1.1

1The authors of [IKOS07] only made an asymptotic analysis.



22 Chapter 3. The MPC-in-the-Head Paradigm

gives that the soundness error of the resulting proof of knowledge is

ε := 1− t(t− 1)
N(N − 1) .

We can remark that this quantity is minimal when t is maximal, i.e. when t = N − 1. In that
case, the soundness error is ε = 2

N .

Remark 3.1.3. [IKOS07] considers two cases. The first one corresponds to the setup where
the MPC protocol is passively-secure and the privacy threshold is 2. The soundness error of
the resulting proof is 1 − 1

(N2 ) . The second one corresponds the setup where t = r > 0 and

N = Ω(t), for which the soundness error ε is in 2−Ω(t). When taking a large t, ε can be
negligible without any repetition.

Theorem 3.1.1 holds for any MPC protocol. However, the communication cost of the
resulting proof system will highly depend on the used protocol. The MPC-in-the-Head
framework was introduced in 2007 and has been considered as a theoretical result for almost
a decade. It was only in 2016 that the first practical proof system relying on this framework
was proposed [GMO16]. From then on, the framework has been much more studied and
many concrete instantiations have been proposed. For instance, one year later, [CDG+17]
proposed the first MPCitH-based signature schemes, Fish and Picnic. Picnic has been then
submitted to the NIST call for post-quantum cryptosystems in 2017 [NIS16].

3.1.2. Broadcast-based Multiparty Computation
Submitted at the same conference than [CDG+17], the article [AHIV17] proposes a totally
different proof system relying on the MPC-in-the-Head paradigm. The authors restrict the
seminal work of [IKOS07] to the case of multiparty computation using only broadcast as
communication (and no peer-to-peer communication anymore). While it can be seen as a
subcase of the [IKOS07] framework, it enables to build more efficient proof systems. Since it
relies only on broadcast, all communications are public. The prover thus does not need to
commit them and can simply send them to the verifier. Then, when getting a party’s view, the
verifier will check that the sent messages are consistent with the broadcast communications.
In Section 3.1.1, the verifier checked that the open views were consistent between them (and
with the commitments), but here the verifier only needs to check that the open views are
consistent with the broadcast communications. It implies that the verifier will more efficiently
catch the cheating since she just needs to open a party’s view with cheating (see Figure 3.2),
while in the previous model, the cheating can be on peer-to-peer communication, requiring
that the verifier asks the opening of the two concerned parties to detect it (as in Figure 3.1).

To build a zero-knowledge proof of knowledge using a broadcast-based MPC protocol, the
prover shall proceed as follows:

• she builds a random sharing JwK of w;

• she simulates locally (“in her head”) all the parties of the MPC protocol;

• she sends a commitment of each party’s view to the verifier, where such a view includes
the party’s input share and its random tape;

• she sends all the broadcast messages;
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Figure 3.2.: Let us assume that we have a 2-private MPC protocol involving N := 5 parties.
This time, we assume that the parties only use a broadcast channel, meaning
that all broadcast values are known by everybody. Since the malicious prover
does not know a valid witness, she needs to cheat on the computation of at least
one party. Then, the verifier will ask to reveal the computation of t := 2 parties.
The verifier will catch the malicious prover with probability 2

N := 2
5 .

• she sends the output shares Jf(w)K of the parties, which should correspond to a sharing
of Accept.

Then the verifier randomly chooses t parties and asks the prover to reveal their views. After
receiving them, the verifier checks that they are consistent with the given broadcast messages
and with the commitments. While the number of messages in a peer-to-peer multiparty
computation is in O(N2) with N the number of parties, it is only in O(N) when using
broadcast. The exchanged messages sometimes contain some redundancies. For example,
it is the case when the parties broadcast shares of a Shamir’s secret sharing, which are
evaluations of a polynomial. In that case, the prover can save communication by compressing
the broadcast messages.

The soundness error of the resulting proof system is given by the following theorem (mix
of theorems of [AHIV17] and [DOT21]).

Theorem 3.1.4 ([AHIV17; DOT21]). Let us consider a NP relation R. We assume that we
have a t-private and r-robust MPC protocol Π evaluating a function fx such that ∀w, fx(w) =
Accept ⇔ (x,w) ∈ R. We denote δ the robustness error of Π, i.e. the probability that Π
with at most r corrupted parties outputs Accept while parties’ input shares do not form a
valid sharing of a value w such that (x,w) ∈ R. Moreover, we assume that Π only uses a
broadcast channel as communication between parties. Then the zero-knowledge protocol built
from Π using the MPCitH paradigm has a soundness error

ε :=
(N−r−1

t

)(N
t

) + δ ·
(

1−
(N−r−1

t

)(N
t

) )
.
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Remark 3.1.5. The formula given in Theorem 3.1.4 differs from these in [AHIV17] and
[DOT21]. In [AHIV17, Theorem 3.5], the authors simplify the equation as

ε ≤
(N−r−1

t

)(N
t

) + δ ≤
(

1− r + 1
N

)t
+ δ ≤

(
1− r

N

)t
+ δ

while [DOT21, Theorem 1] only considers the case r = 0 and t = N−1 to get 1
N +δ ·

(
1− 1

N

)
.

Remark 3.1.6. Let us stress that a malicious prover is not forced to commit a valid input
sharing (i.e. a sharing with consistent shares). For example, when using a (t+1, N)-threshold
Shamir’s secret sharing, a malicious prover is not forced to commit evaluations of a degree-t
polynomial. The MPC protocol should then check that the sharing is valid, e.g. by using a
Reed-Solomon proximity test. Let us observe that this issue is irrelevant in the case of the
additive sharing scheme since any N values (v1, . . . , vN ) form a valid sharing of ∑N

i=1 vi.

The MPCitH-based constructions relying on broadcast-based MPC protocols can be split
into two categories:

• sublinear proof systems, relying on multiparty computation which is secure in the
malicious model (r > 0),

• linear proof systems targeting small circuits (e.g. to construct efficient signature
schemes), relying on passively-secure multiparty computation (r = 0).

3.1.2.1. Sublinear Proof Systems

In [AHIV17], the authors proposed a proof system fitting this broadcast setting, named
Ligero. The latter relies on proximity tests to get a robust MPC protocol. Combined with
packed secret sharings2, it achieves sublinear proof size. More precisely, the communication
cost scales in O(

√
|C|) where |C| is the number of gates in the considered circuit.

Since it relies on packed secret sharings, the used field must be large enough to enable
the existence of such sharings. To support Boolean circuits, it requires embedding the
computation in a larger field. In that case, a Boolean value will be represented by a field
element and quadratic constraints on the form X2−X = 0 will ensure that the field elements
really correspond to 0 or 1. A few years later, [GSV21] proposed a tailored version of Ligero
(named Booligero) in this context of Boolean circuits.

3.1.2.2. Proof Systems for Small Circuits

One year after [AHIV17], [KKW18] proposed a proof system that fits the broadcast setting,
but with a totally different construction. The proposed construction only uses additive
sharings and has the maximal privacy threshold t := N − 1, meaning that the prover will
reveal all the parties’ views except one. Without optimization, the achieved size would be
huge, but [KKW18] proposes several tricks to achieve practical sizes:

2The packed secret sharing scheme is a generalization of the Shamir’s secret sharing scheme: to share
simultaneously s1, . . . , s|s| ∈ F, it samples a random polynomial P such that P (e′j) = sj for all j, and
evaluates it into the parties’ evaluation points {ei}i, where {ei}i and {e′j}j are public distinct points of F.
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• Since the input sharing JwK is additive, each share except the last one can be derived
from a seed using a pseudo-random generator. Thus, revealing an input share simply
consists in sending the corresponding seed.

• With the previous point, the prover only needs to reveal N − 1 seeds if the last party
remains hidden, N − 2 seeds and an uncompressed share otherwise. In order to further
decrease communication, [KKW18] suggests to generate these seeds using a puncturable
pseudo-random function. More precisely, the authors propose to use a GGM tree (see
Section 2.2.2), decreasing the number of revealed seeds to log2(N).

This framework (passively-secure broadcast-based protocol with additive sharings) inspires
many works such as [BN20], [DOT21] and [KZ22] (see Section 3.4 for a more complete list).
Here are the main ideas to develop an efficient MPC protocol in this framework:

• [KKW18] relies on a preprocessing phase (independent of the secret) to prepare a set
of Beaver triples (a Beaver triple is a triple (a, b, c) such that (a, b) is chosen uniformly
at random and c = a · b). Thanks to a cut-and-choose strategy, the verifier has the
guarantee that these triples are well-formed (see Section 3.3.1 for details). Then,
[KKW18] proposes an MPC protocol that computes the circuit which represents fx
and which outputs fx(w).

• Instead of having an MPC protocol which computes fx(w), [BN20] proposes an MPC
protocol which validates the statement fx(w) ?= Accept. It enables us to avoid the
time-consuming cut-and-choose phase of [KKW18].

In this line of research, the prover needs to emulate N parties by repetition, where N is a
flexible parameter of the proof system. Since the soundness error of one repetition is greater
than 1

N , the prover needs to perform at least λ
log2N

repetitions to achieve a security of λ bits,
thus the prover needs to emulate at least λ N

log2N
times the party’s computation. Similarly,

the verifier needs to re-emulate at least λ(N−1)
log2 N

parties. Since emulating the MPC protocol
was the computational bottleneck of these schemes, most of the works in this setting proposed
several trade-offs of their construction: the larger N , the shorter the proof and the slower
the computation.

This state of affairs changed in 2023. [AGH+23] shows that these numbers can be reduced
to λ log2N+1

log2N
for the prover and λ log2 N

log2 N
= λ for the verifier without impacting the signature

size. With their optimization, N has only a slight impact on the cost of emulating the MPC
protocol anymore, but it still has a linear impact on the commitment phase where the prover
needs to commit the input shares of all the parties for each repetition.

3.1.3. Linear Broadcast-based Multiparty Computation

The schemes presented in Section 3.1.2.2 achieve very competitive performance mainly thanks
to the additive sharing and the tweak of generating shares via GGM trees. The latter is not
possible for another type of sharing. The achieved sizes in Section 3.1.2.1 are not competitive
when targeting small circuits/statements.

The recent article [FR22] proposes a new approach to build MPCitH-based proof systems.
It considers a subcase of the broadcast setting: it deals with broadcast-based multiparty
computation which only performs linear operations on sharings. For example, given two
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sharings JaK and JbK, it prevents from computing the sharing Ja · bK by multiplying each share
JaKi by the share JbKi, which would be accurate when using Shamir’s secret sharings (it is used
in Ligero [AHIV17]). This subclass of MPC protocols satisfies the following property: if Π is
a broadcast-based MPC protocol that only performs linear operations on (t+ 1, N)-threshold
linear secret sharings, then restricting Π to any subset of t+ 1 parties forms a valid MPC
protocol which computes the same functionality. The procedure to build a zero-knowledge
proof is exactly the same as in Section 3.1.2, but this subclass of MPC protocol enables a
refined analysis of the soundness, as given by the following theorem.

Theorem 3.1.7 ([FR22]). Let us consider a NP relation R. We assume that we have a
t-private (passively-secure) MPC protocol Π evaluating a randomized function fx such that

• for w satisfying (x,w) ∈ R, fx(w) = Accept,
• for w such that (x,w) 6∈ R, fx(w) = Reject with high probability.

Moreover, we assume that Π only uses a broadcast channel as communication between
parties and only performs linear operations on (t, t+ 1 + ∆, N)-threshold ramp linear secret
sharings. Let us denote p the probability that fx(w) = Accept when (x,w) 6∈ R. Then the
zero-knowledge protocol built from Π using the MPCitH paradigm has a soundness error

ε :=
(t+∆

t

)(N
t

) + p · t

t+ ∆ + 1 ·
(
N − t
∆ + 1

)
.

When considering threshold sharings (∆ := 0), we get a soundness error of

ε := 1(N
t

) + p · t · (N − t)
t+ 1 .

Remark 3.1.8. When we apply Theorem 3.1.7 to the case of the additive sharing case
(t := N − 1, ∆ := 0), we obtain the soundness error

ε := 1
N

+ p ·
(

1− 1
N

)
,

which corresponds to the soundness obtained by the schemes in Section 3.1.2.2. Thus, in that
setting, we can stress that allowing only linear operations does not impact the soundness.

Theorem 3.1.7 is especially interesting when considering a very-low privacy threshold t.
For example, let us consider the case where t := 1 (and with ∆ = 0). The soundness error of
the resulting scheme is

ε := 1
N

+ p · N − 1
2 .

When p is negligible, we obtain the same soundness as when using the additive sharing
scheme, but here the verifier asks to open only t = 1 party. Since verifying a proof transcript
consists in re-emulating the open parties, revealing only t parties (with t small) leads to a
very efficient scheme. [FR22] shows that the prover also benefits from this small privacy
threshold. However, the obtained communication costs in that setting are a bit larger than
those of Section 3.1.2.2. Theorem 3.1.7 thus tends to produce faster schemes but with a
larger communication cost.
The formalization of this linear broadcast-based multiparty computation model is a contri-

bution of this thesis, which is extensively described in Chapter 8.
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3.2. Paradigm Usage
In the state of the art, the MPC-in-the-Head paradigm has been studied to achieve two
different goals. The first one consists in designing zero-knowledge proofs for a class of circuits,
while the second one consists in designing identification schemes (and signature schemes
through the Fiat-Shamir transformation).
On one hand, the challenge of the first goal is to design an MPC protocol that can be

converted into an efficient proof system for a chosen class of circuits (e.g. an arithmetic
circuit). The statement to be proved with the proof scheme is straightforward.
On the other hand, when designing identification schemes, the statement to be proved

is often left to the designers as soon as it corresponds to a secure one-way function. The
challenge is then to choose a statement and design a dedicated MPC protocol which can
be converted into an efficient identification scheme. Many articles explored this setting,
searching for the statement which would give the most efficient schemes with the existing
MPC-in-the-Head techniques. Three trends can be observed in the state of the art:

• some identification schemes are relying on standard symmetric primitives like AES (e.g.
[BDK+21b]);

• some are relying on MPC-friendly primitives like LowMC or Rain (e.g. [DKR+21]);

• as the last option, some are relying on hard problems that have existed for a long time
and are thus well understood, like the syndrome decoding problem.

The first option leads to the more conservative schemes, but the achieved communication
costs are quite large. The second option currently gives the shortest communication costs,
but since it relies on recent primitives, it is less conservative. The last option is between the
two other ones in terms of performance and can be used as a trade-off between performance
and security concerns.

3.3. Useful techniques
To design an MPC protocol that aims to be used with the MPC-in-the-Head framework,
designers can rely on some techniques that have been proposed in the literature. In what
follows, we describe some of them.

3.3.1. Protocols with Helper
One can assume that the parties take an auxiliary input which is a sharing JyK of a random
value y satisfying some public equation E(y) = 0 (where E might depend on the public
statement x). In practice, this assumption is verified thanks to a cut-and-choose strategy run
before the emulation of the MPC protocol. Introduced by [KKW18] using a preprocessing
phase, this technique has been formalized in [Beu20] as protocols with helper.

Using a “helper” is very powerful. When receiving the shares JyK of y, the parties can use
them to perform advanced computation assuming E(y) = 0, without needing to perform any
check on the received shares. For example, [KKW18] uses this technique to produce Beaver
triples (i.e. the MPC protocol can take as input three sharings JaK, JbK and JcK for random a,
b and c satisfying c = a · b) while [FMRV22b] uses it to ensure that some parts of the MPC
input encode a random binary vector.
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This technique presents the advantage that the communication cost is independent of the
size of y and the expression of E, since it relies only on seeds. However, it suffers from a high
computational cost, implying that the number N of parties involved in the MPC protocol
must stay low to obtain a practical scheme.

3.3.2. Statistical checkings

The high-level idea of the MPC-in-the-Head paradigm consists in building a zero-knowledge
proof of knowledge of a witness w that satisfies (x,w) ∈ R using a multiparty computation
evaluating a functionality fx such that

(x,w) ∈ R ⇔ fx(w) = Accept.

In practice, we can relax this construction. Instead of being a deterministic function, fx
could be a randomized function performing a statistical test on w:

• if (x,w) ∈ R, then fx outputs Accept;

• if (x,w) 6∈ R, then fx outputs Reject with high probability.

It means that some false positive events can occur: fx can sometimes output Accept
even if (x,w) 6∈ R. The probability that it occurs is called the false positive rate or the false
positive probability. To sum up, we can consider a setting in which the output of the protocol
has a probability distribution of the form described in Table 3.1. To have a sound proof of
knowledge, the randomness of the statistical test should not be controlled by the prover. The
solution consists in letting the verifier provide this randomness after the commitment of the
input shares of the MPC protocol.

Output of fx
Accept Reject

w s.t. (x,w) ∈ R 1 0
w s.t. (x,w) 6∈ R p 1− p

Table 3.1.: Probability distribution of the output of the MPC protocol, where p is the false
positive rate.

Relaxing the definition of fx enables us to use lighter MPC protocols, which leads to more
efficient MPCitH-based proofs of knowledge. We could imagine relaxing the definition of fx
even more by allowing false negative events (i.e. fx can output Reject when (x,w) ∈ R
with small probability), but there is currently no such proposal in the literature, and so it is
not sure it would be useful.
In the MPC-in-the-Head state of the art, the first scheme using this relaxation is the

[BN20] protocol. To deal with multiplications in MPC (i.e. to compute a sharing Jx · yK
from JxK and JyK), a standard technique consists in using Beaver triples [Bea92]: the protocol
takes as inputs a random triple of sharings (JaK, JbK, JcK) such that a · b = c and uses them
to compute Jx · yK from JxK and JyK. When using it in an MPC-in-the-Head paradigm, this
technique presents the disadvantage that the verifier should be convinced that a · b = c.
Since the desired property is independent of the secret, we can use protocols with helper to
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proceed. However, it implies that the obtained scheme would not be efficient because of the
computational bottleneck of the protocols with helper.

[BN20] proposes an alternative solution. In the MPC-in-the-Head paradigm, the secret is
known by the prover. If the MPC protocol involves such a multiplication between two secret
values x and y, she can easily compute their product z := x · y. Then, instead of computing a
sharing JzK from JxK and JyK, the prover can directly give JzK as input of the MPC protocol.
Then one just needs to check that the sharings JxK, JyK and JzK satisfy z = x · y. Checking
this relation is lighter than computing JzK. [BN20] proposes an MPC protocol that takes as
input the three sharings (JxK, JyK, JzK) and a random Beaver triple (JaK, JbK, JcK) and which
outputs

• Accept when z = x · y and c = a · b,

• Reject when z 6= x · y or c 6= a · b with high probability.

This alternative solution also uses a Beaver triple as the previous one, however the verifier
does not need to be convinced that the Beaver triple is well-formed since the MPC protocol
makes the checking itself. While it introduces a false positive rate, it avoids using the
protocols with helper and leads to more efficient schemes.

3.3.3. MPCitH with Rejection

Sharing a value x using an additive N -sharing over Z/qZ consists in sampling JxK1, . . . , JxKN ∈
Z/qZ such that

x = JxK1 + . . .+ JxKN mod q.

A proof system relying on the MPC-in-the-Head always needs to include some shares in
the proof transcript, so the bit size of a share has a direct impact on the proof size. In
some contexts, one may want to share a small value (small compared to q). For example,
[FMRV22b] needs to share a binary vector x while working with q ≈ 2256. In that case,
sending a share of x is much more expensive than sending x. [FMRV22b] proposes to share
such a small value in an alternative way: instead of sharing over Z/qZ, one can share over
small integers. It consists in sampling JxK1, . . . , JxKN in some range {−A, . . . , A} such that

x = JxK1 + . . .+ JxKN over Z.

Such sharings leak information about the shared value x, but [FMRV22b] shows that one
can prevent leakage using rejection, i.e. by allowing the prover to abort the protocol in some
specific situations. Taking a small A leads to a short proof size but implies a high rejection
rate. Thus selecting the parameter A consists in choosing a trade-off between the proof size
and the computational performance.

3.4. State of the art

Since [GMO16], there have been a lot of works dealing with the MPC-in-the-Head paradigm.
This section proposes a short overview of the state of the art. Let us stress that it is not an
exhaustive list of the existing works, but rather a list of the main results.

We can divide the contributions of the works into several categories:
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1. works which propose a new MPC-in-the-Head transformation for a class of MPC
protocols (or some optimizations of an existing transformation);

2. works which propose a new (optimized) MPC protocol that leads to efficient proof
systems when using one of the MPC-in-the-Head transformations;

3. works which find the best specialized MPC protocol for a specific circuit and it often
leads to efficient signature schemes;

4. works which aim to produce schemes with advanced functionalities (such as ring
signature scheme) thanks to the MPCitH paradigm.

One article can propose contributions in several categories. For example, [AHIV17] introduces
the MPC-in-the-Head transformation with broadcast and also proposes Ligero, a sublinear
proof of knowledge for the arithmetic circuits.

Contributions from the first category have already been presented in Section 3.1. In what
follows, we describe the works of the second and third categories. Regarding the contributions
of the last category, the literature remains still sparse and it is difficult to provide a clear
overview.

3.4.1. Zero-knowledge proofs of knowledge for arbitrary circuits
In 2016, [GMO16] proposed ZKBoo, the first practical zero-knowledge proof system relying
on the MPC-in-the-Head paradigm.While the achieved proof size was not competitive with
the schemes from the SNARK technology, ZKBoo significantly outperformed them in terms
of proving time. One year later, [CDG+17] optimized ZKBoo by reducing the proof size by a
factor of two at no additional computational cost. This optimized proof system was named
ZKB++.
In 2017, [AHIV17] proposed Ligero, a sublinear proof system for arithmetic circuits. It

relies on an MPC protocol which is robust in the malicious model thanks to a code proximity
test. It achieves sublinear communication costs by packing several witness coordinates in one
sharing, which is made possible by the use of Shamir’s secret sharing.

From 2018, there is a series of works proposing efficient proof systems for arithmetic circuits
for which the communication cost is linear into the number n of multiplicative gates:

• [KKW18] uses Beaver triples to evaluate an arithmetic circuit in MPC and relies on a
protocol with helper to generate these triples;

• [BN20] proposes a solution to avoid the helper from [KKW18] thanks to their sacrificing-
based multiplication verification, obtaining a 5-round proof system which achieves a
communication cost in around 5n;

• [BDK+21b] proposes Banquet3 which uses the polynomial-based technique of [BBC+19b]
to verify multiplications, which is a 7-round proof system achieving a communication
cost scaling in n+O(

√
n);

• [DOT21] proposes Limbo which can be considered as a generalization of Banquet for
more rounds, which is a Θ(log2 n)-round proof system achieving a communication cost
in n+O(log2 n);

3Banquet can be easily adapted to a generic proof system even if it has not been proposed as such.
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• [KZ22] proposes BN++, a highly-optimized version of the [BN20] scheme achieving a
communication cost in around 2n;

• [KZ22] proposes Helium, which is a 7-round proof system relying on the polynomial-
based multiplication verification as Banquet and achieving a communication cost of
around 2n.

[KZ22] provides a nice overview of all the existing MPCitH techniques. Currently, there
are two main approaches to deal with multiplications:

• The sacrificing-based verification proposed by [LN17; BN20]. It consists in using
Beaver triples to check multiplications, but it does not require that the prover explicitly
convinces the verifier that these Beaver triples are well-built. As shown in [KZ22], this
verification can be optimized and batched for a large number of multiplications. It can
be also adapted to the matrix setting (see [Fen22] for example).
Let us describe the batched version of the MPC protocol. We want to check n
multiplication triples (JxiK, JyiK, JziK), i.e. check that zi = xi · yi for all i. To proceed,
the MPC protocol takes as input a random dot-product tuple ((JaiK, JbiK)i∈[n], JcK)
verifying c = 〈a, b〉 to sacrifice and runs the following computation:
1. the parties get a random ε ∈ Fn (from the verifier in the MPCitH paradigm);
2. the parties locally set JαK = ε ◦ JxK + JaK and JβK = JyK + JbK, where ◦ is the

coordinate-wise multiplication;
3. the parties broadcast JαK and JβK to obtain α and β;
4. the parties locally set JvK = −JcK + 〈ε, JzK〉+ 〈α, JbK〉+ 〈β, JaK〉 − 〈α, β〉;
5. the parties broadcast JvK to obtain v;
6. the parties output Accept if v = 0 and Reject otherwise.

If one of the multiplication triples is invalid (or if the dot-product tuple is not well-built),
this MPC protocol outputs Reject except with probability 1

|F| . In some settings, we
can remove the computation of JβK and save the associated communication (see [KZ22]
for details).

• The polynomial-based verification proposed by [BBC+19b; BDK+21b]. Let us assume
that, given (xi, yi, zi), we want to check that zi = xi ·yi for all i. The idea is to represent
the values (x1, . . . , xn), (y1, . . . , yn) and (z1, . . . , zn) respectively into three polynomials
S, T and P such that

S(γ1) = x1
...

S(γn) = xn,

T (γ1) = y1
...

T (γn) = yn,

and
P (γ1) = z1

...
P (γn) = zn

for some distinct public points γ1, . . . , γn. Let us stress that computing these polynomials
is communication-free in MPC since the interpolation formula is linear into the secret
values. Then, the polynomial-based verification consists in checking that S · T − P is
zero over {γ1, . . . , γn} thanks to the Schwartz-Zippel lemma. The communication cost
of this verification depends on the number of rounds. If the MPC protocol asks the
verifier for randomness only once, then the communication cost due to the verification
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will be linear into the number n of multiplications we want to check. If we allow an
additional round (see [BDK+21b]), the communication cost scales in O(

√
n). More

generally [DOT21], if the MPC protocol asks the verifier for randomness t times, the
cost scales in O(t · t

√
n), which is O(logn) for t := logn.

The two above techniques highly depend on the size of the underlying field. They will be
efficient for large fields, but not for small fields. For example, if we work on the binary field,
the MPC protocol for sacrificing-based verification has a false positive rate of 1/2, and it will
have a high impact on the performance of the produced scheme. [KZ22] compiles several
methods to deal with small fields:

• the simplest idea consists in lifting all the computations in a field extension;

• the second idea consists in repeating the MPC protocol several times to get a small
global false positive rate;

• the latter idea consists in using reverse multiplication friendly embedding (RMFE) to
lift the computation.

Other techniques are possible, but they are specific to the context. All these techniques
enable us to decrease the impact of working over a small field. We refer the reader to [KZ22]
for details.

3.4.2. Zero-knowledge proofs of knowledge for dedicated circuits
If we want to build a proof system for a specific circuit, we can rely on the schemes of the
previous subsection. For example, if we want to build a proof of knowledge for an AES key k
satisfying y = AESk(0) for a public y, we can transform the statement into an arithmetic
circuit and use a generic proof system (as Limbo or Helium) to get the desired scheme. While
this approach presents the advantage of not relying on a new construction, it could prevent
achieving smaller communication costs because converting a statement into a circuit often
does not take advantage of the arithmetic properties of the statement.

Another approach would consist in building a proof system from an MPC protocol optimized
for the considered statement. The goal is to exploit the arithmetic structure of the statement
to produce a more efficient MPC protocol. It does not lead to better schemes when considering
a statement which can be naturally written as a circuit (as those derived from some block
ciphers), but it is more efficient when considering an arithmetic statement as the syndrome
decoding problem (as in Chapter 4 and in Chapter 5).

Let us remark that focusing on a specific statement instead of a large class of statements
is interesting to build efficient signature schemes.
Here are the articles proposing dedicated MPC protocols:

• LegRoast and PorcRoast [BD20] rely on MPC protocols for Legendre PRF and for
higher-power residue characters;

• [FJR22b] (described in Chapter 5) proposed an MPC protocol optimized for the
syndrome decoding problem in Hamming metric;

• [FMRV22b] (described in Chapter 6) proposed several MPC protocols for the subset
sum problem;
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• [FMRV22b] (described in Chapter 6) also proposed an MPC protocol for the [BHH01]
PRF;

• [ARV22] proposed an MPC protocol for the MinRank problem;

• [Fen22] (described in Chapter 7) proposed two MPC protocols to check the rank of a
matrix which can be used for the MinRank problem and the rank syndrome decoding
problem;

• [Fen22] (described in Chapter 7) also proposed MPC protocols for the multivariate
quadratic problems and the permuted kernel problem.
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Chapter 4.
Shared Permutation for Syndrome
Decoding
In 2020, the state of the art regarding the zero-knowledge proofs of knowledge for the

syndrome decoding problem was sparse and not competitive (in terms of communication cost).
In this chapter, we propose a first proof of knowledge using ideas from the MPC-in-the-Head
paradigm. Thanks to the Fiat-Shamir transformation, we get a first signature scheme that
outperforms the former code-based schemes based on the same assumption and which is
competitive with some quantum-safe schemes.
The results presented in this chapter have been published in collaboration with Antoine

Joux and Matthieu Rivain in the journal Designs, Codes and Cryptography [FJR23].
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4.1. Introduction
One of the few directions for post-quantum technologies is (error correcting) code-based
cryptography. The generic decoding problem, or equivalently the (computational) syndrome
decoding (SD) problem is a classic problem:

Definition 4.1.1 (Syndrome Decoding Problem). Let F be a finite field. Let m, k and
w be positive integers such that m > k and m > w. The syndrome decoding problem with
parameters (F,m, k, w) is the following problem:

Let H, x and y be such that:

1. H is uniformly sampled from F(m−k)×m,
2. x is uniformly sampled from {x ∈ Fm : wtH(x) = w},
3. y is defined as y := Hx.

From (H, y), find x.

For random linear codes –i.e. for a random matrix H– this problem is widely believed to
be robust for practical parameters. In this chapter, we only consider the binary version of
the syndrome decoding problem, i.e. we only consider F := F2.
In a pioneering work from three decades ago [Ste94], Stern proposed a zero-knowledge

protocol to prove the knowledge of a solution to a syndrome decoding instance. This protocol
achieves a soundness error of 2/3 which means that a malicious prover can fool the verifier
with probability 2/3. Although an arbitrary security of (2/3)τ can be achieved by repeating
the protocol τ times, the induced communication cost is significant, which is partly due to
this high soundness error. Since the work of Stern, a few papers have proposed optimizations
and implementations (see for instance [Vér96; GG07; AGS11; ACBH13]) but for random
linear codes with standard security levels, the communication cost is still heavy.
In this chapter, we propose a new zero-knowledge protocol for the SD problem which

achieves a soundness error of 1/N with complexity O(N) for an arbitrary chosen N . In a
nutshell, and as in Stern protocol, the solution x is masked by the application of a random
permutation σ. However, instead of revealing either σ(x) or σ, we always reveal σ(x) and
prove the existence of a permutation σ. To this purpose, we decompose σ into N masked
permutations σ(·) + s := (σ1(·) + s1) ◦ · · · ◦ (σN (·) + sN ) which are all committed by the
prover and we let the verifier choose N − 1 of them to be revealed. This way, we can maintain
the privacy of σ while obtaining the desired soundness error of 1/N .

Our construction requires the verifier to trust some of the variables sent by the prover. This
can be ensured by a so-called cut-and-choose phase since these variables are independent of the
secret solution x. While composing our technique with a cut-and-choose phase, the obtained
protocol has a similar structure as the zero-knowledge proof for Boolean circuits proposed by
Katz, Kolesnikov and Wang [KKW18] as an efficient instantiation of the MPC-in-the-head
paradigm [IKOS07]. We can therefore apply the same optimizations (such as the merging
of the cut-and-choose phase) to obtain a 5-round zero-knowledge protocol with arbitrary
soundness error 2−λ. We further detail how to make our zero-knowledge proof non-interactive
and turn it into a signature scheme by applying the Fiat-Shamir transform [FS87; AABN02].
For a 128-bit security level, the scheme achieves a signature size ranging between 17 KB
(compact version) and 24 KB (fast version).
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As explained in the thesis introduction, there are two different strategies to build code-
based signatures: applying the Fiat-Shamir transform to an identification scheme or using
hash-and-sign paradigm with a code-based trapdoor function. In the former case, stan-
dard techniques result in identification schemes with high communication costs (implying
large signatures) because of the non-negligible soundness error. The Schnorr-Lyubashevsky
approach [Sch90; Lyu09] is a promising way to mitigate this cost, however in the case of
code-based signatures, it does not seem to work as well as for lattice-based signatures. In
the rank metric, Durandal [ABG+19] is a code-based scheme that follows this approach.
In the hash-and-sign paradigm, existing schemes based on trapdoor functions are more
sensitive to structural attacks. Such a signature scheme named Wave [DST19] has been
proposed in 2018 and is still secured against the current cryptanalysis state of the art, but it
suffers a huge public key and a slow signing time. The signature described in this chapter
has the advantage of being based on one of the oldest and hardest problems in code-based
cryptography: syndrome decoding of random linear codes while still competing with existing
schemes based on other (presumably weaker) problems in terms of public key and signature
size.
We present the basic protocol (achieving 1

N soundness) in Section 4.2 and an optimized
version (achieving arbitrary soundness) in Section 4.3. Then, we describe a signature
scheme obtained through the Fiat-Shamir transform in Section 4.4. To conclude, we provide
performance estimations for different sets of parameters in Section 4.5 and compare our
construction with other zero-knowledge proofs and signature schemes from the state of the
art in Section 4.6.

4.2. A Zero-Knowledge Protocol for Syndrome Decoding
Let us have an instance (H, y) of the syndrome decoding problem and let us denote x a
solution of this instance (i.e. y = Hx and wtH(x) = w). In what follows, we will describe
a zero-knowledge proof of knowledge for this problem. More precisely, we will present a
two-party protocol where a prover wants to convince a verifier that she knows a solution of
the considered SD instance.

4.2.1. General Idea

As in the Stern protocol [Ste94], the prover first generates a random permutation σ and a
random mask r ∈ Ker(H), and reveals(

v := σ(x) , x̃ := x+ r
)

(4.1)

to the verifier. The verifier can then verify that

• y = Hx̃ holds: this ensures that x̃ = x+ r for some mask r ∈ Ker(H),

• wtH(v) = w holds: this ensures that x = σ−1(v) is of weight w for any permutation σ.

In order to complete the proof, the prover then needs to convince the verifier that there exists
a pair (σ, r) which jointly satisfies:

1. Hr = 0, and
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2. σ(x̃) = v + σ(r).

The first property is independent of the solution x which makes it provable using a cut-and-
choose approach (see details in Section 4.2.4). Our key idea is a way to prove the second
property while achieving an arbitrary soundness error 1/N .
Our method introduces an affine transformation A(·) = σ(·) + s for a random mask s so

that we have:
A(x̃) = σ(x̃) + s = σ(x) + σ(r) + s︸ ︷︷ ︸

q

. (4.2)

If the verifier trusts that the value q equals A(r) for some r ∈ Ker(H), then she only needs
to verify the equality A(x̃) = v + q to be convinced. Since q is independent of x, ensuring
a trustworthy q can also be achieved through cut-and-choose (see details in Section 4.2.4).
This leaves us with the task of proving A(x̃) = v + q.

Let note u := A(x̃). If the prover sends u, the verifier can check u = q + v. To prove
A(x̃) = u, we decompose A into a composition of N affine transformations Ai(·) = σi(·) + si
such that A = AN ◦ · · · ◦A1. The permutation σ and mask s are then defined as

σ = σN ◦ · · · ◦ σ1 and s = sN + σN (. . .+ σ2(s1)) . (4.3)

The main utility of this decomposition is that revealing all the Ai except one gives no
information on A, provided that Ai is uniformly sampled for every i. In this setting, the
prover first commits all the Ai and reveals

u1 := A1(u0)
u2 := A2(u1)
. . .

uN := AN (uN−1)

where u0 := x̃ and uN = u by definition. Then, the verifier chooses a random i∗ such that
the prover reveals all the Ai except Ai∗ . The verifier can then check ui = Ai(ui−1) for every
i ∈ [1 : N ] \{i∗}. The only chance for the prover to cheat is to guess i∗ in advance. Therefore,
the maximum probability that a malicious prover can convince the verifier that u = A(x̃) is
at most 1/N .
To sum up,

1. The prover samples the random mask r from Ker(H) and N affine transformations
Ai(·) := σi(·) + si. We denote A(·) := σ(·) + s the composition AN ◦ · · · ◦A1, with σ
and s satisfying Equation (4.3).

2. The prover reveals q := σ(r) + s, v := σ(x) and x̃ := x+ r.

3. The verifier checks y = Hx̃ and wtH(v) = w.

4. The prover reveals ui := Ai(ui−1) for i ∈ {1, ..., N}, with u0 := x̃;

5. The verifier checks uN = q + v.

6. The prover commits all the Ai, i.e all the (σi, si);

7. The verifier generates i∗ ← [1 : N ] and sends it to the prover as challenge;
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8. The prover reveals {Ai}i 6=i∗ .

9. The verifier checks ui = Ai(ui−1) for all i 6= i∗.

If all the checks have passed, the verifier deduces u = A(x̃). Moreover, if q is trusted, then
a proof that u = A(x̃) constitutes a proof of knowledge of a solution x to the syndrome
decoding instance. This protocol is a zero-knowledge protocol with a soundness error of
1/N under the trust hypothesis on q. As previously mentioned, this trust hypothesis can be
fulfilled by using a cut-and-choose approach that we detail in Section 4.2.4.

4.2.2. Description of the Protocol
We give a formal description of our new zero-knowledge proof for syndrome decoding in
Protocol 2. For the sake of simplicity, this description assumes that the value q = σ(r) + s is
trusted by the verifier. We denote this trust requirement with a star in superscript: q?.

Prover P Verifier V
x ∈ Fm2 s.t. wtH(x) = w

H ∈ F(m−k)×m
2 , y := Hx H, y := Hx

For i in [1 : N ]:
ρi ← {0, 1}λ
(σi, si)← Sm × Fm2
ci = Com((σi, si); ρi)

r ← Ker(H)
σ = σN ◦ · · · ◦ σ1
s = sN + σN (. . .+ σ2(s1))
q? = σ(r) + s
v = σ(x)
x̃ = x+ r
u0 = x̃
For i in [1 : N ]:
ui = σi(ui−1) + si

c1,...,cN−−−−−−−−−−−−→
q?−−−−−−−−−−−−→
v,x̃−−−−−−−−−−−−→

u1,...,uN−−−−−−−−−−−−→ i∗ ← [1 : N ]
i∗←−−−−−−−−−−−−

(σi,si,ρi)i 6=i∗−−−−−−−−−−−−→ u0 = x̃
For all i 6= i∗:

Check Verif((σi, si), ci, ρi) = 1
Check ui = σi(ui−1) + si

Check uN = v + q?

Check wtH(v) = w
Check y = Hx̃
Return Success

Protocol 2: Zero-knowledge proof for syndrome decoding – Simplified version with trusted q?.

4.2.3. Security Proofs
The following theorems state the completeness, zero-knowledge and soundness (with trusted
q) of Protocol 2. We refer the reader to [FJR23] for the proofs of Theorems 4.2.2 and 4.2.3.
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Theorem 4.2.1 (Completeness). Protocol 2 is perfectly complete, i.e. a prover P who knows
a solution x to the syndrome decoding instance (H, y) and who follows the steps of the protocol
always succeeds in convincing the verifier V.

Proof. For any sampling of the random coins of P and V, if the computation described in
Protocol 2 is genuinely performed then all the checks of V pass.

Theorem 4.2.2 (Zero-Knowledge). Let the commitment scheme Com used in Protocol 2
be {computationally, statistically, perfectly} hiding. For all malicious PPT verifier Ṽ, there
exists a PPT simulator S which, given rewindable black-box access to Ṽ, outputs a simulated
transcript which is {computationally, statistically, perfectly} indistinguishable from a real
transcript between P and Ṽ.

Theorem 4.2.3 (Soundness). Suppose that there is an efficient prover P̃ that, on input
(H, y),

• builds q honestly, i.e. for any {(σi, si), ρi}i extractable from P̃ and such that

Verif((σi, si), ci, ρi) = 1,

there exists r ∈ Ker(H) such that q = σ(r) + s with σ = σN ◦ · · · ◦ σ1 and s =
sN + σN (. . .+ σ2(s1));

• convinces the honest verifier V on input H, y to accept with probability

ε̃ := Pr[〈P̃,V〉(H, y)→ 1] > ε

where the soundness error ε is equal to 1/N .

Then, there exists an efficient probabilistic extraction algorithm E that, given rewindable
black-box access to P̃, produces with either a witness x such that y = Hx and wtH(x) = w,
or a commitment collision, by making in average

4
ε̃− ε

·
(

1 + ε̃ · 2 · ln(2)
ε̃− ε

)
calls to P̃.

4.2.4. Producing the Trusted Vector

In order to obtain a sound zero-knowledge proof, we need a procedure to build the trusted
vector q. One possible technique is to use the cut-and-choose methodology. Concretely,
the prover generates many different vectors q in a verifiable way, i.e., by committing the
randomness used for their generation. Then, the verifier will ask the prover to reveal how
she built some of the vectors q, namely to open these vectors q. This opening consists in
revealing the corresponding r ∈ Ker(H) as well as the (previously committed) randomness
used to generate the affine transformation A(·). The verifier can then check the consistency
of the commitments, the belonging of r to Ker(H) and the correct computation of q = A(r).
Since the prover’s secret (the solution x to the syndrome decoding instance) is not involved,
such an opening does not break the zero-knowledge property of the protocol. However the
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opened vectors q become unusable for the protocol (because the used randomness is revealed).
Thus, the prover must use one of the vectors q for which the building was not opened.

Let M be the number of generated and committed vectors. In the case of the simple
protocol with soundness error 1/N , one only needs a single trusted vector q. The verifier
then asks for the opening of M − 1 of the generated pairs before running the “trusted” part
of the proof. If the prover cheated for more than one vector, then the verification will always
fail. If the prover cheated on one vector, then the probability that the opening of this vector
is not requested by the verifier during the cut-and-choose method is 1/M .
The generation of a trusted vector q via the cut-and-choose method is described in

Protocol 3.
Prover P Verifier V
H ∈ F(m−k)×m

2 H

For j in [1 : M ]:
For i in [1 : N ]:
ρ

[j]
i ← {0, 1}λ

(σ[j]
i , s

[j]
i )← Sm × Fm2

c
[j]
i = Com((σ[j]

i , s
[j]
i ); ρ[j]

i )
r[j] ← Ker(H)
σ[j] = σ

[j]
N ◦ · · · ◦ σ

[j]
1

s[j] = s
[j]
N + σ

[j]
N (. . .+ σ

[j]
2 (s[j]

1 ))
q[j] = σ[j](r[j]) + s[j]

{c[j]i }i∈[1:N ],j∈[1:M ]−−−−−−−−−−−−→
{q[j]}j∈[1:M ]−−−−−−−−−−−−→ j∗ ← [1 : M ]

j∗←−−−−−−−−−−−−{
r[j],(σ[j]

i ,s
[j]
i ,ρ

[j]
i )i∈[1:N ]

}
j 6=j∗−−−−−−−−−−−−→

For all j 6= j∗:
For all i:

Check Verif((σ[j]
i , s

[j]
i ), c[j]

i , ρ
[j]
i ) = 1

σ[j] = σ
[j]
N ◦ . . . ◦ σ

[j]
1

s[j] = s
[j]
N + σ

[j]
N (. . .)

Check Hr[j] = 0
Check q[j] = σ[j](r[j]) + s[j]

Return Success

Protocol 3: Cut-and-choose protocol to produce a trusted vector q.

This protocol can be composed with the sound phase (Protocol 2) to obtain a standalone
5-round protocol. This protocol is a zero-knowledge proof for the syndrome decoding problem
with a soundness error of

max
{ 1
M
,

1
N

}
.

Indeed, the prover has two possible ways to cheat: either she cheats for one of the M vectors
during the cut-and-choose phase, but if this vector is not selected the protocol is aborted
(the cheating is discovered); or she can try to cheat during the sound phase. The prover can
thus try to introduce a mistake in the first phase ( 1

M ) or in the second phase ( 1
N ), but not in

both1.
For completeness, we depict this standalone version in Protocol 4.

1If the malicious prover cheats on the first phase and that the cheating is not discovered, then she wins and
she does not need to cheat on the second phase.
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Prover P Verifier V
x ∈ Fm2 s.t. wtH(x) = w

H ∈ F(m−k)×m
2 , y := Hx H, y := Hx

For j ∈ [1 : M ]
For i ∈ [1 : N ]:
ρ

[j]
i ← {0, 1}λ

(σ[j]
i , s

[j]
i )← Sm × Fm2

c
[j]
i = Com((σ[j]

i , s
[j]
i ); ρ[j]

i )
r[j] ← Ker(H)
σ[j] = σ

[j]
N ◦ ... ◦ σ

[j]
1

s[j] = s
[j]
N + σ

[j]
N (...+ σ

[j]
2 (s[j]

1 ))
q[j] = σ[j](r[j]) + s[j]

{c[j]i }i∈[1:N ],j∈[1:M ]−−−−−−−−−−−−→
{q[j]}j∈[1:M ]−−−−−−−−−−−−→ j∗ ← [1 : M ]

j∗←−−−−−−−−−−−−{
r[j],(σ[j]

i ,s
[j]
i ,ρ

[j]
i )i∈[1:N ]

}
j 6=j∗−−−−−−−−−−−−→ For all j 6= j∗:

σ[j] = σ
[j]
N ◦ . . . ◦ σ

[j]
1

s[j] = s
[j]
N + σ

[j]
N (. . .)

Check Hr[j] = 0
Check q[j] = σ[j](r[j]) + s[j]

v = σ[j∗](x)
x̃ = x+ r[j∗]

u0 = x̃
For i ∈ [1 : N ]:
ui = σi(ui−1) + si

v,x̃−−−−−−−−−−−−→
u1,...,uN−−−−−−−−−−−−→ i∗ ← [1 : N ]

i∗←−−−−−−−−−−−−
(σ[j∗]
i ,s

[j∗]
i ,ρ

[j∗]
i )i 6=i∗−−−−−−−−−−−−→ u0 = x̃

For all i 6= i∗:
Check Verif

(
(σ[j∗]
i , s

[j∗]
i ), c[j∗]

i , ρ
[j∗]
i

)
= 1

Check ui = σ
[j∗]
i (ui−1) + s

[j∗]
i

Check uN = v + q[j∗]

Check wtH(v) = w
Check Hx̃ = y
Return Success

Protocol 4: Standalone zero-knowledge proof for syndrome decoding

Remark 4.2.4. Since the cut-and-choose does not require the prover secret, it can be executed
before the prover gets its secret key. This step is hence a preprocessing phase of the sound
protocol.

Remark 4.2.5. This idea of protocols requiring some trusted values has been formalized by
[Beu20] as protocols with helper.
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4.3. The Five-Round Zero-Knowledge Protocol
In the previous section, we described a new zero-knowledge protocol for the syndrome decoding
problem with a soundness error of max{1/N, 1/M} and complexity O

(
N ·M · poly(λ)

)
for

arbitrary chosen parameters N and M and with λ being the security level of the syndrome
decoding instance. In order to obtain a soundness error close to 2−λ for a target security
parameter λ, one can run λ/(log2 min{N,M}) independent repetitions of the protocol.
However using such a simple approach is not optimal in terms of communication.
In this section, we present various optimizations to make our protocol efficient while

targeting a standard security level. As a result, we describe a 5-round HVZK protocol that
achieves 2−λ soundness with optimized communication cost. For instance, for λ = 128, the
size of the produced proof can be made lower than 15 KB.

4.3.1. Presentation of the Optimizations
We present here various optimizations to make our proof more compact. Our first improvement
consists in merging the τ cut-and-choose phases (this was suggested in [KKW18] in a similar
context). Then, we show how the pseudorandom generation of the precomputed values from
compact seeds can save a lot of communication. This can be further improved by using
pseudorandom generation trees for the seeds (as also suggested in [KKW18]). Finally, we show
that some values can be recomputed by the verifier and can hence be trade for commitments
in the prover messages. We further describe how to efficiently instantiate the commitment
scheme using a collision-resistant hash function.
Merging of the cut-and-choose phase. As suggested in [KKW18], instead of repeating
the cut-and-choose to obtain a trusted vector τ times, we can perform the cut-and-chose
to generate τ trusted vectors all at once. Specifically, the prover P generates M vectors
(for a large enough M) and the verifier requests the opening of M − τ of these vectors.
After checking that the opened vectors have honestly been generated, the verifier trusts the
remaining τ vectors which are then used for the τ independent executions of the sound phase.
Let us assume that a malicious prover correctly builds k vectors and cheats for M − k

vectors. Without loss of generality, k satisfies k ≥M − τ , otherwise the cheating prover will
have to open a dishonest vector and the proof will fail. Then, the probability of this malicious
prover to successfully passing the merged cut-and-choose phase is at most

( k
M−τ

)
·
( M
M−τ

)−1.
Let γ = M − k ≤ τ denote the number of dishonest vectors. Conditioned on passing the first
phase, her probability of passing the τ executions of the protocol is at most

1× ...× 1︸ ︷︷ ︸
γ times

(upper bound of the
success probability
for the cheating pairs)

× 1
N
× ...× 1

N︸ ︷︷ ︸
τ − γ times

(success probability for the
unchecked but honest pairs)

= 1
N τ−γ = 1

Nk−M+τ .

The soundness error is therefore

ε(M,N, τ) := max
M−τ≤k≤M

{ ( k
M−τ

)( M
M−τ

)
·Nk−M+τ

}
.

Some examples of values for M , N and τ to reach a target security λ ∈ {128, 256} are given
in the Table 4.1.
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Table 4.1.: Example values of M , N and τ to achieve statistical security λ ∈ {128, 256}.

For 128-bit security For 256-bit security
N 4 8 16 32 64 128 4 8 16 32 64 128
M 256 293 512 606 842 1291 512 583 1024 1199 2144 3379
τ 64 43 32 26 22 19 128 86 64 52 43 37

Note: These parameters have been obtained while minimizing τ for a given N . Then given N and the
underlying minimal τ , M is taken to be as small as possible. Other strategies provide different trade-offs.

Working with seeds and PRG. In the basic protocol, the variables σi and si are uniformly
sampled at random for every i. This imposes the prover to reveal N − 1 pairs (σi, si) in its
final response which is expensive since si belongs to Fm2 and σi is a permutation of [1 : m].
Instead, we can sample a random seed sseedi and use a pseudo-random generator (PRG) to
generate the pair (σi, si) from sseedi. This way, whenever the prover wants to reveal (σi, si),
she simply reveals seedi. For a target security of λ bits, the seed only needs to make λ bits:
we hence trade a message of log2(m!) +m bits for one of λ bits. And to avoid revealing the
commitment randomness ρi, the prover can derive it from another seed seedi. But since the
prover wants to reveal both ρi and sseedi (to get the couple (σi, si)) when she opens the
commitment, she can sample ρi and sseedi from the same seed seedi.

On the other hand, when a vector q is chosen by the verifier to be opened in the cut-and-
choose phase, the prover must reveal (σi, si) for every i ∈ [1 : N ] as well as r. In order to
save further communication, all the {seedi}i, as well as the random mask r, can be generated
from a master seed:

(
r, (seedi)i∈[1:N ]

)
← PRG(mseed). This way, when the vector q must

be open, the prover sends mseed instead of
(
r, (seedi)i∈[1:N ]

)
and replace k + λ ·N bits of

communication by λ bits.
Let j ∈ {1, ...,M} denote the index of a precomputed set of variables during the cut-and-

choose phase. In what follows, the master seed will be denoted mseed[j], the N intermediary
seeds will be denoted seed[j]

i and the N subseeds will be denoted sseed[j]
i . Figure 4.1 illustrates

the relation between the three types of seeds and the sampled variables.

For j ∈ [1 : M ]:(
r[j], (seed[j]

i )i
)
← PRG(mseed[j])

For i ∈ [1 : N ]:
ρji , sseedji ← PRG(seed[j]

i )
(σ[j]
i , s

[j]
i )← PRG(sseed[j]

i )

Figure 4.1.: Pseudorandom generation in the cut-and-choose phase.

Using GGM trees. The previous optimization enables to reduce the communication by
replacing large variables (vectors of Fm2 and [m]→ [m] permutations) by compact seeds. As
suggested in [KKW18], we can go one step further by reducing the number of seeds that
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must be revealed by the prover using the GGM construction as puncturable PRF.
In the above description, we generate N intermediary seeds seed[j]

i from a master seed
mseed[j]. If all the intermediary seeds must be opened, then the prover only reveals the
master seed, but if the index j is chosen for the second phase then only N − 1 of them must
be revealed, which implies (N − 1) · λ bits of communication. In order to avoid this factor
(N − 1) we can use a GGM tree (see description in Section 2.2.2). The principle is to label
the root of a binary tree of depth log2N with mseed[j]. Then, one inductively labels the
children of each node with the output of a PRG applied to the node’s label. The subseeds
(seed[j]

i )i∈[1:N ] are defined as the labels of the N leaves of the tree. To reveal (seed[j]
i )i 6=i∗ , it

suffices to reveal the labels on the siblings of the path from the root of the tree to leaf i∗.
Those labels allow the verifier to reconstruct (seed[j]

i )i 6=i∗ while still hiding seed[j]
i∗ . Applying

this optimization reduces the communication complexity to λ · log2N for revealing the seeds
(seed[j]

i )i 6=i∗ . The same strategy can further be applied to the master seeds (mseed[j])j∈[1:M ]
in the cut-and-choose phase. By using a generation tree to generate the master seeds from
a grandmaster seed, the communication cost of revealing M − τ master seeds out of M is
decreased to λ · τ log2

M
τ bits (instead of λ · (M − τ) bits).

For the sake of simplicity we shall omit this optimization from the description of our
protocol. However, we stress that it can be applied as is without impact on our security
statements.

Keeping the bare minimum. In the basic protocol, the prover sends all the vectors {q[j]}.
However those are large m-bit vectors which can actually be recomputed by the verifier.
Indeed,

• if j is among the opened indexes in the cut-and-choose phase, the verifier has access
to the master seed mseed[j]. Thus, she can re-sample the values r[j], (σ[j]

i , s
[j]
i )i from

which q[j] can be recomputed;

• if j is not among the opened indexes, then the verifier has the following relation:
u

[j]
N = v[j] + q[j], so that q[j] can be re-computed as q[j] = u

[j]
N − v[j].

The verifier still needs to check that the prover knew the values of
{
q[j]
}
at the beginning of

the interaction. That is, sending
{
q[j]
}
is replaced by sending commitments of

{
q[j]
}
.

Another similar optimization can be applied in the second phase of the protocol. In the
basic version, the prover sends all the ui to the verifier but since the latter eventually knows
(σi, si)i 6=i∗ , she can recompute all the ui’s, except ui∗ , thanks to the relation: ui = σ(ui−1)+si.
Therefore, the prover only needs to send ui∗ to the verifier. Once again, such a modification
implies that the ui must be committed by the prover before receiving i∗.

Hash-based commitments. Since we strive at simplicity and efficiency, whenever possible
we use a simple hash-based commitment scheme defined by Com : x 7→ Hash(x) and
Verif : (x, c) 7→ (c = Hash(x)). Such a scheme is known to be computationally binding under
the collision-resistance of Hash, but not computationally hiding.
To keep the zero-knowledge property for the protocol, the commitments c[j]

i on the pairs
(σ[j]
i , s

[j]
i ) must be hiding. For those, we must hence keep a hiding commitment scheme.2

2We might for instance use a computationally hiding hash-based commitment scheme defined as Com :
(x, ρ) 7→ Hash(x ‖ ρ) for a long-enough random nonce ρ.
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However for the other commitments, the inputs are not secret: the vector q[j] is committed with
the corresponding (c[j]

i )i in a common hash-based commitment hj := Hash(q[j], c
[j]
1 , . . . , c

[j]
N ).

All these hj commitments are further regrouped into a single hash value h := Hash(h1, . . . , hM )
which forms the initial commitment of the prover. During the second phase, after receiving
the set J ⊆ [M ] of the τ trusted indexes as challenge from the verifier, the prover commits
all the values (u[j]

i )i∈[1:N ],j∈J into a single commitment h′ := Hash((u[j]
i )i∈[1:N ],j∈J).

4.3.2. Description of the Protocol
After applying the various optimizations described above, we obtain a 5-round HVZK protocol
with much more compact computation which is depicted in Protocol 5. The protocol makes
use of one commitment scheme Com and four hash functions Hash1, Hash2, Hash3 and Hash4,
whose output ranges are assumed to be consistent with the protocol description.

4.3.3. Security Proofs
We prove hereafter that Protocol 5 achieves completeness, honest-verifier zero-knowledge,
and 2−λ-soundness (for appropriately chosen parameter M , N and τ). We refer the reader
to [FJR23] for the proofs of Theorems 4.3.2 and 4.3.3.

Theorem 4.3.1 (Completeness). Protocol 5 is perfectly complete.

Proof. For any sampling of the random coins of P and V, if the computation described in
Protocol 5 is genuinely performed then all the checks of V pass.

Theorem 4.3.2 (Honest-Verifier Zero-Knowledge). Let the PRG used in Protocol 5 be
(t, εPRG)-secure and the commitment scheme Com be (t, εCom)-hiding. There exists an efficient
simulator S which, given random challenges J and L outputs a transcript which is (t, εPRG +
εCom)-indistinguishable from a real transcript of Protocol 5.

Theorem 4.3.3 (Soundness of Protocol 5). Let

ε := max
M−τ≤k≤M

{ ( k
M−τ

)( M
M−τ

)
·Nk−M+τ

}
. (4.4)

Suppose there is an efficient prover P̃ such that

ε̃ := Pr[〈P̃,V〉(H, y)→ 1] > ε , (4.5)

where (H, y) is a random syndrome decoding instance. Then, there exists an extraction
algorithm E which, given rewindable black-box access to P̃, produces with either a witness x
such that y = Hx and wtH(x) = w, or a commitment collision, by making in average

4
ε̃− ε

·
(

1 + ε̃ · 8M
ε̃− ε

)
calls to P̃.
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Prover P Verifier V
x ∈ Fm2 s.t. wtH(x) = w

H ∈ F(m−k)×m
2 , y := Hx H, y := Hx

mseed[0] ← {0, 1}λ
(mseed[j])j∈[1:M ] ← PRG(mseed[0])
For j ∈ [1 : M ]:

# r[j] is sampled from Ker(H)
r[j], (seed[j]

i )i ← PRG(mseed[j])
For i ∈ [1 : N ]:

sseed[j]
i , ρ

[j]
i ← PRG(seed[j]

i )
c

[j]
i = Com(sseed[j]

i ; ρ[j]
i )

(σ[j]
i , s

[j]
i )← PRG(sseed[j]

i )
σ[j] = σ

[j]
N ◦ ... ◦ σ

[j]
1

s[j] = s
[j]
N + σ

[j]
N (...+ σ

[j]
2 (s[j]

1 ))
q[j] = σ[j](r[j]) + s[j]

hj = Hash1(q[j], c
[j]
1 , . . . , c

[j]
N )

h = Hash2(h1, . . . , hM ) h−−−−−−−−−−−−→ J ← {J ⊂ [M ] ; |J | = τ}
J←−−−−−−−−−−−−

For j ∈ J :
v[j] = σ[j](x)
x̃[j] = x+ r[j]

u
[j]
0 = x̃[j]

For i ∈ [1 : N ]:
u

[j]
i = σ

[j]
i (u[j]

i−1) + s
[j]
i

h′j = Hash3(u[j]
1 , . . . , u

[j]
N )

h′ = Hash4((h′j)j∈J)
(mseed[j])j∈[1:M ]\J
h′, (v[j], x̃[j])j∈J
−−−−−−−−−−−−→ L = {`j}j∈J ← [1 : N ]τ

L←−−−−−−−−−−−−
Ij = [1 : N ]\{`j} (

(seed[j]
i )i∈Ij , u

[j]
`j
, c

[j]
`j

)
j∈J−−−−−−−−−−−−→

For j ∈ [1 : M ]\J :
hj ← mseed[j]

For j ∈ J :
u

[j]
0 = x̃[j]

For i ∈ Ij :
sseed[j]

i , ρ
[j]
i ← PRG(seed[j]

i )
c

[j]
i = Com(sseed[j]

i ; ρ[j]
i )

(σ[j]
i , s

[j]
i )← sseed[j]

i

u
[j]
i = σ

[j]
i (u[j]

i−1) + s
[j]
i

q[j] = u
[j]
N − v[j]

hj = Hash1(q[j], c
[j]
1 , . . . , c

[j]
N )

h′j = Hash3(u[j]
1 , . . . , u

[j]
N )

Check y = Hx̃[j]

Check wtH(v[j]) = w
Check h = Hash2(h1, . . . , hM )
Check h′ = Hash4((h′j)j∈J)
Return Success

Protocol 5: Five-round HVZK proof for the syndrome decoding problem.
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4.4. The Signature Scheme
In this section, we show how to turn our 5-round HVZK protocol into a signature scheme
using the Fiat-Shamir transform [FS87; AABN02]. After explaining the transformation, we
give the description of the signature scheme and then provide a security proof in the random
oracle model (ROM).

4.4.1. Transformation into a Non-Interactive Scheme
With a straight application of Fiat-Shamir to Protocol 5, we would compute the challenges J
and L as:

J := Hash′1(m,h)

and
L := Hash′2

(
m,h, (mseed[j])j∈[M ]\J , (v[j])j∈J , (x̃[j])j∈J , h′

)
,

where m is the input message and where Hash′1 and Hash′2 are some hash functions.
But doing so would imply an overhead on the size of the challenges J and L for the security

to hold. Indeed, in [KZ20a], Kales and Zaverucha describe a forgery attack against signature
schemes obtained by applying the Fiat-Shamir transform to 5-round protocols. Adapting
this attack to our context yields a forgery cost of

costforge := min
M−τ≤k≤M

{( M
M−τ

)( k
M−τ

) +Nk−M+τ
}

which is substantially lower than the target forgery cost ε−1, for ε being the soundness error
of Protocol 5 (see Theorem 4.3.3).

A numerical analysis of the parameters shows that we get a more efficient signature scheme
by turning Protocol 5 into a 3-round protocol before applying the Fiat-Shamir transform.
Instead of waiting the challenge J from the verifier, the prover can directly commit v[j], x̃[j]

and {u[j]
i } for all j ∈ {1, . . .M}. Thus the verifier can send both challenges J and L at the

same time. For this purpose, the prover will compute

h′j = Hash(v[j], x̃[j], u
[j]
1 , . . . , u

[j]
N )

for all j ∈ {1, . . . ,M} and she will send h′ = Hash(h′1, . . . , h′M ) to the verifier. After receiving
challenge (J, L), the prover sends h′j for j 6∈ J to enable the verifier to rebuild h′. In order
to decrease the cost of sending all these h′j , she can use a Merkle tree: after committing
h′ = Merkle(h′1, . . . , h′M ), proving the consistence of (h′j)j∈J with the hash root h′ can be
done by revealing at most τ · log2

(
M
τ

)
labels of the Merkle tree (instead of M − τ labels).

The resulting 3-round protocol is also an honest-verifier zero-knowledge protocol with the
same soundness. It can indeed be checked that the described modification has essentially no
impact on the proofs of Theorem 4.3.2 (honest verifier zero-knowledge) and Theorem 4.3.3
(soundness). While the communication cost is slightly greater for this 3-round version than
for the original 5-round protocol, the transformation into a non-interactive scheme does not
suffer the aforementioned attack, which allows much better parameters. Now the application
of Fiat-Shamir applies to compute the challenges J and L as

(J, L) := Hash′(m,h, h′) ,
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where Hash′ is a hash function. Moreover since we have h = Hash2(h1, . . . , hM ) and the hj ’s
are known by the verifier, we can directly compute the challenges J and L as:

(J, L) := Hash′(m,h1, . . . , hM , h
′) .

On the other hand, since we work in the random oracle model for the signature, we can
replace the commitment scheme Com of the Protocol 5 by a single hash function Hash0. We
can then avoid sampling a commitment randomness and hence we can merge the seeds seed[j]

i

and sseed[j]
i .

Finally, to avoid that seed collisions produce the commitment collisions in distinct signatures,
we add more entropy by using a salt as suggested in [Cha22].

4.4.2. Description of the Signature Scheme
In our signature scheme, the key generation algorithm randomly samples a syndrome decoding
instance (H, y) of the syndrome decoding problem with solution x, with security parameter λ.
In order to make the key pair compact, the matrixH is pseudorandomly generated from a λ-bit
seed. Specifically, a call to the KeyGen algorithm outputs a pair (pk, sk) :=

(
(seedH , y),mseed

)
generated as follows:

1. mseed← {0, 1}λ

2. (seedH , x)← PRG(mseed) where x is sampled in {x ∈ Fm2 | wtH(x) = w}

3. H ← PRG(seedH)

4. y = Hx; pk = (seedH , y); sk = mseed

For the sake of simplicity, we omit the re-generation of H and x from the seeds in the
exposition below and assume pk = (H, y) and sk = (H, y, x).
The signature algorithm Given a secret key sk = (H, y, x) and a message m ∈ {0, 1}∗,
the algorithm Sign proceeds as follows:

Step 0:
1. Sample a random salt salt← {0, 1}2λ.
2. Choose uniform mseed[0] ∈ {0, 1}λ.
3. Compute the seeds mseed[1], . . . , mseed[M ] with TreePRG(salt,mseed[0]).

Step 1: For each j ∈ [M ]:

1. Use mseed[j] to generate values seed[j]
1 , . . . , seed[j]

N and r[j] ∈ Ker(H) with
TreePRG(salt,mseed[j]).

2. For i ∈ [1 : N ], sample σ[j]
i , s

[j]
i using seed[j]

i and compute c[j]
i := Hash0(salt, j, i, seed[j]

i ).
3. (Cut-and-choose phase) Compute

σ[j] := σ
[j]
N ◦ · · · ◦ σ

[j]
1

s[j] := s
[j]
N + σ

[j]
N (· · ·+ σ

[j]
2 (s[j]

1 ))
q[j] := σ[j](r[j]) + s[j]
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4. (Sound phase) Compute

v[j] := σ[j](x)
x̃[j] := x+ r[j]

u
[j]
0 := x̃[j]

u
[j]
i := σ

[j]
i (u[j]

i−1) + s
[j]
i for all i ∈ [1 : N ]

5. Compute hj := Hash1(q[j], c
[j]
1 , . . . , c

[j]
N ) and h′j := Hash2(v[j], x̃[j], (u[j]

i )i).

Step 2: Compute
(J, L) := Hash′(m, salt, h1, . . . , hM , h

′)

with h′ := Merkle(h′1, . . . , h′M ), where J ⊂ [1 : M ] is a set of size τ and L is a list
{`j}j∈J with `j ∈ [1 : N ]. The signature includes (J, L) and salt.

Step 3: For each j ∈ J , the signer includes v[j], x̃[j], c[j]
`j
, u[j]

`j
and nodes[j] :=

nodes(mseed[j], [1 : N ]\{lj}), where nodes(·) returns the minimal nodes which enable to
rebuild the tree leaves at input indices in the generation tree with input master seed
(see Section 2.2.2). Also, the signer includes nodesM := nodes(mseed[0], [M ]\J) and
authMerkle := auth((h′1, . . . , h′M ), J), where auth(·) returns the Merkle nodes needed to
open the paths for the leaves at indices i ∈ J in the corresponding Merkle tree (see
Section 2.2.3).

The verification algorithm Given a public key pk = (H, y), a signature s and a message
m ∈ {0, 1}∗, the algorithm Verif proceeds as follows:

Step 0: Parse the signature s as

(salt, J, L, nodesM, authMerkle, {v[j], x̃[j], nodes[j], c
[j]
`j
, u

[j]
`j
}j∈J) .

Step 1: Use nodesM to rebuild mseed[j] for each j 6∈ J . Then for every j 6∈ J , use
mseed[j] to compute hj as in the signature algorithm.

Step 2: For every j ∈ J :

1. Use nodes[j] to rebuild seed[j]
i for each i 6= `j .

2. For i 6= `j , set c[j]
i := Hash0(salt, j, i, seed[j]

i ) and get σ[j]
i , s

[j]
i using seed[j]

i .
3. Compute

u
[j]
i = σ

[j]
i (u[j]

i−1) + s
[j]
i for all i 6= `j

q[j] = u
[j]
N − v

[j]

4. Compute hj := Hash1(q[j], c
[j]
1 , . . . , c

[j]
N ).
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5. Compute h′j := Hash2(v[j], x̃[j], (u[j]
i )i).

6. Check Hx̃[j] = y.
7. Check wtH(v[j]) = w.

Step 3: Rebuild h′ as MerkleTree(h′1, . . . , h′M ) using {h′j}j∈J and authMerkle. Then
check that (J, L) equals Hash′(m, salt, h1, . . . , hM , h

′).

4.4.3. Security Proof

We now state the security of our signature scheme in the following theorem. We refer the
reader to [FJR23] for the proof.

Theorem 4.4.1. Suppose the PRG used is (t, εPRG)-secure and any adversary running in
time t has at most an advantage εSD against the underlying syndrome decoding problem.
Model Hash0, Hash1, Hash2 and Hash′ as random oracles where Hash0, Hash1, Hash2 have
2λ-bit output length. Then any adaptive chosen-message adversary, running in time t, making
qs signing queries, and making q0, q1, q2, q′ queries, respectively, to the random oracles,
succeeds in producing a valid forgery with probability upper bounded as

pforge ≤ O(qs · τ · εPRG) +O

(
(q0 + q1 + q2 +Mnqs)2

2λ

)
+ εSD + q′ · ε(M,N, τ),

where

ε(M,N, τ) := max
M−τ≤k≤M

{ ( k
M−τ

)( M
M−τ

)
·Nk−M+τ

}
.

4.5. Performance

4.5.1. Communication Cost and Signature Size

In the following analysis, we exclude the challenges from the communication cost since they
are of very moderate impact and they do not appear in the signature. The communication
then consists into

• Com := h,

• Res1 :=
(
(mseed[j])j 6∈J , h′, (v[j], x̃[j])

j∈J) and

• Res2 :=
(
(seed[j]

i )i 6=`j , u
[j]
`j
, c

[j]
`j

)
j∈J .

Whereas u[j]
`j

are full vectors of Fm2 , v[j] are only vectors of weight w and x̃[j] are vectors from
{x̃ | Hx̃ = y}, which can be respectively encoded in log2

(m
w

)
bits and k bits.

Thanks to the use of GGM trees, the communication cost for master seeds is at most
τ · log2

M
τ · λ bits (for τ · log2

M
τ intermediate tree seeds instead of M − τ leaf seeds) and

the communication cost for subseeds is log2(N) · λ bits (for log2(N) intermediate tree seeds
instead of N − 1 leaf seeds).
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So, the total communication cost (in bits) of the protocol is

Cost = CostCom + CostRes1 + CostRes2

= 4λ+ λ · τ · log2
M

τ
+ τ ·

[
2λ+ (m+ k) + log2

(
m

w

)
+ λ · log2(N)

]
.

The signature is composed of the same elements, except on two points:

• We need to add the sibling paths of {h′j}j∈J in the Merkle tree to be able to rebuild h′.
The communication cost for those paths is at most (2λ) · τ · log2

M
τ bits (for τ · log2

M
τ

intermediate tree labels).

• Since both challenges are merged, there is a single hash value to represent them. And
using it and the other components in the signature, it is possible to deduce h and h′.

Thus the signature size (in bits) is

Size = 2λ+ (3λ) · τ · log2
M

τ
+ τ ·

[
2λ+ (m+ k) + log2

(
m

w

)
+ λ · log2(N)

]
.

4.5.2. Choice of the SD Parameters

In order to simplify the analysis, we place ourselves in a parameter range where the Hamming
weight of the secret solution x is close but slightly below the Gilbert-Varshamov bound.
This ensures the unicity of the solution with high probability while increasing the difficulty
of finding solutions. Furthermore, this choice prevents the applicability of GBA methods.
As a consequence, we only need to estimate the complexity of ISD algorithms. Previous
studies of such parameters such as [TS16; BBC+19a] have argued that the algorithm of May,
Meurer and Thomae [MMT11] is the most practical choice in the cryptographic range, as it
outperforms algorithms with better asymptotics, e.g. the algorithm from [BJMM12]. Since
the algorithm is quite sophisticated and involves several levels of recursion, we simplify the
analysis by only considering the cost of the ISD loop, the size of lists at the top-level of their
matching technique and the cost of merging these lists. More precisely, with m, k and w
being given as input we choose two parameters ` and p and compute the following lower
bound on the complexity of the attack:

(m
w

)(k+`
p

)(m−k−`
w−p

) · (L+ L2

2`−p

)
with L :=

(k+`
p/2
)

2p .

Optimizing for ` and p yields a slightly conservative estimate for the security level, which we
used while choosing our parameters. Given these considerations, we suggest the following
concrete parameters to achieve λ ∈ {128, 192, 256} bits of security:

– for λ = 128: (m = 1280 , k = m/2 , w = 132)
– for λ = 192: (m = 1920 , k = m/2 , w = 200)
– for λ = 256: (m = 2432 , k = m/2 , w = 258)
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4.5.3. Impact of the Other Parameters
We have fixed the SD parameters, we now need to choose the remaining parameters: N , M
and τ . For a given N , the best proof size is achieved by minimizing τ , and then we take the
minimal possible value for M . This is illustrated by Figure 4.2.

Figure 4.2 gives the proof size and the required parameter M w.r.t. the parameter N for
128-bit and 256-bit security. We observe that the value of M explodes when we try to achieve
very compact signature by increasing N . Since M has a direct impact on the computation
time, this parameter provides a trade-off between proof size and computation.

For 128-bit security For 256-bit security
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Figure 4.2.: Best proof size (and the used M) according to the parameter N .

We implemented the signature scheme in C. To sample the permutations, we choose
the Fisher–Yates approach where we sample numbers by groups in order to minimize the
pseudo-randomness consumption and the rejection rate. In our implementation, the pseudo-
randomness is generated using AES in counter mode and the hash function is instantiated
with SHAKE. We benchmarked our scheme on a 3.8 GHz Intel Core i7 CPU which supports
AVX2 and AES instructions. All the reported timings were measured on this CPU while
disabling Intel Turbo Boost.

We instantiate two trade-offs per security level: the first one lowering communication cost
to produce short signatures, and the second one lowering computational cost to get a fast
signature computation. We obtain the parameters and sizes described in Table 5.3. We
provide the measured running times of our signature implementation in Table 5.4.

The overhead in the computation of our implementation is the uniform sampling (and its
application) of the M ·N permutations. We tried to implement them as efficiently as possible
without introducing a bias using AVX instructions set, but it remains quite expensive. A way
to improving the running times of the scheme would be to have a very efficient algorithm
for random permutations (for example, by restricting the set in which the permutations are
sampled).
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Table 4.2.: Parameters (n,M, τ) with the achieved communication costs (in bytes).

Parameters Protocol Signature
λ Aim n M τ |pk| |proof| (max) |sgn| (max) |sgn| (avg, std)
128 Fast 8 187 49 96 21 232 24 372 23 102, 196
128 Short 32 389 28 96 13 952 17 540 16 344, 236
192 Fast 8 283 73 144 47 400 54 396 51 635, 364
192 Short 32 578 42 144 31 344 39 396 36 639, 434
256 Fast 8 379 97 184 80 832 93 220 88 412, 559
256 Short 32 767 56 184 53 888 68 196 63 165, 655

Note: The average signature size and standard deviation has been measured over 10 000 experiments.

Table 4.3.: Benchmarks of our signature implementation.

λ Aim Keygen Sign Verify
Mcycles ms Mcycles ms Mcycles ms

128 Fast 0.08 0.02 51 12.9 47 12.2
128 Short 0.08 0.02 249 62.3 221 56.6
192 Fast 0.14 0.04 133 33.9 125 32.5
192 Short 0.14 0.04 570 142.9 492 125.6
256 Fast 0.23 0.06 249 64.2 241 62.7
256 Short 0.22 0.06 1 029 259.4 896 229.9

Note: Timings are the averaged over 10 000 measurements. The CPU clock cycles have been measured
using SUPERCOP (https://bench.cr.yp.to/supercop.html).

4.6. Comparison

In this section, we compare our scheme to different code-based and post-quantum signature
schemes.

4.6.1. Comparison with Other Code-Based Signature Schemes

In the state of art, there exists two types of signatures. On one hand, there are schemes
based on the Fiat-Shamir transform of identification schemes. However, classical approaches
to produce identification schemes from code-based problems, like the famous Stern protocol,
give large signatures because of the large soundness error of the underlying identification
scheme (2/3 or 1/2). To avoid this issue, a solution consists in relying on different code-based
problems. For instance, LESS is a recent scheme for which the security relies on the hardness
of the Linear Code Equivalence problem [BMPS20; BBPS21]. Another direction is to find a
way to adapt the Schnorr-Lyubashevsky approach to code-based cryptography. Durandal is

https://bench.cr.yp.to/supercop.html
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a recent scheme following this approach [ABG+19]. More recently, the authors of [GPS22]
propose a zero-knowledge protocol with better soundness using a protocol with helper [Beu20]
and relying on the syndrome decoding problem on larger fields. On the other hand, the
hash-and-sign paradigm using trapdoors is also a popular way to derive signature schemes.
Wave is such a recent code-based signature scheme in this paradigm [DST19]. However, such
schemes are often more vulnerable to structural attacks.

Table 4.4.: Comparison of our scheme with signatures from the literature (128-bit security).

Scheme Name Year |sgn| |pk| tsgn tverif

Stern 1993 62.5 KB 0.09 KB - -
Wave 2019 2.07 KB 3.2 MB 300 ms -

Durandal - I 2018 3.97 KB 14.9 KB 4 ms 5 ms
Durandal - II 2018 4.90 KB 18.2 KB 5 ms 6 ms
LESS-FM - I 2020 15.2 KB 9.77 KB - -
LESS-FM - II 2020 5.25 KB 206 KB - -
LESS-FM - III 2020 10.39 KB 11.57 KB - -
[GPS22]-256 2021 22.2 KB 114 B - -
[GPS22]-1024 2021 19.5 KB 122 B - -

Our scheme (fast) 2021 22.6 KB 96 B 13 ms 12 ms
Our scheme (short) 2021 16.0 KB 96 B 62 ms 57 ms

Note: The performance of Stern protocol is computed for the same SD parameters as us. Reported timings
are from the original publications: Wave has been benchmarked on a 3.5 Ghz Intel Xeon E3-1240 v5, while
Durandal on a 2.8 Ghz Intel Core i5-7440HQ.

Our proposal is a signature scheme built from a zero-knowledge identification protocol
with arbitrary soundness error. In Table 4.4, we compare the performance of our scheme
with the current code-based signature state of the art, for the 128-bit security level.

Our scheme is comparable to Durandal, LESS and [GPS22] for the |sgn|+ |pk| metric, and
much lighter than Wave which features heavy public keys. Regardless of the key size, Wave
currently achieves the shortest signatures (but has a slow signing time). In terms of security,
our scheme has the advantage of relying on the hardness of one of the oldest problem of the
code-based cryptography: the syndrome decoding of random linear codes in Hamming weight
metric. Previous schemes based on this problem are obtained from the Stern identification
protocol (and its variants). As we observe from Table 4.4 signatures obtained with our
scheme are three times shorter. [GPS22] also relies on the syndrome decoding problem. The
technique they use gives a protocol for which the soundness error depends on the size of the
base field of the syndrome decoding instance. For this reason, the underlying field must be
large enough in order to achieve practical signature sizes. In contrast, the soundness error of
our construction is independent of the base field and we can achieve practical signature sizes
with the binary field. Let us remark that it would be possible to generalize our protocol to
larger fields as well (we simply need to use isometries as in [GPS22] instead of permutations),
but this would tend to increase the size of the obtained signatures.
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4.6.2. Comparison with other Post-Quantum Signature Schemes

Finally, we compare in Table 5.6 our construction with some signature schemes aiming at
post-quantum security and which are based from symmetric cryptography primitives (either
based on hash tree or on the MPC-in-the-Head paradigm).

Table 4.5.: Comparison of our scheme with some post-quantum signature based on symmetric
cryptography primitives.

For 128-bit security For 256-bit security
Scheme Name |sgn| tsgn tverif |sgn| tsgn tverif

Our scheme (short) 16.0 K 62 57 61.7 K 259 230
Our scheme (fast) 22.6 K 13 12 86.3 K 64 62
SPHINCS+ (short) 7.7 K 239 0.7 29.1 K 310 1.5
SPHINCS+ (fast) 16.7 K 14 1.7 48.7 K 39 2.9
Picnic3 12.3 K 5.2 4.0 47.6 K 18 13
BBQ 31.6 K - - 133.7 K - -
Banquet (short) 13.0 K 44 40 52.8 K 191 175
Banquet (fast) 19.3 K 6 5 81.5 K 28 22

Note: The sizes are in bytes and the timings are in milliseconds. The benchmarks for the other schemes
have been obtained on an Intel Xeon W-2133 CPU at 3.60GHz. the values for SPHINCS+ and Banquet are
extracted from the Banquet article [BDK+21b] and the values for Picnic3 are extracted from its original
article [KZ20b].

All these schemes have short public and private keys (all under 100 bytes for 128-bit
security), which is why we omit the key sizes in the comparison table. Compared to our
scheme, Picnic3 [KZ20b] –which also relies on the KKW scheme [KKW18]– has better
performance. On the other hand, our scheme is arguably more conservative in terms of
security since Picnic is based on the hardness of inverting LowMC [ARS+15], a cipher with
unconventional design choices, while our scheme is based on the hardness of the syndrome
decoding problem on linear codes, which has a long cryptanalysis history and is believed
to be very robust. BBQ [DDOS19] and Banquet [BDK+21b] are two other schemes based
on the MPC-in-the-Head paradigm and for which the security is based on the hardness
of inverting AES (instead of LowMC) which is a more conservative choice. Our signature
has better performance than BBQ and is comparable to Banquet. In contrast, it is not
competitive with SPHINCS+ [BHK+19] which can achieve shorter signature sizes and very
efficient verification. Let us stress that our implementation is a proof of concept which has
not been deeply optimized and that some speed-up could probably be obtained by a thorough
implementation study (in particular for the sampling and application of permutations). This
issue is let open to further research.
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4.7. Conclusion
In this chapter, we proposed a new zero-knowledge proof of knowledge for the syndrome
decoding problem. In the latter, the prover decomposes the considered permutation σ into N
sub-permutations σ1, . . . , σN such that σ = σN ◦. . .◦σ1 and reveals all these sub-permutations
except a random one to the verifier.

The construction has been improved in [BG22]: the authors show that we can save a few
kilobytes by re-arranging the computation. They also show that we can remove the helper
when our goal is to build a proof of knowledge for a problem that has some algebraic structure
(linearity, cyclicity, ...). For example, they applied their protocol to the case of the permuted
kernel problem and achieved competitive performance: their optimized construction currently
leads to the shortest signature relying on this problem (with sizes close to 9 KB).

In a more recent work, [BBP+23] shows how to design a new problem which leads to short
communication costs with the existing proofs of knowledge. They propose the Restricted
Syndrome Decoding Problem and achieve signature sizes of about 7-8 kilobytes for 128-bit
security using optimized constructions of [BG22].

The technique of the “shared permutation” developed in this chapter leads to very efficient
signature schemes as soon as the statement we want to prove in the underlying zero-knowledge
protocol has a great affinity with isometries (like the permuted kernel problem or the restricted
syndrome decoding problem). When this is not the case (as for the syndrome decoding
problem in the Hamming metric or the rank metric), there will be more efficient schemes (see
the next chapter for the case of the syndrome decoding problem in the Hamming metric).
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Syndrome Decoding in the Head
At the end of 2021, the scheme proposed in the previous chapter led to the shortest

code-based signatures based on the Fiat-Shamir transformation. However, it was still not
competitive with some other post-quantum schemes (as SPHINCS+). In this chapter, we
propose a second zero-knowledge proof for the syndrome decoding problem. Instead of
using permutations like most of the existing protocols, we rely on the MPC-in-the-head
paradigm in which we reduce the task of proving the low Hamming weight of the SD
solution to proving some relations between specific polynomials. Specifically, we propose a
5-round zero-knowledge protocol that proves the knowledge of a vector x such that y = Hx
and wtH(x) ≤ w and which achieves a soundness error close to 1/N for an arbitrary N .
While turning this protocol into a non-interactive scheme, we get a signature scheme that
outperforms all the former code-based signature schemes for the common “signature size +
public key size” metric and which is competitive with SPHINCS+, one of the future NIST
post-quantum standards.

The results presented in this chapter have been published in collaboration with Antoine Joux
and Matthieu Rivain in the proceedings of the international conference Crypto 2022 [FJR22b].
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5.1. Introduction

The zero-knowledge proof proposed in the previous chapter has been inspired by the MPC-in-
the-Head paradigm. But, even if it uses a sharing of the secret, it does not fit the MPCitH
formalism presented in Chapter 3, in which we have an MPC protocol that checks that the
shared secret is a pre-image of the corresponding one-way function (here, the syndrome
decoding problem). In the previous chapter, the MPC protocol would only consist in applying
the shared permutation in series.
In what follows, we build a new zero-knowledge protocol to prove the knowledge of a

syndrome decoding solution using the MPCitH paradigm. We further turn this protocol into
an efficient code-based signature scheme. In this chapter, we do not restrict ourselves to the
binary field: F represents any finite field.

While proving that y = Hx is communication-free in the MPC-in-the-Head paradigm, the
hard part consists in proving that x is a small-weight vector. We propose here an efficient
way to prove that wtH(x) ≤ w through a multi-party computation which is simulated by
the prover (“in her head”). The key idea is to prove the equality x ◦ v = 0 where ◦ is the
component-wise multiplication and where the coefficients of the vector v are the evaluations
of a polynomial Q of degree w. By definition, v has at most w zero coordinates, so the
relation x ◦ v = 0 proves that x has at most w non-zero coordinates (i.e. wtH(x) ≤ w).
The roots of the polynomial Q encode the non-zero positions of the vector x. In order
to prove the relation x ◦ v = 0, we use techniques borrowed from the Banquet signature
scheme [BDK+21b] with further adaptations. To check that all xj · vj are equal to zero,
we arrange the input x into a polynomial S, provide a product polynomial F · P as part of
the witness, and check that (F · P )(·) indeed equals the product of S(·) and Q(·). This can
be done efficiently by only verifying a few products of these polynomials evaluated at some
random points. However, instead of revealing the multiplication operands like in [BDK+21b],
we rely on the product checking protocol proposed in [LN17; BN20] and its batch version
recently introduced in [KZ22].
Let us note that the idea of encoding the non-zero positions in a polynomial to prove a

Hamming weight inequality was already used in [DLO+18]. However, their zero-knowledge
protocol relies on a linearly homomorphic commitment scheme, and such schemes do not
have yet practical proposals in the post-quantum setting.
Thanks to the Fiat-Shamir transform [FS87], we convert our protocol into a signature

scheme. Our scheme outperforms all the existing code-based signatures for the “signature
size + public key size” metric. When relying on the hardness of the syndrome decoding
problem over F256, our scheme is below 10 KB for this metric, which makes it competitive
with Picnic3 [KZ20b] and SPHINCS+ [BHK+19]. Compared to other code-based signature
schemes (such as Wave [DST19] and Durandal [ABG+19]), our scheme has the significant
advantage of relying on a non-structured decoding problem which has been widely studied
over the last decades.

5.1.1. The d-split Syndrome Decoding Problem

To provide more flexibility, we introduce a parameter d in the definition of the syndrome
decoding problem. The idea is, instead of having a constraint for the global weight of the
secret vector x, to split x into d chunks x := (x1 | . . . | xd) and to have a constraint on
the weight of each chunk. We call this alternative problem the d-split syndrome decoding
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problem.

Definition 5.1.1 (d-Split Syndrome Decoding Problem). Let F be a finite field. Let m, k, w
be positive integers such that m > k, m > w, d | w and d | m. The d-split syndrome decoding
problem with parameters (F,m, k, w) is the following problem:

Let H, x and y be such that:

1. H is uniformly sampled from F(m−k)×m,
2. x is uniformly sampled from{

(x1 | . . . | xd) ∈ Fm : ∀i ∈ [1 : d], xi ∈ Fm/d, wtH(xi) = w

d

}
,

3. y is defined as y := Hx.

From (H, y), find x.

By taking d = 1, we get the standard syndrome decoding problem. Let us note that the
d-split syndrome decoding problem can be seen as a generalization of the regular syndrome
decoding problem introduced by [AFS03], for which the ratio w/d is equal to 1. However,
both problems (d-split and regular) do not aim to be used in the same way. In the d-split
case, d is a small constant. When selecting parameters for it, we estimate the cost of the
standard SD problem and the exact security loss. Thus, d-split SD problem can be considered
as conservative as the standard problem (d = 1). In the regular case, using Theorem 5.1.2
would lead to a too large security loss. Instead, we select the parameters for it by relying on
it own existing cryptanalysis.

The following theorem gives a way to estimate the difficulty of solving the d-split syndrome
decoding problem. We provide a security reduction from this variant to the standard problem
which allows us to compensate the security loss by a slight increase of the parameters.
This so-called d-split syndrome decoding problem offers us more flexibility to find better
size-performance trade-offs for our signature scheme.

Theorem 5.1.2. Let F be a finite field. Let m, k, w be positive integers such that m > k,
m > w, d | w and d | m. Let Ad be an algorithm that solves a random (F,m, k, w)-instance
of the d-split syndrome decoding problem in time t with success probability εd. Then there
exists an algorithm A1 which solves a random (F,m, k, w)-instance of the standard syndrome
decoding problem in time t with probability ε1, where

ε1 ≥
(m/d
w/d

)d(m
w

) · εd .
Informally, an instance of the standard syndrome decoding problem is an instance of

the d-split syndrome decoding problem with probability
(m/d
w/d

)d
/
(m
w

)
. Moreover, a standard

syndrome decoding instance can be “randomized” and input to the d-split adversary as much
as desired. A formal proof of the above theorem is just after.

Proof. To prove the theorem, we build below an algorithm A1 to solve the traditional SD
problem of parameters (m, k,w) using an algorithm Ad which solves the d-split SD problem
with the same parameters.
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Algorithm A1 (on input an SD instance (H, y)):

1. Sample a permutation σ of {1, . . . ,m}.
2. Permute the columns of H using σ to get Ĥ.
3. Run Ad on input (Ĥ, y) to get x̂.
4. If x̂ = ⊥, return ⊥.
5. Permute the coordinates of x̂ using σ−1 to get x.
6. Return x.

The probability of transforming an SD instance into a d-split SD instance in Step 2 is(m/d
w/d

)d
/
(m
w

)
. Thus we have

ε1 := Pr[A1(H, y) 6= ⊥]
≥ Pr[A1(H, y) 6= ⊥ ∩ (Ĥ, y) is a d-split SD]

=
(m/d
w/d

)d(m
w

) · Pr[A1(H, y) 6= ⊥ | (Ĥ, y) is a d-split SD]

=
(m/d
w/d

)d(m
w

) · Pr[Ad(Ĥ, y) 6= ⊥ | (Ĥ, y) is a d-split SD]

=
(m/d
w/d

)d(m
w

) · εd

For example, let us assume we want a d-split parameter set with 128-bit security such that
m
d ≤ 256. We could take the parameters (m, k,w) = (1536, 888, 120) with d = 6 over the
binary field. We show in Section 5.3.4 that the standard syndrome decoding problem with
the same parameters (but d = 1) has a security of 145 bits and, thanks to the Theorem 5.1.1,
we know there is a security loss of at most 16 bits while switching to d = 6.

5.2. A Zero-Knowledge Protocol for Syndrome Decoding
Let us consider an instance (H, y) of the (d-split) syndrome decoding problem, and let us
denote x a solution of this instance. We denote FSD the field on which the instance is defined.
Without loss of generality, we assume that H is in the systematic form, i.e. that H =

(H ′|Im−k) for some H ′ ∈ F(m−k)×k
SD . Thus the solution x can be written as (xA|xB) such that

we have the linear relation
y = H ′xA + xB . (5.1)

This implies that one simply needs to send xA (k · log |FSD| bits) to reveal the solution of the
instance (H, y).
In the following sections, we first build an MPC protocol that takes a sharing of JxAK,

builds the corresponding JxK thanks to Equation (5.1), and checks that JxK corresponds to
a vector with a Hamming weight of at most w/d on each chunk. Since JxK would satisfy
y = Hx by construction, this MPC protocol verifies that JxAK corresponds to a solution
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of the syndrome decoding instance (H, y). Then, in Section 5.2.3, we transform it into a
zero-knowledge protocol which proves the knowledge of a solution of the syndrome decoding
instance (H, y) thanks to the MPC-in-the-Head paradigm.

5.2.1. Standard Case (d = 1)
We first focus on the case where (H, y) is an instance of the standard syndrome decoding
problem (i.e. we have d = 1). We will then show how to extend the protocol to the general
case of any d. We consider a field extension Fpoly ⊇ FSD such that |Fpoly| ≥ m (we recall that
m is the length of the secret x, i.e. x ∈ FmSD). We denote φ : FSD → Fpoly the usual inclusion
of FSD into Fpoly. Let us take a bijection γ between {1, . . . , |Fpoly|} and Fpoly. Then, to ease
the notation, we denote γi for γ(i).

The protocol must check that y = Hx and wtH(x) ≤ w. As explained in the introduction
of the section, the input for the MPC protocol will be JxAK, then it will build the sharing
JxK using the linear Equation (5.1). Thus we directly have that y = Hx. It remains to check
that wtH(x) ≤ w.

To prove that wtH(x) ≤ w, the prover builds the three following polynomials:

• The polynomial S ∈ Fpoly[X] satisfying

∀i ∈ [1 : m], S(γi) = φ(xi) ,

as well as degS ≤ m− 1. This S is unique and can be computed by interpolation.

• The polynomial Q ∈ Fpoly[X] defined as

Q(X) :=
∏
i∈E

(X − γi)

for some E ⊂ [1 : m] such that |E| = w and {i ∈ [1 : m] : xi 6= 0} ⊂ E, implying
degQ = w.

• The polynomial P ∈ Fpoly[X] defined as

P := (Q · S)/F with F (X) :=
m∏
i=1

(X − γi) .

We stress some useful properties of these polynomials:

• The polynomial Q is a monic polynomial of degree w. Moreover, for every i ∈ [1 : m],
we have

xi 6= 0 ⇒ i ∈ E ⇒ Q(γi) = 0 .

• The polynomial F divides Q · S. Indeed, for every i ∈ [1 : m], we have

(Q · S)(γi) = 0

since S(γi) 6= 0 ⇒ xi 6= 0 ⇒ Q(γi) = 0. The polynomial P is hence well defined.

• The polynomial P has degree degP ≤ w − 1.



64 Chapter 5. Syndrome Decoding in the Head

If the prover convinces the verifier that there exists two polynomials P (with degP ≤ w−1)
and Q (with degQ = w) such that Q · S − P · F = 0 where S and F are built as described
above, then the verifier can deduce the following:

∀i ∈ [1 : m], (Q · S)(γi) = P (γi) · F (γi) = 0
⇒ ∀i ∈ [1 : m], Q(γi) = 0 or S(γi) = φ(xi) = 0

Since Q has at most w roots, the verifier concludes that φ(xi) 6= 0 in at most w positions.
Thus wtH(x) ≤ w.

We now explain how to prove this statement in the MPCitH paradigm. For this purpose,
we describe an MPC protocol, which on input x, P and Q outputs Accept if the above
condition is verified and Reject otherwise, except with a small false positive probability. The
parties’ inputs are defined as the shares of JxAK, JQK and JP K. Let us recall that a sharing of
a polynomial is naturally defined as a sharing of its coefficients (see Section 2.4.1). However,
for the sharing of Q, we share all of its coefficients except the leading one. Indeed since Q
is monic, its leading coefficient is publicly known and is equal to 1. Moreover, it enables
to convince the verifier that Q is of degree exactly w, which is important since otherwise, a
malicious prover could take Q as the zero polynomial.

From its inputs, the MPC protocol first builds the polynomial S from xA. Then, to verify
Q ·S = P ·F , it evaluates the two sides of the relation on t random points r1, ..., rt (sampled
by the verifier in the MPCitH setting). If the relation is not verified, the probability to
observe Q(rj) · S(rj) = P (rj) · F (rj) for all j ∈ [1 : t] will be low, which stems from the
Schwartz-Zippel Lemma (see Section 2.3.3). The larger the set from which the evaluation
points rj are sampled, the smaller the false positive probability p. For this reason, we
take these evaluation points in a field extension Fpoints of Fpoly. Such a field extension
allows us to have more points and so to detect more efficiently when Q · S 6= P · F . In
practice, given an evaluation point rj , the parties of the MPC protocol verify the relations
Q(rj) · S(rj) = (P · F )(rj) by sacrificing multiplication triples as described in Section 3.4.1.
To proceed, the prover must previously build t multiplication triples (JajK, JbjK, JcjK) for
random elements aj , bj , cj ∈ Fpoints satisfying aj · bj = cj for j ∈ [1 : t] and include them to
the parties’ inputs (each party getting its corresponding share from JajK, JbjK and JcjK).

The MPC protocol runs as follows:

1. The parties sample t random points r1, . . . , rt of Fpoints.

2. The parties locally compute JxK from JxAK using Equation (5.1).

3. The parties locally compute JS(rj)K, JQ(rj)K and J(F · P )(rj)K for all j ∈ [1 : t]. Let us
remark that JS(rj)K can be computed from JxK by the parties without any interaction
thanks to the linearity of Lagrange interpolation formula:

JS(rj)K =
∑

i∈[1:m]
JxiK

∏
`∈[1:m],` 6=i

rj − γ`
γi − γ`

.

On the other hand J(F · P )(rj)K is computed as F (rj) · JP (rj)K since F is publicly
known.

4. For every j ∈ [1 : t], the parties run an MPC verification of the multiplication triple(
JS(rj)K, JQ(rj)K, J(F · P )(rj)K

)
by sacrificing the triple (JajK, JbjK, JcjK):
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• The parties sample a random εj ∈ Fpoints.
• The parties locally set

JαjK = εj · JQ(rj)K + JajK and JβjK = JS(rj)K + JbjK.

• The parties broadcast JαjK and JβjK to obtain αj and βj .
• The parties locally set

JvjK = εj · J(F · P )(rj)K− JcjK + αj · JbjK + βj · JajK− αj · βj .

• The parties broadcast JvjK to obtain vj .

5. The parties output Accept if v = 0 (i.e. if vj = 0 for all j) and Reject otherwise.

Note that we do not need to specify how the random values rj ’s and εj ’s are sampled by
the parties since they will be provided as challenges from the verifier while turning to the
zero-knowledge setting.
The above MPC protocol computes a non-deterministic function f which takes x, Q

and P (and t multiplication triples) as input and which outputs Accept or Reject. The
randomness of this function comes from the random evaluations points r1, . . . , rt and from
the random challenges ε1, . . . , εt used by the product checking protocol. Whenever x indeed
satisfies wtH(x) ≤ w and the polynomials P and Q are genuinely computed as described
above, the protocol outputs Accept with probability one. Whenever the protocol input is not
of this form, the protocol shall output Reject except with a small false positive probability
p. In other words, the output of the above protocol follows the distribution depicted in
Table 3.1 where a good witness here means an x of weight at most w and polynomials P and
Q which are correctly built.
Let us make explicit the false positive probability p. We shall denote ∆ := |Fpoints|.

Whenever the protocol input is not a good witness, i.e. wtH(x) > w, P or Q are not correctly
built, we have Q · S 6= F · P . In the above protocol, both sides of the relation are evaluated
in t random points. The probability to have the equality for i evaluation points among the t
points is at most

max`≤m+w−1
{(`

i

)(∆−`
t−i
)}

(∆
t

)
since Q · S − F · P is a polynomial of degree at most m+ w − 1. This holds from a simple
extension of the Schwartz-Zippel Lemma that we provide in Section 2.3.3. When this event
occurs, the probability to obtain Accept as output is( 1

∆

)t−i
,

which corresponds to the probability to get the t − i false positives in the verification of
multiplication triples (for the t− i remaining evaluation points rj for which Q(rj) · S(rj) 6=
F (rj) · P (rj)). Thus, the global false positive probability p satisfies

p ≤
t∑
i=0

max`≤m+w−1
{(`

i

)(∆−`
t−i
)}

(∆
t

) ( 1
∆

)t−i
. (5.2)
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5.2.2. General case (any d)
Let us now assume that (H, y) is an instance of a d-split syndrome decoding problem for
some d ≥ 1. We can easily adapt our protocol in that case. Instead of having a unique
polynomial Q of degree w, we will have d polynomials Q1, . . . , Qd of degree exactly w/d to
prove the weight bound wtH(xj) ≤ w/d for each chunk xj of the SD solution. We then have
d polynomials Sj (of degree m/d− 1) and d polynomials Pj (of degree w/d− 1) satisfying the
d relations Qj · Sj = F · Pj with F := ∏m/d

j=1 (X − γj). To prove those d relations we evaluate
each of them on t random points r1, . . . , rt. We stress that the same t random points can be
used for each chunk, i.e. for every j ∈ [1 : d].

A malicious prover might try to cheat on a single relation (i.e. on a single chunk of the SD
solution), in such a way that there exists j0 ∈ [1 : d] with{

Qj0 · Sj0 6= F · Pj0 ,
∀j 6= j0, Qj · Sj = F · Pj .

So for a given point r, we use the batched sacrificing-based checking of [KZ22] (described
in Section 3.4.1) to check all the equalities Qj(r) · Sj(r)=F (r) · Pj(r) at once. This saves
communication without impacting the soundness error compared to independent checks of
the d relations.
Whenever the input x, {Pj}, {Qj} is not a good witness (i.e. whenever one xj has a

weight greater than w/d or one polynomial Pj or Qj is not correctly built), at least one of
the relations Qj · Sj = F · Pj is not verified. Since Qj · Sj − F · Pj is a polynomial of degree
at most (m+ w)/d− 1, the global false positive probability for the d-split variant becomes1

p ≤
t∑
i=0

max`≤(m+w)/d−1
{(`

i

)(∆−`
t−i
)}

(∆
t

) ( 1
∆

)t−i
(5.3)

with ∆ := |Fpoints|. (This upper bound is equivalent to Equation (5.2) where the max degree
m+ w − 1 is replaced by (m+ w)/d− 1).
The constraint on the size of Fpoly now becomes

|Fpoly| ≥
m

d

since we only need m/d points for the interpolation of the polynomials S1, . . . Sd. Thus using
the d-split version allows us to use smaller fields for Fpoly and Fpoints.

Let us note that in practice the new communication is not smaller than before, but rather
equivalent or higher, since we need to use bigger syndrome decoding instances to compensate
the security loss of the d-split version. The main benefit to introduce the d-split version
is to work on polynomials of smaller degree and/or on specific fields which provides better
performance trade-offs (see Section 5.3.5).

5.2.3. Description of the Protocol
We now give the formal description of our zero-knowledge protocol (general case) in Protocol 6.
For the sake of clarity in the protocol description, we denote #”

Q the tuple of polynomials
1We here use the fact that the optimal strategy for a malicious prover is to build a bad witness such that
only one polynomial relation is not satisfied. The resulting soundness error is thus the probability to fail
to detect this cheating on this single relation.
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(Q1, . . . , Qd). Same for the polynomials #”

P and #”

S . The additions, substractions and polynomial
evaluations of these tuples are component-wise defined. For example, for a point r ∈ Fpoints,
#”

Q(r) means (Q1(r), . . . , Qd(r)). We also use this vectorial notation for #”a j ,
#”

b j , #”α j ,
#”

β j and
#”ε j which shall represent vectors of Fdpoints. Let us recall that ◦ denotes the component-wise
multiplication. In the scope of this protocol, the polynomial F is defined as F (X) :=∏m/d
i=1 (X − γi) with Fpoly = {γ1, γ2, . . .}.

5.2.4. Security Proofs
The following theorems state the completeness, zero-knowledge and soundness of Protocol 6.
We refer the reader to [FJR22a] for the proofs of Theorems 5.2.2 and 5.2.3.

Theorem 5.2.1 (Completeness). Protocol 6 is perfectly complete, i.e. a prover P who knows
a solution x to the syndrome decoding instance (H, y) and who follows the steps of the protocol
always succeeds in convincing the verifier V.

Proof. For any sampling of the random coins of P and V, if the computation described in
Protocol 6 is genuinely performed then all the checks of V pass.

Theorem 5.2.2 (Honest-Verifier Zero-Knowledge). Let the PRG used in Protocol 6 be
(t, εPRG)-secure and the commitment scheme Com be (t, εCom)-hiding. There exists an efficient
simulator S which, given a random challenge i∗ outputs a transcript which is (t, εPRG +εCom)-
indistinguishable from a real transcript of Protocol 6.

Theorem 5.2.3 (Soundness). Suppose that there is an efficient prover P̃ that, on input
(H, y), convinces the honest verifier V on input H, y to accept with probability

ε̃ := Pr[〈P̃,V〉(H, y)→ 1] > ε

where the soundness error ε is equal to

p+ 1
N
− p · 1

N

with p defined in Equation (5.3). Then, there exists an efficient probabilistic extraction
algorithm E that, given rewindable black-box access to P̃, produces with either a witness
x := (x1 | . . . |xd) such that y = Hx and ∀j,wtH(xj) ≤ w/d, or a commitment collision, by
making an average number of calls to P̃ which is upper bounded by

4
ε̃− ε

·
(

1 + ε̃ · 2 · ln(2)
ε̃− ε

)
.

By adapting the parameters t and ∆, we can produce a protocol with soundness error
arbitrarily close to 1/N .

5.2.5. Performance
In the following analysis, we exclude the challenges from the communication cost since they
are of very moderate impact (and do not count whenever making the protocol non-interactive).
The communication then consists into

• Com := h,
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Inputs: Both parties have H = (H′|Im−k) ∈ F(m−k)×m
SD and y ∈ Fm−kSD , the prover also holds x := (x1 | x2 | . . . | xd) ∈ FmSD

such that y = Hx and wtH(xj) ≤ w/d for j ∈ [1 : d].

Round 1: The prover computes the proof witness: for all chunk j ∈ [1 : d],

1. Choose a set Ej ⊂ [1 : md ] s.t. |Ej | = w
d and {` : (xj)` 6= 0} ⊂ Ej .

2. Compute Qj(X) =
∏

`∈Ej
(X − γ`) ∈ Fpoly[X].

3. Compute Sj(X) ∈ Fpoly[X] by interpolation s.t. degSj ≤ m
d − 1 and ∀` ∈ [1 : md ], Sj(γ`) = (xj)`.

4. Compute Pj(X) = Sj(X)Qj(X)/F (X) ∈ Fpoly[X].

Then, the prover prepares the inputs for the multi-party computation as follows:

1. Sample a root seed: seed $←− {0, 1}λ.

2. Compute parties’ seeds and commitment randomness (seedi, ρi)i∈[1:N] with TreePRG(seed).

3. For each party i ∈ {1, . . . , N},

• J #”a jKi, J
#”
b jKi ← PRG(seedi), for each j ∈ [1 : t]

• If i 6= N ,

– {JcjKi}j∈[1:t], JxAKi, J
#”
QKi, J

#”
P Ki ← PRG(seedi)

– statei = seedi

• Else,

– JxAKN = xA −
∑

` 6=N
JxAK`

– J
#”
QKN = #”

Q −
∑

` 6=N
J

#”
QK`.

– J
#”
P KN = #”

P −
∑

` 6=N
J

#”
P K`.

– JcjKN = 〈 #”a j ,
#”
b j〉 −

∑
` 6=N

JcjK`, for each j ∈ [1 : t]

– help = (JxAKN , J
#”
QKN , J

#”
P KN , {JcjKN}j∈[1:t])

– stateN = seedN || help

• Commit the party’s state: comi = Com(statei; ρi).

The prover builds h = Hash(com1, . . . , comN ) and sends it to the verifier.

Round 2: The verifier uniformly samples, for each j ∈ [1 : t], an evaluation point rj ← Fpoints and a vector #”ε j ← Fdpoints,
and sends them to the prover.

Round 3: The prover simulates the MPC protocol:

1. The parties locally set JxBK = y −H′JxAK.

2. The parties locally compute J
#”
S K by interpolation using JxK := (JxAK | JxBK).

3. Then for all j ∈ [1 : t],

• The parties locally compute J
#”
S (rj)K, J

#”
Q(rj)K and J

#”
P (rj)K.

• They locally set J #”αjK = #”ε j ◦ J
#”
Q(rj)K + J #”a jK.

• They locally set J
#”
β jK = J

#”
S (rj)K + J

#”
b jK.

• The parties open J #”αjK and J
#”
β jK to get #”αj and #”

β j .

• The parties locally set

JvjK = −JcjK + 〈 #”ε j , F (rj) · J #”
P (rj)K〉+ 〈 #”αj , J

#”
b jK〉+ 〈 #”

β j , J #”a jK〉 − 〈 #”αj ,
#”
β j〉 .

The prover builds h′ = Hash(J #”α1K, J
#”
β 1K, Jv1K, . . . , J #”αtK, J

#”
β tK, JvtK) and sends it to the verifier.

Round 4: The verifier uniformly samples i∗ ← [1 : N ] and sends it to the prover.

Round 5: The prover sends (statei, ρi)i6=i∗ , comi∗ , {J #”αjKi∗}j∈[1:t] and {J
#”
β jKi∗}j∈[1:t].

Verification: The verifier accepts iff all the following checks succeed:

1. For each i 6= i∗, she computes all the commitments to the parties’ states: comi = Com(statei; ρi). Then she checks
that h ?= Hash(com1, . . . , comN ).

2. Using {statei}i6=i∗ , she simulates all the parties except for i∗. From the recomputed shares, she checks that h′ ?=
Hash(J #”α1K, J

#”
β 1K, Jv1K, . . . , J #”αtK, J

#”
β tK, JvtK) where JvjKi∗ := −

∑
i6=i∗

JvjKi.

Protocol 6: Zero-knowledge proof for syndrome decoding.
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• Res1 := h′ and

• Res2 :=
(
(statei, ρi)i 6=i∗ , comi∗ , {J #”α jKi∗}j∈[1:t], {J

#”

β jKi∗}j∈[1:t]
)
.

For i 6= N , statei simply consists in a seed of λ bits. For i = N , statei contains

• a seed of λ bits,

• the share JxAKN of a plaintext,

• the shares J
#”

QKN and J
#”

P KN which are 2 · d polynomials of degree w/d− 1,

• and the shares {JcjKN}j∈[1:t] of t points of Fpoints.

Let us recall that seeds are sampled using a GGM tree (as defined in Section 2.2.2). Instead
of sending the N − 1 seeds and commitment randomness of (statei, ρi)i 6=i∗ , we can instead
send the sibling path from (statei∗ , ρi∗) to the tree root2, it costs at most λ · dlog2(N)e bits
(we need to reveal dlog2(N)e nodes of the tree). Moreover comi∗ is a commitment of 2λ bits,
and {J #”α jKi∗}j∈[1:t], {J

#”

β jKi∗}j∈[1:t] are elements of Fpoints. The communication cost (in bits)
of the protocol is then

Size = 4λ+ k · log2 |FSD|︸ ︷︷ ︸
JxAKN

+ (2 · w) · log2 |Fpoly|︸ ︷︷ ︸
J

#”
QKN ,J

#”
P KN

+ (2 · d+ 1) · t · log2 |Fpoints|︸ ︷︷ ︸
{J #”α jKi∗ ,J

#”
β jKi∗ ,JcjKN}j∈[1:t]

+λ · log2(N)︸ ︷︷ ︸
(seedi)i 6=i∗

+ 2λ︸︷︷︸
comi∗

As usual, to achieve a targeted soundness error 2−λ, we can perform τ parallel repetitions
of the protocol such that ετ ≤ 2−λ. And instead of sending τ values for h and h′, we can
merge them together to send a single h and a single h′. The communication cost (in bits) of
the protocol with τ repetitions is

Size = 4λ+τ ·
(
k · log2 |FSD|+(2 ·w) · log2 |Fpoly|+(2 ·d+1) ·t · log2 |Fpoints|+λ · log2(N)+2λ

)
and the obtained soundness error is(

p+ 1
n
− p · 1

n

)τ
.

5.2.6. Comparison
We compare our new protocol with existing zero-knowledge protocols for syndrome decoding
(or equivalently for message decoding). We compare these protocols on two SD instances of
128-bit security:

• Instance 1 (from Chapter 4): Syndrome Decoding on F2 with parameters

(m, k,w) = (1280, 640, 132);
2As in Chapter 4, the seed seedi of a party and the commitment randomness ρi are derived from the same
seed, which corresponds to a leaf of the seed tree.
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• Instance 2 [CVE11]: Syndrome Decoding on F28 with parameters

(m, k,w) = (208, 104, 78).

The comparison for a soundness error of 2−128 is given in the Table 5.1. For our protocol,
we provide two instantiations for each syndrome decoding instance to give the reader an idea
of the obtained performance while changing the number of parties. The first instantiation
called “short” corresponds to an instantiation which provides small communication cost. The
second one called “fast” corresponds to an instantiation with faster computation but higher
communication cost. The used parameters (N, τ, |Fpoly|, |Fpoints|, t) for our scheme are

• Instance 1:
Short: (N, τ, |Fpoly|, |Fpoints|, t) = (256, 16, 211, 222, 2) ⇒ ετ = 2−128.0

Fast: (N, τ, |Fpoly|, |Fpoints|, t) = (32, 26, 211, 222, 1) ⇒ ετ = 2−129.6

• Instance 2:
Short: (N, τ, |Fpoly|, |Fpoints|, t) = (256, 16, 28, 224, 2) ⇒ ετ = 2−128.0

Fast: (N, τ, |Fpoly|, |Fpoints|, t) = (32, 26, 28, 224, 1) ⇒ ετ = 2−130.0

Table 5.1.: Comparison of our protocol with state-of-the-art zero-knowledge protocols for
syndrome decoding.

Protocol Name Year Instance 1 Instance 2 Proved statement
[Ste94] 1993 37.4 KB 46.1 KB y = Hx, wtH(x) = w
[Vér96] 1997 31.7 KB 38.7 KB message decoding
[CVE11] 2010 - 37.4 KB y = Hx, wtH(x) = w

[AGS11] 2011 24.8 KB - y = Hx, wtH(x) = w

[GPS22] (short) 2021 - 15.2 KB y = Hx, wtH(x) = w
[GPS22] (fast) 2021 - 19.9 KB y = Hx, wtH(x) = w

Chapter 4 (short) 2021 12.9 KB 15.6 KB y = Hx, wtH(x) = w
Chapter 4 (fast) 2021 20.0 KB 24.7 KB y = Hx, wtH(x) = w

This chapter (short) 2022 9.7 KB 6.9 KB y = Hx, wtH(x) ≤ w
This chapter (fast) 2022 14.4 KB 9.7 KB y = Hx, wtH(x) ≤ w

Note: The formulae for the communication costs of the different protocols and the used parameters are
detailed in [FJR22b, Appendix B].

We can remark that all the previous protocols prove an equality for the Hamming weight
by relying on isometries (i.e. permutations if FSD = F2). On our side, we only prove
the inequality wtH(w) ≤ w. We stress that both versions (equality or inequality) can be
merely equivalent for some SD parameters. Indeed, if w is chosen sufficiently below the
Gilbert-Varshamov bound and if we know there exists an SD solution x of Hamming weight
w, then proving the knowledge of a solution x′ with wtH(x′) ≤ w amounts to proving the
knowledge of x with overwhelming probability.
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5.3. The Signature Scheme
In this section, we show how to turn our 5-round HVZK protocol into a signature scheme
using the Fiat-Shamir transform [FS87; AABN02]. After explaining the transformation, we
give the description of the signature scheme and then provide a security proof in the random
oracle model (ROM).

5.3.1. Transformation into a Non-Interactive Scheme

To transform our protocol into a non-interactive scheme, we apply the multi-round variant of
the Fiat-Shamir transform [FS87] (see e.g. [EDV+12; CHR+16]). Concretely, we compute
the challenge Ch1 and Ch2 as

h1 = Hash1(m, salt, h)
Ch1 ← PRG(h1)

and
h2 = Hash2(m, salt, h, h′)
Ch2 ← PRG(h2)

where m is the input message, where Hash1 and Hash2 are some hash functions (that shall
be modeled as random oracles) and where h and h′ are the Round 1 and Round 3 hash
commitments merged for the τ repetitions. We introduce a value salt called salt which is
sampled from {0, 1}2λ at the beginning of the signing process. This value is then used for
each commitment to the parties’ states. Without it, the security of the signature would be
at most 2λ/2 because of the seed collisions between several signatures. Moreover, since the
signature security relies on the random oracle model, we can safely replace the commitment
scheme Com of Protocol 6 by a single hash function Hash0.

The security of the obtained scheme is lower than the soundness error of Protocol 6. Indeed,
in [KZ20a], Kales and Zaverucha describe a forgery attack against signature schemes obtained
by applying the Fiat-Shamir transform to 5-round protocols. Adapting this attack to our
context yields a forgery cost of

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1
(τ
i

)
pi(1− p)τ−i +N τ2

}
(5.4)

with p defined in Equation (5.3). This is substantially lower than the target forgery cost of
1/ε, for ε being the soundness error of Protocol 6 (see Theorem 5.2.3). We therefore need to
adapt the parameters to fill this gap.

5.3.2. Description of the Signature Scheme

In our signature scheme, the key generation algorithm randomly samples an instance (H, y) of
the d-split syndrome decoding problem with solution x, with security parameter λ. In order
to make the key pair compact, the matrix H is pseudorandomly generated from a λ-bit seed.
Specifically, a call to the KeyGen algorithm outputs a pair (pk, sk) :=

(
(seedH , y),mseed

)
generated as follows:

1. mseed← {0, 1}λ
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2. (seedH , x)← PRG(mseed) where x is sampled in {x ∈ Fm2 | wtH(x) = w}

3. H ← PRG(seedH)

4. y = Hx; pk = (seedH , y); sk = mseed

For the sake of simplicity, we omit the re-generation of H and x from the seeds in the
algorithms below and assume pk = (H, y) and sk = (H, y, x).

Given a secret key sk = (H, y, x) and a message m ∈ {0, 1}∗, the algorithm Sign proceeds
as described in Figure 5.1. And given a public key pk = (H, y), a signature σ and a message
m ∈ {0, 1}∗, the algorithm Verif proceeds as described in Figure 5.2. For the sake of clarity,
as for the protocol description in Section 5.2.3, we use the vectorial notation to represent a
tuple of d polynomials or of d points.

5.3.3. Signature Properties

We now state the security of our signature scheme in the following theorem.

Theorem 5.3.1. Suppose the PRG used is (t, εPRG)-secure and any adversary running in
time t has at most an advantage εSD against the underlying d-split syndrome decoding problem.
Model Hash0, Hash1 and Hash2 as random oracles where Hash0, Hash1 and Hash2 have 2λ-
bit output length. Then chosen-message adversary against the signature scheme depicted
in Figure 5.1, running in time t, making qs signing queries, and making q0, q1, q2 queries,
respectively, to the random oracles, succeeds in outputting a valid forgery with probability

Pr[Forge] ≤ εSD + εPRG + (τN + 2)Q2

22λ + Pr[X + Y = τ ],

with

• Q = q0 + q1 + q2 + qs · (2 + τ(2N − 1)),

• X = maxi∈[1:q1]{Xi} with Xi ∼ B(τ, p), and

• Y = maxi∈[1:q2]{Yi} with Yi ∼ B(τ −X, 1
N ),

where p is defined in Equation (5.3) and B(n0, p0) denotes the binomial distribution with n0
the number of trials and p0 the success probability of each trial.

5.3.4. Parameters

In what follows, we propose three parameter sets which achieve a security level of 128 bits
for the signature:

• the first one shall rely on the hardness to solve the SD problem on F2;

• the second one shall also rely on the hardness to solve the SD problem on F2, but we
shall use a d-split version to get polynomials over a chosen field, concretely F256;

• the last one shall rely on the hardness to solve the SD problem on F256.
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Inputs: A secret key sk = (H, y, x) and a message m ∈ {0, 1}∗.

Sample a random salt salt← {0, 1}2λ.
Phase 1.0: Building of the proof witness. For all chunk j ∈ [1 : d],

1. Compute Qj(X) =
∏

`∈Ej
(X − γ`) ∈ Fpoly[X] where Ej = {` : (xj)` 6= 0}.

2. Compute Sj(X) ∈ Fpoly[X] by interpolation s.t. degSj ≤ m
d − 1 and ∀` ∈ [1 : md ], Sj(γ`) = (xj)`.

3. Compute Pj(X) = Sj(X)Qj(X)/F (X) ∈ Fpoly[X].

Phase 1.1: Preparation of the MPC-in-the-Head inputs. For each iteration e ∈ [1 : τ ],

1. Sample a root seed: seed[e] $←− {0, 1}λ.

2. Compute parties’ seeds seed[e]
1 , . . . , seed[e]

N
with TreePRG(salt, seed).

3. For each party i ∈ {1, . . . , N},

• J #”a
[e]
j

Ki, J
#”
b

[e]
j

Ki ← PRG(salt, seed[e]
i

), for each j ∈ [1 : t]

• If i 6= N ,

– {Jc[e]
j

Ki}j∈[1:t], Jx
[e]
A

Ki, J
#”
Q[e]Ki, J

#”
P [e]Ki ← PRG(salt, seed[e]

i
)

– state[e]
i

= seed[e]
i

• Else,

– Jx[e]
A

KN = xA −
∑

j 6=N
Jx[e]
A

Kj

– J
#”
Q[e]KN = #”

Q −
∑

` 6=N
J

#”
Q[e]K`.

– J
#”
P [e]KN = #”

P −
∑

` 6=N
J

#”
P [e]K`.

– Jc[e]
j

KN = 〈 #”a
[e]
j
,

#”
b

[e]
j
〉 −
∑

` 6=N
Jc[e]
j

K`, for each j ∈ [1 : t]

– help[e] = (Jx[e]
A

KN , J
#”
Q[e]KN , J

#”
P [e]KN , {Jc[e]

j
KN}j∈[1:t])

– state[e]
N

= seed[e]
N
|| help[e]

• Compute com[e]
i

= Hash0(salt, e, i, state[e]
i

).

Phase 2: First challenge (randomness for the MPC protocol).

1. Compute h1 = Hash1(m, salt, com[1]
1 , com[1]

2 , . . . , com[τ]
N−1, com[τ]

N
).

2. Extend hash {r[e]
j
, #”ε

[e]
j
}e∈[1:τ],j∈[1:t] ← PRG(h1) where r[e]

j
∈ Fpoints and #”εj

[e] ∈ Fdpoints.

Phase 3: Simulation of the MPC protocol. For each iteration e ∈ [1 : τ ],

1. The parties locally set Jx[e]
B

K = y −H′Jx[e]
A

K.

2. Then for all j ∈ [1 : t],

• The parties locally compute J
#”
S [e]K by interpolation using Jx[e]K := (Jx[e]

A
K | Jx[e]

B
K).

• They locally compute J
#”
S [e](r[e]

j
)K, J

#”
Q[e](r[e]

j
)K and J

#”
P [e](r[e]

j
)K.

• They locally set J #”α
[e]
j

K = #”ε
[e]
j
◦ J

#”
Q[e](r[e]

j
)K + J #”a

[e]
j

K.

• They locally set J
#”
β

[e]
j

K = J
#”
S [e](r[e]

j
)K + J

#”
b

[e]
j

K.

• The parties open J #”α
[e]
j

K and J
#”
β

[e]
j

K to get #”α
[e]
j

and #”
β

[e]
j
.

• The parties locally set

Jv[e]
j

K = −Jc[e]
j

K + 〈 #”ε
[e]
j
, F (r[e]

j
) · J #”

P
[e](r[e]

j
)K〉+ 〈 #”α

[e]
j
, J

#”
b

[e]
j

K〉+ 〈 #”
β

[e]
j
, J #”a

[e]
j

K〉 − 〈 #”α
[e]
j
,

#”
β

[e]
j
〉 .

Phase 4: Second challenge (parties to be opened).

1. Compute h2 = Hash2(m, salt, h1, {J #”α
[e]
j

K, J
#”
β

[e]
j

K, Jv[e]
j

K}j∈[1:t],e∈[1:τ]).

2. Expand hash {i∗[e]}e∈[1:τ] ← PRG(h2) where i∗[e] ∈ [1 : N ].

Phase 5: Building of the signature. Output the signature σ built as

salt | h1 | h2 |
(

(state[e]
i

)
i6=i∗[e] | com[e]

i∗[e] | {J
#”α

[e]
j

K
i∗[e]}j∈[1:t] | {J

#”
β

[e]
j

K
i∗[e]}j∈[1:t]

)
e∈[1:τ]

.

Figure 5.1.: Code-based signature scheme - Signing algorithm.
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Inputs: A public key pk = (H, y), a signature σ and a message m ∈ {0, 1}∗.

1. Parse the signature σ as

salt | h1 | h2 |
(

(state[e]
i

)
i6=i∗[e] | com[e]

i∗[e] | {J
#    ”

α
[e]
jKi∗[e]}j∈[1:t] | {J

#   ”

β
[e]
jKi∗[e]}j∈[1:t]

)
e∈[1:τ]

.

2. Extend hash {r[e]
j
, #”ε

[e]
j
}e∈[1:τ],j∈[1:t] ← PRG(h1) where r[e]

j
∈ Fpoints and #”εj

[e] ∈ Fdpoints.

3. Extend hash {i∗[e]}e∈[1:τ] ← PRG(h2) where i∗[e] ∈ [1 : N ].

4. For each iteration e ∈ [1 : τ ],

• For each i 6= i∗[e], computes com[e]
i

= Hash0(salt, e, i, state[e]
i

).

• Using {state[e]
i
}
i6=i∗[e] , simulate all the parties except for i∗[e] as in the Phase 3 of the signing algorithm and

get J #”α1K, . . . , J #”αtK, J
#”
β 1K, . . . , J

#”
β tK, JvK for all parties except for i∗[e].

• Compute Jv[e]
j

K
i∗[e] := −

∑
i6=i∗[e] Jv

[e]
j

Ki for all j ∈ [1 : t].

5. Compute h′1 = Hash1(m, com[1]
1 , com[1]

2 , . . . , com[τ]
N−1, com[τ]

N
).

6. Compute h′2 = Hash2(m, {J #”α
[e]
j

K, J
#”
β

[e]
j

K, Jv[e]
j

K}j∈[1:t],e∈[1:τ]).

7. Output Accept iff h′1
?= h1 and h′2

?= h2.

Figure 5.2.: Code-based signature scheme - Verification algorithm.

Choice of the SD parameters. Let us first describe how we estimate the security level of
a syndrome decoding instance for a random linear code over F2. The best practical attack
for our parameters is the algorithm of May, Meurer and Thomae [MMT11]. As argued
in Section 4.5.2, we can lower bound the cost of this attack by only considering the cost of
its topmost recursion step: (m

w

)(k+`
p

)(m−k−`
w−p

) · (L+ L2

2`−p

)
with L :=

(k+`
p/2
)

2p .

As usual in an ISD algorithm we need to optimize for the parameters ` (a number of rows)
and p (a partial Hamming weight). Since we only account for the cost of the topmost level in
the algorithm, this yields a slightly conservative estimate for the security level. We use this
estimate to choose the parameters of our scheme.

Given these considerations, we suggest the following concrete parameters:

• Variant 1: standard binary syndrome decoding problem. We propose the parameters

(q,m, k, w, d) = (2, 1280, 640, 132, 1)

which achieve a security level of 128 bits according to the above formula.

• Variant 2: d-split binary syndrome syndrome decoding problem, where d is taken to
have m/d ≤ 256 so that Fpoly = F256. We propose the parameters

(q,m, k, w, d) = (2, 1536, 888, 120, 6)

which achieve a security of 129 bits. Indeed, the standard SD problem with the
same parameters (but d = 1) has a security of 145 bits and we know, thanks to the
Theorem 5.1.1, that there is a security loss of at most 16 bits while switching to d = 6.
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Let us stress that this choice is conservative since the current state of the art does
not contain attacks filling the gap of this reduction. Our aim here was to build a
practical signature scheme with conservative security, but searching for more aggressive
parameters for the d-split syndrome decoding problem would be an interesting direction
for future research.

• Variant 3: syndrome decoding instance defined over F256. The cryptanalysis of the
syndrome decoding problem on a field which is larger than F2 has been less studied.
Previous articles [Pet10; CVE11; GPS22] propose parameters sets for syndrome decoding
instances over F28 where the code length m is between 200 and 210. In our case, we
choose m = 256 in such a way that the polynomial degree is equal to the field size.
Besides being more conservative, this choice has the advantage of easing the use of a
Fast Fourier Transform. We propose the following parameters3 for this variant:

(q,m, k, w, d) = (256, 256, 128, 80, 1) .

Choice of the MPC parameters. For each variant, we suggest in Table 5.2 a parameter
set for the MPC protocol.

Table 5.2.: SD and MPC parameters.

Scheme SD Parameters MPC Parameters
q m k w d |Fpoly| |Fpoints| t p

Variant 1 2 1280 640 132 1 211 222 6 ≈ 2−69

Variant 2 2 1536 888 120 6 28 224 5 ≈ 2−79

Variant 3 28 256 128 80 1 28 224 5 ≈ 2−78

To have a short signature, we take the smallest possible field Fpoly since a signature
transcript includes polynomials on that field. As explained in Section 5.2, Fpoly must be a
field extension of FSD which verifies the relation |Fpoly| ≥ m/d. Then, it remains to choose
|Fpoints| and t. These parameters are chosen to make the false positive probability p is
negligible compared to 1/N such that the optimal forgery strategy of an attacker is to take
τ1 = 1 in the Equation (5.4). As a result, we just need to increase the number of iterations τ
by one compared to the interactive protocol.

5.3.5. Implementation and Performance

For each repetition, in the computation of each party, d polynomial interpolations are involved.
Indeed, from JxK, the parties must compute

JS`K(X) =
m/d∑
i=1

Jxm
d
`+iK ·

m/d∏
j=1,j 6=i

X − wj
wi − wj

3More cryptanalysis of the SD problem over F256 would be welcome to get more confidence in the choice of
the parameters. Such research is out of the scope of this chapter.
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for all ` ∈ [1 : d]. Then, the parties must evaluate JS`K in t random evaluation points sampled
by the verifier, for all ` ∈ [1 : d]. The natural way to implement that is to compute the
coefficients of all the polynomials {JS`K}` from JxK, then to evaluate these polynomials t
times. However this implies that the signer must realize τ ·N · d interpolations. Instead, the
signer can compute the vector u(r) defined as

u(r) =

 m/d∏
j=1,j 6=i

r − wj
wi − wj


1≤i≤m

d

for each evaluation point r, and then use these vectors in the computation of all the parties
as

JS`(r)K = 〈Jx`K, u(r)〉

where Jx`K is the `th chunk of JxK. By proceeding this way, the number of (transposed)
interpolations done by the signer is of τ · t.

To reduce the computational cost of the interpolations, we can make use of a Fast Fourier
Transform (FFT). We are working on field extensions of F2, so we can use the Additive FFT
independently introduced by Wang-Zhu in 1988 [WZ88] and by Cantor in 1989 [Can89],
which was further improved in [GG03; GM10]. Although such additive FFT exists for any
extension of F2, the algorithms are simpler for a field of size 2(2i) for some i, which is why
we chose Fpoly as F256. On such a field F, we indeed have an efficient additive FFT using
1
2 |F| log2 |F| multiplications to evaluate a polynomial (of degree lower than |F|) in |F| points.
We implemented the signature scheme in C. In our implementation, the pseudo-randomness

is generated using AES in counter mode and the hash function is instantiated with SHAKE.
We benchmarked our scheme on a 3.8 GHz Intel Core i7 CPU with support of AVX2 and
AES instructions. All the reported timings were measured on this CPU while disabling Intel
Turbo Boost.

Remark 5.3.2. Another motivation for using Fpoly = F256 is that some Intel processors have
dedicated instructions for F256 arithmetic. We therefore expect substantial speed-ups for the
instances of our signature scheme using Fpoly = F256 on these processors. Optimizing and
benchmarking such implementations is left for future research.

We instantiate two trade-offs per variant: the first one lowering communication cost to
produce short signatures, and the second one lowering computational cost to get a fast
signature computation. We obtain the parameters and sizes described in Table 5.3. We
provide the measured running times of our signature implementation in Table 5.4.
Future investigations. We tried to optimize the implementation using some algorithmetic
tricks, but we did not yet investigate the possible software optimizations like vectorization
or bitslicing. Although the variants 1 and 2 are more conservative because they rely on the
hardness of the binary syndrome decoding problem, variant 3 is more promising in terms of
signature size and computation time. While we have investigated parameter sets where FSD
is a field extension of F2, more cryptanalysis for the SD problem on those fields as well as on
non-binary fields would be welcome. An interesting idea would be to instantiate our scheme
with a prime field FSD for which the Number-Theoretic Transform (NTT) is defined. If FSD
is large enough, we could then take the same field for Fpoly and FSD, and we would have fast
polynomial interpolations and simpler multiplication operations.
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Table 5.3.: Parameters (N, τ) with the achieved communication costs (in bytes).

λ Scheme Aim Parameters Signature
N τ |pk| |sgn| (max) |sgn| (avg, std)

128 Variant 1 Fast 32 27 96 16 422 16 006, 446
128 Short 256 17 96 11 193 11 160, 127
128 Variant 2 Fast 32 27 97 17 866 17 406, 494
128 Short 256 17 97 12 102 12 066, 141
128 Variant 3 Fast 32 27 144 12 115 11 835, 302
128 Short 256 17 144 8 481 8 459, 86

Table 5.4.: Benchmarks of our signature implementation.

λ Scheme Aim Keygen Sign Verify
ms cycles ms cycles ms cycles

128 Variant 1 Fast n/a†128 Short
128 Variant 2 Fast 0.03 114k 13.4 52M 12.7 50M
128 Short 0.03 114k 64.2 251M 60.7 243M
128 Variant 3 Fast 0.01 49k 6.4 25M 5.9 24M
128 Short 0.01 49k 29.5 114M 27.1 109M

Note: Timings are averaged over 10 000 measurements. The CPU clock cycles have been measured using
SUPERCOP (https://bench.cr.yp.to/supercop.html).
† We only have a proof of concept implementation with irrelevant timings.

5.4. Comparison
In this section, we compare our scheme to different code-based and post-quantum signature
schemes from the literature.

5.4.1. Comparison with Other Code-Based Signature Schemes

We extend the comparison made in Section 4.6.1 with the scheme proposed in this chapter.
We add in the comparison the work [BGKM22] which has been released just before this
scheme.

Table 5.5 compares the performance of our scheme with the current code-based signature
state of the art, for the 128-bit security level.4 We observe that our scheme outperforms all
the existing code-based signatures for the |sgn|+ |pk| metric. Depending on the parameters,
it can even produce signatures such that |sgn| + |pk| is below the symbolic cap of 10 KB.

4We did not include “Sig 3” from [BGKM22] since it is similar to [FJR21] with slight differences (message
decoding setting) which do not improve the scheme.

https://bench.cr.yp.to/supercop.html
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Table 5.5.: Comparison of our scheme with signatures from the literature (128-bit security).

Scheme Name Year |sgn| |pk| tsgn tverif

Wave 2019 2.07 K 3.2 M 300 -
Durandal - I 2018 3.97 K 14.9 K 4 5
Durandal - II 2018 4.90 K 18.2 K 5 6
LESS-FM - I 2020 15.2 K 9.77 K - -
LESS-FM - II 2020 5.25 K 206 K - -
LESS-FM - III 2020 10.39 K 11.57 K - -
[GPS22]-256 2021 24.0 K 114 - -
[GPS22]-1024 2021 19.8 K 122 - -

Chapter 4 (fast) 2021 22.6 K 96 13 12
Chapter 4 (short) 2021 16.0 K 96 62 57
[BGKM22] - Sig1 2022 23.7 K 91 - -
[BGKM22] - Sig2 2022 20.6 K 171 - -
Our scheme - Var1f 2022 15.6 K 96 - -
Our scheme - Var1s 2022 10.9 K 96 - -
Our scheme - Var2f 2022 17.0 K 97 13 13
Our scheme - Var2s 2022 11.8 K 97 64 61
Our scheme - Var3f 2022 11.5 K 144 6 6
Our scheme - Var3s 2022 8.26 K 144 30 27

Note: The sizes are in bytes and the timings are in milliseconds. Reported timings are from the original
publications: Wave has been benchmarked on a 3.5 Ghz Intel Xeon E3-1240 v5, Durandal on a 2.8 Ghz
Intel Core i5-7440HQ, while [FJR21] and our scheme on a 3.8 GHz Intel Core i7.

Regardless of the key size, Wave still achieves the shortest signatures. In terms of security,
our scheme has the advantage of relying on the hardness of one of the oldest problems of
the code-based cryptography, namely the syndrome decoding for random linear codes in
Hamming weight metric.

5.4.2. Comparison with other Post-Quantum Signature Schemes

Finally, we compare in Table 5.6 our construction with other signature schemes aiming at
post-quantum security. First of all, let us note that the lattice-based signature schemes (such
as Dilithium [BDK+21a] and Falcon [FHK+20]) are currently the most efficient post-quantum
signature schemes. They achieve small signature size and efficient running time. However,
the goal of our construction is to propose a signature scheme based on an alternative problem
for the sake of diversity of security assumptions. All the others schemes have very short
public keys and secret keys (less than 150 bytes for 128-bit security), which is hence not a
point for comparison. Depending on the chosen parameters, our scheme can be competitive
with Picnic3 [KZ20b] and an optimized variant of Picnic proposed by [KZ22] which also rely
on the MPC-in-the-Head paradigm. Like this optimized variant, we can produce signatures
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with a size of around 8 KB. However, our scheme is arguably more conservative in terms of
security since Picnic is based on the hardness of inverting LowMC [ARS+15], a cipher with
unconventional design choices, while our scheme is based on the hardness of the syndrome
decoding problem on linear codes, which has a long cryptanalysis history and is believed
to be very robust. Banquet [BDK+21b] is a signature scheme for which the security is
based on the hardness of inverting AES (instead of LowMC), which can also be argued
to be a conservative choice. Our scheme over F2 is competitive with Banquet: slightly
shorter and slightly slower (but the timing could be optimized). On the other hand, our
scheme on F256 clearly outperforms Banquet. Our scheme can also be competitive with
SPHINCS+ [BHK+19] depending on the exact criteria. For similar signature sizes, our
signature computation is significantly faster while our signature verification is significantly
slower than those of SPHINCS+.

Table 5.6.: Comparison of our scheme with signatures from the literature (128-bit security).

Scheme Name |sgn| |pk| tsgn tverif

Dilithium2 2.4 K 1.3 K 0.065 0.024
Falcon-512 0.65 K 0.88 K 0.168 0.036

SPHINCS+-128f 16.7 K 32 14 1.7
SPHINCS+-128s 7.7 K 32 239 0.7

Picnic3 12.3 K 32 5.2 4.0
Picnic4 7.8 K 32 ≈ 20 ≈ 20

Banquet (fast) 19.3 K 32 6 5
Banquet (short) 13.0 K 32 44 40

Our scheme - Var1f 15.6 K 96 - -
Our scheme - Var1s 10.9 K 96 - -
Our scheme - Var2f 17.0 K 97 13 13
Our scheme - Var2s 11.8 K 97 64 61
Our scheme - Var3f 11.5 K 144 6 6
Our scheme - Var3s 8.3 K 144 30 27

Note: The sizes are in bytes and the timings are in milliseconds. Reported timings for Falcon have been
benchmarked on a 2.3 Ghz Intel Core i5-8259U in [FHK+20], and timings for Dilithium and our scheme
have been benchmarked on a 3.8 Ghz Intel Core i7. The benchmarks of the other schemes have been realized
on a Intel Xeon W-2133 CPU at 3.60GHz, the values for SPHINCS+ and Banquet have been extracted
from [BDK+21b] while the values for Picnic3 have been extracted from its original publication [KZ20b].

5.5. Conclusion
In this chapter, we showed how we can apply the MPC-in-the-Head paradigm to code-based
cryptography. The proposed signature scheme can achieve very competitive sizes (8-9 KB for
128-bit security), which is almost half the size of the best former schemes (with the same
security assumption).

The main issue of this scheme is its computational cost. To achieve such interesting sizes,
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the running times of the signer and of the verifier are in tens of milliseconds. However, some
follow-up works propose optimizations of the scheme:

• The Return of the SDitH. C. Aguilar-Melchor, N. Gama, J. Howe, A. Hülsing, D.
Joseph, and D. Yue [AGH+23]. This work shows that we can drastically decrease the
computational cost of the MPC emulation, achieving running times below 5 milliseconds
while keeping the same signature sizes;

• Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head. T. Feneuil and M.
Rivain [FR22]. This work (presented in Chapter 8) proposes an alternative MPCitH
transformation to get a proof of knowledge from an MPC protocol. When applied to the
scheme of this chapter, the construction leads to a running time of a few milliseconds
for the signer and of less than 0.5 milliseconds for the verifier. However, the signature
size suffers from a 2-kilobyte increase (for 128-bit security).

Before the construction proposed in this chapter, the MPC-in-the-Head paradigm had been
used only on symmetric primitives (AES, LowMC, Rain, ...). Our construction demonstrates
that this paradigm can also lead to efficient schemes for other types of security assumptions.
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Chapter 6.
MPC-in-the-Head with Rejection

Before 2020, the zero-knowledge proofs for code-based cryptography were not efficient. This
state of affairs is similar for the subset sum problem. Until recently, the communication cost
for proofs relying on this problem was of few hundreds/thousands of kilobytes. In the previous
chapters, we showed that the MPC-in-the-Head paradigm enables us to build competitive
code-based schemes. In this chapter, we explore how to use the MPCitH paradigm to build
efficient zero-knowledge proofs and signature schemes for the subset sum problem. Because
of the large underlying modulus, a straightforward application of the paradigm does not give
acceptable performance. Therefore, we adapt it by using a secret sharing over small integers
(rather than with the modulus) to reduce the size of the arguments. Since this sharing may
reveal information on the secret, we introduce the idea of rejection to the MPC-in-the-head
paradigm. Special care has to be taken to balance completeness and soundness and preserve
the zero-knowledge property of our arguments. By combining this idea with two techniques
to prove that the secret vector is well made of binary coordinates, we obtain efficient zero-
knowledge proofs for the subset sum problem, enabling us to get a signature scheme relying
on the hardness of this problem. We also apply the secret sharing over small integers to build
a signature scheme relying on the security of the [BHH01] pseudo-random function.
Most of the results presented in this chapter have been published in collaboration with

Jules Maire, Matthieu Rivain and Damien Vergnaud in the proceedings of the international
conference Asiacrypt 2022 [FMRV22b].
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6.1. Introduction
Given integers w1, . . . , wn, t and q, the (modular) subset sum problem consists in finding a
subset of the wi’s that sum to t modulo q, i.e. to find bits x1, . . . , xn ∈ {0, 1} such that

n∑
i=1

xiwi = t mod q. (6.1)

More formally, an instance of this problem is built as explained in the below definition.

Definition 6.1.1 (Subset Sum Problem). Let q and n be positive integers. The subset sum
problem with parameters (q, n) is the following problem:

Let w, x and t be such that:

1. w is uniformly sampled from Fnq ,
2. x is uniformly sampled from {0, 1}n,
3. t is defined as t := ∑n

i=1wi · xi mod q.

From (w, t), find x.

This problem was shown to be NP-complete (in its natural decision variant) in 1972 by
Karp [Kar72] and was considered in cryptography as an interesting alternative to hardness
assumptions based on number theory. Due to its simplicity, it was notably used in the 1980s,
following [MH78], for the construction of several public-key encryption schemes.
Most of these proposals (if not all) were swiftly broken using lattice-based techniques

(see [Odl90]), but the problem itself remains intractable for appropriate parameters and is
even believed to be so for quantum computers. For instance, when the so-called density
d = n/ log2(q) of the subset sum instance is close to 1 (i.e. q ' 2n), the fastest known (classical
and quantum) algorithms have complexity 2O(n) (see [BBSS20] and references therein) and
one can reach an alleged security level of λ bits with n = Θ(λ). Many cryptographic
constructions were proposed whose security relies on the hardness of the subset sum problem:
pseudo-random generators [IN96], bit commitments [IN96], public-key encryption [AD97;
LPS10]

6.1.1. Prior Work

Given integers w1, w2, . . . , wn, t and q, an elegant zero-knowledge proof system due to
Shamir [Sha86] (see also [BGKW90; Sim91; Blo09]) allows a prover to convince a verifier
that she knows x1, . . . , xn ∈ {0, 1} such that Equation (6.1) holds. The proof system is
combinatorial in nature and it requires Θ(λ) rounds of communication to achieve soundness
error 2−λ where each round requires Θ(n2) bits of communication. For an alleged security
level of λ bits, the overall communication complexity of Shamir’s proof system is thus of
Θ(λ3). In [LNSW13], Ling, Nguyen, Stehlé, and Wang proposed a proof of knowledge of a
solution for the infinity norm inhomogeneous small integer solution (ISIS) problem which is
a vectorial variant of the subset sum problem. It is based on Stern’s zero-knowledge proof
of knowledge for the syndrome decoding problem [Ste94] and is also combinatorial. It thus
requires a large number of rounds of communication and when specialized to the subset sum
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problem it also yields proofs with Θ(λ3)-bit communication complexity. When instantiated
with parameters for 128-bit security, these two proofs of knowledge have a communication of
few thousands of kilobytes.
Using the MPC-in-the-head paradigm, Baum and Nof [BN20] proposed an efficient zero-

knowledge argument of knowledge of the short integer solution (SIS) problem. Beullens also
recently proposed such arguments obtained from sigma protocols with helper [Beu20]. When
applied to the subset sum problem itself, all (variants of) these protocols yield proofs with
Θ(λ3)-bit communication complexity for an alleged security level of λ bits. When instantiated
with parameters for 128-bit security, they have a communication of at least few hundreds of
kilobytes.

6.1.2. Contributions

In the MPC-in-the-head paradigm, the prover wants to convince a verifier that she knows a
pre-image x of y = f(x) for some one-way function f where the function f is represented as an
arithmetic circuit. For the subset sum problem, the function f is defined via Equation (6.1)
and it is thus natural to consider the simple inner-product arithmetic circuit defined over
Zq. The prover’s secret input is the binary vector x = (x1, . . . , xn) ∈ {0, 1}n and she has to
perform some secret-sharing of x in Zq in such a way that the shares of any unauthorized
set of parties should reveal no information about the secret. This approach has the major
disadvantage that sharing a single bit requires several elements of Zq each of size Θ(λ) bits.

We adapt the paradigm using a secret sharing scheme done directly over the integers. This
approach was already used in cryptography (e.g. for multi-party computation modulo a
shared secret modulus [CGH00]). To additively share a secret t in a given interval [−T, T ] for
T ∈ N, among N ≥ 2 parties, a dealer may pick uniformly at random t1, . . . , tN ∈ [−T2ρ, T2ρ]
under the constraint that t = t1 + · · ·+ tN (over the integers), for some parameter ρ. However,
given (N − 1) shares, t2, . . . , tN for instance, the value t1 = t− (t2 + · · · tN ) is not randomly
distributed in [−T2ρ, T2ρ] and this may reveal information on the secret t. It is thus necessary
to sample the shares in an interval sufficiently large in such a way that their distributions
for distinct secrets are statistically indistinguishable. For a security level λ, this requires
ρ = Ω(λ) and thus the additive sharing of bits involves shares of size Ω(λ). To overcome this
limitation and use additive secret sharing over small integers, we will rely on rejection. The
computation being actually simulated by the prover, they can abort the protocol whenever
the sharing leaks information on the secret vector x = (x1, . . . , xn) ∈ {0, 1}n. In some cases,
the prover cannot respond to the challenge from the verifier and must abort the protocol. A
similar idea was used for lattice-based signatures by Lyubashevsky [Lyu08; Lyu09] but using
different methods.

Our technique also allows us to overcome the second disadvantage of the previous attempts
to use the MPC-in-the-head paradigm for lattice-based problems. Using our additive secret
sharing over the integers, we can prove the knowledge of some integer vector x = (x1, . . . , xn)
satisfying Equation (6.1) (for any q) and further prove that xi ∈ {0, 1} for i ∈ {1, . . . , n}.
This is achieved by emulating a non-linear MPC operation modulo some arbitrary prime
number q′ (independent from q and much smaller than q). We also introduce another
technique to prove that the solution x = (x1, . . . , xn) indeed lies in {0, 1}n using some
masking and a cut-and-choose strategy. Both methods yield zero-knowledge proofs with
Θ(λ2)-bit communication complexity for an alleged security level of λ bits. This improvement
is not only of theoretical interest since for q ' 2256, our protocol can produce proof of size
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13KB where Shamir’s protocol [Sha86] (updated with modern tips) produces proof of size
1186KB and [LNSW13] produces proofs of size 2350KB.

Our method with the sharing over small integers is not specific to the subset sum problem
and can be interesting as soon as we must deal with small secret values in a context where
the modulus is large. As another illustration, we use our technique to construct an efficient
digital signature scheme based on a pseudo-random function due to Boneh, Halevi, and
Howgrave-Graham [BHH01].

Remark 6.1.2. In this introduction, we insisted on the fact that former zero-knowledge
proofs for the subset sum problem achieve communication in Θ(λ3) bits and, in this chapter,
we present a scheme with Θ(λ2)-bit communication. Searching to achieve communication in
Θ(λ2) is very natural. For other hard problems (syndrome decoding, multivariate quadratic,
...), all the zero-knowledge proofs with non-negligible soundness error have communication in
Θ(λ2) bits because

• the communication of a single repetition of these zero-knowledge proofs scales linearly
with the size of the problem instance, which scales itself in Θ(λ) bits,

• we need to repeat the protocol Θ(λ) times to have a λ-bit security.

6.1.3. Preliminaries

In Section 2.4.1, we defined the additive sharing scheme such that, to share a secret s, we
choose JsK1, . . . , JsKN satisfying

s = JsK1 + . . .+ JsKN .

In this chapter, we will use a slightly different definition. To share a secret s among N parties,
we choose uniformly at random JsK1, . . . , JsKN and we set a sharing offset ∆s such that

s = JsK1 + . . .+ JsKN + ∆s.

The sharing offset is a public part of the sharing that every party of the MPC protocol
knows, while the ith share JsKi is known only by the ith party. We use this slightly different
definition since ∆s will not have the same definition domain as the shares JsK1, . . . , JsKN in
this chapter.

6.2. General Idea

We consider an instance (w, t) ∈ Znq × Zq of the subset sum problem (SSP) and denote x one
solution. We have x ∈ {0, 1}n and ∑n

j=1 xj · wj = t mod q.
We want to use the MPCitH paradigm to build a zero-knowledge protocol that proves

the knowledge of a solution for the instance (w, t). To proceed, we need to build an MPC
protocol taking as inputs shares of the secret x, and possibly shares of other data, and which
outputs Accept when x is a valid solution of the SSP instance. As a first ingredient, we
need a method to share the secret x between the different parties.
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6.2.1. The Naive Approach
The SSP instance is defined on Zq, so a natural sharing of x would be defined as:{

JxKi ← (Zq)n for all i ∈ [1 : N ],
∆x← x−

∑N
i=1JxKi mod q .

In the MPCitH paradigm with additive sharings (c.f. Section 3.1.2.2), the communication
cost induced by a sharing is the cost to send the sharing offset, i.e. the vector ∆x. Here, the
natural sharing of x costs

n · log2(q) bits.
If we take n = 256 and q = 2256, the cost is about 216 bits = 8 KB. To achieve a soundness
error of 2−128 with N = 256, we need to repeat the protocol at least 16 times, so the
communication cost of the protocol would be already more than 128 KB for the sole sharing
of x (some communication being further required for the MPCitH protocol). Asymptotically,
the parameters for the subset sum problem are chosen such that n = Θ(λ) and log2 q = Θ(λ),
the communication cost of this sharing is thus about Θ(λ2) bytes per protocol repetition.
Since we need to repeat the protocol about Θ(λ) times to achieve a 2−λ soundness error the
global communication cost is then of at least Θ(λ3) (for the sharing only).
We present hereafter an alternative strategy for the sharing of x, which achieves better

practical and asymptotic communication costs.

6.2.2. Sharing on the Integers and Opening with Abort
We propose another way to share the secret x to achieve lower communication. We know
that x is a binary vector (i.e. x ∈ {0, 1}n), so instead of the natural sharing, we suggest to
use a sharing defined on the integers, that is{

JxKi ← {0, . . . , A− 1}n for all i ∈ [1 : N ],
∆x← x−

∑N
i=1JxKi

with A some positive constant. However, this sharing leaks information about the secret x.
The distribution ∆xj is not the same depending on whether xj = 0 or xj = 1 as illustrated
on Figure 6.1. To solve this issue, the prover must abort the protocol in some cases.

To see how this leakage can be effectively exploited to (partly) recover x, let us recall that
at the end of the protocol, the verifier shall ask the prover to open the views of all parties
except one. Let us denote i∗ the index of the unopened party. It means the verifier will have
access to

{JxKi}i 6=i∗ and ∆x .
For the sake of simplicity, let us first consider the case n = 1, i.e. x ∈ {0, 1} and JxK is the
sharing of a single integer. With the opened values, the verifier can compute

x− JxKi∗ as ∆x+
∑
i 6=i∗

JxKi .

Now let us denote Y = x− JxKi∗ the underlying random variable over the uniform random
sampling of JxKi∗ . We have

Pr(Y = −A+ 1) =
{ 1
A if x = 0
0 if x = 1

and Pr(Y = 1) =
{

0 if x = 0
1
A if x = 1
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Figure 6.1.: Probability mass function of ∆xj when xj = 0 and when xj = 1 (on the left)
and of ∆xj with abort (on the right), for N = 3 and A = 9.

while
Pr(Y = y) = 1

A
for every y ∈ {−A+ 2, . . . , 0} .

So by observing x−JxKi∗ = −A+1 one learns (x, JxKi∗) = (0,−A+1). Similarly, by observing
x − JxKi∗ = 1 one learns (x, JxKi∗) = (1, 0). To avoid this flaw, the prover must abort the
protocol before revealing {JxKi}i 6=i∗ and ∆x whenever one of these two cases occurs. This
notably implies that ∆x must not be revealed before receiving the challenge i∗, but it should
still be committed beforehand in order to ensure the soundness of the protocol. Doing so, we
modify the distribution of the revealed sharing offset which does not leak any information
about x anymore as illustrated in Figure 6.1, and the probability to abort does not leak
information about x since it is 1/A in the both cases (x = 0 and x = 1).
Let us now come back to the general case of n ≥ 1. The prover applies the above abort

strategy for all the coordinates of x, namely

• if there exists j ∈ [n] such that xj = 0 and JxjKi∗ = A− 1, the prover aborts;

• if there exists j ∈ [n] such that xj = 1 and JxjKi∗ = 0, the prover aborts;

• otherwise the prover proceeds.

The probability to abort, which we call rejection rate, is

1−
(

1− 1
A

)n
≤ n

A
.

We note that the rejection rate can be tightly approximated by the n/A upper bound when
A is sufficiently large. In order to achieve a small (constant) rejection rate, we should hence
choose A greater than n. Asymptotically, we then have A = Θ(n) = Θ(λ), which represents
an exponential improvement compared to q = 2Θ(λ).

Let us now analyze the computation cost of our strategy for sharing x. Let us assume that
the verifier chose i∗ and there was no rejection. Then, the prover needs to reveal ∆x (to
enable the verifier to re-emulate the MPC protocol). ∆xj belongs to {−N · (A−1)+1, . . . , 0},
therefore sending the sharing offset ∆x would cost n · log2(N · (A− 1)) bits. However, the
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prover can save communication by sending x − JxKi∗ instead, which is strictly equivalent
in terms of revealed information by the relation x − JxKi∗ = ∆x + ∑

i 6=i∗JxKi. Since each
coordinate of x− JxKi∗ is uniformly distributed over {−A+ 2, . . . , 0}, sending it only costs

n · log2(A− 1) bits.

With x− JxKi∗ , the verifier can recover ∆x by computing ∆x = (x− JxKi∗)−
∑
i 6=i∗JxKi. The

cost of this sharing has the advantage of being independent of the modulus q on which the
SSP instance is defined. The value of A will be chosen according to the desired trade-off
between communication cost and rejection rate. If n = 256 and A = 216, we have a cost
of 0.5 KB for a rejection rate of 0.0038, which is much better than the 8 KB of the naive
approach.

Let us remark that adding an abort event does not impact the soundness of the protocol. A
malicious prover can abort as many times she wants claiming that it would leak information,
but an abort does not help to convince the verifier. The soundness theorem will state that
someone who does not know the secret can only answer with a probability smaller than
the constant value called soundness error, and adding an abort event cannot increase this
probability. The prover could sample a random party i′ and give to i′ a wrong share and she
may indeed decide to abort if the verifier challenge is not i′, but this does not change the
fact that the probability for the prover to convince the verifier is the probability that the
prover guesses the verifier’s challenge a priori.

Now that we have defined the sharing of x, we need to demonstrate two properties of the
shared SSP instance through multi-party computation. The first one is the SSP relation
which in the shared setting translates to

n∑
j=1

JxjK · wj = JtK mod q

for a sharing JtK of t. The linearity of this relation makes it easy to deal with: the share JtKi
can simply be computed as JtKi := ∑n

j=1JxjKi ·wj mod q and committed to the verifier by the
ith party. The verifier can then check that the opened parties have correctly computed their
shares JtKi and that the relation ∑N

i=1JtKi = JtK mod q well holds. The second property which
must be demonstrated through multi-party computation is that the solution x corresponding
to the sharing JxK is a binary vector. This is not a priori guaranteed to the verifier since the
shares of the coordinate of x are defined over {0, . . . , A− 1} and the correctness of the linear
relation does not imply that x is indeed binary. We present two different solutions to this
issue in the following.

6.2.3. Binarity Proof from Batch Product Verification
Our first solution to prove that the vector x is binary relies on standard MPC-in-the-Head
techniques by checking the relation

x ◦ (x− 1) = 0

where ◦ denotes the coordinate-wise product, 0 and 1 are to be interpreted as the all-0 and
all-1 vectors. It consists in checking n multiplication triples, and so we can use one of the
two multiplication verification protocols described in Section 3.4.1:
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• the sacrificing-based verification [LN17; BN20; KZ22], or

• the polynomial-based verification [BDK+21b; FJR22b; KZ22].

However, we can do better than a straight application of those techniques.
The relation x ◦ (x− 1) = 0 is defined in Zq and the above protocols imply to send at least

one field element per product1, that is n elements from Zq. To save communication and since
the sharing JxK is defined on the integers, we can work on a smaller field. We previously
explained that the verifier receives {JxKi}i 6=i∗ and ∆x from the prover, so she can check that,
for all j ∈ [n],

−A+ 2 ≤ xj − JxjKi∗ ≤ 0 .

She further trusts JxjKi∗ ∈ {0, . . . , A− 1} (which is verified for the open parties). Thus the
verifier can deduce that, for all j ∈ [n],

−A+ 2 ≤ xj ≤ A− 1 . (6.2)

Let q′ be a prime such that q′ ≥ A. If the prover convinces the verifier that xj(xj − 1) =
0 mod q′, then the latter deduces that xj ∈ {0, 1} because

q′|xj(xj − 1) ⇒ (q′|xj) or (q′|xj − 1)
⇒ (xj = 0) or (xj = 1) by Equation (6.2).

So, the prover just needs to prove x ◦ (x− 1) = 0 mod q′ for some prime q′ such that q′ ≥ A.
To this purpose, we apply one of the two batch product verifications.

Using sacrificing-based verification. The prover first samples a ∈ (Zq′)n with its sharing

JaKi ← (Zq′)n for i ∈ [1 : N ] .

The value a is hence defined as a uniform random element of (Zq′)n and no sharing offset ∆a
is necessary (∆a := 0). The prover then computes c = 〈a, x〉 and its sharing as{

JcKi ← Zq′ for all i ∈ [1 : N ],
∆c← c−

∑N
i=1JcKi mod q′.

The prover gives the shares of x, a and c as input to the parties and runs the following MPC
protocol:

1. the parties get a random challenge ε ∈ (Zq′)n from the verifier;
2. the parties locally set JαK = ε ◦ (1− JxK) + JaK, where ◦ denotes the coordinate-wise

product;
3. the parties open JαK to get α;
4. the parties locally set JvK = 〈α, JxK〉 − JcK;
5. the parties open JvK to get v;
6. the parties accept iff v = 0.

1assuming that the MPC protocol asks the verifier for randomness only once
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Besides the input shares and commitments, the prover-to-verifier communication cost of
the corresponding MPCitH zero-knowledge protocol only results from the size of JαKi∗ (the
broadcasted vector of the unopened party i∗), which is of around

n · log2(q′) bits.

We stress that the prover does not need to send JvKi∗ because the verifier knows that v must
be zero and will deduce JvKi∗ = −∆v −∑i 6=i∗JvKi.
The sacrificing-based multiplication verification produces false positives with probability

1/q′. Thus the soundness error of the obtained zero-knowledge protocol is

1−
(
1− 1

N

)(
1− 1

q′

)
≈ 1
N

+ 1
q′
.

On the other hand, the resulting protocol has a rejection rate of 1− (1− 1
A)n and a prover-

to-verifier communication cost (in bits) of

2 · (2λ) + n · log2(A− 1)︸ ︷︷ ︸
x−JxKi∗

+n · log2(q′)︸ ︷︷ ︸
∆α

+ log2(q′)︸ ︷︷ ︸
∆c

+λ log2N + 2λ .

Using polynomial-based verification. Let us consider some distinct public points
γ1, . . . , γn ∈ Fq′ and an additional scheme parameter ν. The prover first computes the degree-
(n− 1) polynomial S by interpolation such that S(γi) = xi for all i. Since x ◦ (x− 1) = 0, we
have that there exists a degree-(n− 2) polynomial P such that

S(X) · (S(X)− 1) = P (X) ·
n∏
i=1

(X − γi). (6.3)

The prover computes this polynomial P with its sharing JP K. The prover also samples
a ∈ (Zq′ν ) with its sharing JaK. The value is defined as a uniform random element of (Zq′ν ),
so no sharing offset ∆a is necessary. The prover then computes c = a2 and its sharing JcK.

The prover gives the shares of x, P , a and c as input to the parties and runs the following
MPC protocol:

1. the parties get random challenges r, ε ∈ (Zq′ν )n from the verifier;
2. the parties locally compute JSK by interpolation:

JSK =
n∑
i=1

JxiK
n∏

j=1,j 6=i

(
X − γj
γi − γj

)

3. the parties locally set JS(r)K = JSK(r) and JP (r)K = JP K(r)
4. the parties locally set JαK = ε · JS(r)K + JaK;
5. the parties open JαK to get α;
6. the parties locally set

JvK = ε2 ·
(

JP (r)K ·
n∏
i=1

(r − γi) + JS(r)K
)
− α · (ε · JS(r)K− JaK)− JcK;
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7. the parties open JvK to get v;
8. the parties accept iff v = 0.

The polynomial-based multiplication verification produces false positives with probability

2n− 1
q′ν︸ ︷︷ ︸

false positive
from Schwartz-Zippel

+
(

1− 2n− 1
q′ν

)
· 2

q′ν︸︷︷︸
false positive
from [BN20]

.

Thus the soundness error of the obtained zero-knowledge protocol is

1−
(

1− 1
N

)(
1− 2n− 1

q′ν

)(
1− 2

q′ν

)
≈ 1
N

+ 2n+ 1
q′ν

.

On the other hand, the protocol has a rejection rate of 1− (1− 1
A)n and a prover-to-verifier

communication cost (in bits) of

2 · (2λ) + n · log2(A− 1)︸ ︷︷ ︸
x−JxKi∗

+ (n− 1) · log2(q′)︸ ︷︷ ︸
∆P

+ ν · log2(q′)︸ ︷︷ ︸
∆α

+ ν · log2(q′)︸ ︷︷ ︸
∆c

+λ log2N + 2λ .

Comparison between both multiplication checking MPC protocols. In a context
where the false positive rate just needs to be negligible compared to 1

N , the sacrificing-based
approach will provide better results: it leads to slighly smaller sizes and a much simpler
implementation (it does not require interpolation). In a context where the false positive
rate must be close to the security level, the polynomial-based approach will be better: it
can achieve very small false positive rate by increasing ν without degrading too much the
communication (with the sacrificing-based approach, it would require to take a larger q′ but
it directly impacts the obtained sizes). So in practice,

• when we want to build an interactive proof of knowledge, we should consider the
sacrificing-based verification;

• when we want to build a non-interactive argument (e.g. a signature scheme), we should
consider the polynomial-based verification.

6.2.4. Binarity Proof from Masking and Cut-and-Choose Strategy
Our second solution to prove that JxK encodes a binary vector relies on a masking of x and
a cut-and-choose strategy (see Section 3.3.1). The idea is to generate a random vector r
from {0, 1}n and to apply the sharing described in Section 6.2.2 to r. In addition, the prover
computes (and commits) x̃ := x⊕r ∈ {0, 1}n where ⊕ represents the XOR operation. Instead
of giving the shares JxK of x as inputs of the MPC protocol, the idea is now to send the
shares JrK of r. Then using x̃, the parties can locally deduce a sharing of x as

JxK = (1− x̃) ◦ JrK + x̃ ◦ (1− JrK)

which is a linear relation in JrK, and the verifier can further deduce the sharing offset ∆x
from ∆r as

∆x = (1− x̃) ◦∆r + x̃ ◦ (1−∆r) .
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By replacing JxK with JrK the parties’ input is made independent of the secret. The interest
of doing so is to enable a cut-and-choose strategy to prove that JrK encodes a binary vector,
which in turns implies that x = x̃⊕r is a binary vector. More precisely, at the beginning of the
zero-knowledge protocol, the prover produces M binary vectors r[`] and their corresponding
shares Jr[`]K (in practice these vectors and their sharings are pseudo-randomly derived from
some seeds). Then the prover commits those sharings Jr[`]K as well as the corresponding
masked vectors x̃[`] := x⊕ r[`]. Then the verifier asks to open all the sharings r[`] except one
and checks that they correspond to binary vectors. The verifier will hence trust that the
unopened sharing encodes also a binary vector with a soundness error of 1/M . We stress
that all the values x̃[`] for which r[`] is opened must remain hidden (otherwise x could be
readily recovered). The obtained zero-knowledge protocol has a soundness error of

max
{ 1
M
,

1
N

}
,

a rejection rate of 1− (1− 1
A)n and a prover-to-verifier communication cost (in bits) of

2 · (2λ) + λ log2M︸ ︷︷ ︸
Cost of C&C

+n · log2(A− 1)︸ ︷︷ ︸
r−JrKi∗

+ n︸︷︷︸
x̃

+λ log2N + 2λ .

6.2.5. Asymptotic Analysis

We analyze hereafter the asymptotic complexity of the two variants of our protocol. We show
that for a security parameter λ both variants have an asymptotic communication cost of
Θ(λ2) and an asymptotic computation time of Θ(λ4).

For the binarity proof based on masking and cut-and-choose, we assume M = N (which is
optimal for the communication cost given the soundness error). For the other parameters, let
us recall that

• for a security parameter λ, one must take n ≈ log2 q = Θ(λ),

• the prime q′ can be chosen as the smallest prime greater than A, which implies q′ ≈ A.

For both variants, the asymptotic communication cost for one repetition of the protocol is
then of

Θ(λ log2A+ λ log2N) .

Since each repetition has a soundness error of Θ(1/N), the protocol must be repeated
τ = Θ(λ/log2N) times to reach a global soundness error of 2−λ. The probability that any of
these τ repetitions aborts is given by

1−
(

1− 1
A

)n·τ
≈ n · τ

A

where the approximation is tight when A is sufficiently large. Thus for a small constant
rejection probability, one must take A = Θ(n · τ) = Θ(λ2/ log2N). We have a communication
cost for the τ iterations in

Θ
(
λ2 log2A

log2N
+ λ2

)
= Θ

(
λ2

log2N
log2

( λ2

log2N

)
+ λ2

)
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and we hence obtain a minimal asymptotic communication cost of Θ(λ2) by taking N = Θ(λ).
The asymptotic computation time for one repetition of the protocol is of Θ(Nn(log2 q)(log2A)),

where the term (log2 q)(log2A) arises from the complexity of the multiplication between an
element of Zq and a value smaller than A. We hence get a computation time of Θ(λ3 log2 λ)
per repetition which makes Θ(λ4) for τ repetitions.

6.3. Protocols and Security Proofs
In this section, we formally describe our two protocols and state their security. We further
introduce a method to decrease the rejection rate.

6.3.1. Protocol with Batch Product Verification

Protocol description. In Section 6.2.3, we proposed two MPC protocols that proves that
the sharing JxK encodes a binary vector. We then add the checking of the linear relation
as described in Section 6.2.2 and we transform the multi-party computation into a zero-
knowledge protocol which proves the knowledge of a solution of an SSP instance. We give the
formal description of our protocol in Protocol 7: the instructions in blue correspond to those
of the sacrificing-based verification, while the instructions in orange correspond to those of
the polynomial-based verification. The protocol makes use of a pseudo-random generator
PRG, a GGM tree as puncturable PRF, two collision-resistant hash functions Hashi for
i ∈ {1, 2} and a commitment scheme (Com,Verif).
Security proofs. The following theorems state the completeness, zero-knowledge and
soundness of Protocol 7. We refer the reader to [FMRV22a] for the proofs of Theorems 6.3.1,
6.3.2 and 6.3.3.

Theorem 6.3.1 (Completeness). A prover P who knows a solution x to the subset sum
instance (w, t) ∈ Znq × Zq and who follows the steps of Protocol 7 convinces the verifier V
with probability (

1− 1
A

)n
.

Theorem 6.3.2 (Zero-Knowledge). Let the PRG used in Protocol 7 be (t, εPRG)-secure and
the commitment scheme Com be (t, εCom)-hiding. There exists an efficient simulator S which
outputs a transcript which is (t, εPRG + εCom)-indistinguishable from a real transcript of
Protocol 7.

Theorem 6.3.3 (Soundness). Suppose that there is an efficient prover P̃ that, on input
(w, t), convinces the honest verifier V on input H, y to accept with probability

ε̃ := Pr[〈P̃(w, t),V(w, t)〉 = 1] > ε

for a soundness error ε equal to
p+ 1

N
− p · 1

N
,

with

• p is equal to 1
q′ when relying on the sacrificing-based verification,
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Prover P Verifier V
x ∈ {0, 1}n
w ∈ Znq , t = 〈w, x〉 w, t

mseed $←− {0, 1}λ
Compute parties’ seeds

(seed1, ρ1), . . . , (seedN , ρN )
with TreePRG(mseed)

For each party i ∈ {1, . . . , N}:
JaKi, JxKi, JcKi ← PRG(seedi) . a ∈ Znq′ , c ∈ Zq′ , JxKi ∈ {0, . . . , A− 1}n
JaKi, JP Ki, JxKi, JcKi ← PRG(seedi) . a ∈ Zq′ν , P ∈ Zq′ [X]<n−1 ,
comi = Com(seedi; ρi) c ∈ Zq′ , JxKi ∈ {0, . . . , A− 1}n

∆x = x−
∑
iJxKi

∆c = 〈a, x〉 −∑iJcKi
∆c = a2 −

∑
iJcKi

Compute P as in Equation (6.3)
∆P = P −

∑
iJP Ki

h = Hash1(∆x,∆P,∆c, com1, . . . , comN )
h−−−−−−−−−−−−→

ε
$←− Znq′

ε←−−−−−−−−−−−−
The parties locally set JtK = 〈w, JxK〉. . t ∈ Zq
The parties run the MPC protocol. . computation in Zq′
h′ = Hash2(JtK, JαK, JvK)

h′−−−−−−−−−−−−→
i∗

$←− {1, . . . , N}
i∗←−−−−−−−−−−−−

If there exists j ∈ [n] such that:
- either JxjKi∗ = 0 with xj = 1
- or JxjKi∗ = A− 1 with xj = 0,

then abort.
y = x− JxKi∗

(seedi, ρi)i 6=i∗ , comi∗ ,
y, ∆P, ∆c, α
−−−−−−−−−−−−→

For all i 6= i∗,
JaKi, JxKi, JcKi ← PRG(seedi)
JaKi, JP Ki, JxKi, JcKi ← PRG(seedi)

∆x = y −
∑
i 6=i∗JxKi

∆α = ε · (1−∆x)
∆S(r) = ∑

i ∆xi
∏
j 6=i

(
r−γj
γi−γj

)
∆α = ε ·∆S(r)
For all i 6= i∗,

Rerun the party i as the prover
and compute the commitment comi.

∆t = 〈w,∆x〉
∆v = 〈α,∆x〉 −∆c
∆v = ε2((∆P )(r)∏i(r − γi) + ∆S(r))

−α · ε ·∆S(r)−∆c
JαKi∗ = α−

∑
i 6=i∗JαKi

JtKi∗ = t−∆t−∑i 6=i∗JtKi
JvKi∗ = −∆v −∑i 6=i∗JvKi
Check h = Hash1(∆x,∆c, com1, . . . , comN )
Check h′ = Hash2(JtK, JαK, JvK)
Return Success

Protocol 7: Zero-knowledge argument for Subset Sum Problem via MPC-in-the-head with
rejection, using batch product verification to prove binarity (using sacrificing-
based verification in blue, using polynomial-based verification in orange).
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• p is equal to 2n−1
q′ν + (1− 2n−1

q′ν ) 2
q′ν when relying on the polynomial-based verification.

Then, there exists an efficient probabilistic extraction algorithm E that, given rewindable
black-box access to P̃, produces either a witness x such that t = 〈w, x〉 and x ∈ {0, 1}n, or a
commitment collision, by making an average number of calls to P̃ which is upper bounded by

4
ε̃− ε

·
(

1 + ε̃ · 2 · ln(2)
ε̃− ε

)
.

Proof size. To achieve a targeted soundness error 2−λ, we can perform τ parallel executions
of the protocol such that ετ ≤ 2−λ. Such parallel repetition does not preserve (general)
zero-knowledge and the resulting scheme achieves honest verifier zero knowledge. And instead
of sending τ values for h and h′, the prover can merge them together to send a single h and
a single h′. Moreover, instead of sending the N − 1 seeds and commitment randomness of
(seedi, ρi)i 6=i∗ for each execution, we can send the sibling path from (seedi∗ , ρi∗) to the tree
root in the GGM tree, it costs at most λ · log2(N) bits (we need to reveal log2(N) nodes of
the tree) by execution. The communication cost (in bits) of the protocol with τ repetitions
is (with ν = 1 when considering the sacrificing-based polynomial)

Size = 4λ+ τ ·
[
n · (log2(A− 1) + log2(q′)) + (2ν − 1) log2(q′) + λ log2N + 2λ

]
while the soundness error and rejection rate scale as(

p+ 1
N
− p · 1

N

)τ
and 1−

(
1− 1

A

)τ ·n
respectively, with p defined as in Theorem 6.3.3. Let us stress that the obtained size is
independent of the modulus q (and of the size of the integers {wj}, t).

6.3.2. Protocol with Cut-and-Choose Strategy

Protocol description. As described in Section 6.2.4, we can also use a cut-and-choose
strategy to prove that the vector JxK is binary. It is possible since we can remplace the input
JxK of the multi-party computation by a sharing JrK independent of the secret, where r is
a mask uniformly sampled in {0, 1}n. To achieve a targeted soundness error 2−λ, we can
perform τ parallel executions of the protocol such that ετ ≤ 2−λ. Like [KKW18], instead
of performing τ independent cut-and-choose phases each resulting in trusting one sharing
JrK among M , we can perform a global cut-and-choose phase resulting in τ trusted sharings
JrK among a larger M (see [KKW18] for more details). We give the formal description of
this zero-knowledge protocol in Protocol 8. The protocol makes use of a pseudo-random
generator PRG, a GGM tree as puncturable PRF, four collision-resistant hash functions
Hashi for i ∈ {1, 2, 3, 4} and a commitment scheme (Com,Verif).
Security proofs. The following theorems state the completeness, zero-knowledge and
soundness of Protocol 8. We refer the reader to [FMRV22a] for the proofs of Theorems 6.3.4,
6.3.5 and 6.3.6.
Theorem 6.3.4 (Completeness). A prover P who knows a solution x to the subset sum
instance (w, t) ∈ Znq × Zq and who follows the steps of Protocol 8 convinces the verifier V
with probability (

1− 1
A

)τ ·n
.
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Prover P Verifier V
x ∈ {0, 1}n
w ∈ Znq , t = 〈w, x〉 w, t

mseed[0] ← {0, 1}λ
(mseed[e])e∈[M ] ← TreePRG(mseed[0])
For each e ∈ {1, . . . ,M}:
r[e] ← PRG(mseed[e]) . r[e] ∈ {0, 1}n

(seed[e]
i , ρ

[e]
i )i∈[1:N ] ← TreePRG(mseed[e])

For each i ∈ {1, . . . , N}:
Jr[e]Ki ← PRG(seed[e]

i ) . Jr[e]Ki ∈ {0, . . . , A− 1}n

com[e]
i = Com(seed[e]

i ; ρ[e]
i )

∆r[e] = r[e] −
∑
iJr[e]Ki

he = Hash1(∆r[e], com[e]
1 , . . . , com[e]

n )
h = Hash2(h1, . . . , hM )

h−−−−−−−−−−−−→
J ← {J ⊂ [M ] ; |J | = τ}

J←−−−−−−−−−−−−

For each e ∈ J :
x̃[e] = x⊕ r[e] . ⊕ is the XOR operation (x̃ ∈ {0, 1}n)
The parties locally set

Jx[e]K = (1− x̃[e]) ◦ Jr[e]K
+x̃[e] ◦ (1− Jr[e]K)

and they set Jt[e]K = 〈w, Jx[e]K〉.
h′e = Hash3(x̃[e], Jt[e]K)

h′ = Hash4((h′e)e∈J)
h′, (mseed[e])e∈[M ]\J−−−−−−−−−−−−→

L = {`e}e∈J ← {1, . . . , N}τ
L←−−−−−−−−−−−−

If there exists (e, j) ∈ J × [n] such that:
- either Jr[e]

j K`e = 0 with r[e]
j = 1

- or Jr[e]
j K`e = A− 1 with r[e]

j = 0,
then abort.

y = r[e] − Jr[e]K`e (
(seed[e]

i , ρ
[e]
i )i 6=`e

y, x̃[e], com[e]
`e

)
e∈J−−−−−−−−−−−−→

For each e 6∈ J :
Compute he using mseed[e]

For each e ∈ J :
For all i 6= `e

com[e]
i = Com(seed[e]

i ; ρ[e]
i )

Rerun the party i
as the prover to get Jt[e]Ki

∆r[e] = y −
∑
i 6=`eJr

[e]K
he = Hash1(∆r[e], com[e]

1 , . . . , com[e]
n )

From ∆r[e], deduce ∆t[e].
Jt[e]K = t−∆t[e] −∑i 6=`eJt

[e]Ki
h′e = Hash3(x̃[e], Jt[e]K)

Check h = Hash2(h1, . . . , hM )
Check h′ = Hash4((h′e)e∈J)
Return Success

Protocol 8: Zero-knowledge argument for Subset Sum Problem via MPC-in-the-head with
rejection, using cut-and-choose strategy to prove binarity.
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Theorem 6.3.5 (Honest-Verifier Zero-Knowledge). Let the PRG used in Protocol 8 be
(t, εPRG)-secure and the commitment scheme Com be (t, εCom)-hiding. There exists an efficient
simulator S which, given random challenges J and L outputs a transcript which is (t, τ ·
εPRG + τ · εCom)-indistinguishable from a real transcript of Protocol 8.

Theorem 6.3.6 (Soundness). Suppose that there is an efficient prover P̃ that, on input
(w, t), convinces the honest verifier V on input H, y to accept with probability

ε̃ := Pr[〈P̃(w, t),V(w, t)〉 = 1] > ε

for a soundness error ε equal to

max
M−τ≤k≤M

{ ( k
M−τ

)( M
M−τ

)
·Nk−M+τ

}
.

Then, there exists an efficient probabilistic extraction algorithm E that, given rewindable
black-box access to P̃, produces either a witness x such that t = 〈w, x〉 and x ∈ {0, 1}n, or a
commitment collision, by making an average number of calls to P̃ which is upper bounded by

4
ε̃− ε

·
(

1 + ε̃ · 8 ·M
ε̃− ε

)
.

Proof size. Let us recall that the couples (seedi, ρi) are sampled using a GGM seed tree,
sending (seed[e]

i , ρ
[e]
i )i 6=`e costs at most λ · log2(N) bits by iteration. The communication cost

(in bits) of the protocol is then

Size = 4λ+ λ · τ · log2
M

τ
+ τ · [n · log2(A− 1) + n+ λ log2N + 2λ] .

Here again, the obtained size is independent of the modulus q (and of the size of the integers
{wj}, t).

6.3.3. Decreasing the Rejection Rate

The two above protocols have a rejection rate around τn/A which implies that we must
take A = Θ(τn) to obtain a constant (small) rejection rate. In practice, this results in a
significant increase in the communication cost. Let us for instance consider Protocol 7 with
(τ,N,A) = (16, 280, 213) using (n, q) = (256, q256). For this setting, the proof size is about
15.6 KB for a rejection rate of 0.394. If we want a rejection rate below 0.003 (by increasing
A), we should take A = 221 and the proof size would be 23.6 KB.

A better strategy consists in allowing the prover to abort a few of the τ iterations. Let us
assume that the verifier accepts the proof if the prover can answer to τ − η challenges among
the τ iterations. This slightly increases the soundness error, but it can also significantly
decrease the global rejection rate. If we denote prej the probability that an iteration aborts,
then the global rejection rate of this strategy is given by

1−
η∑
i=0

(
τ

i

)
· (1− prej)τ−i · pirej . (6.4)
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At the same time, the soundness error for Protocol 7 becomes
η∑
i=0

(
τ

i

)
· (1− ε)i · ετ−i

where ε = 1
N + p− p · 1

N is the soundness error of a single iteration. Using this strategy with
τ = 20 and η = 3, the proof size is of 16.7 KB for a rejection rate of 0.003 (instead of 23.6
KB with the naive strategy).
The same strategy also applies to Protocol 8. The rejection rate is also given by Equa-

tion Equation (6.4) while the soundness error becomes

max
M−τ≤k≤M

{( k
M−τ

)( M
M−τ

) · η∑
i=0

[(
k −M + τ

i

)(
1− 1

N

)i ( 1
N

)k−M+τ−i
]}

.

In any case, the prover always answers to at most τ − η challenges of the verifier (even
if the prover aborts less than η among the τ iterations) so that the communication cost is
roughly that of τ − η iterations. Additionally, for each unanswered challenge, the prover must
further send two hash digests to enable the verifier to recompute and check h and h′. Thus
the new proof size (in bits) for Protocol 7 is

Sizeη = 4λ+η ·4λ+(τ−η)·
[
n · (log2(A− 1) + log2(q′)) + (2ν − 1) log2(q′) + λ log2N + 2λ

]
,

while the new proof size (in bits) for Protocol 8 is

Sizeη = 4λ+ η · 4λ+ λ · τ · log2
M

τ
+ (τ − η) · [n · log2(A− 1) + n+ λ log2N + 2λ] .

We note that in practice, given a target security level and a target rejection probability, one
needs to use a slightly increased τ (or N) to compensate for the loss in terms of soundness.
While this shall slightly increase the proof size, the above approach (with η > 0) still provides
better trade-offs than the original approach (η = 0).

6.4. Instantiations and Performance
6.4.1. Subset Sum Instances
We recall in this section known techniques to solve the modular subset sum problem (SSP)
defined by Equation (6.1). It is well-known that the hardness of an SSP instance depends
greatly on its density defined as d = n/ log2 q. If the SSP instance is too sparse (e.g. d < 1/n)
or too dense (e.g. d > n/ log2 n) then the problem can be solved in polynomial time (see
e.g. [CJL+92] and references therein). We shall therefore only consider SSP instances with
density d ' 1 (i.e. q ' 2n) which are arguably the hardest ones [IN96].

In this case, simple algorithms exist based on brute force enumeration at O(2n) time and
constant space, or time-space tradeoff [HS74] with O(2n/2) time and space complexities.
The first non-trivial algorithm was published by Schroeppel and Shamir [SS81] with time
complexity O(2n/2) and space complexity O(2n/4). Later, faster algorithms were proposed
with similar time and space complexities, e.g. Õ(20.337n) by Howgrave-Graham and Joux
[HJ10] and Õ(20.283n) by Bonnetain, Bricout, Schrottenloher and Shen [BBSS20]. The latter
algorithms neglect the cost to access an exponential memory but even with this optimistic
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assumption, for n = 256, all known algorithms require at least a time complexity lower-
bounded by 2128 operations or memory of size at least 272 bits. There also exists a vast
literature on quantum algorithms for solving the SSP (see [BBSS20] and references therein).
The best (heuristic) quantum complexity from [BBSS20] has time complexity Õ(20.216n) and
thus requires about 264 quantum operations and quantum memory for n = 256. In the
following, we, therefore, consider the efficiency of our protocols for n = 256.

6.4.2. Zero Knowledge Protocols
Let us consider the subset sum problem with n = 256. We propose in Table 6.1 several sets
of parameters for our two protocols which target a security of 128 bits. We provide two kinds
of instantiations to give the reader an idea of the obtained performance while changing the
number of parties. The first ones correspond to instantiations with fast computation. The
second ones correspond to instantiations that achieve smaller communication costs but slower
computation. For each setting, we suggest two parameter sets: one achieving a rejection rate
around 0.4 and the other one achieving a rejection rate between 0.001 and 0.004.

Table 6.1.: Comparison of state-of-the-art zero-knowledge protocols for proving the knowledge
of an SSP instance (with n = 256 and q ≈ 2256).

Protocol Parameters Proof size Rej. rate
τ η N A M ν

Shamir [Sha86] 219 - - - - - 1186 KB -
[LNSW13] 219 - - - - - 2350 KB -

Beullens [Beu20] 14 - 1024 - 4040 - 122 KB -
Prot. 7 (batching sacr.) 26 0 32 214 - - 25.7 KB 0.334
Prot. 7 (batching sacr.) 31 3 32 214 - - 27.9 KB 0.001
Prot. 7 (batching poly.) 26 0 32 214 - 2 25.8 KB 0.334
Prot. 7 (batching poly.) 31 3 32 214 - 2 28.0 KB 0.001

Prot. 8 (C&C) 27 0 32 214 462 - 17.4 KB 0.344
Prot. 8 (C&C) 33 3 32 214 470 - 19.6 KB 0.002

Prot. 7 (batching sacr.) 17 0 256 213 - - 16.6 KB 0.412
Prot. 7 (batching sacr.) 21 3 256 213 - - 17.7 KB 0.004
Prot. 7 (batching poly.) 17 0 256 213 - 2 16.6 KB 0.412
Prot. 7 (batching poly.) 21 3 256 213 - 2 17.8 KB 0.004

Prot. 8 (C&C) 19 0 256 213 954 - 13.0 KB 0.448
Prot. 8 (C&C) 24 3 256 214 952 - 15.4 KB 0.001

We provide in Table 6.1 the performance of the other zero-knowledge protocols proving the
knowledge of an SSP solution. The only other protocol designed for the subset sum problem
is Shamir’s one [Sha86]. We can also compare these protocols with [LNSW13] which is an
adaptation of Stern’s protocol to the ISIS (inhomogeneous short integer solution) problem.
The remaining articles in the literature about proofs for the ISIS problem are restricted to
the case where the modulus q is prime. We add Beullens’ protocol [Beu20] for ISIS with
prime q to the comparison.
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6.4.3. Signature Schemes with Subset Sum Problem
For each of our two protocols, we explain how to apply the Fiat-Shamir transform [FS87] to
get signature schemes.
Signature from Protocol 7. We compute the challenges {ε[e]}e∈[τ ] and {i∗[e]}e∈[τ ] for τ
executions as:

{ε[e]}e∈[τ ] := Hash′1(m,h)

and
{i∗[e]}e∈[τ ] := Hash′2(m,h, h′)

where m is the message to sign, Hash′1 and Hash′2 are some hash functions, and h (resp. h′)
is the hash value corresponding to the merged inputs of Hash1 (resp. Hash2) from the τ
executions.
Since the protocol has 5 rounds, we must take into account the forgery attack described

in [KZ20a] to estimate the security of the resulting signature. When we adapt the attack for
Protocol 7, its cost is given by

costforge = min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1 PMF(i, τ, 1
q′ )

+ 1∑η
i=0 PMF(i, τ2, 1− 1

N )

}
,

with PMF(i, τ, p) :=
(τ
i

)
pi(1 − p)τ−i. When selecting the signature parameters, we must

choose τ such that costforge ≥ 2λ.
Signature from Protocol 8. The challenges J and L are computed as

J := Hash′1(m,h)

and
L := Hash′2(m,h, h′, (mseed[j])j∈[M ]\J)

where m is the message to sign and where Hash′1 and Hash′2 are some hash functions.
Since the protocol has 5 rounds, the security of the resulting signature scheme is given by

the attack of [KZ20a] which has, in the context of the Protocol 8, a forgery cost of

costforge = min
M−τ≤k≤M

{( M
M−τ

)( k
M−τ

) + 1∑η
i=0 PMF(i, k −M + τ, 1− 1

N )

}
.

Another approach consists in turning the 5-round protocol into a 3-round protocol (before
applying the Fiat-Shamir). We refer to [KKW18; FJR23] for the details of such an approach.
The soundness error of this variant is the same as for the original protocol (see Theorem 6.3.6).
When we apply the Fiat-Shamir to this variant, the security of the obtained signature scheme
is equal to the soundness security of the protocol (since the protocol has now only 3 rounds)
and its size (in bits) is

Sizeη = 4λ+ η · 4λ+ 3λ · τ · log2
M

τ
+ (τ − η) · [n · log2(A− 1) + n+ λ log2N + 2λ] .

Performance. We selected some parameter sets to instantiate the resulting signature
schemes while targeting a security of 128 bits and a rejection rate of 0.01. We obtained the
performance of Table 6.2.
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Table 6.2.: Performance of the obtained signatures. The public keys (w, t) of those schemes
have a size of λ+n

8 = 48 bytes, since w can be derived from a λ-bit seed and t is
an integer of log2 q ≈ n bits.

Signature Parameters Sig. size Rej. rate
τ η N A M ν

Protocol 7 (batching sacr.) 29 2 256 214 - - 28.1 KB 0.010
Protocol 7 (batching sacr.) 42 3 32 214 - - 38.7 KB 0.004
Protocol 7 (batching poly.) 20 2 256 214 - 6 19.1 KB 0.004
Protocol 7 (batching poly.) 32 3 32 214 - 6 29.3 KB 0.002
Protocol 8 (C&C), 5 rounds 46 3 256 214 993 - 30.3 KB 0.006
Protocol 8 (C&C), 5 rounds 71 3 32 214 452 - 42.5 KB 0.025
Protocol 8 (C&C), 3 rounds 28 2 64 214 514 - 21.1 KB 0.009
Protocol 8 (C&C), 3 rounds 53 3 8 214 253 - 33.2 KB 0.009

6.5. Digital Signatures from Boneh-Halevi-Howgrave-Graham
PRF

As illustrated on the subset sum problem, our technique of sharing over the integers with
rejection is – more generally – instrumental to a context of a secret vector s ∈ Znq with small
coefficients. Since the communication cost of our protocols is independent of the size q of
the ring Zq, the gain in communication is higher when the modulus q is high. But it does
not need to have a modulus as high as in the subset sum problem to be interesting. In what
follows, we present another application of our technique: a short and efficient candidate
post-quantum signature scheme based on an elegant pseudo-random function (PRF) proposed
by Boneh, Halevi, and Howgrave-Graham in 2001 [BHH01].

Let p be a public m-bit prime number that defines the PRF message space as Zp. A secret
key for the PRF is an element x ∈ Zp picked uniformly at random. We denote MSBδ(t) the
δm most significant bits of an m-bit element t ∈ Zp.2 The value of the PRF on the message
m ∈ Zp for the secret-key x ∈ Zp is Fx(m) = MSBδ((x+m)−1 mod p).

Our signature scheme follows the blueprint of most signatures based on the MPCitH
paradigm since the proposal of Picnic [CDG+17]: the public key is made of the outputs of
Boneh et al.’s PRF on t public messages in {1, . . . , t}, i.e. the δm-bit elements y1, . . . , yt such
that

yi := MSBδ((x+ i)−1 mod p) for i ∈ {1, . . . , t}

and the signature consists of a non-interactive proof of knowledge of x, z1, . . . , zt (parametrized
by the signed message using the Fiat-Shamir heuristic) such that

(x+ 1)(2(1−δ)my1 + z1) ≡ · · · ≡ (x+ t)(2(1−δ)myt + zt) ≡ 1 mod p (6.5)
and z1, . . . , zt ∈ {0, . . . , 2(1−δ)m − 1} (6.6)

2We assume hereafter that δm ∈ Z. Otherwise, one should take the nearest integer bδme instead.
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where z1, . . . , zt are the (1−δ)m least significant bits of (x+1)−1 mod p, . . . , (x+ t)−1 mod p.
Note that the condition (6.6) on the size of the zi’s is fundamental since otherwise, it is easy
for an attacker to find a witness.

In our applications, the values of t and δ are chosen to prevent all known classical attacks
and target a 128-bit security level.
Let us fix t, the number of outputs of the PRF. Then, to ensure that the equations (6.5)

and (6.6) have a unique witness, we add the constraint δ ≥ 1/t so that the t PRF outputs
define (heuristically) the secret x uniquely. To avoid brute-force attacks from a single output
of the PRF, at least 128 bits should remain hidden for each output, thus m := log p ≥ 128

1−δ .
Otherwise, an attacker could reconstruct a possible PRF key matching with the first output
and then test it by evaluating the other outputs with this candidate.

It is possible to apply generically the MPCitH paradigm to prove (6.5) and (6.6), but
proving (6.6) seems inefficient (e.g. by using a binary decomposition and proving consistency).
Instead, we can use our secret sharing over the integers for proving the knowledge of small
zi’s by sharing them as a sum of “small” integers which directly proves that the zi’s are
indeed small.

Proving Equation (6.5). Instead of proving the t products of (6.5) separately, the prover
can batch them into a linear combination where coefficients γ1, ..., γt are provided by the
verifier, i.e. the prover proves the equation

t∑
i=1

γi ·
(
(x+ i)(2(1−δ)myi + zi)− 1

)
= 0 mod p,

or equivalently,

x ·
(

t∑
i=1

γizi

)
= −

t∑
i=1

γi
(
x · 2(1−δ)myi + i · 2(1−δ)myi + i · zi − 1

)
mod p. (6.7)

If one of the products is not equal to 1 in (6.5), then (6.7) is satisfied only with a probability
of 1

p . And to prove (6.7), one can use the [BN20] protocol with a single multiplication on Zp
(for the left-hand side of (6.7), the right-hand side being a linear combination of the witness).
The resulting MPC protocol produces false positives with probability 1/p+ (1− 1/p) · 1/p :=
2/p− 1/p2, and thus the obtained zero-knowledge argument has a soundness error of

ε = 1
N

+
(

1− 1
N

)(2
p
− 1
p2

)
.

Proving Equation (6.6). It remains to prove that zi is in {0, . . . , B− 1} with B = 2(1−δ)m

in (6.6) for i ∈ {1, . . . , t}. To share zi, we use our secret sharing over the integers of
Section 6.2.2. Since the zi are not binary but in a larger range, we need to adapt the rejection
rules. Following exactly the same reasoning as in Section 6.2.2, we get that the prover must
abort if there exists an index j ∈ [t] for which zj − JzjKi∗ ≥ 1 or zj − JzjKi∗ ≤ −A+B − 1.
The resulting rejection rate is given by

prej = 1−
(

1− B − 1
A

)t·τ
≈ t · τ · B − 1

A
.
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Even without proving anything on the range of zj , the verifier knows that

∀j ∈ [t],−A+B ≤ zj ≤ A− 1

thanks to Equation (6.2) (generalized). In practice, we settle for this range, implying that
there is a slack between the underlying hard problem and the proven statement. A malicious
prover can use bigger values for zi, and this is equivalent to ignoring some bits of yi. A
malicious prover can ignore up to log2

A
B ≈ log2

t·τ
prej

bits for each PRF output, and thus it
reduces the security of t · log2

t·τ
prej

bits.
A way to fix this security loss without increasing the size of p (and of the key) is to reveal

a few more PRF outputs to guarantee that the key is still heuristically unique. In theory,
this decreases the security but for state-of-the-art algorithms, this stays beyond the capacity
of the best-known algorithms for small t. In fact, we need to reveal t̃ ≥ t outputs of the PRF
such that

t̃ · δ ·m− t̃ · log
(
t̃ · τ
prej

)
> m.

In other words, we replace the constraint δ ≥ 1
t by

δ ≥ 1
t̃

+ 1
m

log2

(
t̃ · τ
prej

)
.

This leads to the scheme described as Protocol 9 with the communication cost (in bits):

4λ+ τ · (log2 p︸ ︷︷ ︸
∆x

+ t̃ · log2A︸ ︷︷ ︸
∆ai

+ log2 p︸ ︷︷ ︸
∆c

+ log2 p︸ ︷︷ ︸
∆α

+λ · log2N + 2λ),

with soundness error (if interactive)

ε = 1
N

+ p′ ·
(

1− 1
N

)
,

and with forgery security (if non-interactive)

costforge = min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1
(τ
i

)
p′i(1− p′)τ−i +N τ2

}
,

with p′ := 2/p+ 1/p2.

We propose in Table 6.3 some parameters which target 128-bit security (based on the
hardness of the so-called modular inverse hidden number problem) according to the current
cryptanalysis state-of-the-art for Boneh et al.’s PRF. We can remark that the achieved
signature sizes are competitive with Rainier scheme [DKR+21] (which can produce signatures
that are around 5 KB in size too) and outperform all the other signatures based on MPC-in-
the-Head paradigm (Picnic4 [KZ22], PorcRoast [BD20], SDitH [FJR22b], . . . ).
Regarding the cryptanalysis, the security of Boneh et al.’s PRF has been extensively

analyzed since 20 years [BHH01; LSSW12; BVZ12; XSH+19] and relies strongly on δ and
the number of known PRF outputs. The first natural attack is the brute-force search on one
output of the PRF as explained previously. We choose our parameter sets such that

(1− δ)m > 128 (6.8)
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Prover P Verifier V
x ∈ {0, 1}n
(z1, y1), . . . , (zt, yt) y1, . . . , yt

mseed $←− {0, 1}λ
Compute parties’ seeds

(seed1, ρ1), . . . , (seedN , ρN )
with TreePRG(mseed)

For each party i ∈ {1, . . . , N}:
JxKi, JaKi, JcKi ← PRG(seedi) . JxK, JaKi, JcKi ∈ Zp
J #”z Ki ← PRG(seedi) . J #”z Ki ∈ {0, . . . , A− 1}t
comi = Com(seedi; ρi)

∆x = x−
∑
iJxKi

∆c = a · x−
∑
iJcKi

∆ #”z = #”z −
∑
iJ

#”z Ki
h = Hash1(∆x,∆c,∆ #”z , com1, . . . , comN )

h−−−−−−−−−−−−→
γ1, . . . , γt, ε

$←− Zp
#”γ ,ε←−−−−−−−−−−−−

The parties locally set
- JαK = ε · 〈 #”γ , J #”z K〉+ JaK mod p
- JrK = “right part of Equation 6.7′′

The parties open JαK to get α.
The parties locally set

JvK = ε · JrK− α · JxK + JcK mod p

h′ = Hash2(JαK, JvK)
h′−−−−−−−−−−−−→

i∗
$←− {1, . . . , N}

i∗←−−−−−−−−−−−−
#”µ = #”z − J #”z Ki∗
If there exists j ∈ [t] such that:

- either µj ≥ 1
- or µj ≤ −A+B − 1,

then abort.
(seedi, ρi)i 6=i∗ , comi∗ ,

#”µ, ∆c, JαKi∗
−−−−−−−−−−−−→

For all i 6= i∗,
JxKi, JaKi, JcKi ← PRG(seedi)
J #”z Ki ← PRG(seedi)

∆ #”z = #”µ −
∑
i 6=i∗J

#”z Ki
∆α = ε · 〈 #”γ ,∆ #”z 〉
For all i 6= i∗,

Rerun the party i as the prover
and compute the commitment comi.

∆r = deduces from the right part of Eq 6.7
∆v = ε ·∆r − α ·∆x−∆c
JvKi∗ = −∆v −∑i 6=i∗JvKi
Check h = Hash1(∆x,∆c,∆ #”z , com1, . . . , comN )
Check h′ = Hash2(JαK, JvK)
Return Success

Protocol 9: Relaxed zero-knowledge argument for Boneh et al’s PRF.
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Table 6.3.: Parameter sets and achieved performance of the signature based on Boneh et al.’s
PRF, for a 128-bit security.

Parameters Size prej
p ≈ 2m t̃ δ B A N τ

≈ 2229 3 88/229 2141 2141+12 256 16 4 916 B 0.012
≈ 2186 4 58/186 2128 2128+12 256 16 4 860 B 0.016
≈ 2175 5 47/175 2128 2128+12 256 16 5 074 B 0.019

to prevent this attack. [BHH01] and [BVZ12] describe the best known lattice-based attacks
with a small number of PRF outputs and require larger δ’s than the ones we use. In order
to mount them, an adversary has to perform an exhaustive search on the missing bits on
several outputs. Let us focus on the attack of [BHH01]. The attacker first chooses n > 1
arbitrary ouputs among the t̃ ones. To run the attack, they need to have at least 2n+1

3n+1 ·m
bits for each output, thus they can exhaustively search the n ·

(
2n+1
3n+1 − δ

)
·m missing bits.

For each candidate, the attacker applies the attacks of [BHH01] which consists in reducing a
lattice of dimension O(n). To prevent this attack against our parameter sets, we select m, t̃
and δ such that

∀1 < n ≤ t̃, n ·
(2n+ 1

3n+ 1 − δ
)
·m ≥ 128. (6.9)

Similarly, we can build an attack based on [BVZ12] with an exhaustive search to get the
missing bits. To prevent this attack, we select m, t̃ and δ such that

∀1 < n ≤ t̃, n ·
(

2n−1

2n − 1 − δ
)
·m ≥ 128. (6.10)

Following this discussion, we chose our parameters as follows: by taking N = 256 and
τ = 16, we first choose t̃, then we take m minimal such that there exists δ which satisfies the
constraints (6.8), (6.9) and (6.10) together with the constraint ensuring the uniqueness of
the secret (as described previously)

t̃ · δ ·m− t̃ · log
(
t̃ · τ
prej

)
> m.

For all parameters provided in Table 6.3 an exhaustive search on (at least) 128 bits has to
be performed by the adversary in order to run the attacks from [BHH01; BVZ12].
We should care about another kind of attack based on Coppersmith’s method. In-

deed, [XSH+19] presented a heuristic attack that breaks Boneh et al.’s PRF (for a sufficiently
large modulus p) if the number of outputs of the PRF is large enough (depending on δ).
However, this polynomial-time attack is not practical and hides galactic constant factors.
For instance, for δ = 2/3, this attack requires 45 outputs of the PRF and uses a lattice of
dimension 209899 in Coppersmith’s method. We have checked that for 3 outputs, the attack
requires δ > 5/6, for 4 outputs δ > 7/10, and for 5 outputs δ > 5/8. We can observe that
our sets of parameters are secure against these values. More generally, for a small number of
outputs, the other Coppersmith’s style attacks are ineffective if 1−δ ≥ 1/2. Indeed, [LSSW12]
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need δ to be at least 2/3 and [BHH01] proposed a second attack (not described) which needs
a large number of outputs to get a δ close to 1/2.
To the best of our knowledge, the quantum security of Boneh et al.’s PRF has not been

analyzed yet. Our signature protocol is thus a post-quantum candidate and requires further
analysis of its security by quantum algorithm specialists.

6.6. Conclusion
In this chapter, we have developed an MPCitH technique to deal with small secret values
living modulo a large value. It enables us to propose two new signature schemes:

• the first one relying on the subset sum problem, achieving sizes around 20 KB (for
128-bit security),

• the second one relying on the Boneh-Halevi-Howgrave-Graham PRF, achieving sizes
around 5 KB (also for 128-bit security).

The SSP-based scheme could be considered as a conservative post-quantum scheme since
the subset sum problem has been extensively studied in the state of the art. Unfortunately
the obtained signature sizes are not competitive among the post-quantum schemes. It is the
opposite situation for the scheme relying on the [BHH01] PRF. While it is one of the shortest
MPCitH-based signature schemes, there exists no literature about the quantum cryptanalysis
of this pseudo-random function.
Let us remark that the technique of the sharings over integers is not limited to signature

schemes. It is useful for any MPCitH proof of knowledge as soon as we need to deal with
small values in large modulus. This manuscript focuses on the context of the post-quantum
signatures, but other applications have been analyzed in [FMRV22b]:

• Proving the knowledge of a solution of an inhomogeneous short integer solution problem
instance. It improves the state of the art when the modulus q is not an NTT-friendly
prime.

• Proving the knowledge of a secret key and plaintext(s) matching a (set of) FHE
ciphertext(s).
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Chapter 7.
Building MPCitH-based Signatures
from MQ, MinRank and Rank SD
We have shown that the MPC-in-the-Head paradigm improves the state of the art of

signature schemes relying on the syndrome decoding problem and the subset sum problem. A
natural follow-up work consists in generalizing this approach to other hard problems. Given
a problem, the goal is to design the most efficient MPC protocol which verifies a solution to
this problem. In this chapter, we investigate the cases of the multivariate quadratic problem,
the MinRank problem and the rank syndrome decoding problem.
The results presented in this chapter were released in November 2022 on the cryptology

ePrint archive [Fen22] and will be published in the proceedings of the international conference
ACNS 2024.
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7.1. Introduction
The security of the MPCitH-based signature schemes only depends on the security of commit-
ment/hash functions and the security of a one-way function. As explained in Section 3.2, the
choice of this one-way function is left to the signature designers. A first research line [ARS+15;
DKR+21] has focused on the design of MPC-friendly primitives and their use with the MPC-
in-the-Head paradigm to get short signatures. This methodology has the disadvantage of
requiring deep cryptanalysis of the introduced primitives. Another strategy would be to
use standard symmetric primitives like AES as security assumptions for the MPCitH-based
signatures, but it tends to produce larger signatures [DDOS19; BDK+21b; DOT21]. As
a last option, we can rely on a hard problem that exists for a long time and thus which
is well understood. In the previous chapters, we succeeded in designing efficient signature
schemes using the syndrome decoding problem (with the Hamming metric) and the subset
sum problem. These two cases have been covered, but a natural question is

Which performance can we get when using
the MPC-in-the-Head paradigm with other hard problems?

Some articles [Wan22; BG22; BESV22] already apply this paradigm to hard problems
(multivariate quadratic problem, MinRank problem, ...). One of the drawbacks of almost
all the schemes is that, when there is no structure to exploit, they need to rely on protocols
with helper [Beu20], and thus they suffer from a high computational cost. Recently, [BG22]
succeeds in leveraging the structure when considering a structured hard problem (as the ideal
rank syndrome decoding problem) and thus achieves smaller sizes by removing the helper
from [FJR21].

The present chapter aims to complete the state of the art of the MPC-in-the-Head applied
to hard problems. Table 7.1 overviews schemes producing the shortest signatures for some
hard problems in 2022 (the year of this work).

Hard Problem Best scheme Achieved sizes

Multivariate Quadratic Over F4, [Wan22] 8.4− 9.4 KB
Over F256, Section 7.3 6.9− 8.3 KB

Min Rank Section 7.4.2 5.4− 7.0 KB
Permuted Kernel [BG22] 8.6− 9.7 KB

Subset Sum [FMRV22a] 21.1− 33.2 KB

Syndrome Decoding (Hamming) [FJR22b] Over F2, 10.9− 15.6 KB
Over F256, 8.3− 11.5 KB

Syndrome Decoding (Rank) Section 7.4.3 5.8− 7.2 KB

Table 7.1.: State of the art of the MPCiH-based signatures, including this work.

First, we propose a new zero-knowledge proof of knowledge for the multivariate quadratic
problem. The resulting signature scheme outperforms [Wan22] only when the base field is
large enough (e.g. F256).

Secondly, we propose two efficient MPC protocols which take as input a matrix M ∈ Fn×mq

and which check that the rank of M is upper bounded by r, where r is a public positive
integer:
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• the first one decomposes M as a product TR where T ∈ Fn×rq and R ∈ Fr×mq , and uses
an MPC protocol that checks the correctness of a matrix multiplication;

• the second one relies on the fact that the rows ofM (represented as elements of Fqm) are
roots of a q-polynomial of degree qr and on the fact that computing a q-polynomial is
efficient in MPC while exploiting the linearity of the Frobenius endomorphism v 7→ vq.

We then use those protocols to build efficient signatures relying on the MinRank problem or
on the rank syndrome decoding problem. Our schemes outperform all the previous proposals,
by achieving sizes below 7 KB. They also outperform the [BG22]’s proposals which use
structured problems (as the ideal rank syndrome decoding problem) to achieve small sizes.

7.2. Methodology
In each of the following sections, we focus on a specific hard problem which is supposed
quantum-resilient:

• Section 7.3: Multivariate Quadratic Problem;
• Section 7.4.2: Min Rank Problem;
• Section 7.4.3: Syndrome Decoding in the rank metric;

For each of them, we will use the MPC-in-the-Head paradigm to build a new zero-knowledge
protocol. To proceed, we will first describe the MPC protocol we use. This MPC protocol
will have the same form as the one from Chapter 5:

• it takes as input an additive sharing of a candidate solution of the studied problem,
and eventually an additive sharing of auxiliary data;

• the MPC parties get (only once) a common random value (sampled by the verifier);
• when the tested solution is valid (i.e. a solution of the studied hard problem) and when

the auxiliary data are genuinely computed, the MPC protocol always outputs Accept;
otherwise, it outputs Accept with probability at most p, where p is called the false
positive rate;

• the views of all the parties except one leak no information about the candidate solution.

By applying the MPC-in-the-Head paradigm to this MPC protocol, we get a 5-round zero-
knowledge proof of knowledge of a solution of the studied problem, with soundness error

1
N

+
(

1− 1
N

)
· p

where N is the number of parties involved in the multi-party computation. We do not exhibit
the obtained proof of knowledge since the transformation is standard.

To obtain a signature scheme, we apply the Fiat-Shamir transform [FS87] to the previous
protocol. Since this protocol has 5 rounds, the security of the resulting scheme should take
into account the attack of [KZ20a]. More precisely, the forgery cost of the signature scheme
is given by

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1
(τ
i

)
pi(1− p)τ−i +N τ2

}
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where τ is the number of parallel executions.
Finally, we compare the resulting scheme with all the former schemes which are non-

interactive identification schemes based on the same security assumption. To proceed, we first
list all these schemes with their formulae of the forgery security and of the communication cost.
Since some quantities occur several times, we define some notations to ease the readability.
For the forgery cost, we introduce the two following notations:

• εhelper(τ,M, ε) is the soundness error of a protocol with helper [Beu20] when the helper
entity is emulated by a cut-and-choose phase. M is the total number of repetitions
in the cut-and-choose phase, ε is the soundness of the unitary protocol relying on the
helper, and τ is the number of repetitions of this unitary protocol. We have

εhelper(τ,M, ε) := max
M−τ≤k≤M

{( k
M−τ

)( M
M−τ

) · εk−(M−τ)
}
.

• KZ(p1, p2) is the forgery cost of [KZ20a] for a 5-round protocol1. We have

KZ(p1, p2) := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1
(τ
i

)
pi1(1− p1)τ−i + 1

pτ22

}
.

For the communication cost (i.e. the signature size), we introduce the following notations:

• µseed is the cost of sending a λ-bit seed;

• µdig is the cost of sending a 2λ-bit commitment/hash digest;

• µhelper is the cost (per repetition) of using the helper technique of [Beu20], this cost
satisfies

µhelper ≤ (µseed + µdig) · log2

(
M

τ

)
where M is the number of repetitions involved in the cut-and-choose phase emulating
the helper. It corresponds to the cost of revealing M − τ leaves among M in a GGM
tree, with the cost of sending the authentication paths of τ leaves among M in a Merkle
tree.

• µMPCitH is the fixed cost (per repetition) of using the MPC-in-the-Head paradigm, we
have

µMPCitH = µseed · log2N + µdig.

It corresponds to the cost of revealing all the leaves but one in a seed tree of N leaves
(plus a commitment digest).

Then, to get a numerical comparison, we select one or two instances of the studied hard
problem and we compare all these schemes for these precise instances.

To proceed, we need to select the parameters of the schemes when relevant. The signature
schemes based on the MPC-in-the-Head paradigm have as parameter the number N of parties
involved in the multi-party computation. When taking a small N , we get a faster scheme,
but when taking a large N , we get shorter signature sizes. To have a fair comparison between
the different schemes, we will always take the same N :

1in the case where the verifier can not perform some checks after receiving the first response (see [KZ20a] for
details).
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• when the protocol relies on a helper, we take N = 8 to have a fast scheme and N = 32
to have short sizes.

• otherwise, we take N = 32 to have a fast scheme and N = 256 to have short sizes.

7.2.1. Matrix Multiplication Checking Protocol

In our constructions, we need an MPC protocol that checks that three matrices X,Y, Z satisfy
Z = X · Y . We describe in Figure 7.1 such a protocol Πη

MM which has a positive parameter η.
This protocol is a matrix variant of the multiplication checking protocol of [BN20] (optimized
in [KZ22]).

Inputs: Each party takes a share of the following sharings as inputs: JXK where X ∈ Fm×pq , JY K where
Y ∈ Fp×nq , JZK where Fm×nq , JAK where A has been uniformly sampled from Fp×ηq , and JCK where C ∈ Fm×ηq

satisfies C = XA.

MPC Protocol:

1. The parties get a random Σ ∈ Fn×ηq .
2. The parties locally set JDK = JY KΣ + JAK.
3. The parties broadcast JDK to obtain D ∈ Fp×ηq .
4. The parties locally set JV K = JXKD − JCK− JZKΣ.
5. The parties open JV K to obtain V ∈ Fm×ηq .
6. The parties outputs Accept if V = 0 and Reject otherwise.

Figure 7.1.: The MPC protocol Πη
MM which checks that Z = X · Y .

Lemma 7.2.1. If Z = X · Y and if C are genuinely computed, then Πη
MM always outputs

Accept. If Z 6= X · Y , then Πη
MM outputs Accept with probability at most 1

qη .

Proof. We have

V = XD − C − ZΣ
= X(Y Σ +A)− C − ZΣ
= (XY − Z)Σ− (C −XA).

If Z = XY and C = XA, V is equal to zero and thus the parties will always output Accept.
In contrast, if Z 6= XY , then there exists (i∗, j∗) ∈ [m]× [n] such that Zi∗,j∗− (X ·Y )i∗,j∗ 6= 0.
Given k ∈ {1, . . . , η}, Σj∗,k is uniformly sampled in Fq and then ((Z−X ·Y )Σ)i∗,k is uniformly
random in Fq (because one term of the sum is uniformly random). Thus, the probability that
V is zero is at most the probability that (Z −X · Y )Σ is equal to (C −XA) on the row i∗

whereas the row i∗ of (Z −X · Y )Σ is uniformly random in Fηq , i.e. the probability that V is
zero (at row i∗) is at most 1

qη .

7.2.2. MPCitH Optimizations

It is often possible to optimize the communication cost of a scheme relying on the MPC-in-
the-Head paradigm. The common optimization tricks are the following:



112 Chapter 7. Building Signatures from MQ, MinRank and Rank SD

• Except for the last party, the input share of a party can be derived from a seed using a
pseudo-random generator. Thus, when we need to reveal the input share, we just need
to reveal a seed. In practice, a prover must reveal the input shares of N − 1 parties, so
it would imply revealing N − 1 seeds. To save more communication, we can generate
the seeds using a GGM tree, decreasing the number of revealed seeds to log2(N) (see
[KKW18, Sec. 2.3] for details).

• We do not need to reveal shares for shared random values (as A in Figure 7.1) since
they can be entirely derived from the seeds of the previous point.

• We do not need to reveal shares for shared publicly-known values (see [KZ22, Sec. 2.4]
for details). For example, we do not need to reveal the share of V broadcasted by the
hidden party in Figure 7.1. Indeed, this share can be deduced from the shares of the
other parties and knowing that V must be equal to zero (otherwise the verification
fails).

7.3. Signature Scheme from MQ
We want to build a zero-knowledge proof of knowledge for the multivariate quadratic problem:

Definition 7.3.1 (Multivariate Quadratic Problem - Matrix Form). Let (q,m, n) be positive
integers. The multivariate quadratic problem with parameters (q,m, n) is the following
problem:

Let (Ai)i∈[1:m], (bi)i∈[1:m], x and y be such that:

1. x is uniformly sampled from Fnq ,
2. for all i ∈ [1 : m], Ai is uniformly sampled from Fn×nq ,
3. for all i ∈ [1 : m], bi is uniformly sampled from Fnq ,
4. for all i ∈ [1 : m], yi is defined as yi := xTAix+ bTi x.

From ((Ai)i∈[1:m], (bi)i∈[1:m], y), find x.

The prover wants to convince the verifier that she knows x ∈ Fnq such that
y1 = xTA1x+ bT1 x

...
ym = xTAmx+ bTmx

To proceed, she will rely on the MPC-in-the-Head paradigm: she will first share the secret
vector x and then use an MPC protocol which verifies that this vector satisfies the above
relations.
MPC Protocol. Instead of checking the m relations separately, we batch them into a linear
combination where coefficients γ1, . . . , γm are uniformly sampled in the field extension Fqη .
The MPC protocol will check that

m∑
i=1

γi(yi − xTAix− bTi x) = 0. (7.1)
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If one of the relations was not satisfied, then Equation (7.1) would be satisfied only with a
probability 1

qη . We can write the equality as

m∑
i=1

γi(yi − bTi x) =
m∑
i=1

γi(xTAix)

= xT
(

m∑
i=1

γiAi

)
x

= 〈x,w〉 where w :=
(

m∑
i=1

γiAi

)
x.

By defining z := ∑m
i=1 γi(yi − bTi x) and w := (∑m

i=1 γiAi)x, proving Equation (7.1) is
equivalent to proving that

z = 〈x,w〉.

And to prove the above equality, we can rely on the subprotocol ΠMM described in Section 7.2.1
(assuming that all the scalars live in Fqη). Thus, the MPC protocol proceeds as follows:

1. The parties get random γ1, . . . , γm ∈ Fqη .

2. The parties locally set JzK = ∑m
i=1 γi(yi − bTi JxK).

3. The parties locally set JwK = (∑m
i=1 γiAi) JxK.

4. The parties execute the protocol ΠMM to check that z = 〈w, x〉.

Since this sub-protocol ΠMM produces false positive events with a rate of 1
qη , if x does

not satisfy the mMQ relations, the complete MPC protocol outputs Accept only with a
probability of at most

1
qη

+
(

1− 1
qη

) 1
qη

= 2
qη
− 1
q2η .

The complete MPC protocol is described in Figure 7.2.

Proof of Knowledge. Using the MPC-in-the-Head paradigm, we transform the above MPC
protocol into an interactive zero-knowledge proof of knowledge which enables to convince
a verifier that a prover knows the solution of aMQ problem. The soundness error of the
resulting protocol is

ε := 1
N

+
(

1− 1
N

)( 2
qη
− 1
q2η

)
.

By repeating the protocol τ times, we get a soundness error of ετ . To obtain a soundness
error of λ bits, we can take τ =

⌈
−λ

log2 ε

⌉
. We can transform the interactive protocol into a

non-interactive argument / signature thanks to the Fiat-Shamir transform [FS87]. According
to [KZ20a], the security of the resulting scheme is

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1
(τ
i

)
pi(1− p)τ−i +N τ2

}

where p := 2
qη −

1
q2η .
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Public values: The matrices A1, . . . , Am ∈ Fn×nq , the vectors b1, . . . , bm ∈ Fnq , and the outputs y1, . . . , ym ∈
Fq.

Inputs: Each party takes a share of the following sharings as inputs: JxK where x ∈ Fnq , JaK where a has been
uniformly sampled from Fnqη , and JcK where c ∈ Fqη satisfies c = −〈a, x〉.

MPC Protocol:

1. The parties get random γ1, . . . , γm ∈ Fqη and a random ε ∈ Fqη .
2. The parties locally set JzK =

∑m

i=1 γi(yi − b
T
i JxK).

3. The parties locally set JwK =
(∑m

i=1 γiAi
)

JxK.
4. The parties locally set JαK = ε · JwK + JaK.
5. The parties open α ∈ Fnqη .
6. The parties locally set JvK = ε · JzK− 〈α, JxK〉 − JcK.
7. The parties open v ∈ Fqη .
8. The parties outputs Accept if v = 0 and Reject otherwise.

Figure 7.2.: An MPC protocol that verifies that the given input corresponds to a solution of
anMQ problem.

The communication cost of the scheme (in bits) is

4λ+ τ ·

(n · log2(q)︸ ︷︷ ︸
x

+n · η · log2(q)︸ ︷︷ ︸
α

+ η · log2(q)︸ ︷︷ ︸
c

+λ · log2N + 2λ︸ ︷︷ ︸
MPCitH


where λ is the security level, η is a scheme parameter and τ is computed such that the
soundness error is of λ bits in the interactive case and such that costforge is of λ bits in the
non-interactive case.
Performance and comparison. In what follows, we compare our scheme with the state
of the art on twoMQ instances:
Instance 1. Multivariate Quadratic equations over a small field:

(q,m, n) = (4, 88, 88),

Instance 2. Multivariate Quadratic equations over a larger field:

(q,m, n) = (256, 40, 40).

Both of these instances are believed to correspond to a security of 128 bits [BMSV22].
We provide in Tables 7.2 and 7.3 a complete comparison of our scheme with the state of the

art. In the comparison we put MQ-DSS [CHR+16] which corresponds to the non-interactive
version of the 5-round identification scheme of [SSH11]. In the sake of completeness, we
also put how the 3-round identification scheme of [SSH11] would perform when applying the
Fiat-Shamir transform on it.
Over a small field, the Mesquite [Wan22] scheme has the smallest communication cost,

even if our scheme produces competitive signature size. Over a larger field, we can produce
signature size close to 7 KB, and thus we outperform all the former schemes.
Remark 7.3.2. In constrast with the former state of the art, the communication cost of our
scheme is independent to the number m ofMQ relations.
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Table 7.2.: Sizes of the signatures relying on theMQ problem (restricting to the schemes
using the FS heuristics).

Scheme Name Security Signature Size
[SSH11] (3 rounds) (3/2)τ µdig + τ [2µvar + µout + 2µdig]

MQ-DSS [CHR+16] KZ( 1
q
, 1

2 ) 2µdig + τ [2µvar + µout + 2µdig]
MudFish [Beu20] εhelper(τ,M, 1

q′ )
−1 µdig + τ [2µvar + µout + 2µseed + µdig · log2(q′) + µhelper]

Mesquite [Wan22] εhelper(τ,M, 1
N

)−1 µdig + τ [µvar + µout + µMPCitH + µhelper]
Our scheme KZ( 2

qη
− 1

q2η ,
1
N

) 2µdig + τ [(1 + η) · µvar + η · log2 q + µMPCitH]

Note: the used notations are µvar := n log2 q, µout := m log2 q, plus all the notations defined in Section 7.2.

Table 7.3.: Sizes of the signatures relying on theMQ problem (restricting to the schemes
using the FS heuristics). Numerical comparison.

Instance Protocol Name Variant Parameters Signature Size
N M τ η

q = 4
m = 88
n = 88

[SSH11] (3 rounds) - - 219 - - 28 502 B
MQ-DSS [CHR+16] - - 316 - - 41 444 B

MudFish [Beu20] - 4 191 68 - 14 640 B

Mesquite [Wan22] Fast 8 187 49 - 9 578 B
Short 32 389 28 - 8 609 B

Our scheme Fast 32 - 40 6 10 764 B
Short 256 - 25 8 9 064 B

q = 256
m = 40
n = 40

[SSH11] (3 rounds) - - 219 - - 40 328 B
MQ-DSS [CHR+16] - - 156 - - 28 768 B

MudFish [Beu20] Fast 8 176 51 - 15 958 B
Short 16 250 36 - 13 910 B

Mesquite [Wan22] Fast 8 187 49 - 11 339 B
Short 32 389 28 - 9 615 B

Our scheme Fast 32 - 36 2 8 488 B
Short 256 - 25 2 7 114 B
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7.4. Signature Scheme from MinRank and Rank SD
In this section, we propose arguments of knowledge for the MinRank problem (Section 7.4.2)
and the Rank SD problem (Section 7.4.3). But before that, in Section 7.4.1, we propose two
efficient MPC protocols which check that a matrix M has a rank of at most r.

In what follows, we denote wtR(M) the rank of a matrix M .

7.4.1. Matrix Rank Checking Protocols

We want to build MPC protocols which check that a matrix has a rank of a most r. Such
MPC protocols will be used for arguments of knowledge with the MPC-in-the-Head paradigm.
We propose two protocols:

• the first one relies on the rank decomposition of matrices. It has the advantage to be
quite simple, but its false positive rate is large.

• the second one relies on linearized polynomials. It has the advantage to have a very
small false positive rate, but it sometimes requires to manipulate field extensions of
large degrees.

7.4.1.1. Using Rank Decomposition.

Let us design an MPC protocol which checks that a matrix M ∈ Fm×n has a rank of at most
r, i.e. wtR(M) ≤ r. To proceed, we will rely on the rank decomposition:

a matrix M ∈ Fn×mq has a rank of at most r
if and only if there exists T ∈ Fn×rq and R ∈ Fr×mq such that M = TR.

In practice, our MPC protocol that we will denote Πη
RC-RD takes as input such matrices T

and R (in addition to M) and simply executes the matrix multiplication checking protocol
Πη
MM (see Section 7.2.1), for some positive integer η.

Theorem 7.4.1. If wtR(M) ≤ r and if T,R are genuinely computed, then Πη
RC-RD always

outputs Accept. If wtR(M) > r, then ΠRC-RD outputs Accept with probability at most 1
qη .

More precisely, if wtR(M) = w+ δ with δ ≥ 1, then Πη
RC-RD outputs Accept with probability

at most 1
qδ·η

.

Proof. The final broadcast matrix V in Πη
MM satisfies

V = (TR−M)Σ− (C − TA)

where matrices A and C have been built before receiving the random Σ. We have

wtR(M − TR) ≥ wtR(M)− wtR(TR)
≥ (r + δ)− r = δ

It means that TR−M has at least δ non-zero coefficients (i1, j1), . . . , (iδ, jδ) which are over
δ different rows and over δ different columns, i.e.

∀k1, k2 ∈ [δ], (ik1 6= ik2) ∧ (jk1 6= jk2).



Ch
ap

te
r7

7.4. Signature Scheme from MinRank and Rank SD 117

Let us consider k ∈ [δ]. The jkth row of Σ is uniformly sampled in Fηq and thus the ikth row
of (M −TR)Σ is uniformly random in Fηq (because one of the sum term is uniformly random).
Thus, the probability that the ikth row of V is zero is the probability that (M − TR)Σ is
equal to (C − TA) on the row ik whereas the row ik of (M − TR)Σ is uniformly random in
Fηq , i.e. the probability that the ikth row of V is zero is 1

qη . By taking a union bound over
all k, we get that the probability that V is zero is at most 1

qδ·η
.

7.4.1.2. Using Linearized Polynomials.

In what follows, we represent a matrix of Fm×nq as an element of (Fmq )n. We want to design
an MPC protocol which checks that a matrix M = (x1, . . . , xn) ∈ (Fqm)n has rank at most r.
Equivalently, it means that all xi belongs to an Fq-linear subspace U of Fqm of dimension r.
Let us define the polynomial LU (X) as

LU (X) :=
∏
u∈U

(X − u) ∈ Fqm [X].

The degree of LU is qr since U has qr elements. Showing that wt(M) ≤ r can be done by
showing that all xi’s are roots of LU .

According to [LN96, Theorem 3.52], LU is a q-polynomial over Fqm , meaning that it is of
the form

LU (X) = Xqr +
r−1∑
i=0

βiX
qi .

Such polynomials are convenient for multi-party computation since the Frobenius endomor-
phismX 7→ Xq is a linear application in field extensions of Fq and thus it is communication-free
to compute JxqK, Jxq2K, . . . from JxK.
The core idea of the rank checking protocol is to check that LU (x1) = LU (x2) = . . . =

LU (xn) = 0. To proceed, the MPC protocol will batch these checkings by uniformly sampling
γ1, . . . , γn ∈ Fqm and checking that

n∑
j=1

γj · LU (xj) = 0. (7.2)

If one xi is not a root of the polynomial LU , then Equation (7.2) is satisfied only with
probability 1

qm . Let us rewrite the left term of (7.2):
n∑
j=1

γj · LU (xj) =
n∑
j=1

γj ·
(
xq

r

j +
r−1∑
i=0

βix
qi

j

)

=
n∑
j=1

γj · xq
r

j︸ ︷︷ ︸
:=−z

+
r−1∑
i=0

βi ·
n∑
j=1

γjx
qi

j︸ ︷︷ ︸
:=wi

.

By defining z := −∑n
j=1 γj · x

qr

j and wi := ∑n
j=1 γjx

qi

j for i ∈ {0, . . . , r − 1}, proving
Equation (7.2) is equivalent to proving

z = 〈β,w〉.

Our MPC protocol that we will denote Πη
RC-LP takes as input Jx1K, . . . , JxnK and JLU K :=

Xqr +∑r−1
i=0 JβiKXqi proceeds as follows:
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1. The parties get random γ1, . . . , γn ∈ Fqm·η .
2. The parties locally set JzK = −∑n

j=1 γjJxjKq
r .

3. The parties locally set JwiK = ∑n
j=1 γjJxjKq

i for all i ∈ {0, . . . , r − 1}.
4. The parties execute the protocol ΠMM to check that z = 〈β,w〉 over Fqm·η .

Theorem 7.4.2. If wtR(M) ≤ r and if LU is genuinely computed, then Πη
RC-LP always

outputs Accept. If wtR(M) > r, then Πη
RC-LP outputs Accept with probability at most

1
qm·η +

(
1− 1

qm·η

)
1

qm·η .

Proof. JLU K is a q-polynomial over Fqm of degree exactly qr. It means that its number of
roots is at most qr. According to [LN96, Theorem 3.50], the roots form an Fq-linear subspace
V of the field extension Fqs of Fqm . Since Fqm is also a linear subspace of Fqs , V ∩ Fqm is
a linear subspace of Fqs (and of Fqm). Its dimension is at most r (since it has at most qr
elements). If wtR(M) > r, there exist i∗ such that

LU (xi∗) 6= 0.

We then have two options resulting in Πη
RC-LP outputing Accept:

• Either ∑n
j=1 γj · LU (xj) = 0, which occurs with probability 1

qm·η ;

• Or ∑n
j=1 γj ·LU (xj) 6= 0, i.e. z 6= 〈β,w〉 and ΠMM outputs Accept, which occurs with

probability 1
qm·η since ΠMM has a false positive rate of 1

qm·η .

7.4.2. Signature Scheme from MinRank
We want to build a zero-knowledge proof of knowledge for the MinRank problem:

Definition 7.4.3 (MinRank Problem). Let (q,m, n, k) be positive integers. The MinRank
problem with parameters (q,m, n, k) is the following problem:

Let M0,M1, . . . ,Mk, E and x such that:

– x is uniformly sampled from Fkq ,
– for all i ∈ [k], Mi is uniformly sampled from Fn×mq ,
– E is uniformly sampled from {E ∈ Fn×mq : wtR(E) ≤ w},

– M0 is defined as M0 = E −
∑k
i=1 xiMi.

From (M0,M1, . . . ,Mk), find x.

The prover wants to convince the verifier that she knows such an x. To proceed, the prover
will first share the secret vector x and then use an MPC protocol which verifies that this
vector satisfies the above property.
MPC Protocol. We want to build an MPC protocol which takes as input (a sharing of) x
and which outputs {

Accept if wtR (E) ≤ r
Reject otherwise.
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where E := M0 +∑k
i=1 xiMi.

Given JxK, the parties can locally build JEK as M0 +∑k
i=1JxiKMi. It remains to check that

JEK corresponds to the sharing of a matrix of rank at most r. It can be done using one
of the two rank checking protocols described in Section 7.4.1: Πη

RC-RD relying on the rank
decomposition or Πη

RC-LP relying on linearized polynomials, for some parameter η.
The complete MPC protocol is described in Figure 7.3 when relying on the rank decom-

position and in Figure 7.4 when relying on linearized polynomials. In the second case, the
rows of the matrix E are rewritten as elements of Fqm , but when m 6= n, it can be more
convenient to work on the columns (depending of the values of m and n).

Public values: M0,M1, . . . ,Mk ∈ Fn×mq .

Inputs: Each party takes a share of the following sharings as inputs: JxK where x ∈ Fkq , JT K where T ∈ Fn×rq ,
JRK where R ∈ Fr×mq , JaK where a has been uniformly sampled from Fr×ηq , and JcK ∈ Fn×ηq , such that
M0 +

∑k

i=1 xiMi = TR and c = Ta.

MPC Protocol:

1. The parties get a random Σ ∈ Fm×ηq .

2. The parties locally set JEK = M0 +
∑k

i=1JxiKMi.
3. The parties locally set JαK = JRKΣ + JaK.
4. The parties open α ∈ Fr×ηq .
5. The parties locally set JvK = JT Kα− JcK− JEKΣ.
6. The parties open v ∈ Fn×ηq .
7. The parties outputs Accept if v = 0 and Reject otherwise.

Figure 7.3.: An MPC protocol based on the rank decomposition technique (ΠRC-RD) which
verifies that the given input corresponds to a solution of a MinRank problem.

Proof of Knowledge. Using the MPC-in-the-Head paradigm, we transform the above MPC
protocol into an interactive zero-knowledge proof of knowledge which enables to convince a
verifier that a prover knows the solution of a MinRank problem. The soundness error of the
resulting protocol is

ε := 1
N

+
(

1− 1
N

)
pη

where pη := 1
qη when using Πη

RC-RD and pη := 2
qm·η −

1
q2·m·η when using Πη

RC-LP. By repeating
the protocol τ times, we get a soundness error of ετ . To obtain a soundness error of λ bits,
we can take τ =

⌈
−λ

log2 ε

⌉
. We can transform the interactive protocol into a non-interactive

proof / signature thanks to the Fiat-Shamir transform [FS87]. According to [KZ20a], the
security of the resulting scheme is

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1
(τ
i

)
piη(1− pη)τ−i

+N τ2

}
.

When using ΠRC-RD, the communication cost of the scheme (in bits) is

4λ+ τ ·

( k︸︷︷︸
x

+ r ×m︸ ︷︷ ︸
R

+ r × n︸ ︷︷ ︸
T

+ r × η︸ ︷︷ ︸
α

+n× η︸ ︷︷ ︸
c

) · log2 q + λ · log2N + 2λ︸ ︷︷ ︸
MPCitH
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Public values: M0,M1, . . . ,Mk ∈ Fn×mq .

Inputs: Each party takes a share of the following sharings as inputs: JxK where x ∈ Fkq , JLU K := Xqr +∑r−1
i=0 JβiKXqi where LU (X) :=

∏
u∈U (X − u) ∈ Fqm [X], JaK where a has been uniformly sampled from Frqm·η ,

and JcK ∈ Fqm·η , such that c = −〈β, a〉.

MPC Protocol:

1. The parties get random γ1, . . . , γn ∈ Fqm·η .
2. The parties get a random ε ∈ Fqm·η .

3. The parties locally set JEK = M0 +
∑k

i=1JxiKMi.
4. The parties locally write the rows of JEK as elements (e1, . . . , em) of Fqm

5. The parties locally set JzK = −
∑n

j=1 γjJejK
qr .

6. The parties locally set JwiK =
∑n

j=1 γjJejK
qi for all i ∈ {0, . . . , r − 1}.

7. The parties locally set JαK = ε · JwK + JaK.
8. The parties open α ∈ Frqm·η .
9. The parties locally set JvK = ε · JzK− 〈α, JβK〉 − JcK.

10. The parties open v ∈ Fqm·η .
11. The parties outputs Accept if v = 0 and Reject otherwise.

Figure 7.4.: An MPC protocol based on the technique using linearized polynomials (ΠRC-LP)
which verifies that the given input corresponds to a solution of a MinRank
problem. U is a Fq-linear subspace of Fqm of dimension r which contains the
rows (e1, . . . , en) of E := M0 +∑k

i=1 xiMi ∈ Fn×mq represented as elements of
Fqm .

where λ is the security level, r is a scheme parameter and τ is computed such that the
soundness error is of λ bits in the interactive case and such that costforge is of λ bits in the
non-interactive case.

And when using ΠRC-LP, the communication cost of the scheme (in bits) is

4λ+ τ ·

( k︸︷︷︸
x

+ r ×m︸ ︷︷ ︸
LU

+ r ×m× η︸ ︷︷ ︸
α

+m× η︸ ︷︷ ︸
c

) · log2 q + λ · log2N + 2λ︸ ︷︷ ︸
MPCitH

 .
Performance and comparison. In what follows, we compare our scheme with the state
of the art on the MinRank instance [BESV22]:

(q,m, n, k, r) = (16, 16, 16, 142, 4).

We provide in Tables 7.4 and 7.5 a complete comparison of our scheme with the state of the
art. To provide a fair comparison, we propose two variants for [Cou01] and [SINY22]: the
first one corresponds to the scheme as described in the original article and the second one is
an optimized version. This optimized version includes the following tricks:

• Instead of revealing all the commitments during the first round, the prover just sends a
hash digest of them. Then, to enable the verifier to recompute this digest, the prover
just needs to send the commitment digests that the verifier can not compute herself.
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• The random combination used in the schemes (usually denoted β) is derived from a
seed. Then, instead of sending the coefficients of β, the prover can just send this seed.
Moreover, this seed and the masks involved in the schemes (usually denoted T , S and
X) are also derived from a common seed.

• Instead of revealing two matrices such that the difference are of rank (at most) r, the
prover send one of the matrices and directly the difference (which is cheaper to send),
and thus the verifier can deduce the non-sent matrix.

In the comparison we put how [BG22, Section 2] would perform if we apply the same technique
for MinRank problem ([BG22] does not consider the MinRank problem in their article).
First, let us remark that [SINY22] presents no advantage compared to [Cou01]. The

soundness error of each iteration is 1/2 instead of 2/3, but each iteration is more expensive.
The achieved communication cost is thus equivalent to [Cou01]. [BESV22] is a protocol
with helper [Beu20]. The components in the proof transcript are the same as for [Cou01]
(and [SINY22]), but it succeeds in achieving a bit smaller signature size just by sending a
smaller number of seeds and digests. The MPC-in-the-Head paradigm enables to obtain
much smaller sizes. Using techniques from [BG22], the resulting size is around 10 KB. In an
independent (and parallel) work, [ARV22] proposes a new scheme using techniques which are
similar to our protocol with ΠRC-RD: they are working on another matrix relation2 but use a
less efficient matrix multiplication checking protocol. They succeed in producing signature
with sizes below 8 KB. Our scheme with ΠRC-RD achieves similar sizes than [ARV22], but
our scheme with ΠRC-LP outperforms all the previous ones achieving sizes below 6 KB. For
the sake of completeness, we put in the comparison tables how [ARV22] would perform if we
use ΠMM as subroutine.

Table 7.4.: Sizes of the signatures relying on the MinRank problem (restricting to the schemes
using the FS heuristics).

Scheme Name Security Signature Size
[Cou01] (3/2)τ 3τ · µdig + τ

[
2
3µmat + 2

3µcombi + 2
3µseed

]
[Cou01], opt. (3/2)τ µdig + τ

[
1
3 (µmat + µrank + µcombi + 2µseed) + µdig

]
[SINY22] 2τ 6τ · µdig + τ

[
µmat + 1

2µcombi + 10
4 µseed

]
[SINY22], opt. 2τ µdig + τ

[
1
2 (µmat + µrank + µcombi + 3µseed) + 2µdig

]
[BESV22] εhelper(τ,M, 1

2 )−1 µdig + τ
[

1
2 (µmat + µrank + µcombi + µseed) + µdig + µhelper

]
[BG22] εhelper(τ,M, 1

N
)−1 µdig + τ [µcombi + µrank + µMPCitH + µhelper]

[ARV22] KZ( 1
qn
, 1
N

) 2µdig + τ
[
µcombi + (n2 + 2rn− r2) log2 q + µMPCitH

]
[ARV22]+ΠMM KZ( 1

qη
, 1
N

) 2µdig + τ [µcombi + (r(n− r) + η(n− 2r)) log2 q + µMPCitH]
Our scheme (RD) KZ( 1

qη
, 1
N

) 2µdig + τ [µcombi + µrank + η(n+ r) log2 q + µMPCitH]
Our scheme (LP) KZ( 2

qmη
− 1

q2mη ,
1
N

) 2µdig + τ [µcombi + rm log2 q + η(r + 1)m log2 q + µMPCitH]

Note: the used notations are µmat := mn log 2q, µrank := r(m + n) log2 q, µcombi := k log2 q, plus all the
notations defined in Section 7.2.

2They express the m− r last columns w.r.t. the r first ones.
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Table 7.5.: Comparison of the signatures relying on the MinRank problem (restricting to the
schemes using the FS heuristics). Numerical comparison.

Instance Protocol Name Variant Parameters Signature Size
N M τ η

q = 16
m = 16
n = 16
k = 142
r = 4

[Cou01] - - - 219 - 52 430 B
Optimized - - 219 - 28 575 B

[SINY22] - - - 128 - 50 640 B
Optimized - - 128 - 28 128 B

[BESV22] - - 256 128 - 26 405 B

[BG22] Fast 8 187 49 - 13 644 B
Short 32 389 28 - 10 937 B

[ARV22] Fast 32 - 28 - 10 116 B
Short 256 - 18 - 7 422 B

[ARV22]+ΠMM
Fast 32 - 33 9 8 155 B
Short 256 - 19 9 6 277 B

Our scheme (RD) Fast 32 - 33 5 9 288 B
Short 256 - 19 9 7 122 B

Our scheme (LP) Fast 32 - 28 1 7 204 B
Short 256 - 18 1 5 518 B

7.4.3. Signature Scheme from Rank SD

We want to build a zero-knowledge proof of knowledge for the rank syndrome decoding
problem:

Definition 7.4.4 (Rank Syndrome Decoding Problem - Standard Form). Let Fqm be the
finite field with qm elements. Let (n, k, r) be positive integers such that k ≤ n. The rank
syndrome decoding problem with parameters (q,m, n, k, r) is the following problem:

Let H, x and y be such that:

1. H is uniformly sampled from {(H ′|In−k), H ′ ∈ F(n−k)×n
qm },

2. x is uniformly sampled from {x ∈ Fnqm : wtR(x) ≤ r},
3. y is built as y := Hx.

From (H, y), find x.

Remark 7.4.5. The rank wtR(x) of an element x of Fnqm is the dimension of the Fq-linear
subspace spanned by x1, . . . , xn. Equivalently, it is the rank of the matrix M for which the
rows are x1, . . . , xn represented as vectors of Fmq .

The prover wants to convince the verifier that she knows such an x, i.e. a vector x ∈ Fnqm
such that y = Hx and wtR(x) ≤ r. Previous works propose proofs of knowledge where the
constraint on the weight is an equality, but it is sometimes easier to just prove an inequality
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(see [FJR22b] for the case of the Hamming weight). To proceed, the prover will first share
the secret vector x and then use an MPC protocol which verifies that this vector satisfies the
above property.

Remark 7.4.6. In the above definition, the parity-check matrix is in standard form. It does
not decrease the hardness of the problem (since the transformation into a standard form is a
polynomial transformation), but it enables to simplify the contruction we propose.

MPC Protocol. We want to build an MPC protocol which takes as input (a sharing of) x
and which outputs {

Accept if y = Hx and wtR(x) ≤ r
Reject otherwise.

Since H is in standard form, having the equality y = Hx is equivalent to define x as(
xA

y −H ′xA

)

for some xA ∈ Fkq . Therefore, we will build an MPC protocol which takes as input (a sharing
of) xA and which outputs Accept if wtR(x) ≤ r where x :=

(
xA

y −H ′xA

)
Reject otherwise.

Given JxAK, the parties can locally build JxBK as JxBK := y −H ′JxAK, and so they can
deduce a sharing JxK of x (simply by concatenating the shares of JxAK with the shares of
JxBK). It remains to check that JxK corresponds to the sharing of a vector of Fnqm of rank
at most r. The latter can be done using one of the two rank checking protocols described
in Section 7.4.1: Πη

RC-RD relying on the rank decomposition or Πη
RC-LP relying on linearized

polynomials, for some parameter η.
The complete MPC protocol is described in Figure 7.5 when relying on the rank decompo-

sition and in Figure 7.6 when relying on linearized polynomials.
Proof of Knowledge. Using the MPC-in-the-Head paradigm, we transform the above MPC
protocol into an interactive zero-knowledge proof of knowledge which enables to convince
a verifier that a prover knows the solution of a rank syndrome decoding problem. The
soundness error of the resulting protocol is

ε := 1
N

+
(

1− 1
N

)
pη

where pη := 1
qη when using Πη

RC-RD and pη := 2
qm·η −

1
q2·m·η when using Πη

RC-LP. By repeating
the protocol τ times, we get a soundness error of ετ . To obtain a soundness error of λ bits,
we can take τ =

⌈
−λ

log2 ε

⌉
. We can transform the interactive protocol into a non-interactive

proof / signature thanks to the Fiat-Shamir transform [FS87]. According to [KZ20a], the
security of the resulting scheme is

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1
(τ
i

)
piη(1− pη)τ−i

+N τ2

}
.
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Public values: H = (H ′|In−k) ∈ F(n−k)×n
qm and y ∈ Fn−kqm .

Inputs: Each party takes a share of the following sharings as inputs: JxAK where xA ∈ Fkqm , JT K where
T ∈ Fn×rq , JRK where R ∈ Fr×mq , JaK where a has been uniformly sampled from Fr×ηq , and JcK where c ∈ Fn×ηq ,
such that c = Ta and X = TR where X is the matrix form of x.

MPC Protocol:

1. The parties get a random Σ ∈ Fm×ηq .
2. The parties locally set JxBK = y −H ′JxAK.
3. The parties locally write JxK := (JxAK, JxBK) as a matrix JXK.
4. The parties locally set JαK = JRKΣ + JaK.
5. The parties open α ∈ Fr×ηq .
6. The parties locally set JvK = JT Kα− JcK− JXKΣ.
7. The parties open v ∈ Fm×ηq .
8. The parties outputs Accept if v = 0 and Reject otherwise.

Figure 7.5.: An MPC protocol based on the rank decomposition technique (ΠRC-RD) which
verifies that the given input corresponds to a solution of a rank syndrome decoding
problem.

Public values: H = (H ′|In−k) ∈ F(n−k)×n
qm and y ∈ Fn−kqm .

Inputs: Each party takes a share of the following sharings as inputs: JxAK where x ∈ Fkqm , JLU K :=
Xqr +

∑r−1
i=0 JβiKXqi where LU (X) :=

∏
u∈U (X − u) ∈ Fqm [X], JaK where a has been uniformly sampled from

Frqm·η , and JcK ∈ Fqm·η , such that c = −〈β, a〉.

MPC Protocol:

1. The parties get random γ1, . . . , γn ∈ Fqm·η .
2. The parties get a random ε ∈ Fqm·η .
3. The parties locally set JxBK = y −H ′JxAK.
4. The parties locally set JzK = −

∑n

j=1 γjJxjK
qr .

5. The parties locally set JwiK =
∑n

j=1 γjJxjK
qi for all i ∈ {0, . . . , r − 1}.

6. The parties locally set JαK = ε · JwK + JaK.
7. The parties open α ∈ Frqm·η .
8. The parties locally set JvK = ε · JzK− 〈α, JβK〉 − JcK.
9. The parties open v ∈ Fqm·η .

10. The parties outputs Accept if v = 0 and Reject otherwise.

Figure 7.6.: An MPC protocol based on the technique using linearized polynomials (ΠRC-LP)
which verifies that the given input corresponds to a solution of a rank syndrome
decoding problem. U is a Fq-linear subspace U of Fqm of dimension r which
contains x1, . . . , xn.

When using ΠRC-RD, the communication cost of the scheme (in bits) is

4λ+ τ ·

(k ·m︸ ︷︷ ︸
xA

+ r ×m︸ ︷︷ ︸
R

+ r × n︸ ︷︷ ︸
T

+ r × η︸ ︷︷ ︸
α

+n× η︸ ︷︷ ︸
c

) · log2 q + λ · log2N + 2λ︸ ︷︷ ︸
MPCitH
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where λ is the security level, η is a scheme parameter and τ is computed such that the
soundness error is of λ bits in the interactive case and such that costforge is of λ bits in the
non-interactive case.

And when using ΠRC-LP, the communication cost of the scheme (in bits) is

4λ+ τ ·

(k ·m︸ ︷︷ ︸
xA

+ r ×m︸ ︷︷ ︸
LU

+ r ×m× η︸ ︷︷ ︸
α

+m× η︸ ︷︷ ︸
c

) · log2 q + λ · log2N + 2λ︸ ︷︷ ︸
MPCitH

 .
Performance and comparison. In what follows, we compare our scheme with the state
of the art on the Rank Syndrome Decoding instance [BG22]:

(q,m, n, k, r) = (2, 32, 30, 14, 9).

We provide in Tables 7.6 and 7.7 a complete comparison of our scheme with the state of
the art. To get a more complete comparison, we include the schemes [Ste94], [Vér96] and
[FJR21] which can be easily adapted for the rank metric (by replacing the permutations by
rank isometries). Moreover, we put in Table 7.7 the achieved performance of [BG22] when
relying on structured rank syndrome decoding problem (the parameters of the structured
problem come from the original article).

The first schemes [Ste94] and [Vér96] can achieve signature sizes of around 30 KB (let us
remark that some optimization tricks have been used to achieve these sizes). Then, using
the MPC-in-the-Head technique of the “shared permutation”, [FJR21] and [BG22] divide
this size by half, achieving communication cost around 15 KB (13 − 19 KB). Finally, our
new schemes outperform all these schemes by achieving sizes around 6− 11 KB. The scheme
using a q-polynomial even outperforms the [BG22]’s proposals3 which rely on structured rank
syndrome decoding problems.

Table 7.6.: Sizes of the signatures relying on the rank syndrome decoding problem (restricting
to the schemes using the FS heuristics).

Scheme Name Security Signature Size
[Ste94] (3/2)τ µdig + τ

[
1
3 (2µmat + µrank + 2µseed) + µdig

]
[Vér96] (3/2)τ µdig + τ

[
1
3 (µmat + µptx + µrank + 2µseed) + µdig

]
[FJR21] εhelper(τ,M, 1

N
)−1 µdig + τ [µmat + µptx + µrank + µMPCitH + µhelper]

[BG22] εhelper(τ,M, 1
N

)−1 µdig + τ [µmat + µrank + µMPCitH + µhelper]
Our scheme (RD) KZ( 1

qη
, 1
N

) 2µdig + τ [µptx + µrank + η(n+ r) log2 q + µMPCitH]
Our scheme (LP) KZ( 2

qm·η −
1

q2·m·η ,
1
N

) 2µdig + τ [µptx + rm log2 q + η(r + 1)m log2 q + µMPCitH]

Note: the used notations are µmat := mn log 2q, µrank := r(m + n) log2 q, µptx := mk log2 q, plus all the
notations defined in Section 7.2.

3Theses sizes are larger than the ones in [BG22] because they take N = 1024, but here to have a fair
comparison with the other schemes, we take N = 256.
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Table 7.7.: Sizes of the signatures relying on the rank syndrome decoding problem (restricting
to the schemes using the FS heuristics). Numerical comparison.

Instance Protocol Name Variant Parameters Signature Size
N M τ η

q = 2
m = 31
n = 30
k = 15
r = 9

Stern [Ste94] - - - 219 - 31 358 B
Véron [Vér96] - - - 219 - 27 115 B

[FJR21] Fast 8 187 49 - 19 328 B
Short 32 389 28 - 14 181 B

[BG22] Fast 8 187 49 - 15 982 B
Short 32 389 28 - 12 274 B

Our scheme (RD) Fast 32 - 33 19 11 000 B
Short 256 - 21 24 8 543 B

Our scheme (LP) Fast 32 - 30 1 7 376 B
Short 256 - 20 1 5 899 B

Ideal RSD [BG22] Fast 32 - 37 - 12 607 B
Short 256 - 26 - 10 126 B

Ideal RSL [BG22] Fast 32 - 27 - 9 392 B
Short 256 - 17 - 6 754 B

7.5. Running times

We implement our schemes thanks to the library described in Section 9.2. Until 2022, the
only way to implement an MPCitH-based proof system was by emulating all the parties of
the underlying MPC protocol, implying that we would need to emulate N times a party
per repetition. The recent work [AGH+23] changes this drastically. The authors suggest
generating the input shares of the parties in a correlated way using a hypercube approach.
This optimization enables to emulate only 1 + log2(N) parties per repetition. For example, in
Section 7.3, we propose to take τ = 25 and N = 256 for the “short” trade-off of our scheme.
Without the optimization of [AGH+23], we would need to emulate τ ·N = 6400 times a party
per signing. With it, we just need to emulate τ · (1 + log2N) = 225 times a party, reducing
the computational cost of the MPC emulation by a factor of 28.

We integrated the [AGH+23] optimization in our implementations. The obtained signing
times are given in Table 7.8. The pseudo-randomness is generated using AES in counter
mode, the used hash function is SHA3, and the MPC challenge is sampled using SHAKE.
We benchmarked our scheme on a 3.8 GHz Intel Core i7 CPU with the support of AVX2 and
AES instructions. All the reported timings were measured on this CPU while disabling Intel
Turbo Boost.

In Table 7.8, we give the computational contribution of two subparts of the signing
algorithm:

• the running time for preparing and committing all the input shares of the MPC protocol,

• and the running time for emulating the MPC protocol.
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Table 7.8.: Benchmark of our implementations of the proposed signature schemes.

Scheme Sizes Signing time

|sk| |pk| |σ| Share
Commit.

MPC
Emulation Total

Variant “Short” – 256 parties (N = 256)
MQ over F256 96 B 56 B 7 114 B 3.72 6.25 10.56
MQ over F251 5.8 2.17 8.56

MinRank (with RD) 208 B 144 B 7 122 B 4.2 3.75 8.39
MinRank (with LP) 176 B 5 518 B 3.61 13.23 17.22
Rank SD (with RD) 208 B 76 B 8 543 B 3.34 2.36 6.12
Rank SD (with LP) 172 B 5 899 B 2.99 3.72 7.09

Variant “Fast” – 32 parties (N = 32)
MQ over F256 96 B 56 B 8 488 B 0.69 6.9 7.83
MQ over F251 0.99 2.15 3.42

MinRank (with RD) 208 B 144 B 9 288 B 0.86 2.68 3.70
MinRank (with LP) 176 B 7 204 B 0.76 13.63 14.54
Rank SD (with RD) 208 B 76 B 11 000 B 0.71 2.30 3.19
Rank SD (with LP) 172 B 7 376 B 0.58 3.71 4.41

Note: All the timings are given in milliseconds.

We optimized the implementation of the first part which mainly relies on symmetric primitives
(pseudo-randomness, commitments, ...) since the code is the same for all the schemes. For
example, we rely on fourfold calls of Keccak (for SHA3) using AVX instructions. However,
the arithmetic components used by the MPC protocols have not been optimized, since it
would require dedicated work for each scheme (and is out of the scope of this chapter4).

In this chapter, we proposed two MPC protocols to check that a matrix has a small
rank: one based on rank decomposition (RD), one based on q-polynomials (LP). The second
protocol leads to smaller signature sizes, but it tends to be less efficient in running timing
since it involves computation in a field extension. From the benchmark, we can observe
that both protocols give similar running times when applied to the rank syndrome decoding
problem. However, when applied to MinRank, the MPC protocol based on q-polynomials
gives a slow scheme. As explained previously, the arithmetics of the implementations have
not been optimized. The scheme “MinRank (with LP)” suffers from this lack of optimizations.
An open question would be: can an optimized implementation of the field extension erase this
difference in running times between both variants (RD and LP)? This question will probably
be answered during the NIST standardization process for post-quantum cryptography since
both approaches have been submitted in the NIST call (c.f. the schemes MIRA and MiRitH).

4Such optimized implementations have been built for the schemes submitted to the NIST call, see Section 9.1.
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7.6. Conclusion
In this chapter, we studied the application of the MPC-in-the-Head paradigm to the multi-
variate quadratic problem, the MinRank problem and the rank syndrome decoding problem.
The main contribution was to reduce the task of proving the low rank of a matrix to proving
that some field elements are roots of a q-polynomial. Such polynomials are MPC-friendly
thanks to the linearity of the Frobenius endomorphism. Using this reduction, we can produce
signatures relying on the MinRank problem and on the rank syndrome decoding problem with
sizes below 6 KB. We also proposed the first signature scheme relying on the multivariate
quadratic problem which fits the MPC-in-the-Head paradigm as described in Chapter 3. This
scheme outperforms the former ones when working on large fields such as F256.
The ideas introduced in this chapter have been used in several submissions to the NIST

call (see Chapter 9 for details).
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Chapter 8.
MPC-in-the-Head with Threshold
Linear Secret Sharing
While the MPC-in-the-Head paradigm is not restricted to a particular secret sharing

scheme, all the efficient instantiations for small circuits proposed before 2022 rely on additive
secret sharings.
In this chapter, we show how using a threshold linear secret sharing scheme (threshold

LSSS) can be beneficial to the MPC-in-the-Head paradigm. For a general passively-secure
MPC protocol model capturing most of the existing MPCitH schemes, we show that our
approach improves the soundness error of the underlying proof system from 1/N down to
1/
(N
`

)
, where N is the number of parties and ` is the privacy threshold of the sharing scheme.

Applying our approach with a low-threshold LSSS boosts the performance of the proof
system by making the MPC emulation cost independent of N for both the prover and the
verifier. The gain is particularly significant for the verification time which becomes logarithmic
in N (while the prover still has to generate and commit to the N input shares). We further
generalize our result to any threshold ramp LSSS and propose an efficient batching technique
relying on Shamir’s secret sharing.
The results presented in this chapter were released in October 2022 on the cryptology

ePrint archive [FR22] in collaboration with Matthieu Rivain and will be published in the
proceedings of the international conference Asiacrypt 2023.
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8.1. Introduction

As explained in Chapter 3, proof systems built from the MPCitH paradigm can be divided
into two categories:

• Schemes targeting small circuits (e.g. to construct efficient signature schemes), such
as [KKW18; BN20; KZ22]. In these schemes, the considered MPC protocol only needs
to be secure in the semi-honest model, enabling efficient constructions, but the resulting
proof is linear in the circuit size. Before the work in this chapter, the schemes in this
category were all based on additive secret sharing.

• Schemes such as [AHIV17; GSV21] in which the considered MPC protocol is secure in
the malicious model and the proof is sublinear in the circuit size (in O(

√
|C|) with |C|

being the circuit size). Due to their sublinearity, these schemes are more efficient for
middle-size circuits (while the formers remain more efficient for smaller circuits arising
e.g. in signature schemes).

We note that other quantum-resilient proof systems exist (a.k.a. SNARK, STARK) which do
not rely on the MPCitH paradigm and which achieve polylogarithmic proof size (w.r.t. the
circuit size), see e.g. [BCR+19; BBHR19]. These schemes are hence better suited for large
circuits.

The results of this chapter belong to the first category of MPCitH-based schemes (i.e.
targeting small circuits). In 2022, the best MPCitH-based schemes in this scope relied on
(N − 1)-private passively-secure MPC protocols with N parties [KKW18; BN20; DOT21;
KZ22], where the parameter N provides different trade-offs between communication (or
signature size) and execution time. In these schemes, the proof is composed of elements of
size solely depending on the target security level λ (the “incompressible” part) and other
elements of size O(λ2/ logN) bits (the “variable” part). To obtain short proofs or signatures,
one shall hence take a large number of parties N . On the other hand, the prover and verifier
running times scale linearly with N (because of the MPC emulation) and hence quickly
explode while trying to minimize the proof size.

In this chapter, we first describe a general model of multiparty computation protocol (with
additive secret sharing) which captures a wide majority of the protocols used in the MPCitH
context. (To the best of our knowledge, our model applies to all the MPCitH schemes
except those derived from ZKBoo or Ligero.) As stated by Theorem 3.1.4, a zero-knowledge
proof resulting from the transformation of a multiparty computation using only broadcast
communication has a soundness error of

1
N

+ p ·
(

1− 1
N

)
,

where N is the number of parties and p is the false-positive rate of the MPC protocol (see
Section 3.3.2). We then show how to apply an arbitrary threshold linear secret sharing
scheme (LSSS) to our general MPC model and how to transform the obtained MPC protocol
into a zero-knowledge proof achieving the following soundness error:

1(N
`

) + p · ` · (N − `)
`+ 1 ,
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where ` is the threshold of the LSSS (any ` shares leak no information while the secret can be
reconstructed from any `+ 1 shares). Our theorems cover all the MPC protocols complying
with our general model, and for any threshold LSSS (covering additive sharing as a particular
case).
Besides improving soundness, using an LSSS with a small threshold implies significant

gains in terms of timings. Indeed, the prover and the verifier do not need to emulate all the
N parties anymore, but only a small number of them (` + 1 for the prover and ` for the
verifier). For instance, when working with Shamir’s secret sharing [Sha79] with polynomials
of degree ` = 1, the prover only needs to emulate 2 parties (instead of N) and the verifier
only needs to emulate 1 party (instead of N − 1) while keeping a soundness error about
1
N (assuming a small false positive rate p). On the other hand, the proof size is slightly
larger than in the standard case (with additive sharing) since one needs to use a Merkle
tree for the commitments (and include authentication paths for the opened commitments in
the proof transcript). Overall, our approach provides better trade-offs between proof size
and performance for MPCitH schemes while drastically reducing the verification time in
particular.
We further generalize our approach to threshold ramp LSSS, for which a gap ∆ exists

between the number of parties ` which leak no information and the number of parties `+1+∆
necessary to reconstruct the secret. We particularly analyze algebraic geometric threshold
ramp schemes [CC06] but our result is mostly negative: we show that using such schemes
does not bring a direct advantage to our framework. We then show that our result on ramp
schemes is still useful in the context of batched proofs (i.e. proving simultaneously several
statements with a single verification process). We propose a batching technique based on
Shamir’s secret sharing which enables us to efficiently batch proofs in our framework (for a
subset of the existing MPCitH schemes).

Finally, we describe some applications of our techniques. We first adapt the SDitH signature
scheme (presented in Chapter 5) to our framework with Shamir’s secret sharing. We obtain a
variant of this scheme that achieves new interesting size-performance trade-offs. For instance,
for a signature size of 10 KB, we obtain a signing time of around 3 ms and a verification
time lower than 0.5 ms, which is competitive with SPHINCS+ [ABB+22] in terms of size
and verification time while achieving much faster signing. We further apply our batching
technique to two different contexts: batched proofs for the SDitH scheme and batched proofs
for general arithmetic circuits based on the Limbo proof system [DOT21]. In both cases
and for the considered parameters, we obtain an amortized proof size lower than 1/10 of the
baseline scheme when batching a few dozen statements, while the amortized running times
are also significantly improved (in particular for the verifier).

Related works. The MPC-in-the-Head paradigm was introduced in the seminal work
[IKOS07]. The authors propose general MPCitH constructions relying on MPC protocols in
the semi-honest model and in the malicious model. In the former case (semi-honest model),
they only consider 2-private MPC protocols using an additive sharing as input (they also
propose an alternative construction with 1-private protocols). In the latter case (malicious
model), they are not restricted to any type of sharing. The exact security of [IKOS07] is
analyzed in [GMO16]. As other previous works about the MPCitH paradigm, our work can
be seen as a specialization of the IKOS framework. In particular, we restrict the considered
MPC model, optimize the communication in this model and provide a refined analysis for
the soundness (in the exact security setting) to achieve good practical performance.
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Construction Sharing
Scheme Priv. Rob. Soundness Restriction

[IKOS07, Sec. 3] Additive 2 0 1− 1
(N2 ) -

[IKOS07, Sec. 4] Any t t
When N = Ω(t),

2−Ω(t) -

[GMO16] Any t r
max

{
(rt)
(Nt )

,
k∑
j=0

2j (kj)(N−2k
t−j )

(Nt )

}
with k = br/2c+ 1

-

[AHIV17] Any t r
(
1− r

N

)t + δ Broadcast

[DOT21] Additive N − 1 0 1
N + p

(
1− 1

N

)
Broadcast

Our work, Sec. 8.3 LSSS ` 0 1
(N` )

+ p `(N−`)`+1
Broadcast

Linear operations

Our work, Sec. 8.4.1
LSSS with
threshold
gap ∆ + 1

` 0 (`+∆
` )

(N` )
+ p · `

`+∆+1 ·
(N−`
∆+1

) Broadcast
Linear operations

Table 8.1.: Existing general transformations of an MPC protocol into a zero-knowledge
proof, with associated MPC model and resulting soundness error. The column
“Priv.” indicates the privacy threshold of the MPC protocol, while the column
“Rob.” indicates its robustness threshold (an MPC protocol is said r-robust in the
malicious model when it outputs the right values as soon as there are at most r
dishonest parties, up a small probability named the robustness error). N denotes
the number of parties in the MPC protocol, δ denotes the robustness error, and p
denotes the false positive rate as defined in this work.

To the best of our knowledge, besides [IKOS07], the only previous work which considers
MPCitH without relying on an additive secret sharing scheme is Ligero [AHIV17]. Ligero
is a practical MPCitH-based zero-knowledge proof system for generic circuits which uses
Shamir’s secret sharing (or Reed-Solomon codes). The authors consider a particular type
of MPC protocol in the malicious model and analyze the soundness of the resulting proof
system. Ligero achieves sublinear communication cost by packing several witness coordinates
in one sharing which is made possible by the use of Shamir’s secret sharing.
In comparison, this chapter formalizes the MPC model on which many recent MPCitH-

based schemes (with additive sharing) rely and shows how using LSSS in this model can
be beneficial. We consider a slightly more restricted MPC model than the one of Ligero:
we impose that the parties only perform linear operations on the sharings. On the other
hand, we only need the MPC protocol to be secure in the semi-honest model and not in the
malicious model as Ligero. In fact, this difference of settings (semi-honest versus malicious)
makes our techniques and Ligero’s different in nature. While Ligero makes use of proximity
tests to get a robust MPC protocol, we can use lighter protocols in our case (since we do not
need robustness). Moreover, for a given number of parties and a given privacy threshold, the
soundness error of our work is smaller than the one of [AHIV17]. On the other hand, we
consider MPC protocols which only performs linear operations on shares which, in the current
state of the art, cannot achieve sublinearity. For this reason, our work targets proofs of
knowledge for small circuits (for example, to build efficient post-quantum signature schemes)
while Ligero remains better for middle-size circuits (thanks to the sublinearity).

Finally, let us cite [DOT21] which is another article providing a refined analysis for the
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transformation of a general MPC model. The scope of the transformation differs from ours,
since it covers (N − 1)-private MPC protocols using broadcast.
In Table 8.1, we sum up all the MPC models considered in the state of the art of the

MPC-in-the-Head paradigm with the soundness errors and limitations of the general schemes.

8.2. Formalizing the MPCitH-Friendly MPC Protocols
Several simple MPC protocols have been proposed that yield fairly efficient zero-knowledge
proofs and signature schemes in the MPC-in-the-Head paradigm, see for instance [KZ20b;
BD20; BDK+21b; FJR22b]. These protocols lie in a specific subclass of MPC protocols in
the semi-honest model which we formalize hereafter.

8.2.1. General Model of MPC Protocol
We consider a passively-secure MPC protocol that performs its computation on a base finite
field F so that all the manipulated variables (including the witness w) are tuples of elements
from F. In what follows, the sizes of the different tuples involved in the protocol are kept
implicit for the sake of simplicity. The parties take as input an additive sharing JwK of the
witness w (one share per party). Then the parties compute one or several rounds in which
they perform three types of actions:
Receiving randomness: the parties receive a random value (or random tuple) ε from a

randomness oracle OR. When calling this oracle, all the parties get the same random
value ε. This might not be convenient in a standard multi-party computation setting
(since such an oracle would require a trusted third party or a possibly complex coin-
tossing protocol), but in the MPCitH context, these random values are provided by the
verifier as challenges.

Receiving hint: the parties can receive a sharing JβK (one share per party) from a hint oracle
OH , which is sometimes called the dealer in the MPC literature. The hint β can depend
on the witness w and the previous random values sampled from OR. Formally, for
some function ψ, the hint is sampled as β ← ψ(w, ε1, ε2, . . . ; r) where ε1, ε2, . . . are the
previous outputs of OR and where r is a fresh random tape.

Hints enable to build more efficient MPC protocols. For example, instead of computing
a product of two shared values, the parties can get this product using OH and simply
check that the product is correct, which is cheaper in communication [BN20].

Computing & broadcasting: the parties can locally compute JαK := Jϕ(v)K from a sharing
JvK where ϕ is an F-linear function, then broadcast all the shares JαK1, . . . , JαKN to
publicly reconstruct α := ϕ(v). If ϕ is in the form v 7→ Av + b, then the parties can
compute Jϕ(v)K from JvK by letting

Jϕ(v)Ki := AJvKi + JbKi for each party i

where JbK is a publicly-known sharing of b.1 This process is usually denoted Jϕ(v)K =
ϕ(JvK). The function ϕ can depend on the previous random values {εi}i from OR and
on the previous broadcasted values.

1Usually, JbK is chosen as (b, 0, . . . , 0) in the case of the additive sharing.
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After t rounds of the above actions, the parties finally output Accept if and only if the
publicly reconstructed values α1, . . . , αt satisfy the relation

g(α1, . . . , αt) = 0

for a given function g.

Protocol 10 gives a general description of an MPC protocol in this paradigm, which we
shall use as a model in the rest of the chapter. In general, the computing & broadcasting
step can be composed of several iterations, which is further depicted in Protocol 11. For the
sake of simplicity, we shall consider a single iteration in our presentation (as in Protocol 10)
but we stress that the considered techniques and proofs equally apply to the multi-iteration
setting (i.e. while replacing step (c) of Protocol 10 by Protocol 11).

1. The parties take as input a sharing JwK.

2. For j = 1 to t, the parties:

a) get a sharing JβjK from the hint oracle OH , such
that

βj ← ψj(w, ε1, . . . , εj−1; rj)

for a uniform random tape rj ;

b) get a common random εj from the oracle OR;

c) for some F-linear function ϕj(εi)i≤j ,(αi)i<j , compute

JαjK := ϕj(εi)i≤j ,(αi)i<j
(
JwK, (JβiK)i≤j

)
,

broadcast JαjK, and then publicly reconstruct αj .
Note: This step can be composed of several iterations
as described in Protocol 11.

3. The parties finally accept if g(α1, . . . , αt) = 0 and reject
otherwise.

Note: In the above description w, βj, εj, αj are elements from
the field F or tuples with coordinates in F (whose size is not
made explicit to keep the presentation simple).

Protocol 10: General MPC protocol.

Output distribution. In the following, we shall denote #”ε := (ε1, . . . , εt), #”

β := (β1, . . . , βt),
#”α := (α1, . . . , αt) and #”r := (r1, . . . , rt). From the above description, we have that the output
of the protocol deterministically depends on the broadcasted values #”α (through the function
g), which in turn deterministically depend on the input witness w, the sampled random values
#”ε , and the hints #”

β (through the functions ϕ’s). It results that the functionality computed
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(c) for k = 1 to ηj :

• compute a sharing

Jαj,kK := ϕj,k(εi)i≤j ,(αi)i<j ,(αj,i)i<k

(
JwK, (JβiK)i≤j

)
,

for some F-linear function ϕj,k(εi)i≤j ,(αi)i<j ,(αj,i)i<k
;

• broadcast their shares Jαj,kK;

• publicly reconstruct αj,k;

We denote αj := (αj,1, . . . , αj,ηj ).

Protocol 11: General MPC protocol – Iterative computing & broadcasting step for iteration
j (with ηj denoting the number of inner iterations).

by the protocol can be expressed as:

f(w, #”ε ,
#”

β ) =
{

Accept if g( #”α) = 0,
Reject otherwise,

with #”α = Φ(w, #”ε ,
#”

β ) , (8.1)

where Φ is the deterministic function mapping (w, #”ε ,
#”

β ) to #”α (defined by the coordinate
functions ϕ1, . . . , ϕt). We shall restrict our model to MPC protocols for which the function
f satisfies the following properties:

• If w is a good witness, namely w is such that (x,w) ∈ R, and if the hints #”

β are genuinely
sampled as βj ← ψj(w, (εi)i<j ; rj) for every j, then the protocol always accepts. More
formally:

Pr
#”ε , #”r

[
f(w, #”ε ,

#”

β ) = Accept
∣∣∣ (x,w) ∈ R
∀j, βj ← ψj(w, (εi)i<j ; rj)

]
= 1.

• If w is a bad witness, namely w is such that (x,w) /∈ R, then the protocol rejects with
probability at least 1 − p, for some constant probability p. The latter holds even if
the hints #”

β are not genuinely computed. More formally, for any (adversarially chosen)
deterministic functions χ1, . . . , χt, we have:

Pr
#”ε , #”r

[
f(w, #”ε ,

#”

β ) = Accept
∣∣∣ (x,w) 6∈ R
∀j, βj ← χj(w, (εi)i<j ; rj)

]
≤ p.

We are in the setting where the MPC protocol performs a statistical test on the given witness
w, as described in Section 3.3.2. We thus say that a false positive occurs whenever the MPC
protocol outputs Accept on input a bad witness w, and we call p the false positive rate.

The general MPC model introduced above captures a wide majority of the protocols used
in the MPCitH context. To the best of our knowledge, all the practical instantiations of the
MPCitH paradigm comply with this model except the ZKBoo [GMO16] and Ligero [AHIV17]
proof systems. In particular, our model captures:
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• the KKW18 protocol [KKW18] which computes arbitrary arithmetic circuits (used in
Picnic2 and Picnic3),

• the product checking protocols in [BN20] and BN++ [KZ22],
• the product checking protocols in Limbo [DOT21] and Helium [KZ22],
• the MPC protocols in BBQ [DDOS19] and Banquet [BDK+21b],
• the MPC protocols in LegRoast [BD20] and PorcRoast [BD20],
• the MPC protocol in SDitH [FJR22b],
• the MPC protocols in [FMRV22b].

Example. As an illustration, we recall BN20 protocol to show how it fits our model. This
MPC protocol takes as inputs three sharings JxK, JyK and JzK where x, y, z ∈ F and aims to
check that z = x · y. It proceeds as follows:

• The parties get from OH three hint sharings JaK, JbK and JcK such that a, b← F and
c = a · b.

• The parties get from OR a common random point ε← F.
• The parties locally compute and broadcast

JαK = ε · JxK + JaK and JβK = JyK + JbK .

• The parties publicly reconstruct α and β from JαK and JβK.
• The parties locally compute and broadcast

JvK = ε · JzK− JcK + α · JbK + β · JaK− α · β.

• The parties publicly reconstruct v from JvK.
• The parties output Accept if v = 0 and Reject otherwise.

The idea of this protocol is to take (as hint) a multiplicative triple (a, b, c) satisfying c = a · b
and to “sacrifice” it using the randomness ε to check that z = x · y. If z 6= x · y (or if the
hint is not well-constructed), the protocol will output Reject with probability 1− 1

|F| , thus
its false positive rate is p = 1

|F| . This protocol (that checks a multiplication triple) fits our
model. Indeed, the number of round is t := 1 and we have

• ψ1 is a randomized function that returns a triple (a, b, c) such that (a, b) is random and
c = a · b;

• ε1 is a random field element;

• ϕ1 is split in two subfunctions ϕ1,1 and ϕ1,2, as described in Protocol 11 when η1 = 2:

ϕ1,1(x, y, z, a, b, c, ε) := (x+ ε · a, y + b)
ϕ1,2(x, y, z, a, b, c, ε, α, β) := ε · z − c+ α · b+ β · a+ α · β

where (α, β) := ϕ1,1(x, y, z, a, b, c, ε).
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8.2.2. Application of the MPCitH Principle
Any MPC protocol complying with the above description gives rise to a practical short-
communication zero-knowledge protocol in the MPCitH paradigm. The resulting zero-
knowledge protocol is described in Protocol 12: after sharing the witness w, the prover
emulates the MPC protocol “in her head”, commits the parties’ inputs, and sends a hash
digest of the broadcast communications; finally, the prover reveals the requested parties’
inputs as well as the broadcast messages of the unopened party, thus enabling the verifier to
emulate the computation of the opened parties and to check the overall consistency.
Soundness. Assuming that the underlying MPC protocol follows the model of Section 8.2.1
with a false positive rate p, the soundness error of Protocol 12 is (see Theorem 3.1.4)

1
N

+
(

1− 1
N

)
· p.

The above formula results from the fact that a malicious prover might successfully cheat
with probability 1/N by corrupting the computation of one party or with probability p by
making the MPC protocol produce a false positive.
Performance. The communication of Protocol 12 includes:

• the input shares (JwKi, Jβ1Ki, . . . , JβtKi) of the opened parties. In practice, a seed
seedi ∈ {0, 1}λ is associated to each party so that for each committed variable v (among
the witness w and the hints β1, . . . , βt) the additive sharing JvK is built as

JvKi ← PRG(seedi) for i 6= N

JvKN = v −
∑N−1
i=1 JvKi.

Thus, instead of committing (JwKi, Jβ1Ki), the initial commitments simply include the
seeds for i 6= N , and comj

i becomes useless for j ≥ 2 and i 6= N . Formally, we have:

comj
i =


Com(seedi; ρ1

i ) for j = 1 and i 6= N

Com(JwKN , Jβ1KN ; ρ1
N ) for j = 1 and i = N

∅ for j > 1 and i 6= N

Com(JβjKN ; ρjN ) for j > 1 and i = N

Some coordinates of the βj might be uniformly distributed over F (remember that
the βj are tuples of F elements). We denote βunif the sub-tuple composed of those
uniform coordinates. In this context, the last share JβunifKN can be built as JβunifKN ←
PRG(seedN ) so that a seed seedN can be committed in com1

N (instead of committing
JβunifKN ). This way the prover can save communication by revealing seedN instead of
JβunifKN whenever the latter is larger;

• the messages Jα1Ki∗ , . . . , JαtKi∗ broadcasted by the unopened party. Let us stress that one
can sometimes save communication by sending only some elements of Jα1Ki∗ , . . . , JαtKi∗
and use the relation g(α1, . . . , αt) = 0 to recover the missing ones;

• the hash digests h1, . . . , ht+1 and the unopened commitments com1
i∗ , . . . , comt

i∗ (as
explained above, we have comj

i∗ = ∅ for j > 1 if i∗ 6= N).
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1. The prover shares the witness w into a sharing JwK.

2. The prover emulates “in her head” the N parties of the MPC protocol.

For j = 1 to t:

a) the prover computes
βj = ψj(w, (εi)1≤i<j),

shares it into a sharing JβjK;

b) the prover computes the commitments

comj
i :=

{
Com(JwKi, Jβ1Ki; ρ1

i ) if j = 1
Com(JβjKi; ρji ) if j > 1

for all i ∈ {1, . . . , N}, for some commitment randomness ρji ;

c) the prover sends

hj :=
{

Hash(com1
1, . . . , com1

N ) if j = 1
Hash(comj

1, . . . , comj
N , Jα

j−1K) if j > 1

to the verifier;

d) the verifier picks at random a challenge εj and sends it to the prover;

e) the prover computes
JαjK := ϕj(εi)i≤j ,(αi)i<j

(
JwK, (JβiK)i≤j

)
and recomposes αj .
Note: This step is computed according to Protocol 11 in case of an iterative computing &
broadcasting step.

The prover further computes ht+1 := Hash(JαtK) and sends it to the verifier.

3. The verifier picks at random a party index i∗ ∈ [1 : N ] and sends it to the prover.

4. The prover opens the commitments of all the parties except party i∗ and further reveals the
commitments and broadcast messages of the unopened party i∗. Namely, the prover sends
(JwKi, (JβjKi, ρji )j∈[1:t])i 6=i∗ , com1

i∗ , . . . , comt
i∗ , Jα1Ki∗ , . . . , JαtKi∗ to the verifier.

5. The verifier recomputes the commitments comj
i and the broadcast values JαjKi for i ∈ [1 : N ]\{i∗}

and j ∈ [1 : t] from (JwKi, (JβjKi, ρji )j∈[1:t])i 6=i∗ in the same way as the prover.

6. The verifier accepts if and only if:
a) the views of the opened parties are consistent with each other, with the committed input

shares and with the hash digest of the broadcast messages, i.e. for j = 1 to t+ 1,

hj
?=


Hash(com1

1, . . . , com1
N ) if j = 1

Hash(comj
1, . . . , comj

N , Jα
j−1K) if j > 1

Hash(JαtK) if j = t+ 1

b) the output of the MPC protocol is Accept, i.e.

g(α1, . . . , αt) ?= 0.

Protocol 12: Zero-knowledge protocol - Application of the MPCitH principle to Protocol 10.
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Moreover, instead of revealing the (N − 1) seeds of the opened parties, one can generate
them from a GGM tree as suggested in [KKW18]. One then only needs to reveal log2N λ-bit
seeds. We finally obtain a total communication cost for Protocol 12 of

• when i∗ 6= N ,

Cost = (t+ 1) · 2λ︸ ︷︷ ︸
h1,h2,...,ht+1

+( inputs︸ ︷︷ ︸
JwKN ,Jβ1KN ,...,

+ comm︸ ︷︷ ︸
Jα1Ki∗ ,...,JαtKi∗

+ λ · log2N︸ ︷︷ ︸
seedi for i 6=i∗

+ 2λ︸︷︷︸
com1

i∗

).

• when i∗ = N ,

Cost = (t+ 1) · 2λ︸ ︷︷ ︸
h1,h2,...,ht+1

+( comm︸ ︷︷ ︸
Jα1Ki∗ ,...,JαtKi∗

+ λ · log2N︸ ︷︷ ︸
seedi for i 6=i∗

+ t · 2λ︸ ︷︷ ︸
com1

i∗ ,...,comt
i∗

).

where inputs denote the bitsize of (w, β1, . . . , βt) excluding the uniformly distributed elements
βunif, and where comm denotes the bitsize of (α1, . . . , αt) excluding the elements which can
be recovered from g(α1, . . . , αt) = 0.
To achieve a soundness error of 2−λ, one must repeat the protocol τ = λ

log2 N
times. The

resulting averaged cost is the following:

Cost = (t+ 1) · 2λ+ τ ·
(
N − 1
N

· inputs + comm + λ · log2N + N − 1 + t

N
· 2λ

)
.

Several recent works based on the MPCitH paradigm [BD20; KZ22; FJR22b] provides
zero-knowledge identification protocols with communication cost below 10 KB for a 128-bit
security level. Unfortunately, to obtain a small communication cost, one must take a large
number of parties N , which induces an important computational overhead compared to other
approaches to build zero-knowledge proofs. Indeed, the prover must emulate N parties in
her head for each of the τ repetitions of the protocol, which makes a total of λN

log2N
party

emulations to achieve a soundness error of 2−λ. Thus, increasing N has a direct impact
on the performance. For instance, scaling from N = 16 to N = 256 roughly halves the
communication but increases the computation by a factor of eight. Given this state of affairs,
a natural question is the following:

Can we build zero-knowledge proofs in the MPC-in-the-head paradigm
while avoiding the computational overhead of emulating

all the parties of the multiparty computation?

In what follows, we show how applying (low-threshold) linear secret sharing to the MPCitH
paradigm provides a positive answer to this question.

8.3. MPC-in-the-Head with Threshold LSS
8.3.1. General Principle
Let ` and N be integers such that 1 ≤ ` < N . We consider an (` + 1, N)-threshold linear
secret sharing scheme (LSSS), as formally introduced in Definition 2.4.1, which shares a
secret s ∈ F into N shares JsK ∈ FN . In particular, the vector spaces of Definition 2.4.1 are



140 Chapter 8. MPC-in-the-Head with Threshold Linear Secret Sharing

simply defined as V1 = V2 = F hereafter (other definitions of these sets will be considered in
Section 8.4). We recall that such a scheme implies that the secret can be reconstructed from
any `+ 1 shares while no information is revealed on the secret from the knowledge of ` shares.
The following lemmas shall be useful to our purpose. The first lemma holds assuming the
MDS conjecture [MS78] while the second one comes from the equivalence between threshold
LSSS and interpolation codes [CDN15, Theorem 11.103].

Lemma 8.3.1. Let F be a finite field and let `,N be integers such that 1 ≤ ` < N − 1. If an
(`+ 1, N)-threshold LSSS exists for F, and assuming the MDS conjecture, then N ≤ |F| with
the following exception: if |F| is a power of 2 and ` ∈ {2, |F| − 2} then N ≤ |F|+ 1.

Lemma 8.3.2. Let (Share, Reconstruct) be an (` + 1, N)-threshold LSSS. For every tuple
v0 ∈ V`+1

2 and every subset J0 ⊆ [N ] with |J0| = `+ 1, there exists a unique sharing JsK ∈ VN2
such that JsKJ0 = v0 and such that

∀J s.t. |J | = `+ 1,ReconstructJ(JsKJ) = s ,

where s := ReconstructJ0(v0). Moreover, there exists an efficient algorithm ExpandJ0 which
returns this unique sharing from JsKJ0.

Remark 8.3.3. In the case of the additive sharing scheme, we have `+ 1 = N so that the
algorithm Expand is trivial (it simply consists of the identity function). In the case of Shamir’s
secret sharing scheme (see Definition 2.4.4), the algorithm Expand builds the underlying
polynomial and evaluates it into each party’ point.

Application to the MPCitH paradigm. We apply a threshold LSSS to the MPCitH
paradigm instead of a simple additive sharing scheme. Let us consider a protocol Πadd
complying with the MPC model introduced in the previous section (Protocol 10). We can
define a protocol ΠLSSS similar to Πadd with the following differences:

• the parties initially receive an (`+ 1, N)-threshold linear secret sharing of the witness
w,

• when invoked for a hint βj , the oracle OH returns an (`+ 1, N)-threshold linear secret
sharing of βj ,

• when the shares of αj are broadcasted, the value αj is reconstructed using the algorithm
Reconstruct. Namely, the parties choose an arbitrary subset (JαjKi)i∈J0 of size ` + 1
from the set of broadcasted shares, run the algorithm ReconstructJ0 to get αj , and
check that all the broadcast shares are consistent with the output of ExpandJ0 . If the
check fails, the protocol returns Reject.

The resulting MPC protocol, formally described in Protocol 13, is well-defined and `-private
in the semi-honest model (meaning that the views of any ` parties leak no information about
the secret, see Definition 2.4.5). This is formalized in the following theorem (see proof in
Appendix A).

Theorem 8.3.4. Let us consider an MPC protocol Πadd complying with the protocol format
described in Protocol 10. If Πadd is well-defined and (N − 1)-private, then the protocol
ΠLSSS corresponding to Πadd with an (`+ 1, N)-threshold linear secret sharing scheme (see
Protocol 13) is well-defined and `-private.
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1. The parties take as input an (`+ 1, N)-threshold linear sharing JwK.

2. For j = 1 to t, the parties:

a) get an (`+ 1, N)-threshold linear sharing JβjK from the hint oracle OH ,
such that

βj ← ψj(w, ε1, . . . , εj−1; rj)

for a uniform random tape rj ;

b) get a common random εj from the oracle OR;

c) for some F-linear function ϕj(εi)i≤j ,(αi)i<j ,
• compute

JαjK := ϕj(εi)i≤j ,(αi)i<j
(
JwK, (JβiK)i≤j

)
,

• broadcast JαjK,
• compute

αj := ReconstructJ0(JαjKJ0)

for some J0 of size `+ 1,
• verify that ExpandJ0(JαKJ0) is consistent with JαjK (i.e. that JαjK

forms a valid sharing) and reject otherwise.

Note: This step can be composed of several iterations as described in
Protocol 11.

3. The parties finally accept if g(α1, . . . , αt) = 0 and reject otherwise.

Note: In the above description w, βj, εj, αj are elements from the field F or tuples
with coordinates in F (whose size is not made explicit to keep the presentation
simple).

Protocol 13: General MPC protocol ΠLSSS with LSSS.

8.3.2. Conversion to Zero-Knowledge Proofs

We can convert the MPC protocol using threshold linear secret sharings into a zero-knowledge
protocol using the MPC-in-the-Head paradigm. Instead of requesting the views of N − 1
parties, the verifier only asks for the views of ` parties. Since the MPC protocol is `-private,
we directly get the zero-knowledge property. One key advantage of using a threshold LSSS is
that only `+ 1 parties out of N need to be computed by the prover, which we explain further
hereafter.

Besides the commitments on the input sharing JwK, and the hints’ sharings Jβ1K, . . . , JβtK,
the prover must send to the verifier the communication between the parties, which for the
considered MPC model (see Protocol 13) consists in the broadcast sharings Jα1K, . . . , JαtK.
Observe that such a sharing JαjK is also an LSSS sharing of the underlying value αj since it
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is computed as
JαjK := ϕj(εi,αi)i≤j

(
JwK, (JβiK)i≤j

)
where JwK, Jβ1K, . . . , JβtK are LSSS sharings and ϕj is an affine function. This notably
implies that, for all i, the broadcast sharing JαjK = (JαjK1, . . . , JαjKN ) contains redundancy.
According to Lemma 8.3.2, in order to uniquely define such a sharing, one only needs to
commit `+ 1 shares of JαjK. In other words, we can choose a fixed subset S of `+ 1 parties
and only commit the broadcast shares from these parties, which then acts as a commitment
of the full sharing JαjK. For all j ∈ [1 : t], the prover needs to send the broadcast share
JαjKi∗ of an arbitrary unopened party i∗. To verify the computation of the ` opened parties
I = {i1, . . . , i`} ⊆ [N ], the verifier can recompute the shares JαjKi1 , . . . , JαjKi` . Then, from
these ` shares together with JαjKi∗ , the verifier can reconstruct the shares JαjKS using
Expand{i∗,i1,...,i`} and check their commitments.
By committing the broadcast messages of only a subset S of parties, the proof becomes

independent of the computation of the other parties. It means that the prover must commit
the input shares of all the parties but only need to emulate ` + 1 parties to commit their
broadcast shares. When ` is small with respect to N , this has a great impact on the
computational performance of the prover. The resulting zero-knowledge protocol is described
in Protocol 14.

8.3.3. Soundness

Consider a malicious prover P̃ who does not know a correct witness w for the statement x
but still tries to convince the verifier that she does. We shall say that such a malicious prover
cheats for some party i ∈ [1 : N ] if the broadcast shares Jα1Ki, . . . , JαtKi recomputed from
the committed input/hint shares JwKi, Jβ1Ki, . . . , JβtKi are not consistent with the committed
broadcast shares (Jα1KS , . . . , JαtKS).
Let us first consider the simple case of false positive rate p = 0. If a malicious prover

cheats on less than N − ` parties, then at least `+ 1 parties have broadcast shares which are
consistent with (Jα1Ki, . . . , JαtKi)i∈S and give rise to broadcast values α1, . . . , αt for which the
protocol accepts, i.e. g(α1, . . . , αt) = 0. Since p = 0, the input shares of those `+ 1 parties
necessarily define a good witness w (i.e. satisfying (x,w) ∈ R), which is in contradiction with
the definition of a malicious prover. We deduce that in such a zero-false-positive scenario, a
malicious prover (who does not know a good witness) has to cheat for at least N − ` parties.
Then, if the malicious prover cheats on more than N − ` parties, the verifier shall always
discover the cheat since she shall necessarily ask for the opening of a cheating party. We
deduce that a malicious prover must necessarily cheat on exactly N − ` parties, and the only
way for the verifier to be convinced is to ask for the opening of the exact ` parties which
have been honestly emulated. The probability of this event to happen is

1( N
N−`

) = 1(N
`

) ,
which corresponds to the soundness error of the protocol, assuming p = 0.

Let us now consider a false positive rate p which is not zero. A malicious prover can
then rely on a false positive to get a higher probability to convince the verifier. In case
the committed input shares JwK1, . . . , JwKN were consistent (i.e. they formed a valid secret
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1. The prover shares the witness w into an (`+ 1, N)-threshold linear secret sharing JwK.

2. The prover emulates “in her head” a (public) subset S of `+ 1 parties of the MPC protocol.

For j = 1 to t:

a) the prover computes
βj = ψj(w, (εi)i<j),

shares it into an (`+ 1, N)-threshold linear secret sharing JβjK;

b) the prover computes the commitments

comj
i :=

{
Com(JwKi, JβjKi; ρji ) if j = 1

Com(JβjKi; ρji ) if j > 1

for all i ∈ [N ], for some commitment randomness ρji , and computes the Merkle root

h̃j := MerkleTree(comj
1, . . . , comj

N ).

c) the prover sends

hj :=
{

h̃j if j = 1
Hash(h̃j , Jαj−1KS) if j > 1

to the verifier;

d) the verifier picks at random a challenge εj and sends it to the prover;

e) the prover computes, for i ∈ S,

JαjKi := ϕj(εk)k≤j ,(αk)k<j

(
JwKi, (JβkKi)k≤j

)
and recomposes αj . This step is repeated as many times as in the MPC protocol (cf
Protocol 11).

The prover further computes ht+1 := Hash(JαtKS) and sends it to the verifier.

3. The verifier picks at random a subset I ⊂ [N ] of ` parties (i.e. |I| = `) and sends it to the
prover.

4. The prover opens the commitments of all the parties in I, namely she sends
(JwKi, (JβjKi, ρji )j∈[t])i∈I to the verifier. The prover further sends the authentication paths
auth1, . . . , autht to these commitments, i.e. authj is the authentication path for {comj

i}i∈I w.r.t.
Merkle root h̃j for every j ∈ [t]. Additionally, the prover sends broadcast shares Jα1Ki∗ , . . . , JαtKi∗
of an unopened party i∗ ∈ S \ I.

5. The verifier recomputes the commitments comj
i and the broadcast values JαjKi for i ∈ I and j ∈ [t]

from (JwKi, (JβjKi, ρji )j∈[t])i∈I . Then she recovers α1, . . . , αt, by αj = ReconstructI∪{i∗}(JαjKI∪{i∗})
for every j ∈ [t].

6. The verifier accepts if and only if:

a) the views of the opened parties are consistent with each other, with the committed input
shares and with the hash digest of the broadcast messages, i.e. for j = 1 to t+ 1,

hj
?=


h̃j if j = 1
Hash(h̃j , Jαj−1KS) if 2 ≤ j ≤ t
Hash(Jαj−1KS) if j = t+ 1

where h̃j is the Merkle root deduced from
(
{comj

i}i∈I , authj
)
and Jαj−1KS are the shares in

subset S deduced from Jαj−1K = ExpandI∪{i∗}
(
Jαj−1KI∪{i∗}

)
;

b) the output of the opened parties are Accept, i.e. g(α1, . . . , αt) ?= 0.

Protocol 14: Zero-knowledge protocol: application of the MPCitH principle to Protocol 13
with an (`+ 1, N)-threshold linear secret sharing scheme.
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sharing), the soundness error would be

1(N
`

) +
(

1− 1(N
`

)) · p.
However, we cannot enforce a malicious prover to commit a valid secret sharing JwK since
the verifier never sees more than the shares of ` parties. More precisely, let us denote

J := {J ⊂ [1 : N ] : |J | = `+ 1}

and let w(J) be the witness corresponding to the shares JwKJ for some subset J ∈ J , formally
w(J) := ReconstructJ(JwKJ). Then we could have

w(J1) 6= w(J2)

for distinct subsets J1, J2 ∈ J . A malicious prover can exploit this degree of freedom to
increase the soundness error.

Soundness attack. Let us take the example of the [BN20] protocol on a field F. In this
protocol, the MPC functionality f outputs Accept for a bad witness w (i.e. such that
(x,w) 6∈ R) with probability p = 1

|F| , i.e. if and only if the oracle OR samples a specific
element εw of F. In this context, a possible strategy for the malicious prover is the following:

1. Build the shares JwK1, . . . , JwKN such that

∀J1, J2 ∈ J , εw(J1) 6= εw(J2) .

We implicitly assume here that
( N
`+1
)
≤ |F| and that constructing such collision-free

input sharing is possible. We assume that (x,w(J)) 6∈ R for every J (otherwise the
malicious prover can recover a good witness by enumerating the w(J)’s).

2. After receiving the initial commitments, the verifier sends the challenge ε.

3. If there exists J0 ∈ J such that ε = w(J0), which occurs with probability
( N
`+1
)
· p

since all the ε(J) are distinct, then the malicious prover defines the broadcast values
α1, . . . , αt (and the broadcast shares in the set S) according to the broadcast shares of
the parties in J0. It results that the computation of the parties in J0 is correct and the
prover will be able to convince the verifier if the set I of opened parties is a subset of
J0 (I ⊂ J0).

4. Otherwise, if no subset J0 ∈ J is such that ε = w(J0), the malicious prover is left
with the option of guessing the set I. Namely, she (randomly) chooses a set I0 of `
parties as well as broadcast values α1, . . . , αt such that g(α1, . . . , αt) = 0, and then she
deduces and commits the broadcast shares JαjKS from the JαjKI0 (computed from the
committed input shares) and the chosen αj ’s. The malicious prover will be able to
convince the verifier if and only if the challenge set I matches the guess I0.
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The probability pattack that the malicious prover convinces the verifier using the above strategy
satisfies

pattack :=

Pr[∃J0:ε=w(J0)]︷ ︸︸ ︷(
N

`+ 1

)
p ·

Pr[I⊂J0]︷ ︸︸ ︷(`+1
`

)(N
`

) +

Pr[∀J,ε6=w(J)]︷ ︸︸ ︷(
1−

(
N

`+ 1

)
p

)
·

Pr[I=I0]︷︸︸︷
1(N
`

)
= 1(N

`

) + p · ` · (N − `)
`+ 1 ≥ 1(N

`

) +
(

1− 1(N
`

)) · p.︸ ︷︷ ︸
Soundness error if the

committed sharing is well-formed.

Soundness proof. We can prove that the above strategy to forge successful transcripts
for the [BN20] protocol is actually optimal and that it further applies to other protocols
complying with our model. This is formalized in the following theorem (together with the
completeness and HVZK property of the protocol).

Theorem 8.3.5. Let us consider an MPC protocol ΠLSSS complying with the protocol format
described in Protocol 13 using an (` + 1, N)-threshold LSSS, such that ΠLSSS is `-private
in the semi-honest model and of false positive rate p. Then, Protocol 14 built from ΠLSSS
satisfies the three following properties:

• Completeness. A prover P who knows a witness w such that (x,w) ∈ R and who
follows the steps of the protocol always succeeds in convincing the verifier V.

• Soundness. Suppose that there is an efficient prover P̃ that, on input x, convinces
the honest verifier V to accept with probability

ε̃ := Pr[〈P̃,V〉(x)→ 1] > ε

where the soundness error ε is defined as

ε := 1(N
`

) + p · ` · (N − `)
`+ 1 .

Then, there exists an efficient probabilistic extraction algorithm E that, given rewindable
black-box access to P̃, outputs either a witness w satisfying (x,w) ∈ R, or a commit-
ment/hash collision, by making an average number of calls to P̃ which is upper bounded
by

4
ε̃− ε

·
(

1 + ε̃ · 8 · (N − `)
ε̃− ε

)
.

• Honest-Verifier Zero-Knowledge. There exists an efficient simulator S which,
given the random challenge I outputs a transcript which is indistinguishable from a real
transcript of Protocol 14.

Proof. The completeness holds from the completeness property of the underlying MPC
protocol. The zero-knowledge property directly comes from the `-privacy property of the
MPC protocol with an (`+ 1, N)-threshold linear secret sharing scheme. See Appendix B for
the soundness proof.
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Remark 8.3.6. The above theorem includes the MPCitH setting with additive sharing as
a particular case. Indeed, when ` = N − 1, we obtain the usual formula for the soundness
error, that is:

` = N − 1 =⇒ ε = 1
N

+ p ·
(

1− 1
N

)
.

Remark 8.3.7. When ` = 1, we have ε ≈ 1
N (assuming p is small). It can look as

surprising that we can have such soundness error by revealing a single party’s view. Since
the communication is only broadcast, a verifier does not need to check for inconsistency
between several parties, she just needs to check that the revealed views are consistent with
the committed broadcast messages. Moreover, the verifier has the guarantee that the shares
broadcast by all the parties form a valid sharing of the open value. It means that even if
the prover reveals only one party’s view, the latter can be inconsistent with the committed
broadcast. Assuming we use Shamir’s secret sharing, committing to a valid broadcast sharing
consists in committing a degree-` polynomial such that evaluations are the broadcast shares.
By interpolating the broadcast shares of ` honest parties (and given the plain value of the
broadcast message), one shall entirely fix the corresponding Shamir’s polynomial, and the
other parties can not be consistent with this polynomial without being consistent with the
honest parties (and the latter can only occur if there is a false positive).

8.3.4. Performance
The advantage of using a threshold LSSS over a standard additive sharing mainly resides in a
much faster computation time, for both the prover and the verifier. Indeed, according to the
above description, the prover only emulates `+ 1 parties while the verifier only emulates `
parties, which is particularly efficient for a small `. For example, assuming that p is negligible
and taking ` = 1, the soundness error is 1/N (which is similar to standard MPCitH with
additive sharing) and the prover only needs to emulate `+ 1 = 2 parties (instead of N) while
the verifier only needs to emulate ` = 1 party (instead of N − 1).
When targeting a soundness error of λ bits, one needs to repeat the protocol τ := −λ

log2 ε
times and thus the number of times that a prover emulates a party is multiplied by τ .
Table 8.2 summarizes the number of party emulations for the prover and the verifier for the
standard case (additive sharing) and for the case of an (`+1, N)-threshold LSSS. Interestingly,
we observe that the emulation phase is more expensive when increasing N for the additive
sharing case while it becomes cheaper for the threshold LSSS case (with some constant `).
The computational bottleneck for the prover when using an LSSS with low threshold `

and possibly high N becomes the generation and commitment of all the parties’ input shares,
which is still linear into N . Moreover the sharing generation for a threshold LSSS might be
more expensive than for a simple additive sharing. On the other hand, the verifier does not
suffer from this bottleneck since she only has to verify ` opened commitments (per repetition).
One trade-off to reduce the prover commitment bottleneck is to increase `, which implies a
smaller τ (for the same N) and hence decreases the number of commitments.

In terms of communication, using a threshold LSSS implies a slight overhead. In particular,
since only ` parties out of N are opened, we use a Merkle tree for the commitments and
include the authentication paths in the communication.

Let us recall the notations defined in Section 8.2.2:
• inputs: the bitsize of (w, β1, . . . , βt) excluding the uniformly-distributed elements βunif,

and
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With additive sharing
With threshold LSSS

` = 1 Any `

Prover ≈ λ N
log2 N

≈ λ 2
log2N

≈ λ `+1
log2 (N` )

Verifier ≈ λ N−1
log2 N

≈ λ 1
log2N

≈ λ `
log2 (N` )

Table 8.2.: Number of party emulations to achieve a soundness error of 2−λ (assuming a
negligible false positive rate p).

• comm: the bitsize of (Jα1Ki∗ , . . . , JαtKi∗) excluding the elements which can be recovered
from g(α1, . . . , αt) = 0.

We denote unif the bitsize of the uniformly-distributed elements βunif. Then, the proof size
(in bits) when repeating the protocol τ times is

Cost = (t+ 1) · 2λ︸ ︷︷ ︸
h1,h2,...,ht+1

+τ · ( ` · (inputs + unif)︸ ︷︷ ︸
{JwKi,Jβ1Ki,...,JβtKi}i∈I

+ comm︸ ︷︷ ︸
Jα1Ki∗ ,...,JαtKi∗

+ 2λ · t · ` · log2
N

`︸ ︷︷ ︸
auth1,...,autht

).

Let us remark that the bitsize unif appears here while it was not the case for additive sharings.
This comes from the fact that, even if βunif is uniformly sampled, JβunifK has some structure
(i.e. some redundancy) when using an arbitrary linear secret sharing scheme.

Remark 8.3.8. As in the additive case, the prover can generate the input shares from seeds
for ` parties, and those seeds can be built using a seed tree. However, this tweak will improve
(significantly) the communication cost only when the underlying LSSS has a high threshold
(as e.g. in the case of additive sharing).

Let us illustrate the overhead in communication cost when ` = 1 and t = 1 and negligible
unif (which is often small in practice). In this setting, we obtain an average overhead of
∆Cost ≈ τ · λ · (log2N − 2). When targeting a λ-bit security, we have τ ≈ λ

log2N
, which gives

∆Cost ≈ λ2 ·
(
1− 2

log2N

)
.

We can observe that the communication overhead due to the use of a LSSS is fixed2 for a
given security parameter, and roughly independent on the underlying MPC protocol. When
targeting a 128-bit security, this base cost is around 2 KB (for the case ` = 1 and t = 1).

8.4. Further Improvements

In this section, we suggest potential ways to generalize our approach.

2Let us stress that this fact is true only when the false positive rate p is negliglible compared to 1
N
, to not

impact the soundness error of the zero-knowledge protocol.
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8.4.1. Using Threshold Ramp Linear Secret Sharing

Theorem 8.3.5 only considers linear secret sharing schemes, but we can generalize the result
to any threshold ramp linear secret sharing scheme (see Definition 2.4.2). In such schemes, `
shares leak no information about the secret and `+ 1 + ∆ shares are necessary to reconstruct
the secret, with ∆ > 0, namely we have a gap between the two thresholds. In our context,
this gap shall impact the soundness of the protocol. Indeed, the prover just needs to cheat
for N − ` −∆ parties (such that there is less than ` + ∆ honest parties), but the verifier
asks to open only ` parties. Considering threshold ramp schemes bring more versatility to
our approach and opens the door to techniques that are not possible with tight threshold
schemes (e.g. batching such as proposed below).
Let us remark that the set S of emulated parties in Protocol 14 must be chosen such

that JvKS enables to deduce all the shares JvK[1:N ]. In the tight threshold case, such a set
S is always of size ` + 1 (see Lemma 8.3.2), but in the case of threshold ramp LSSS, this
set S might be larger than ` + ∆ + 1. Moreover, sending shares Jα1Ki∗ , . . . , JαtKi∗ for one
non-opened party i∗ ∈ S might not be enough to enable the verifier to recompute JαjKS for all
j. Therefore the size of S and the number of additional shares JαjKi to be revealed depend on
the underlying threshold ramp linear secret sharing, which impacts the communication cost.
On the other hand, the soundness error of the obtained proof of knowledge is not impacted.

Theorem 8.4.1. Let us consider an MPC protocol ΠQT-LSSS complying with the protocol
format described in Protocol 13, but using an (`, `+ ∆ + 1, N)-threshold ramp LSSS in place
of an (`+ 1, N)-threshold LSSS, and such that ΠQT-LSSS is `-private in the semi-honest model
and of false positive rate p. Then, Protocol 14 built from ΠQT-LSSS satisfies the three following
properties:

• Completeness. A prover P who knows a witness w such that (x,w) ∈ R and who
follows the steps of the protocol always succeeds in convincing the verifier V.

• Soundness. Suppose that there is an efficient prover P̃ that, on input x, convinces
the honest verifier V to accept with probability

ε̃ := Pr[〈P̃,V〉(x)→ 1] > ε

where the soundness error ε is equal to(`+∆
`

)(N
`

) + p · `

`+ ∆ + 1 ·
(
N − `
∆ + 1

)
.

Then, there exists an efficient probabilistic extraction algorithm E that, given rewindable
black-box access to P̃, produces with either a witness w satisfying (x,w) ∈ R, or a
commitment collision, by making an average number of calls to P̃ which is upper
bounded by

4
ε̃− ε

·
(

1 + ε̃ · 8 · (N − `)
ε̃− ε

)
.

• Honest-Verifier Zero-Knowledge. There exists an efficient simulator S which,
given random challenge I outputs a transcript which is indistinguishable from a real
transcript of Protocol 14.



Ch
ap

te
r8

8.4. Further Improvements 149

Proof. The completeness holds from the completeness property of the underlying MPC
protocol. The zero-knowledge property directly comes from the `-privacy property of the
MPC protocol with an (`, `+ ∆ + 1, N)-threshold linear secret sharing scheme. We refer the
reader to [FR22] for the proof of the soundness (this proof is similar to the threshold case in
Appendix B).

8.4.1.1. Using algebraic geometric secret sharing?

One drawback while using a tight threshold LSSS is that the number N of parties is limited
by the size of the underlying field F, specifically we have N ≤ |F| (see Lemma 8.3.1). Some
sharing schemes on algebraic curves, which are not (tight) threshold but quasi-threshold,
have been proposed in [CC06] to handle this issue.

Assuming a negligible false positive rate p, the soundness error is
(`+∆

`

)
/
(N
`

)
for a threshold

ramp scheme instead of 1/
(N
`

)
for a tight threshold scheme. Let us focus on the case ` = 1.

The soundness error for a threshold ramp scheme then satisfies(`+∆
`

)(N
`

) = ∆ + 1
N

.

In order to gain in soundness (and hence in performance), the above formula should be lower
than 1/|F| which is the minimal achievable soundness error for a (tight) threshold scheme
(since N ≤ F).

In [CC06], the gap ∆ is 2g where g is the genus of the underlying curve. We must then
search for threshold ramp sharing schemes such that

2g + 1
N

≤ 1
|F|

⇔ N ≥ |F| · (2g + 1) ,

while for such sharing, we have N ≤ |C(F)| where |C(F)| is the order of the underlying curve
over the field F. However, according to the Hasse-Weil inequality [Was08], we have

|C(F)| ≤ |F|+ 1 + 2g
√
|F|

which shows the impossibility of finding an algebraic geometric secret sharing scheme satisfying
the above constraint. We deduce that a direct application of algebraic geometric secret
sharing schemes [CC06] does not achieve better soundness (and hence better performance)
than standard threshold sharing schemes in our context.

We stress that the above argument focuses on the case ` = 1 for simplicity (and since it is
relevant to optimize the performance with our approach), but it also holds for any ` ≥ 1.
While the above analysis discards the interest in using threshold ramp LSSS based on

algebraic geometry to improve the soundness-performance trade-off of our scheme, we let
this question open for other types of threshold ramp schemes. However, [CDN15, Theorem
11.121] gives that an (`, `+ ∆ + 1, N)-threshold ramp F-linear secret-sharing scheme satisfies

∆ + 1 ≥ N + 2
2|F| − 1 .

Thus, we get a lower bound on the soundness error (on the case ` = 1):

ε := ∆ + 1
N

≥ 1
N
· N + 2

2|F| − 1 ≥
1

2|F| − 1 ,
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implying that such sharing schemes could only have a limited interest to optimize the
soundness error.
We show hereafter that the above generalization to threshold ramp LSSS is useful for

another purpose, namely an efficient batching technique in our framework.

8.4.2. Batching Proofs with Shamir’s Secret Sharing

Principle. Shamir’s secret sharing is traditionally used to share a single element of the
underlying field, but it can be extended to share several elements simultaneously. To share
v1, v2, . . . , vu ∈ F, we can sample ` random elements r1, . . . , r` of F and build the polynomial
P of degree `+ u− 1 such that, given distinct fixed field elements e1, . . . , eu+`,

P (e1) = v1
P (e2) = v2

...
P (eu) = vu

and


P (eu+1) = r1

...
P (eu+`) = r`

The shares are then defined as evaluations of P on fixed points of F\{e1, . . . , eu}. Revealing
at most ` shares does not leak any information about the shared values v1, . . . , vu, while one
needs at least `+ u shares to reconstruct all of them. In other words, this is an (`, `+ u,N)-
threshold ramp linear secret sharing scheme for the tuple (v1, . . . , vu). Thus, while applying
such a sharing to our context, the soundness error is given by (see Theorem 8.4.1)(`+u−1

`

)(N
`

) + p · `

`+ u
·
(
N − `
u

)
.

When running an MPC protocol on such batch sharing, the operations are simultaneously
performed on all the shared secrets v1, . . . , vu. It means that we can batch the proof
of knowledge of several witnesses which have the same verification circuit (i.e. the same
functions ϕj in our MPC model – see Protocol 10). Using this strategy, the soundness error is
slightly larger, but we can save a lot of communication by using the same sharing for several
witnesses.

Specifically, the proof size while batching u witnesses is impacted as follows. The parties’
input shares are not more expensive, but to open the communication, the prover now needs
to send u field elements by broadcasting (instead of a single one). Thus the communication
cost for τ executions is given by

Cost = (t+ 1) · 2λ︸ ︷︷ ︸
h1,h2,...,ht+1

+τ · (` · (inputs + rtapes)︸ ︷︷ ︸
{JwKi,Jβ1Ki,...,JβtKi}i∈I

+u · comm︸ ︷︷ ︸
α1,...,αt

+ 2λ · t · ` · log2
N

`︸ ︷︷ ︸
auth1,...,autht

).

Unfortunately, the scope of application of this batching technique is limited. In particular,
while we can multiply the batched shared secrets by the same scalar, with

J

 γ · v1
...

γ · vu

K := γ · J

 v1
...
vu

K
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for some γ ∈ F, we cannot compute

J

 γ1 · v1
...

γu · vu

K from J

 v1
...
vu

K

for distinct scalars γ1, . . . , γu (whenever at least two scalars are distinct). This restriction
implies that the scalar factors used in the verification circuit must be independent of the
different witnesses which are batched together. More precisely, it implies that the functions
ϕj in our MPC model (Protocol 10) must be of the form

ϕj(εi)i≤j ,(αi)i<j
(
·
)

= ϕ̄j(εi)i≤j

(
·
)

︸ ︷︷ ︸
Linear function with

εi-dependent coefficients

+ bj(εi)i≤j ,(αi)i<j︸ ︷︷ ︸
Constant offset which

depends on the εi’s and αi’s

This restriction prevents the use of this batching strategy for several MPCitH protocols.
For example, all the protocols using the multiplication checking protocol from [BN20] as a
subroutine cannot use this batching strategy. To the best of our knowledge, the only protocols
in the current state of the art which support this batching strategy are Banquet [BDK+21b]
and Limbo [DOT21].
Batching strategies. In what follows, we propose three strategies to batch MPCitH proofs
relying on the same verification circuit:

Naive strategy: The naive way to batch u MPCitH proofs is to emulate u independent
instances of MPC protocol, one for each input witness. Compared to sending u
independent proofs, one can save communication by using the same seed trees and
the same commitments for the u instances. This strategy can be applied for standard
MPCitH schemes based on additive sharing as well as for our framework of threshold
LSSS-based MPCitH. When using additive sharings, the main drawback of this strategy
is that the prover and the verifier need to emulate the party computation a large
number of times, i.e. N times (or N − 1 times for the verifier) per iteration and per
statement. When batching u ≥ 25 statements with N = 256, the prover and the verifier
must emulate more than 100 000 parties to achieve a security of 128 bits. When using
a low-threshold LSSS, the emulation cost is much cheaper, but the proof transcript is
larger. While batching u statements, the emulation cost and the soundness error are
given by the following table:

# Emulations Soundness Error
Prover τ · (`+ 1) · u 1

(N` )
+ p · (N−`)·`

`+1Verifier τ · ` · u

SSS-based strategy: We can use the batching strategy based on Shamir’s secret sharing
(SSS) described above. Instead of having u independent input sharings (one per witness),
we have a single input sharing batching the u witnesses. The number of MPC emulations
is lower than for the naive strategy. The proof size is also smaller and (mostly) below
that of the standard setting for small u, but it grows exponentially when considering
a small field F. Each batched statement consumes one evaluation point (in F), the



152 Chapter 8. MPC-in-the-Head with Threshold Linear Secret Sharing

number N of parties is hence limited by N ≤ |F|+ 1− u. Because of this limitation
together with the security loss due to the use of a ramp sharing scheme, the soundness
error of this batched protocol degrades rapidly as u grows. While batching u statements
using Shamir’s secret sharings, the emulation cost and the soundness error are given by
the following table:

# Emulations Soundness Error
Prover τ · (`+ u) (`+u−1

` )
(N` )

+ p · `
`+u ·

(N−`
u

)
Verifier τ · `

Hybrid strategy: In the previous strategy, the proof size is convex w.r.t. the number u of
batched proofs and, for small some u, the curve slope is flatter than the slope in the
additive case (see Figure 8.1 from Section 8.5 for illustration). It means that using
a hybrid approach can achieve smaller proof sizes (as well as better performance)
than with the two above strategies. Specifically, instead of having one input sharing
encoding the u witnesses (one per batched statement) and a single emulation of the
MPC protocol, we can use ν input sharings each of them encoding u

ν witnesses and
have then ν emulations of the MPC protocol. Using this hybrid strategy, the emulation
cost and the soundness error are given by the following table:

# Emulations Soundness Error
Prover τ · (`+ u

ν ) · ν (`+u/ν−1
` )

(N` )
+ p · `

`+u/ν ·
(N−`
u/ν

)
Verifier τ · ` · ν

Section 8.5.2 presents some application results for these batching strategies. In particular
Figure 8.1 compares the three strategies for batched proofs of the SDitH scheme [FJR22b].

Remark 8.4.2. In our analysis, we use the number of emulated parties as an indicator of
the computational performance. As explained in Section 8.3, we would also need to take
into account the computation cost for computing and committing the input sharings (and
hints’ sharings) which is not negligible, but this cost is hard to estimate without a concrete
implementation. We yet remind that the latter cost only impacts the prover and not the
verifier. The verification time is soundly predicted by the number of party emulations.

8.5. Applications
In the past few years, many proof systems relying on the MPC-in-the-Head paradigm have
been published. Table 8.3 provides a tentatively exhaustive list of these schemes while
indicating for each scheme:

• the base field (or ring) of the function computed by the underlying MPC protocol,

• whether the underlying MPC protocol fits our general model (see Section 8.2.1),

• the hard problem (or one-way function) for which the witness knowledge is proved.

In column Base Ring, the notation “F (K)” means that the function computed by the
underlying MPC protocol is composed of F-linear functions and multiplications over K. For
example, the schemes for AES use F2-linear functions and F256-multiplications.
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Applying our framework with an arbitrary (low-)threshold linear secret sharing scheme
instead of an additive sharing scheme is possible whenever

• the underlying MPC protocol fits the model introduced in Section 8.2.1,

• the underlying MPC protocol is defined over a field (and not only a ring),

• this base field is large enough (since the number of parties N is limited by the size of
the field).

Because of this last condition, all the proof systems for Boolean circuits and/or one-way
functions with F2 operations (e.g. AES, Rain, SDitH over F2) do not support our framework of
MPCitH based on (low-)threshold LSSS. Same for the scheme recently proposed in [FMRV22b]
and which achieves short communication using secret sharing over the integers: this idea is
not compatible with our approach.

In the following, we present two applications of our strategy with Shamir’s secret sharing
as threshold LSSS:

• we first apply our general strategy to the SDitH signature scheme [FJR22b] to obtain a
new variant with faster signing and verification times;

• we then apply our batching technique (see Section 8.4.2) to the SDitH scheme (batch
proofs for syndrome decoding) and to the Limbo proof system [DOT21] (batched proofs
for general arithmetic circuits).

8.5.1. Application to the SDitH Signature Scheme

We can transform the zero-knowledge proofs of knowledge described in Section 8.3 into
signature schemes using the Fiat-Shamir heuristic [FS87]. We describe the signature scheme
obtained when following this approach for the 5-round case (i.e. for t = 1 iteration in the
MPC protocol) in Appendix C and further prove that this scheme achieves EUF-CMA security
in the random oracle model.

In the following, we focus on the signature scheme obtained when applying this approach
to the SDitH protocol, presented in Chapter 5. The underlying MPC protocol involves three
fields FSD ⊆ Fpoly ⊆ Fpoints which are extensions of each other and such that FSD is the base
field of the SD instance. This MPC protocol fits the model introduced in Section 8.2.1 (see
Protocol 10), with the number t of loop iterations equal to 1. Using the same notation as in
Section 8.3, the proof size involves the following quantities:

• inputs = k · log2 |FSD|+ 2w · log2 |Fpoly|+ t′ · log2 |Fpoints|,

• unif = 2 · d · t′ · log2 |Fpoints|,

• comm = 2 · d · t′ · log2 |Fpoints|,

where (m, k,w) are the syndrome decoding parameters and (d, t′) are additional parameters
(see Chapter 5 for more details). The signature size (in bits), including the 2λ-bit salt, is
then given by

Size = 6λ+ τ ·
(
inputs + comm + λ · log2(N) + 2λ

)
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where N is the number of MPC parties, τ the number of executions and λ is the security
level. Its security is given by the attack of [KZ20a] and is equal to

costforge := min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1
(τ
i

)
pi(1− p)τ−i +N τ2

}

where p is the false positive rate of the SDitH MPC protocol satisfying

p ≤
t′∑
i=0

max`≤(m+w)/d−1
{(`

i

)(|Fpoints|−`
t′−i

)}
(|Fpoints|

t′
)

(
1

|Fpoints|

)t′−i
.

In Chapter 5, we presented the SDitH scheme with several parameter sets: some of them
with FSD := F2 and the others with FSD := F256, some of them aiming for short signatures
and the others aiming for fast signature/verification time.

We apply the ideas of Section 8.3 to this scheme using Shamir’s secret sharing. Since the
number N of parties is limited by the field size, N ≤ |FSD|,3 we consider the instance with
FSD := F256 as base field. As explained previously, our MPCitH strategy with (` + 1, N)-
threshold LSSS does not make the signature smaller but substantially improves the signing
and verification times. According to Section 8.3.4, we obtain signatures of size (in bits):

Size = 6λ+ τ ·
(
` · (inputs + unif) + comm + 2λ · ` · log2

N

`

)
In Chapter 5, we chose p a bit lower than 2−64 which implies that the number of executions

τ just needs to be increased by one while turning to the non-interactive case. Here, by
taking ` > 1, we decrease τ and each execution has more impact on the communication
cost. Therefore we take p negligible in order to avoid to increase τ while turning to the non-
interactive setting. At the same time, it means that we can apply an idea from Limbo [DOT21]
which consists in using the same first challenge for all parallel executions of the underlying
MPC protocol to save communication (due to the fact that the plain broadcasted values will
be the same across all the parallel executions).
As explained in Section 8.3.3 and formally analyzed in our proof of soundness (see Ap-

pendix B), in case of a non-negligible false positive rate, an adversary can try to forge a proof
of knowledge by committing an invalid sharing of the witness (which is not possible in the
case of additive sharing). This ability is also exploitable in the non-interactive setting while
considering the attack of [KZ20a]. In order to thwart this type of attack on our variant of
the SDitH scheme, we make the conservative choice of taking a false positive rate p satisfying

τ ·
(

N

`+ 1

)
· p ≤ 2−128 .

This way, the probability that a single witness encoded by a subset of `+ 1 shares among N
leads to a false positive (in at least one of the τ iterations) is upper bounded by 2−128 so that
any attack strategy which consists in guessing (even partially) the first challenge shall cost
at least 2128 operations. Then, we simply need to take τ such that

(N
`

)τ ≥ 2128 in order to
3The Shamir’s secret sharing over a field F can have at most |F| − 1 shares (one share by non-zero evaluation
point), but we can have an additional share by defining it as the leading coefficient of the underlying
polynomial (i.e. using the point at infinity as evaluation point).
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achieve a 128-bit security in the non-interactive setting. We propose three possible instances
of our scheme for ` ∈ {1, 3, 7} and N = 256 (the maximal number of parties).

We have implemented this variant of the SDitH signature scheme in C. In our implementa-
tion, the pseudo-randomness is generated using AES in counter mode and the hash function
is instantiated with SHAKE. We have benchmarked our implementation on a 3.8 GHz Intel
Core i7 CPU with support of AVX2 and AES instructions. All the reported timings were
measured on this CPU while disabling Intel Turbo Boost. Instead of emulating `+ 1 parties
as described in Protocol 14, the implementation runs the MPC protocol directly on the
coefficients of the degree-` polynomials of the Shamir’s secret sharing, thus avoiding costly
polynomial evaluations and interpolations.
Table 8.4 summarizes the obtained performance for the different sets of parameters. We

observe that the verification time is significantly smaller –between one and two orders of
magnitude– than for the original scheme. This was expected since the verifier only emulates
the views of ` parties instead of N − 1. The gain in signing time is more mitigated: even if
the signer emulates only few parties, she must still commit the input shares of N parties.
Nevertheless, the number of executions τ decreases while increasing the threshold `, which
further improves the signing time. The resulting signatures are slightly larger than for the
original scheme with the same number of parties (the short version), but our scheme gains
a factor 10 in signing and verification time. Compared to the fast version of the original
signature scheme (which uses a lower number of parties N = 32) and for similar signature
size, our scheme gains a factor 3 in signing time and a factor 10 in verification time.

Table 8.4.: Parameters, performance and comparison. The parameters for [FJR22b] and our
scheme are (m, k,w) = (256, 128, 80) and FSD = Fpoly = F256.

Scheme N τ ` t′ |Fpoints| |sgn| tsgn tverif

Our scheme
256 16 1 3 264 10.47 KB 7.1 ms 0.46 ms
256 6 3 3 264 9.97 KB 3.2 ms 0.38 ms
256 3 7 4 264 11.10 KB 2.5 ms 0.47 ms

[FJR22b] - Var3f 32 27 - 5 224 11.5 KB 6.4 ms 5.9 ms
[FJR22b] - Var3s 256 17 - 5 224 8.26 KB 30 ms 27 ms

Banquet (AES) 16 41 - 1 232 19.3 KB 6.4 ms 4.9 ms
255 21 - 1 248 13.0 KB 44 ms 40 ms

Limbo-Sign (AES) 16 40 - - 248 21.0 KB 2.7 ms 2.0 ms
255 24 - - 248 14.2 KB 29 ms 27 ms

Helium+AES 17 31 - 1 2144 17.2 KB 6.4 ms 5.8 ms
256 16 - 1 2144 9.7 KB 16 ms 16 ms

SPHINCS+-128f - - - - - 16.7 KB 14 ms 1.7 ms
SPHINCS+-128s - - - - - 7.7 KB 239 ms 0.7 ms

Note: Timings for SDitH and our scheme have been benchmarked on a 3.8 GHz Intel Core i7. Timings
for Banquet, Helium and SPHINCS+ have been benchmarked on a 3.6 GHz Intel Xeon W-2133 CPU
[BDK+21b; KZ22]. Timings for Limbo have been benchmarked on a 3.1 GHz Intel i9-9900 CPU [DOT21].

Table 8.4 further compares our scheme with recent MPCitH schemes based on AES (both
AES and SD for random linear codes being deemed as a conservative assumption) as well
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as with SPHINCS+ [ABB+22] as a baseline conservative scheme. We can observe that our
scheme outperforms AES-based candidates for comparable signature sizes (around 10 KB). In
particular, compared to Helium+AES [KZ22], signing is 5 times faster with our scheme while
verification is 40 times faster. Fast versions of those schemes have signatures about twice
larger, while being still slower than ours in signing and verification. Compared to SPHINCS+,
our scheme achieves slightly better verification time and much better trade-offs for signature
size vs. signing time. Some other MPCitH signature schemes reported in Table 8.3 achieve
smaller signature sizes (down to 5KB) but they are based on less conservative assumptions
(LowMC, Rain, BHH PRF). Yet none of these schemes achieve fast verification as SPHINCS+
or our scheme.
Let us remark that, as in Chapter 5, we did not investigate software optimizations (like

vectorization or bitslicing), so there is room for improvement in the reported performance.

8.5.2. Application of the Batching Strategy

8.5.2.1. Application to SDitH.

As the first application of the batching strategy described in Section 8.4.2, we show how to
batch proofs of knowledge for the syndrome decoding problem. Specifically, we consider a
context where, from a public parity-check matrix H ∈ F(m−k)×m

SD and vectors y1, . . . , yu ∈
Fm−kSD , one wants to batch proofs of knowledge for u small-weight syndromes x1, . . . , xu ∈ FmSD
such that

∀i ∈ [1 : u], yi = H · xi .

For this purpose, we apply our batching strategy to the SDitH scheme (see Chapter 5).
However, in its original version, this scheme is not compatible with the application of batched
Shamir’s secret sharing (on which rely our batching strategy) since it involves multiplications
by witness-dependent scalars. Those appear in the final product verification based on the
[BN20] protocol. To overcome this issue, we propose a tweak of the SDitH scheme to verify
the final multiplication triple without relying on [BN20]. Specifically, to prove that three
sharings JaK, JbK and JcK verify c = a · b (a, b, c ∈ Fpoints), the parties proceed as follows:

• they get as hints
Jr1K where r1 ← Fpoints
Jr2K where r2 ← Fpoints
Jh1K where h1 = r1 · b+ r2 · a
Jh2K where h2 = r1 · r2,

• they get a random point ξ ← Fpoints\{0},

• they locally compute and broadcast
Jv1K = ξ · Jr1K + JaK
Jv2K = ξ · Jr2K + JbK
Jv3K = ξ2 · Jh2K + ξ · Jh1K + JcK,

• they output Accept if v1 · v2 = v3, Reject otherwise.
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If c = a · b and the hints are correctly computed, then the polynomial

P (X) := (r1X + a) · (r2X + b)− (h2X
2 + h1X + c)

equals 0 so that v1 · v2 − v3 = P (ξ) = 0 and the parties accept. If c 6= a · b, then P (X) is
different from zero. Thus according to the Schwartz-Zippel Lemma, the probability that the
parties accept is at most 2

|Fpoints|−1 (for any adversarial choice of the hints).
Replacing the BN20 protocol with the above one in the SDitH scheme increases the number

of rounds in the underlying zero-knowledge protocol from 5 to 7. Indeed the challenge ξ
cannot be sent at the same time as the evaluation point anymore, since Jh1K and Jh2K must
be committed before receiving ξ. We then restrict our variant of the SDitH protocol to a
single evaluation point (t′ = 1) to ease the analysis of the [KZ20a] attack while turning to the
non-interactive setting. Using the same notations as Section 8.3, the new proof size involves
the following quantities:

• inputs = k · log2 |FSD|+ 2w · log2 |Fpoly|+ 2 · log2 |Fpoints|︸ ︷︷ ︸
Jh1K,Jh2K

,

• unif = 2 · log2 |Fpoints|︸ ︷︷ ︸
Jr1K,Jr2K

,

• comm = 2 · log2 |Fpoints|︸ ︷︷ ︸
Jv1K,Jv2K

,

We apply the three batching strategies described in Section 8.4.2 for the syndrome decoding
parameters (m, k,w) = (256, 128, 80) and using the field extension Fpoints := F2192 . Figure 8.1
illustrates the resulting performance in terms of proof size and number of party emulations.
Batching with additive sharings (using the naive strategy) with N = 256 is represented by
the dashed line for which the achieved amortized cost per statement is around 6 KB.

Naive strategy: When using the naive strategy with low-threshold Shamir’s secret sharing
(for N = 256), the proof size is a bit larger than for the additive case, but the number
of emulations is divided by more than 100.

SSS-based strategy: When the number u of batched proofs is small enough (u ≤ 80), this
strategy outperforms the additive case in terms of proof size. But it grows exponentially
as u increases (slower when ` is larger). As explained in Section 8.4.2, this behavior is
amplified when the underlying field is small. Here the number N of parties is limited
by N ≤ |F256|+ 1− u = 257− u. For instance, when u = 110 and ` = 2, the soundness
error ε is approximately 0.57 with N maximal (N = 147), requiring a high number of
executions τ ≥ 150.

Hybrid strategy: As expected, for such a context with limited N , the hybrid approach gives
the best results. We get an amortized proof size of around 2.3 KB when ` = 1 and
around 0.83 KB when ` = 8.
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(a) Naive strategy: proof size (b) Naive strategy: # party emul.

(c) SSS-based strategy: proof size (d) SSS-based strategy: # party emul.

(e) Hybrid strategy: proof size (f) Hybrid strategy: # party emul.

Figure 8.1.: Performance of the three batching strategies applied to our tweaked SDitH
scheme.
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8.5.2.2. Application to Limbo.

We now apply our batching strategy to Limbo [DOT21], a proof system for general arithmetic
circuits. In Limbo, sharings are multiplied by scalars in three different contexts:

• After sampling a random challenge {ri}mi=1, a set of multiplicative triples (JxiK, JyiK, JziK)mi=1
is verified as an inner product 〈a, b〉 = c where

JaK =

 r1 · Jx1K
...

rm · JxmK

 , JbK =

 Jy1K
...

JymK

 , JcK =
m∑
i=1

ri · JziK.

If 〈a, b〉 = c for a random choice of {ri}mi=1, then we can deduce that xi · yi = zi for
every i ∈ [1 : m] with high probability.4

• To interpolate a polynomial f of degree d such that

JfK(ei) = JxiK for i ∈ {0, . . . , d}

where e0, . . . , ed are fixed distinct public points. With the Lagrange interpolation
formula, we get that

JfK(X) =
d∑
i=0

JxiK ·
m∏

j=0,j 6=i

X − ej
ei − ej︸ ︷︷ ︸

`i(X)

where {`i(X)}i are public constant polynomials.

• To evaluate a polynomial JfK(X) := ∑d
i=0JaiKXi in a challenge point s:

Jf(s)K =
d∑
i=0

JaiK · si.

In all those three contexts, the scalars which multiply the shares are constant or derived from
random challenges. In particular, they are witness-independent which makes our batching
strategy applicable (see Section 8.4.2 for details).
Let us briefly explain the high-level idea of the MPC protocol underlying Limbo. This

protocol aims to check a list of m multiplicative triples. To proceed, it first converts the list
into an inner product of dimension m (as recalled above), and then repeats a compression
step that reduces the inner product dimension until reaching a small enough instance. Given
a compression parameter k, the compression step works as follows (the process is illustrated
in Figure 8.2):

1. it splits the current inner product into k smaller inner products,

2. it compresses the k inner products into a single inner product. Let us consider the k
values v(1), ..., v(k) of these inner products in the same position. To compress these k
values into a single one v, it builds the polynomial P of degree k − 1 such that

∀i ∈ {1, . . . , k}, P (i) = v(i)

and it computes v as P (ξ) where ξ is a random verifier challenge.
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Figure 8.2.: Limbo’s compression step - from dimension k` to dimension `

Let us consider the case where Limbo will always finish on a final inner product of dimension
1, after ρ := dlogk(m)e compression steps. Using the same notations as in Section 8.3, the
proof size involves the following quantities:

• inputs = (|w|+ |C|) · log2 F︸ ︷︷ ︸
Protocol inputs

+ ρ · (k − 1) · log2 G︸ ︷︷ ︸
Splitting cost

+ (ρ · (k − 1) + 2) · log2 G︸ ︷︷ ︸
Compression cost

,

• unif = 2 · log2 G,

• comm = 2 · log2 G,
4In Limbo, the challenge is of the form {ri}mi=1 := {ri}mi=1 for a random r ∈ F.
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where |w| is the size of the witness (i.e. the circuit input), |C| is the number of multiplications
in the circuit, F is the base field of the circuit, G is a field extension of F and k is the
compression factor (see [DOT21] for more details). Limbo’s proof size (in bits) is then given
by:

Size = (ρ+ 2) · 2λ+ τ ·
(
inputs + comm + λ · log2(N) + 2λ

)
where N is the number of MPC parties, τ is the number of executions and λ is the security
level. Limbo’s soundness error is given by:( 1

N
+ pk · (1−

1
N

)
)τ

where pk is the false positive rate of the underlying MPC protocol (which depends on k) –
see [DOT21, Proposition 5].

Let us assume that we want to batch u proofs for an arbitrary arithmetic circuit C defined
over a base field F. We use the Limbo proof system in interactive mode targeting a security
of 40 bits, which is one of the considered use-cases of the original paper [DOT21]. If F is large
enough, we can apply our batching strategy described in Section 8.4.2. Tables 8.5 and 8.6
summarize the achieved performance for the base fields F28 and F232 and for circuit sizes
28 and 216. While for F28 we are limited in the number of parties since N ≤ |F| + 1 − u,
this is not an issue for F232 . From these tables, we can observe that our batching strategy
drastically reduces the amortized cost in terms of proof size. Considering a batching of
u = 100 statements, the amortized proof size is more than 10 times smaller than the standard
version in all the considered settings and this ratio is closer to 1/20 for the larger circuit or
field.

Table 8.5.: Performance of batched Limbo proofs for arithmetic circuits on F28 in the interac-
tive setting (40-bit of security).

u `
|w|+ |C| = 28 |w|+ |C| = 216

N u/ν τ size size/u N u/ν τ size size/u

1 ADD 256 - 6 5.5 5.55 256 - 6 389.4 389.42
1 256 1 6 9 9.22 256 1 6 398 397.59

100 1 223 34 16 61 0.61 207 50 21 2762 27.62
4 223 34 4 58 0.58 223 34 4 3151 31.51

10000 1 225 32 15 5865 0.59 203 54 22 269290 26.93
4 210 47 5 5434 0.54 200 57 6 277894 27.79

Note: The compression factor k of Limbo is 16 and the extension field G is F264 when ` = 1 and F296 when
` = 4. All the sizes are given in kilobytes. #P and #V correspond respectively to the number of emulated
parties for the prover and the verifier. The first row (` = add) is the baseline Limbo scheme with additive
sharing.



Ch
ap

te
r8

8.6. Conclusion 163

Table 8.6.: Performance of batched Limbo proofs for arithmetic circuits on F232 in the
interactive setting (40-bit of security).

u `
|w|+ |C| = 28 |w|+ |C| = 216

N u/ν τ size size/u N u/ν τ size size/u

1 ADD 256 - 6 10.0 10.03 256 - 6 1536.9 1536.92
1 256 1 6 14 13.72 256 1 6 1550 1549.59

100 1 256 50 18 96 0.96 256 100 31 8053 80.53
4 256 100 8 91 0.91 256 100 8 8284 82.84

10000 1 256 55 19 8170 0.82 256 100 31 801486 80.15
4 256 74 6 7130 0.71 256 88 7 823455 82.35

Note: The compression factor k of Limbo is 16 and the extension field G is F264 when ` = 1 and F296 when
` = 4. All the sizes are given in kilobytes. #P and #V correspond respectively to the number of emulated
parties for the prover and the verifier. The first row (` = add) is the baseline Limbo scheme with additive
sharing.

8.6. Conclusion
In this chapter, we have proposed a new way to transform an MPC protocol into a zero-
knowledge proof of knowledge. We have shown how using low-threshold LSSS enables us to
produce faster schemes. When building signature schemes, it tends to give larger signatures
compared to the standard approach based on additive sharings. In other contexts (larger
circuits, batching), it can also achieve shorter communication.

In November 2022 (one month after the release of this work), a concurrent and independent
work [AGH+23] proposes a computational optimization of the MPCitH transformation based
on additive sharing (see Section 3.1.2.2). Using the so-called hypercube technique, the authors
show that the prover can emulate the entire MPC protocol by performing the computation of
only log2N + 1 parties instead of N , while keeping the same communication cost. While both
the hypercube approach and our work enable us to significantly speed up MPCitH-based
schemes, they provide different interesting trade-offs and their relative performance depends
on the context.
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Chapter 9.
From Research to Specification

After the transition to the fourth round of the NIST PQC standardization process, NIST
decided to re-open a call for additional digital signature proposals. The deadline for this call
was the 1st of June 2023. In the context of this thesis, we submitted several schemes that we
will briefly describe in this chapter.

Moreover, in the last months of the thesis, we built a library to ease the development of
the MPCitH-based schemes. We will also present this library in this chapter.
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9.1. NIST Call for Additional Signatures
In September 2022, the NIST released a call for additional digital signature proposals to be
considered in the PQC standardization process [NIS22].

NIST is primarily looking to diversify its signature portfolio, so signature schemes
that are not based on structured lattices are of greatest interest. NIST would
like submissions for general-purpose signature schemes, as well as those which
have short signatures and fast verification. Submissions should not significantly
overlap with signature schemes that have already been selected by NIST for
standardization. At a minimum:

• lattice-based schemes should provide at least one large performance advantage
over both Dilithium and Falcon.

• non-lattice-based algorithms should provide at least one large performance
advantage over SPHINCS+.

– NIST, September 2022
Since the schemes proposed in this thesis are competitive with the existing post-quantum

state of the art, we decided to submit some of them to the NIST call, in collaboration with
several teams. More precisely, we submitted four signature schemes, each of them relying on
a specific hard problem:

• SD-in-the-Head, relying on the syndrome decoding problem for random linear codes in
Hamming metric;

• MIRA, relying on the MinRank problem;

• RYDE, relying on the syndrome decoding problem for random linear codes in rank
metric;

• MQOM, relying on the unstructured multivariate quadratic problem.
There are two reasons why we submitted several submissions:
• Each of these schemes has its own specificities leading to different advantages:

– MIRA and RYDE produce the shortest signatures;
– SD-in-the-Head could be considered as the more conservative scheme;
– RYDE has the shortest uncompressed public key (which is more convenient for

embedded systems);
– SD-in-the-Head (threshold variant) has the fastest verification algorithm;
– MQOM has sizes close to those of MIRA and RYDE, without relying on the rank

metric.

• The MPC-in-the-Head state of the art remains an active research field and it is not
stable yet. There will probably be new results leading to more efficient schemes (in
term of sizes and/or running times). Each submission could be impacted differently by
them. Currently, the shortest sizes are achieved by MIRA and RYDE, but this could
change in the future.

In what follows, we briefly present the design choices made for each of these submissions.
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9.1.1. SD-in-the-Head Signature Scheme
The SD-in-the-Head signature scheme has been submitted to the NIST in collaboration with

Carlos Aguilar Melchor, Nicolas Gama, Shay Gueron,
James Howe, David Joseph, Antoine Joux, Edoardo Persichetti,
Tovohery H. Randrianarisoa, Matthieu Rivain, and Dongze Yue.

The security of this scheme relies on the hardness of the syndrome decoding problem for
random linear codes in Hamming metric (see Definition 4.1.1). The used MPC protocol is a
variant of the one presented in Chapter 5:

• The original protocol needs to compute a Lagrange interpolation to build the polynomial
S from the secret x. We can avoid this interpolation by tweaking the definition of y in
the public key. Instead of defining y := Hx, we can define:

y := HV x

where V is the matrix satisfying:

S = LagrangeInterpolation(x)⇔ s = V x

for s the vector of coefficients of S. Let us remark that, for a uniformly random linear
code CH represented by the matrix H as parity-check matrix, the linear code CHV
represented by HV is also uniformly random. This is because V is an invertible m×m
matrix. This trick enables us to avoid all the polynomial interpolations in the signing
and verification algorithms.

• In the original protocol, the random points r1, . . . , rt ∈ Fpoints sent by the verifier to
check the polynomial relation S ·Q = F · P should be distinct. Here we remove this
constraint on #”r to make the scheme simpler and less prone to implementation errors.
While this tweak slightly increases the false positive probability p (i.e. the probability
that the protocol outputs Accept for an invalid input witness), this increase is small
enough and does not impact much the security. The false positive probability of this
tweaked protocol (taking r uniformly at random from Ftpoints) is:

p :=
t∑
i=0

(
t

i

)(
m+ w − 1
|Fpoints|

)i(
1− m+ w − 1

|Fpoints|

)t−i ( 1
|Fpoints|

)t−i
.

We propose two variants of our signature scheme:

• The short variant (also named as the hypercube variant) lowers the communication cost
to produce short signatures. It relies on the MPCitH transformation for the broadcast-
based multiparty computation model with additive sharing (see Section 3.1.2.2, opti-
mized by the hypercube technique [AGH+23]), with N := 256 parties.

• The fast variant (also named as the threshold variant) lowers the computational cost to
get a fast signature computation. It relies on the transformation for the low-threshold
broadcast-based multiparty computation model (see Section 3.1.3), with N := q parties
where q is the size of the base field.
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We also consider the two fields for the syndrome decoding problem: F251 and F256. The
prime field will lead to a more efficient scheme for the fast variant since the computational
bottleneck of the used MPCitH transformation is due to the arithmetics. However, F256 will
lead to a more efficient scheme for the short variant since its computational bottleneck is
the usage of the symmetric primitives (as the pseudo-random generation). Even if it would
arguably give a more conservative code-based scheme, we did not consider the binary field F2
since the resulting signature sizes are not competitive.

We refer the reader to the scheme’s specification [AFG+23] for the precise description of
the submitted scheme.

9.1.2. MIRA Signature Scheme
The MIRA signature scheme has been submitted to the NIST in collaboration with

Nicolas Aragon, Magali Bardet, Loïc Bidoux,
Jesús-Javier Chi-Domínguez, Victor Dyseryn, Philippe Gaborit,

Romaric Neveu, Matthieu Rivain, and Jean-Pierre Tillich.

The security of this scheme relies on the hardness of the MinRank problem (see Defi-
nition 7.4.3). The used MPC protocol is the one in Section 7.4.2 based on linearized
polynomials.
We propose two variants of our signature scheme. Both rely on the MPCitH transfor-

mation for the broadcast-based multiparty computation model with additive sharing (see
Section 3.1.2.2, optimized by the hypercube technique [AGH+23]). The short variant lowers
the communication cost to produce short signatures by taking N := 256 parties, while the fast
variant lowers the computational cost to get a fast signature computation by taking N := 32
parties. We did not design the fast variant with low-threshold LSSS as SD-in-the-Head, since
it would require to work on larger fields (for which the MinRank cryptanalysis is much less
mature).

We refer the reader to the scheme’s specification [ABB+23b] for the precise description of
the submitted scheme.

9.1.3. RYDE Signature Scheme
The RYDE signature scheme has been submitted to the NIST in collaboration with

Nicolas Aragon, Magali Bardet, Loïc Bidoux,
Jesús-Javier Chi-Domínguez, Victor Dyseryn, Philippe Gaborit, Antoine Joux,

Matthieu Rivain, Jean-Pierre Tillich, and Adrien Vinçotte.

The security of this scheme relies on the hardness of the rank syndrome decoding problem
(see Definition 7.4.4). The used MPC protocol is a variant of the one in Section 7.4.3 based on
linearized polynomials. We slightly change the underlying hardness assumption by assuming
that 1 is in the linear subspace U generated by the coordinates of the secret vector. It implies
that the q-polynomial LU of Section 7.4.3 satisfies LU (1) = 0, and we can use this relation to
decrease the communication cost.
We propose two variants of our signature scheme. As for MIRA, both rely on additive

sharings and use the hypercube technique. The short variant lowers the communication
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cost to produce short signatures by taking N := 256 parties, while the fast variant lowers
the computational cost to get a fast signature computation by taking N := 32 parties. As
explained in [Fen22], it would be possible to design the fast variant with low-threshold sharings
even when working on the binary field F2. However, the obtained size would be around 9.3
KB, while the proposed fast variant is around 7.4 KB. We could achieve smaller sizes with
low-threshold if we work on larger fields, but as for MIRA, the corresponding cryptanalysis is
much less mature on such fields.

We refer the reader to the scheme’s specification [ABB+23a] for the precise description of
the submitted scheme.

9.1.4. MQOM Signature Scheme

The MQOM signature scheme has been submitted to the NIST in collaboration with Matthieu
Rivain. The security of this scheme relies on the hardness of the unstructured multivariate
quadratic problem (see Definition 7.3.1). The used MPC protocol is an improvement of the
protocol described in Section 7.3. As the construction in Section 7.3, it batches all the m
equations into a single one. However, it differs in how the MPC protocol checks the batched
equations: it uses a polynomial-based multiplication verification which asks the verifier for
randomness twice (while the scheme in Section 7.3 used the sacrificing-based technique),
obtaining a 7-round zero-knowledge proof.
We propose two variants of our signature scheme. As for MIRA and RYDE, both rely on

additive sharings and use the hypercube technique, with N := 256 for the short variant and
with N := 32 for the fast variant. Since we work on large fields (as F251), it would be possible
to use low-threshold sharings. Unfortunately, the size degradation is large: while we have
sizes below 7 KB with additive sharings, we get sizes of at least 14 KB with low-threshold
sharings.

We refer the reader to the scheme’s specification [FR23] for the precise description of the
submitted scheme.

9.2. MPC-in-the-Head Library

9.2.1. Introduction

The MPC-in-the-Head paradigm has been an active research field for the last few years.
Many signature schemes based on it have been proposed, including those of this thesis. Since
the source codes of these schemes are similar except for the part about the MPC protocols,
we decided to develop a unified MPC-in-the-Head library. The idea is to factorize as much
as possible the common code of the MPCitH-based signatures. As long as they respect the
expected API, users just need to implement some specific parts of the scheme and they can
then rely on the library to get the desired signature scheme. It enables us to speed up the
development of the MPCitH-based schemes. For example, we used this library to implement
all the signatures proposed in Chapter 7. The library presents some other advantages:

• Comparison: it is not always easy to fairly compare the running times of two schemes
in the literature since their implementations do not necessarily use the same primitives
and/or the same level of optimizations. When two schemes are implemented via this
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library, all the common primitives rely on the same code, and it thus provides a fairer
comparison.

• Detailed benchmark: the library integrates some benchmark tools. The latter can
provide a detailed benchmark of the schemes, which includes for example the timings
due to the commitments, the pseudo-randomness... Thanks to them, we can easily
estimate the running times of implemented schemes and identify their computational
bottlenecks.

• Versatility: all the code blocks respect some API. It is thus easy to replace a primitive
with another one and compare the impact on the running time, just by changing the
configuration file.

Remark 9.2.1. For the NIST call described in Section 9.1, the source code of MQOM and
of the fast variant of SD-in-the-Head came from the library.

9.2.2. Structure and configuration

The structure of the library is described in Figure 9.1. It is implemented through four layers:

1. Symmetric Primitives. The lowest layer provides implementations for hash functions,
extendable output functions (XOFs) and pseudo-random bit generators. At the time of
writing,

• the available hash function and XOF are respectively SHA3 and SHAKE (their
source codes come from the XKCP library, see https://github.com/XKCP/XKCP),

• the two available pseudo-random bit generators are an XOF-based generator and
an AES-based one.

These three primitives are implemented in a sym folder.
2. Arithmetics. The arithmetic folder provides the implementation of operations over

many fields. At the time of writing, the available fields are the fields with the following
sizes:

2, 24, 28, 216, 231, 232, 264, 296, 2128

31, 316, 317, 318, 3110, 3111

251, 2512, 2514, 2515, 2517, 25112, 25116.
For all the fields, the implemented operations are at least the addition, the subtraction,
the multiplication and the pseudo-random number generation1. In some cases, other
operations have been implemented (when they were needed to implement one of the
schemes of this thesis), as the inversion.

3. MPC Protocols. The mpc folder contains all the source files that depend on the
underlying MPC protocols. For each scheme, it should contain the implementation for
the two following APIs:

• witness.h. This file describes the prototypes of the functions that generate a
couple instance-solution of the underlying hard problem. For example, in the case
of MQOM, it should generate an instance of the multivariate quadratic problem
with its solution.

1relying on the pseudo-random bit generator of the lower layer.

https://github.com/XKCP/XKCP
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• mpc.h. This file describes the prototypes of the functions that emulate a party in
the MPC protocol (and which generate the verifier challenges used in the MPC
protocol).

4. MPCitH Transformation. The highest layer implements the signature schemes
relying on the previous layers. The key generation uses the generation of the couple
instance-solution provided by witness.h, while the signing and the verification use the
party emulation provided by mpc.h. At the time of writing, the library provides the
source code of several variants (i.e. MPCitH transformations):

• Traditional 5R: transformation of an MPC protocol using additive sharings into
a 5-round proof of knowledge, without the hypercube optimization.

• Hypercube 5R: transformation of an MPC protocol using additive sharings into
a 5-round proof of knowledge, with the hypercube optimization.

• Threshold 5R: transformation of an MPC protocol using threshold LSSS into a
5-round proof of knowledge.

• Threshold 5R NFPR: transformation of an MPC protocol using threshold LSSS
into a 5-round proof of knowledge, assuming that the false positive rate of the
MPC protocol is negligible.

• Hypercube 7R: transformation of an MPC protocol using additive sharings into
a 7-round proof of knowledge, with the hypercube optimization.

Figure 9.1.: Structure of the MPC-in-the-Head library. The yellow components are the parts
that a user must implement when working on a new signature scheme, while the
blue components are managed by the library.

To implement a new MPCitH-based scheme, one needs to

1. implement the field operations in the folder arithmetic, if they are not already
available;
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2. implement the generation of the couple instance-solution of the underlying hard problem,
with respect to the API described by witness.h;

3. implement the emulation of a party of the MPC protocol, with respect to the API
described by mpc.h;

4. build the configuration file of the scheme to select the desired symmetric primitives
and the MPCitH variant.

Here is a (simplified) configuration file for a scheme implemented in the library:

export LIBMPCITH_SCHEME_PATH =sd/ sdith_any
export LIBMPCITH_ARITH_LIBS =gf251
export LIBMPCITH_CONFIG_FLAGS = THRESHOLD_NFPR ,GF251 ,L1
export LIBMPCITH_HASH_PATH =sha3/sha3 - several
export LIBMPCITH_DRBG_PATH =hash
export LIBMPCITH_ADD_FLAGS =HASHX4 ,XOFX4 ,PRGX4

This configuration indicates that:

• the files implementing witness.h and mpc.h are in the folder mpc/sd/sdith_any,
• the scheme needs the files in arithmetic/gf251 (meaning that it works over F251),
• the scheme uses the variant THRESHOLD_NFPR,
• it uses the hash function (and XOF) available at sym/hash/sha3/sha3-several,
• it uses the pseudo-random bit generator available at sym/drbg/hash,
• the scheme can rely on the fourfold implementation of the symmetric primitives when

available.

Moreover, the flags GF251 and L1 enable us to select the desired parameter sets.

9.2.3. Some benchmarks

We used the library to implement the schemes proposed in Chapter 7. All these schemes
rely on the variant “Hypercube 5R”. The library has been configured such that the pseudo-
randomness is generated using AES in counter mode, the hash function is SHA3, and the
extendable output function (used for the MPC challenge) is sampled using SHAKE. We
benchmarked our schemes on a 3.8 GHz Intel Core i7 CPU with the support of AVX2 and
AES instructions. All the reported timings were measured on this CPU while disabling Intel
Turbo Boost.

The obtained signing times are given in Table 9.1. As explained previously, the library
can produce detailed benchmarks. It enables the developer to estimate the computational
contribution of each part of the implemented signature scheme. In Table 9.1, we decompose
the running time of our schemes in six parts: the expansion of the seed trees, the commitments
of the input shares, the expansion of the input shares from seeds, the remaining operations
to prepare input shares (e.g. the computation of the shares of the “main” parties of the
hypercube technique), the emulation of the MPC protocol and the rest of the computation.

Here is an analysis of the obtained running times:
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Table 9.1.: Benchmark of the signature schemes proposed in Chapter 7.

Scheme Detailed Benchmark High-level Benchmark

Tree Commit. Rand.
Expan.

Share
Prep.

MPC
Emul. Misc Total

signing time Size

Variant “Short” – 256 parties (N = 256)
MQ over F256 1.37 1.42 0.53 0.40 6.25 0.59 10.56 7 114 B
MQ over F251 1.37 1.42 1.24 1.77 2.17 0.59 8.56 7 114 B

MinRank (with RD) 1.06 1.11 1.52 0.51 3.75 0.44 8.39 7 122 B
MinRank (with LP) 0.99 1.05 1.12 0.45 13.23 0.38 17.22 5 518 B
Rank SD (with RD) 1.16 1.22 0.69 0.27 2.36 0.42 6.12 8 543 B
Rank SD (with LP) 1.10 1.14 0.51 0.24 3.72 0.38 7.09 5 899 B

Variant “Fast” – 32 parties (N = 32)
MQ over F256 0.26 0.28 0.10 0.05 6.9 0.24 7.83 8 488 B
MQ over F251 0.26 0.28 0.22 0.23 2.15 0.28 3.42 8 488 B

MinRank (with RD) 0.24 0.27 0.28 0.07 2.68 0.16 3.70 9 288 B
MinRank (with LP) 0.20 0.23 0.21 0.12 13.63 0.15 14.54 7 204 B
Rank SD (with RD) 0.24 0.27 0.13 0.07 2.30 0.18 3.19 11 000 B
Rank SD (with LP) 0.22 0.24 0.09 0.03 3.71 0.12 4.41 7 376 B

• Tree Expansion: it consists in deriving N seeds from a master seed using the structure
of a binary tree. This operation only depends on the number of parties N , and it is
repeated at each repetition (i.e. τ times). Thus, when we fix N , the computation
contribution is linear into τ . It can be observed from the benchmark: when N = 32, it
takes 0.0073 · τ ms, and when N = 256 it takes 0.055 · τ ms.

• Commitment: it consists in committing the input shares of N parties. In practice, it
consists in committing a λ-bit seed for all the parties except the last one. The cost of
committing the entire input share of the last party tends to be negligible compared to
the cost of committing N − 1 seeds. The computation contribution of the commitments
is thus roughly linear into N · τ . From the benchmark, we get that it takes 0.0575 · τ
ms when N = 256 and 0.0082 · τ ms when N = 32 (committing a seed with a salt takes
around 220 nanoseconds).

• Randomness Expansion: it consists in expanding seeds to get input shares. The
computational cost depends on the number τ of repetitions, the size of the input shares,
and the field from which elements should be sampled. When the field is an extension
of F2, the sampling can be efficient. However, sampling in another field is less efficient
since we need to deal with rejection. This explains why the cost of this step is larger
for MQ over F251 than for MQ over F256.

• Share Preparation: it consists in getting the input share of the last party from the
other ones and computing the shares of the “main” parties of the hypercube technique
(see [AGH+23] for details). It depends on τ , the size of the input shares, and the additive
law of the underlying field. This step is very efficient when working in characteristic
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two since the addition is the bitwise XOR. When working in prime fields, we need to
deal with reduction.

• MPC Emulation: it consists in emulating the MPC protocols. Thanks to the
hypercube technique, it consists in emulating 1 + log2(N) parties by repetition. The
important point to remark here is that the choice of N does not much impact the
emulation cost. It comes from the fact that τ ≈ λ

log2(N) , so the total computation cost
of the emulation corresponds2 to the cost of emulating τ · (1 + log2(N)) ≈ λ+ λ

log2(N)
parties.

• Misc: it corresponds to the rest of the signing computation (decompression of the
public key, building of the signature, ...).

We can observe that the running time due to the symmetric primitives (the three first
columns) is not negligible compared to the emulation of the MPC protocol. For 256 parties,
it takes at least 2.5 milliseconds. Let us stress that the factorized code of the library, which
mainly relies on symmetric primitives, has been optimized. For example, it relies on fourfold
calls of Keccak (for SHA3) using AVX instructions. However, the arithmetic parts used
by the MPC protocols have not been optimized. When the MPC protocol is heavy (as
for the scheme based on the MinRank problem with linearized polynomials), this is the
computational bottleneck. However, for light MPC protocols (for example, those based on
the rank syndrome decoding problem), the timing contribution of the MPC emulation is
similar to the one of symmetric primitives. We could expect that the latter becomes the
computational bottleneck when using an optimized implementation of the MPC protocols.
In fact, that can be observed in the implementations of the NIST candidate SD-in-the-Head
(see Section 9.1.1).

2We omit here that τ is larger than λ
log2(N) to be secure against the forgery attack of [KZ20a], but the

conclusion would be the same.
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Chapter 10.
Conclusion and Open Questions

In this thesis, we have investigated the MPC-in-the-Head paradigm to build post-quantum
signature schemes. Prior works only applied this paradigm to symmetric primitives (such as
LowMC or AES). We demonstrated that it can also be applied to other hardness assumptions,
e.g. from code-based cryptography. Most of the proposed schemes achieve sizes between
5 KB and 10 KB while relying on unstructured assumptions. They are thus competitive
with the existing schemes in the post-quantum literature. They outperform SPHINCS+
by achieving smaller sizes with faster signing algorithms, while staying conservative (even
though their security assumptions do not only rely on hash functions as in SPHINCS+). The
MPC-in-the-Head framework currently leads to the best code-based schemes for the common
“signature size + public key size” metric. These good sizes have been achieved by designing
very efficient MPC protocols for the considered problems. An open question would be:

Question 10.1. Do there exist MPC protocols which would lead to better schemes for those
hardness assumptions (while working in the broadcast-based multiparty computation model
with additive sharing)?

However, we can already conjecture that we should not observe big improvements. We can
indeed exhibit lower bounds for the size of MPCitH-based signatures with additive sharing
(using the fact that one uses GGM trees and one needs to share the secret). For example, for
the rank syndrome decoding problem, we can show that the signature size is at least (in bits)

4λ+ τ · (k ·m · log2 q + λ · log2N + 2λ)

where λ is the security level in bits, N is the number of parties involved in the underlying
MPC protocol, τ is the number of repetitions and (q,m, k) are RSD parameters. For the
RSD instance used in Section 7.4.3, we get a lower bound of 3.6 KB for 128-bit security with
N = 256, while our scheme achieves sizes of 5.9 KB.
The most promising direction to improve the schemes proposed in this thesis consists

in proposing new MPCitH transformations. In Chapter 8, we showed that we can use
low-threshold linear secret sharings to build faster schemes. The approach leads to the
MPCitH-based schemes with the fastest verification. However, it suffers from an increase of
the signature size, which can be important depending on the used MPC protocol. In the state
of the art, there are only two MPCitH works dealing with Shamir’s secret sharings: [AHIV17]
and the work described in Chapter 8. We can observe that there is a gap between them.
[AHIV17] considers a more general setting, but it does not achieve competitive performance

— 175 —
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when building signature schemes, and Chapter 8 considers a restricted setting (it allows
only linear operations on sharings) preventing to use more efficient MPC protocols to build
signatures. A natural question would thus be:

Question 10.2. Could we improve [AHIV17] to get small sizes even when considering small
arithmetic circuits (as those in signature schemes)? Could we extend the setting of Chapter 8
while keeping small sizes?

Finally, as mentioned in Chapter 3, the state of the art about schemes with advanced
functionalities (as ring/group signatures, multi-signatures, threshold signatures, ...) are
sparse. Now that we have efficient signature schemes, an interesting research direction would
consist in adding features to them.

Question 10.3. How can we build efficient schemes with advanced functionalities thanks to
the MPC-in-the-Head paradigm?



Appendices

A. Proof of Privacy

This appendix provides a proof for the following theorem:

Theorem 8.3.4. Let us consider an MPC protocol Πadd complying with the protocol format
described in Protocol 10. If Πadd is well-defined and (N − 1)-private, then the protocol
ΠLSSS corresponding to Πadd with an (`+ 1, N)-threshold linear secret sharing scheme (see
Protocol 13) is well-defined and `-private.

Proof. In the MPC protocol ΠLSSS using an (`+1, N)-threshold LSSS, all the values computed
by the parties are shares from the underlying LSSS. The parties take such sharings as input
and the latters are stable by the operations performed in ΠLSSS (since the computation over
the shares is linear). Therefore, the MPC protocol ΠLSSS is well-defined.

By assumption, we have that the MPC protocol Πadd is (N − 1)-private when using an
additive sharing. This implies that there exists a simulator Simadd which takes as inputs
a set I ′ ⊂ [N ] of size N − 1, Jw′KI′ , J

#”

β ′KI′ and the outcome (Accept or Reject) of the
real-world execution and which outputs views for parties in I ′ whose joint distribution is
perfectly indistinguishable from the joint views of the same parties in a real-world execution
of the MPC protocol (with the same outcome).

We first describe the simulator SimLSSS(I, JwKI , J
#”

β KI , #”ε , y):

1. Sample w′ and #”

β ′ randomly.

2. Compute Jw′K← Shareadd(w′; rw′) for some fresh randomness rw′ .

3. Compute J
#”

β ′K← Shareadd( #”

β ′; r #”
β ′) for some fresh randomness r #”

β ′ .

4. Choose a set I ′ ⊂ [N ] such that |I ′| = N − 1.

5. Call the simulator viewadd ← Simadd(I ′, Jw′KI′ , J
#”

β ′KI′ , #”ε , y).

6. Extract #”α ′ from viewadd and let #”α := #”α ′.

7. For j = 1 to t:

• Compute JαjKI = ϕj(εi)i≤j ,(αi)i<j
(
JwKI , (JβiKI)i≤j

)
,

• Deduce JαjK from JαjKI and αj .

8. Output J #”αK, JwKI , J
#”

β KI .

— 177 —
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In what follows, we show that the above simulator outputs a distribution which is perfectly
indistinguishable from the views of the same parties in a real execution setting, which proves
the `-privacy of the protocol ΠLSSS.
Let us fix a set I ⊂ [N ] such that |I| = `. Let us also take w and #”

β and share them as

JwK = ShareLSSS(w; r1)
J

#”

β K = ShareLSSS( #”

β ; r2)

using some random tapes r1, r2. Finally, let us sample a random #”ε .
We propose below three experiments. We denote Exp1, Exp2 and Exp3 the distribution of

their respective outputs. The first experiment corresponds to the simulation of the joint view
of the parties in I.

Experiment 1. We compute the output y ∈ {Accept,Reject} of the protocol using JwK,
J

#”

β K and #”ε :

y =
{

Accept if g( #”α) = 0,
Reject otherwise,

with #”α = Φ(w, #”ε ,
#”

β ) .

Then, we output the views returned by SimLSSS(I, JwKI , J
#”

β KI , #”ε , y) together with y.
Experiment 2. The difference with the previous experiment is that w′ and #”

β ′ are respectively
defined as w and #”

β (instead of being random). Thanks to the privacy of the additive sharing
we get that Jw′KI and J

#”

β ′KI are perfectly indistinguishable from JwKI and J
#”

β KI which implies

Exp1 ≡ Exp2 .

(Here Exp1 ≡ Exp2 means that the two distributions are perfectly indistinguishable).
Experiment 3. The difference with the previous experiment is that #”α is defined as
#”α = Φ(w, #”ε ,

#”

β ) (where Φ is defined as in Equation (8.1)) instead of #”α = #”α ′. Thanks to the
(N − 1)-privacy of the protocol Πadd, we get that the joint views viewadd returned by the
simulator are perfectly indistinguishable from the same views in real-world protocol execution.
In particular, J #”α ′K is identically distributed in the two experiments, which implies

Exp2 ≡ Exp3 .

Finally, it is not hard to check that the output of Experiment 3 corresponds to the real-world
joint views of the parties in I, which concludes the proof.

B. Proof of Soundness
This appendix provides a proof for the soundness property in the following theorem:

Theorem 8.3.5. Let us consider an MPC protocol ΠLSSS complying with the protocol format
described in Protocol 13 using an (` + 1, N)-threshold LSSS, such that ΠLSSS is `-private
in the semi-honest model and of false positive rate p. Then, Protocol 14 built from ΠLSSS
satisfies the three following properties:

• Completeness. A prover P who knows a witness w such that (x,w) ∈ R and who
follows the steps of the protocol always succeeds in convincing the verifier V.
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• Soundness. Suppose that there is an efficient prover P̃ that, on input x, convinces
the honest verifier V to accept with probability

ε̃ := Pr[〈P̃,V〉(x)→ 1] > ε

where the soundness error ε is defined as

ε := 1(N
`

) + p · ` · (N − `)
`+ 1 .

Then, there exists an efficient probabilistic extraction algorithm E that, given rewindable
black-box access to P̃, outputs either a witness w satisfying (x,w) ∈ R, or a commit-
ment/hash collision, by making an average number of calls to P̃ which is upper bounded
by

4
ε̃− ε

·
(

1 + ε̃ · 8 · (N − `)
ε̃− ε

)
.

• Honest-Verifier Zero-Knowledge. There exists an efficient simulator S which,
given the random challenge I outputs a transcript which is indistinguishable from a real
transcript of Protocol 14.

For any set T of successful transcripts corresponding to the same commitment,

• either the revealed shares of JwK are not unique, and then we find a commitment
collision or a hash collision,

• or the openings are unique.

Along this proof, we consider that the extractor only gets transcripts with unique revealed
shares since otherwise the extractor would find directly a commitment collision or a hash
collision.

We shall denote by Rh the randomness of P̃ which is used to generate the initial commitment
h1 (which determines the witness sharing JwK), and we denote rh a possible realization of
Rh. Throughout the proof, we denote succP̃ the event that P̃ succeeds in convincing V. By
hypothesis, we have Pr[succP̃ ] = ε̃.

B.1. Technical Lemmas
In our proof, we shall make use of the following lemmas:

Lemma B.1 (Splitting Lemma [PS00]). Let X and Y be two finite sets, and let A ⊆ X × Y
such that

Pr
[
(x, y) ∈ A | (x, y)← X × Y

]
≥ ε .

For any α ∈ [0, 1), let

B =
{

(x, y) ∈ X × Y
∣∣∣ Pr

[
(x, y′) ∈ A | y′ ← Y

]
≥ (1− α) · ε

}
.

We have:

1. Pr
[
(x, y) ∈ B | (x, y)← X × Y

]
≥ α · ε
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2. Pr
[
(x, y) ∈ B | (x, y)← A

]
≥ α .

Proof. See [PS00] for the proof.

Lemma B.2. Let E1, . . . , EM be arbitrary events. For i ∈ {1, . . . ,M} and a bit b ∈ {0, 1},
let us define

Abi :=
{
Ei if b = 1,
Ēi if b = 0.

We have those following relations, where wtH(x) denotes the Hamming weight of x (i.e. the
number of non-zero coordinates of x):∑

x∈{0,1}M
Pr[Ax1

1 , A
x2
2 , . . . , A

xM
M ] = 1

∑
x∈{0,1}M

wtH(x) · Pr[Ax1
1 , A

x2
2 , . . . , A

xM
M ] = Pr[E1] + . . .+ Pr[EM ]

Proof. The first equality comes from the fact the underlying events form a partition. The
second equality can be proved by induction on the integer M . The case M = 1 is trivial:∑

x∈{0,1}
wtH(x) · Pr[Ax1

1 ] = 0 · Pr[Ē1] + 1 · Pr[E1] = Pr[E1]

Let assume the relation for a positive integer M . By noting for some x ∈ {0, 1}M Ax :=
{Ax1

1 , . . . , A
xM
M }, we have∑
x∈{0,1}M+1

wtH(x) · Pr[Ax1
1 , A

x2
2 , . . . , A

xM+1
M+1 ]

=
∑

x∈{0,1}M
wtH(x) · Pr[Ax, ĒM+1]

+
∑

x∈{0,1}M
(wtH(x) + 1) · Pr[Ax, EM+1]

=
∑

x∈{0,1}M
wtH(x) · (Pr[Ax, ĒM+1] + Pr[Ax, EM+1])

+
∑

x∈{0,1}M
Pr[Ax, EM+1]

=
∑

x∈{0,1}M
wtH(x) · Pr[Ax] + Pr[EM+1]

= (Pr[E1] + . . .+ Pr[EM ]) + Pr[EM+1].

B.2. When restraining to only bad witnesses
Let rh be a possible realization of Rh. Given Rh = rh, we have a unique hash commitment
h1 in the transcript. This hash commitment uniquely defines the shares of the witness JwK1,
. . . , JwKN (by assumption on the absence of hash/commitment collisions). In the following,
we shall denote w(J) the witness corresponding to the shares {JwKi}i∈J , for |J | = `+ 1. We
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have a total of
( N
`+1
)
possibly-distinct witnesses w(J). We shall say that w(J) is a good witness

whenever (x,w(J)) ∈ R, otherwise we call w(J) a bad witness.
For any transcript produced by P̃ (with h1 as first hash commitment), the hash commit-

ments h2, . . . , ht uniquely define the shares {JαjKi}i∈S , for j ∈ [t]. In the following, we shall
denote by JαjK = (JαjK1, . . . , JαjKN ) the full (` + 1, N)-sharing consistent with the shares
{JαjKi}i∈S . The hash commitments h2, . . . , ht also uniquely define the shares {JβjKi}i∈[N ],
for j ∈ [t]. We shall denote H the set of honest parties, i.e. the set of the parties for which
the committed shares Jα1Ki, . . . , JαtKi, are consistent with the committed input shares JwKi
and Jβ1Ki, . . . , JβtKi. More formally,

H =
{
i : ∀j, JαjKi = ϕj(εi)i≤j ,(αi)i<j

(JwKi, (JβkKi)k≤j)
}
.

We further denote Y the random variable which corresponds to the number of honest parties,
i.e. Y = |H|. We stress that Jα1K, . . . , JαtK, H and Y depend on the randomness of the
(malicious) prover and the randomness of the verifier used before Step 3 of Protocol 14.

For every i ∈ [N ] and j ∈ [t], we shall further denote JᾱjKi the share obtained through an
honest computation from the committed input shares, that is:

JᾱjKi = ϕj(εi)i≤j ,(αi)i<j
(JwKi, (JβkKi)k≤j) .

We stress that JᾱjKi might not be equal to JαjKi. We actually have i ∈ H if and only if
JᾱjKi = JαjKi for every j ∈ [t]. In the following, we shall say that witness w(J) gives rise to a
false positive in the MPC protocol Π, and denote this probability event EJ , whenever

g(ᾱ1
J , . . . , ᾱ

t
J) = 0

where ᾱ1
J , . . . , ᾱ

t
J are the plain values corresponding to the sharings {Jᾱ1Ki}i∈J , . . . , {JᾱtKi}i∈J .

By definition of the MPC protocol Π, we have:

∀J s.t. |J | = `+ 1, Pr[EJ ] ≤ p.

For the first step of the proof, we shall consider a subset D of parties, i.e. D ⊂ {1, . . . , N},
and we denote

N ′ := |D| and J = {J ⊂ D : |J | = `+ 1}.

We shall further denote
Pr′[ · ] := Pr[ · | Rh = rh, I ⊂ D].

We will show that, if {w(J)}J∈J are all bad witnesses, then the probability Pr′[succP̃ ] is upper
bounded by

Pr′[succP̃ ] ≤
(N
`

)(N ′
`

) · ε (1)

where ε is the soundness error defined in the theorem statement, which is

ε := 1(N
`

) + p · ` · (N − `)
`+ 1 .

The rest of this subsection is devoted to the demonstration of Equation (1).
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For J ∈ J and b ∈ {0, 1}, let us introduce the notation

AbJ =
{
EJ if b = 1,
ĒJ if b = 0.

Let x = (xJ)J∈J ∈ {0, 1}|J | and let y ∈ {0, . . . , N}. Let us assume that succP̃ , Y = y and
{AxJJ }J∈J jointly occur. Because succP̃ occurs, we have that

g(α1, . . . , αt) = 0

where α1, . . . , αt are the values corresponding to the sharings Jα1K, . . . , JαtK. Then for each
set J ∈ J (w(J) is a bad witness) such that J ⊂ H (the parties in J are honest), we have
that JᾱjKi = JαjKi for every i ∈ J and every j ∈ [t], which implies

g(ᾱ1
J , . . . , ᾱ

t
J) = g(α1, . . . , αt) = 0 .

Namely, a false positive necessarily occurs for w(J), i.e. xJ = 1, whenever J ∈ J with J ⊂ H.
Thus

wtH(x) ≥
∑

J∈J :J⊂H
xJ =

(
y

`+ 1

)
.

By defining

ymax := max{y : wtH(x) ≥
(

y

`+ 1

)
} ,

we get that
Pr′[succP̃ , Y = y | {AxJJ }J∈J ] = 0 if y > ymax

and so

Pr′[succP̃ | {A
xJ
J }J∈J ] =

ymax∑
y=0

Pr′[succP̃ , Y = y | {AxJJ }J∈J ] .

The only way for the transcript to be successful is that the set I of challenged opened parties
only contains honest parties, i.e. I ⊂ H. Thus,

Pr′[succP̃ | {A
xJ
J }J∈J , Y = y] ≤ Pr[I ⊂ H | I ⊂ D,Y = y] =

(y
`

)(N ′
`

) .
We deduce

Pr′[succP̃ | {A
xJ
J }J∈J ] ≤

ymax∑
y=0

(y
`

)(N ′
`

) · Pr′[Y = y | {AxJJ }J∈J ] ≤
(ymax

`

)(N ′
`

) .

Since wt(x) is a non-negative integer, we have ymax ≥ `. Let us consider three cases:

Case 1: ymax = `, it means that wt(x) = 0, then

Pr′[succP̃ | {A
xJ
J }J∈J ] ≤

(ymax
`

)(N ′
`

) = 1(N ′
`

) = wtH(x) · `+ 1(N ′
`

)
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Case 2: ymax = `+ 1, it means that wt(x) ≥ 1, then

Pr′[succP̃ | {A
xJ
J }J∈J ] ≤

(ymax
`

)(N ′
`

) = `+ 1(N ′
`

) ≤ wtH(x) · `+ 1(N ′
`

)
Case 3: ymax ≥ `+ 2, then

Pr′[succP̃ | {A
xJ
J }J∈J ] ≤

(ymax
`

)(N ′
`

) =
`+1

ymax−`
(ymax
`+1

)(N ′
`

)
≤ `+ 1

2 · wtH(x)(N ′
`

) ≤ wtH(x) · `+ 1(N ′
`

)
In any case, we have the relation

Pr′[succP̃ | {A
xJ
J }J∈J ] ≤ wtH(x) · `+ 1(N ′

`

) . (2)

for any x ∈ {0, 1}|J |. And so, we have

Pr′[succP̃ ] =
∑

x∈{0,1}J
Pr′[succP̃ | {A

xJ
J }J∈J ] · Pr′[{AxJJ }J∈J ]

≤
∑

x∈{0,1}J

wtH(x) · `+ 1(N ′
`

) · Pr′[{AxJJ }J∈J ] using (2)

= 1(N ′
`

) + `(N ′
`

) · ∑
x∈{0,1}J

wtH(x) · Pr′[{AxJJ }J∈J ] using Lemma B.2

≤ 1(N ′
`

) + `(N ′
`

) ·∑
J∈J

Pr′[EJ ] using Lemma B.2

≤ 1(N ′
`

) + `(N ′
`

) · |J | · p

=
(N
`

)(N ′
`

) ·


1(N
`

) + `(N
`

) · ( N ′

`+ 1

)
︸ ︷︷ ︸
≤( N

`+1)

p

 ≤
(N
`

)(N ′
`

) · ε .

Thus we obtain the desired inequality (1).

B.3. Building of the extractor
In the previous subsection, we proved that the probability that a malicious prover P̃ produces
a valid transcript when the opened parties are restricted to a set of N ′ parties for which the
shares only encode bad witnesses is upper-bound by(N

`

)(N ′
`

) · ε .
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We now show how to build an extractor which outputs a witness w satisfying (x,w) ∈ R (if
not a hash or commitment collision) when giving rewindable black-box access to a malicious
prover P̃ which produces successful transcripts with a probability ε̃ > ε.
Let us fix an arbitrary value δ ∈ (0, 1) such that (1− δ)ε̃ > ε (such δ exists since ε̃ > ε).

Let rh be a possible realization of Rh. We will say that rh is good if it is such that

Pr[succP̃ | Rh = rh] ≥ (1− δ) · ε̃ . (3)

By the Splitting Lemma B.1, we have

Pr[Rh good | succP̃ ] ≥ δ . (4)

Our extractor first runs the P̃ with honest verifier requests until obtaining a successful
transcript T0 by running. If this T0 corresponds to a good rh, then we can obtain further
successful transcripts with “high” probability (i.e. probability greater than (1− δ) · ε̃) by
rewinding the protocol just after the initial commitment h1. Based on the assumption that
rh is good, a sub-extractor E0 will build a list of successful transcripts T , all with same initial
commitment. We denote P (T ) the set of the parties which have been open in at least one
transcript of T , i.e. P (T ) := ⋃

T∈T IT where IT is the set of opened parties of the transcript
T .

For a certain number N1 of iterations, the sub-extractor E0 tries to feed the list T until there
exist a good witness among the open input shares. We formally describe the sub-extractor
routine in the following pseudocode:

Sub-extractor E0 (on input a successful transcript T0):

1. T = {T0}
2. Do N1 times:
3. Run P̃ with honest V and same rh as T0 to get transcript T
4. If T is a successful transcript,
5. T ← T ∪ {T}.
6. If T contains a good witness w, return w.
7. Return ∅.

Let us evaluate the probability that the stop condition is reached in a given number of
iteration N1. Consider a loop iteration in E0 at the beginning of which we have a list T of
successful transcripts (which does not contain a good witness since the stop condition has
not been reached) and a transcript T sampled at Step 3. We denote Z the event that a new
party is open (a party which is not in P (T )) in the transcript T . This event is defined with
respect to the randomness of the verifier challenges in T .
Let us lower bound the probability to have a successful transcript T and the event Z

occurring in the presence of a good Rh:

pg := Pr[succP̃ ∩ Z | Rh good] .

We have:

pg = Pr[succP̃ | Rh good]− Pr[succP̃ ∩ Z̄ | Rh good]
= Pr[succP̃ | Rh good]− Pr[succP̃ | Rh good, Z̄] · Pr[Z̄ | Rh good]
≥ (1− δ) · ε̃− Pr[succP̃ | Rh good, Z̄] · Pr[Z̄ | Rh good]
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where the last inequality holds by (3).
The probability that a new party is not opened corresponds to the probability that the set

I of opened parties is a subset of P (T ), i.e.

Pr[Z̄ | Rh good] = Pr[Z̄] =
(|P (T )|

`

)(N
`

) .

The success probability knowing that that no new party is open corresponds to the success
probability when restricting to the |P (T )| parties which have been already open. By
assumption (T does not contain a good witness), the shares of those parties only correspond
to bad witnesses. Thus, this probability can be upper bounded using the inequality (1) of
Section B.2 with N ′ = |P (T )|:

Pr[succP̃ | Rh good, Z̄] ≤
(N
`

)(|P (T )|
`

) · ε .
Thus, we get

pg ≥ (1− δ) · ε̃− ε .

To summarize, in the presence of a good Rh, the probability of the event succP̃ ∩ Z (i.e.
getting a successful transcript T which opens a new party) is lower bounded by (1−δ)·ε̃−ε > 0.
Moreover, the event succP̃ ∩ Z can occur at most N − ` times, because T0 already opens `
parties and there are N parties in total. We deduce that after N − ` occurrences of succP̃ ∩Z,
the list T contains a good witness.

Let us now define

N1 = 4(N − `)
p0

with p0 := (1− δ) · ε̃− ε . (5)

And let X ∼ B(N1, p0) a binomial distributed random variable with parameters (N1, p0). The
probability that E0 reaches the stop condition and returns a (good) witness for a successful
transcript T0 with good Rh satisfies:

Pr[E0(T0) 6= ∅ | succT0
P̃ ∩Rh good] ≥ Pr[X > N − `]

= Pr
[
X

N1
− p0 >

N − `
N1

− p0

]
= 1− Pr

[
X

N1
− p0 ≤

N − `
N1

− p0

]
= 1− Pr

[
X

N1
− p0 ≤ −

3
4p0

]
≥ 1− Pr

[
| X
N1
− p0| ≥

3
4p0

]
≥ 1− p0 · (1− p0)

N1 · p2
0 ·
(

3
4

)2 (6)

= 1− 16
9 ·

1− p0
4 · (N − `) = 1− 4

9 ·
1− p0
N − `

≥ 1− 4
9 ≥

1
2
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The inequality (6) holds from the Bienaymé-Techbychev inequality. Thus, using N1 = 4(N−`)
p0

,
the probability to reach the stop condition assuming a good Rh is at least 1/2. Without
assumption on Rh, the probability to reach the stop condition satisfies:

Pr[E0(T0) 6= ∅ | succT0
P̃ ] ≥ Pr[Rh good | succT0

P̃ ] · Pr[E0(T0) 6= ∅ | succT0
P̃ ∩Rh good] ≥ δ

2 .

Let us now describe the complete extractor procedure:

Extractor E :

1. Repeat +∞ times:
2. Run P̃ with honest V to get transcript T0
3. If T0 is not a successful transcript, go to the next iteration
4. Call E0 on T0 to get list of transcripts T
5. If T 6= ∅, return T

Let C denotes the number of calls to P̃ made by the extractor before ending. While
entering a new iteration:

• the extractor makes one call to P̃ to obtain T0,

• if T0 is not successful, which occurs with probability (1− Pr[succT0
P̃ ]),

◦ the extractor continues to the next iteration and makes an average of E[C] calls
to P̃,

• if T0 is successful, which occurs with probability Pr[succT0
P̃ ],

◦ the extractor makes at most N1 calls to P̃ in the loop of E0,

◦ then E0 returns an empty list (the stop condition is not reached), which occurs with
probability Pr[E0(T0) = ∅ | succT0

P̃ ], the extractor continues to the next iteration
and makes an average of E[C] calls to P̃,

◦ otherwise, if E0(T0) returns a non-empty list, the extractor stops and no more
calls to P̃ are necessary.

The mean number of calls to P̃ hence satisfies the following equality:

E[C] = 1 + (1− Pr[succT0
P̃ ]) · E[C]︸ ︷︷ ︸

T0 unsuccessful

+ Pr[succT0
P̃ ] ·

(
N1 + Pr[E0(T0) = ∅ | succT0

P̃ ] · E[C]︸ ︷︷ ︸
T0 successful

)
which gives

E[C] ≤ 1 + (1− ε̃) · E[C] + ε̃ ·
(
N1 +

(
1− δ

2
)
· E[C]

)
≤ 1 + ε̃ ·N1 + E[C]

(
1− ε̃ · δ

2
)

≤ 2
δ · ε̃

· (1 + ε̃ ·N1)

= 2
δ · ε̃

·
(

1 + ε̃ · 4 · (N − `)
(1− δ) · ε̃− ε

)
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To obtain an δ-free formula, let us take δ such that (1 − δ) · ε̃ = 1
2(ε̃ + ε). We have

δ = 1
2
(
1− ε

ε̃

)
and the average number of calls to P̃ is upper bounded as

E[C] ≤ 4
ε̃− ε

·
(

1 + ε̃ · 8 · (N − `)
ε̃− ε

)
which concludes the proof.

C. Signature Scheme and Proof of Unforgeability
We can transform the zero-knowledge proofs of knowledge described in Section 8.3 into
signature schemes using the Fiat-Shamir heuristic [FS87]. Protocols 15 and 16 describe the
signing and verification algorithms obtained when following this approach for the 5-round
case (i.e. for t = 1 iteration in the MPC protocol).

When applying the Fiat-Shamir transform, we compute the verifier challenges (ε[e])e∈[1:τ ]
and (I [e])e∈[1:τ ] as:

h1 = Hash1(m, salt, h̃[1], . . . , h̃[τ ])
(ε[e])e∈[1:τ ] ← Expand(h1)

and
h2 = Hash2(m, salt, h1, Jα[1]KS , . . . , Jα[N ]KS)
(I [e])e∈[1:τ ] ← Expand(h2)

where m is the input message, Hash1 and Hash2 are cryptographic hash functions, Expand
is an extendable output hash function, and (h̃[e], Jα[e]KS)e∈[1:τ ] are the commitments and the
broadcast shares merged for the τ repetitions. We introduce a value salt called salt which is
sampled from {0, 1}2λ at the beginning of the signing process. This value is then used for
each commitment to the parties’ states. Since the signature security relies on the random
oracle model, we can safely replace the commitment scheme Com of Protocol 14 by a single
hash function Hash0. Moreover, we derive all the randomness used in the scheme from a root
seed for performance reason and to make the scheme easily turnable into a deterministic
signature scheme. In particular, the randomness used for the sharings is derived from this
root seed using a pseudo-random generator PRG which is made explicit in the description
(while it was implicit in the description of the zero knowledge protocol). Finally, we denote
Hashm the hash function involved for the Merkle trees.
In this signature scheme, a secret key is a witness w and a public key is a statement x,

with (x,w) ∈ R for the considered relation R. We assume the existence of a function F
which maps every witness to the corresponding statement:

F : w 7→ x s.t. (x,w) ∈ R.

We further assume that F is an (towf, εowf)-hard one-way function, namely an adversary A
receiving a random statement x has a probability at most εowf to output the corresponding
witness w in time at most towf.

The zero-knowledge protocol for relation R which we transform into the present signature
scheme depends on two functions: ψ which computes the hints and ϕ which corresponds to
the party computation. In practice, those two functions depend on the statement x (i.e., on
the public key in the case of a signature scheme), so for the sake of completeness, we will
index them with x in this section: ψx and ϕx.
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Inputs: A secret key w, a public key x := F (w) and a message m ∈ {0, 1}∗.

Phase 0: Initialization.

1. Sample a random salt salt← {0, 1}2λ.

2. Sample a root seed ρ← {0, 1}2λ.

Phase 1: Preparation of the MPC-in-the-Head inputs. For each iteration e ∈ [1 : τ ],

1. Derive randomness r[e]
w , r[e]

β and r[e]
ψ from the root seed ρ:

r[e]
w , r

[e]
β , r

[e]
ψ ← PRG(salt, e, ρ).

2. Share the witness w into an (`+ 1, N)-threshold linear secret sharing Jw[e]K:

Jw[e]K← Share(w; r[e]
w ).

3. Compute
β[e] ← ψx(w; r[e]

ψ )

and share it:
Jβ[e]K← Share(β[e]; r[e]

β ).

4. Compute the commitments

com[e]
i := Hash0(salt, e, i, Jw[e]Ki, Jβ[e]Ki)

for all i ∈ [1 : N ], and compute the Merkle root

h̃[e] := MerkleTree(com[e]
1 , . . . , com[e]

N ).

Phase 2: First challenge (randomness for the MPC protocol).

1. Compute h1 = Hash1(m, salt, h̃[1], . . . , h̃[τ ]).

2. Expand h1 as (ε[e])e∈[1:τ ] ← Expand(h1).

Phase 3: Simulation of the MPC protocol. For each iteration e ∈ [1 : τ ],

1. Computes, for i ∈ S,
Jα[e]Ki := ϕx,ε[e]

(
Jw[e]Ki, Jβ[e]Ki

)
and recomposes α[e].

This step is repeated as many times as in the MPC protocol (cf Protocol 11).

Phase 4: Second challenge (parties to be opened).

1. Compute h2 = Hash2(salt, h1, Jα[1]KS , . . . , Jα[N ]KS).

2. Expand h2 as (I [e])e∈[1:τ ] ← Expand(h2) where, for every e, I [e] ⊂ [1 : N ] is a subset of ` parties
(i.e. |I [e]| = `).

Phase 5: Building of the signature. Output the signature σ built as

salt | h1 | h2 |
(
(Jw[e]Ki, Jβ[e]Ki)i∈I , auth[e], Jα[e]Ki∗[e]

)
e∈[1:τ ]

where auth[e] is the authentication path for {com[e]
i }i∈I w.r.t. Merkle root h̃[e] and i∗[e] ∈ S \ I [e].

Protocol 15: Signature Scheme – Signing algorithm
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Inputs: A public key x, a signature σ and a message m ∈ {0, 1}∗.

1. Parse the signature σ as

salt | h1 | h2 |
(
(Jw[e]Ki, Jβ[e]Ki)i∈I , auth[e], Jα[e]Ki∗[e]

)
e∈[1:τ ]

← σ

2. Expand h1 as (ε[e])e∈[1:τ ] ← Expand(h1).

3. Expand h2 as (I [e])e∈[1:τ ] ← Expand(h2) where, for every e, I [e] ⊂ [1 : N ] is a subset of ` parties
(i.e. |I [e]| = `).

4. For each iteration e ∈ [1 : τ ],

• Computes the commitments com[e]
i and the broadcast values Jα[e]Ki for i ∈ I [e] from

(Jw[e]Ki, Jβ[e]Ki)i∈I : for all i ∈ I [e],

com[e]
i = Hash0(salt, e, i, Jw[e]Ki, Jβ[e]Ki)

Jα[e]Ki = ϕx,ε[e]
(
Jw[e]Ki, Jβ[e]Ki

)
• Recover α[e], by

α[e] = ReconstructI[e]∪{i∗[e]}(Jα
[e]KI∪{i∗[e]}).

• Compute the Merkle root h̃[e] using
(
{com[e]

i }i∈I , auth[e]).
• Compute the shares Jα[e]KS using Jα[e]K = ExpandI∪{i∗}

(
Jα[e]KI∪{i∗}

)
;

5. Compute h′1 = Hash1(m, salt, h̃[1], . . . , h̃[h]).

6. Compute h′2 = Hash2(salt, h1, Jα[1]KS , . . . , Jα[N ]KS).

7. Output Accept iff h′1
?= h1, h′2

?= h2 and ∀e ∈ [1 : τ ], g(α[e]) ?= 0.

Protocol 16: Signature Scheme – Verification algorithm
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We first consider the notion of unforgeability against key-only attacks (EUF-KO). In this
setting, the adversary is only given a public key x and she attempts to generate a pair (m,σ)
such that σ is a valid signature of m with respect to x. The following lemma shows the
EUF-KO of the signature scheme in the random oracle model and with respect to the OWF
security of the function F .

Lemma C.1. Let Hash0, Hash1, Hash2, Hashm and Expand be modeled as random oracles,
and let (N, τ, λ, p) be parameters of the signature scheme. Let A be an adversary against the
EUF-KO security of the scheme running in time tA and making a total of Q random oracle
queries. Assuming that F is an (tA, εowf)-hard one-way function, then A’s advantage in the
EUF-KO game is

εEUF-KO ≤ εOWF + (τN + 1)Q2

22λ + Pr[X + Y = τ ],

with

• X = maxq1∈Q1{Xq1} with Xq1 ∼ B
(
τ,
( N
`+1
)
p
)
and

• Y = maxq2∈Q2{Yq2} with Yq2 ∼ B
(
τ −X, 1/

(N
`

))
,

where B (n0, p0) denotes the binomial distribution with n0 the number of trials and p0 the
success probability of each trial.

The following proof is highly inspired (and carbon copied where relevant) from the proofs
of [BDK+21b, Lemma 2] and [KZ22, Lemma 5].

Proof. We give an algorithm B (the reduction) which uses the EUF-KO adversary A to
compute a pre-image for the key generation function F .

Algorithm B simulates the EUF-KO game using the random oracles Hash0, Hash1, Hash2
and Hashm and query lists Qc, Q1, Q2 and Qm. In addition, B maintains two tables Tsh and
Twit which respectively store the shares of the parties and the corresponding witnesses (for a
given set of `+ 1 shares J) that B recovers from A’s RO queries. B also maintains a set Bad
to keep track of the outputs of all four random oracles. We also ignore calls to Expand in
our analysis, since they are used to expand outputs from Hash1 and Hash2: when Expand is
a random function this is equivalent to increasing the output lengths of Hash1 and Hash2.

Behavior of B. On input x, a OWF challenge, algorithm B forwards it to A as a signature
public key for the EUF-KO game. It lets A run and answer its random oracle queries in
the following way. We assume (wlog.) that Algorithm 1, Algorithm 2, Algorithm 3 and
Algorithm 4 only consider queries that are correctly formed, and ignore duplicate queries. In
these algorithms, the notation v → Q is used to mean Q ← Q∪ {v}.

• Hash0: When A queries the commitment random oracle, B records the query to learn
which commitment corresponds to which input share. See Algorithm 1.

• Hashm: As Hash0, it records the query to link the commitment with the Merkle roots.
See Algorithm 2.
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• Hash1: When A sends the Merkle roots for the share commitments, B checks whether
these roots were output by a right use of a Merkle tree simulated by Hashm and for
which the leaves were output by its simulation of Hash0. If any were for some e and
i, then B is able to reconstruct the shares for party i in repetition e. If B is able to
reconstruct the shares for a subset J of ` + 1 parties for an execution e, then it can
extract the corresponding witness value w[e](J) used by A (for this execution e and this
subset of parties J). See Algorithm 3. Note: The algorithm description also include
the computation of further values that are part of the protocol which are useless to
Algorithm 3 and only included for notation purpose in order to make the analysis of the
case Pr[A wins | B outputs ⊥] easier to follow.

• Hash2: No extraction takes place during this random oracle simulation. See Algorithm 4.

Algorithm 1 Hash function Hash0

Hash0(q0 = (salt, e, i, JwKi, JβKi)):
com $←− {0, 1}2λ.
If com ∈ Bad, then abort.
com→ Bad.
(q0, com)→ Q0.
Return com.

Algorithm 2 Hash function Hashm
Hashm(qm = (h1, h2)):
h1 → Bad
h2 → Bad
hm

$←− {0, 1}2λ.
If hm ∈ Bad, then abort.
hm → Bad.
(qm, hm)→ Qm.
Return hm.

In the rest of the proof, we assume that A returns a pair (m,σ) if and only if it is valid
(with probability 1). This is wlog. since A can check that (m,σ) passes the verification
before returning it without any degradation of her success probability. As a consequence, the
hash h1 in the returned (valid) signature has necessarily been obtained through a query q1 to
Hash1 of the form q1 = (m, salt, h̃[1], . . . , h̃[1:τ ]). Moreover, all the hash computations from the
commitments com[e]

i , with i ∈ I [e], to the Merkle root h̃[e] must have been obtained through
valid requests to Hashm (otherwise the verification of auth[e] would fail with overwhelming
probability). Similarly, all the commitments com[e]

i , with i ∈ I [e], must have been obtained
through valid calls to Hash0. This notably implies that the table Tsh filled by Algorithm 3
satisfies Tsh[q1, e, i] 6= ∅ for every (e, i) such that i ∈ I [e].
When A terminates, B checks the Twit table for any entry where the extracted w[e](J)

is consistent with x. If a match is found, B outputs w[e](J) as a pre-image for the OWF,
otherwise B outputs ⊥.
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Algorithm 3 Hash function Hash1

Hash1(q1):
Parse q1 as (m, salt, h̃[1], . . . , h̃[1:τ ])
For e ∈ [1 : τ ], i ∈ [1 : N ], do h̃[e] → Bad.

For (e, i) ∈ [1 : τ ]× [1 : N ] such that ∃com[e]
i : com[e]

i is the ith leaf
of the Merkle tree with root h̃[e] where nodes are in Qm, do

If ∃(JwKi, JβKi) s.t. ((salt, e, i, JwKi, JβKi), com[e]
i ) ∈ Q0, then

(JwKi, JβKi)→ Tsh[q1, e, i].

For each e ∈ [1 : τ ] and J ⊂ [1 : N ], do
If Tsh[q1, e, i] 6= ∅, ∀i ∈ J , then
w[e](J) ← ReconstructJ(JwKJ).
β[e](J) ← ReconstructJ(JβKJ).
w[e](J) → Twit[q1, e, J ].

h1
$←− {0, 1}2λ.

If h1 ∈ Bad, then abort.
h1 → Bad.
(q1, h1)→ Q1.

. This gray block is for notation purpose only
(ε[e])e∈[1:τ ] ← Expand(h1)
For each e ∈ [1 : τ ] and J ⊂ [1 : N ]:Twit[q1, e, J ] 6= ∅, do
α[e](J) = ϕε[e]

(
w[e](J), β[e](J))

For each (e, i) ∈ [1 : τ ]× [1 : N ]:Tsh[q1, e, i] 6= ∅, do
Jᾱ[e]Ki = ϕε[e]

(
Jw[e]Ki, Jβ[e]K

)
Return h1.

Algorithm 4 Hash function Hash2

Hash2(q2):
Parse q2 as (salt, h1, (Jα[e]KS)e∈[1:τ ]).
h1 → Bad.
h2

$←− {0, 1}2λ.
If h2 ∈ Bad, then abort.
h2 → Bad.
(q2, h2)→ Q2.
Return h2.
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Advantage of the reduction. Given the behavior presented above, we have the following
by the law of total probability:

Pr[A wins] = Pr[A wins ∧ B aborts] + Pr[A wins ∧ B ouputs ⊥]
+ Pr[A wins ∧ B ouputs w]

≤ Pr[B aborts] + Pr[A wins | B ouputs ⊥]
+ Pr[B ouputs w]. (7)

Let Qcom, Qm, Q1 and Q2 denote the number of queries made by A to each respective
random oracle. Given the way in which values are added to Bad, we have:

Pr[B aborts] = (#times a digest is sampled) · Pr[B aborts at that digest]

≤ (Qcom +Qm +Q1 +Q2) · max |Bad|
22λ

= (Qcom +Qm +Q1 +Q2) · Qcom + 3Qm + (τN + 1)Q1 + 2Q2
22λ

≤ (τN + 1)(Qcom +Qm +Q1 +Q2)2

22λ (8)

By definition, we also have

Pr[B ouputs w] ≤ εOWF .

It remains to deal with the term Pr[A wins | B ouputs ⊥]. Namely, we now analyze the
probability of A winning the EUF-KO experiment conditioned on the event that B outputs
⊥, i.e., no pre-image to x was found on the query lists. For the rest of the proof, we assume
that B outputs ⊥.
Cheating in the first round. For any query (q1, h1) ∈ Q1, and its corresponding expanded
answer (ε[e])e∈[1:τ ], let G1(q1, h1) be the set of indices e ∈ [1 : τ ] of “good executions” where
there exists J such that both Twit[q1, e, J ] is non-empty and g(α[e](J)) = 0, namely a false
positive occurs for at least one set J for execution e (since w[e](J) cannot satisfy (x,w[e](J)) ∈ R
since B outputs ⊥). We then have, for every e ∈ [1 : τ ],

Pr[e ∈ G1(q1, h1) | B outputs ⊥] ≤
(

N

`+ 1

)
p

where p is the false-positive rate of the underlying MPC protocol, given that h1 is distributed
uniformly at random (which holds since Hash1 and Expand are random functions).

As the response h1 is uniform, each e ∈ [1 : τ ] has the same independent probability of being
in G1(q1, h1). We therefore have that #G1(q1, h1) ∼ Xq1 where Xq1 = B

(
τ,
( N
`+1
)
p
)
, the

binomial distribution with τ trials, each with success probability
( N
`+1
)
p. Letting (q1best, h1best)

denote the query-response pair which maximizes #G1(q1, h1), we then have that

#G1(q1best, h1best) ∼ X = max
q1∈Q1

{Xq1}.

Cheating in the second round. Let (q2, h2) ∈ Q2 be the query such that h2 is used in
the valid signature returned by the adversary. Since the returned signature is valid (with
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probability 1), there must also exist (q1, h1) ∈ Q1 such that h1 is used in the signature and q2
is of the form q2 = (h1, . . .). Then for each “bad” first-round execution e ∈ [1 : τ ]\G1(q1, h1),
either the verification failed, in which case A couldn’t have won, or the verification passed,
despite ∀J, g(α[e](J)) 6= 0. We shall denote H[e](q2) the set of honest parties, i.e. the set of
the parties for which the committed shares Jα[e]Ki, are consistent with the committed input
shares Jw[e]Ki and Jβ[e]Ki. More formally,

H[e](q2) =
{
i : Jα[e]Ki = ϕε[e](Jw[e]Ki, Jβ[e]Ki)

}
.

Let us consider three cases:

• there is strictly less than ` honest parties, i.e. |H[e](q2)| < `, but as ` parties are opened,
verification would fail;

• there is strictly more than ` honest parties, i.e. |H[e](q2)| > `, but it would imply that
there exists a set J of `+ 1 honest parties (J ⊂ H[e](q2), |J | = `+ 1). In that case, we
get that α[e](J) = α[e] where α[e] is the value encoded by Jα[e]KS in q2. However, since
e ∈ [1 : τ ]\G1(q1, h1), g(α[e](J)) 6= 0 implies that g(α[e]) 6= 0, and so verification would
fail;

• there is exactly ` honest parties, i.e. |H[e](q2)| = `, which is the only possible case
given that A wins with q2.

Since the expanded h2 = (I [e])e∈[1:τ ] ∈ {I ⊂ [1 : N ] : |I| = `}τ is distributed uniformly
at random, the probability that the verification passes while cheating for all such “bad”
first-round executions e is(

1(N
`

))τ−#G1(q1,h1)

≤
(

1(N
`

))τ−#G1(q1best,h1best)

.

The probability that this happens for at least one of the Q2 queries made to Hash2 is

Pr
[
A wins | B outputs ⊥

#G1(q1best, h1best) = τ1

]
≤ 1−

1−
(

1(N
`

))τ−τ1
Q2

.

Finally conditioning on B outputting ⊥ and summing over all values of τ1, we have that

Pr[A wins | B outputs ⊥] ≤ Pr[X + Y = τ ] (9)

where X is as before, and Y = maxq2∈Q2{Yq2} where the Yq2 variables are independently and
identically distributed as B(τ −X, 1/

(N
`

)
).

Conclusion. Bringing Equation (7), Equation (8) and Equation (9) together, we obtain the
following:

Pr[A wins] ≤ (τN + 1)(Qcom +Qm +Q1 +Q2)2

22λ + Pr[X + Y = τ ] + Pr[B outputs w].

Assuming KeyGen is an εowf-secure OWF and setting Q = Qcom +Qm +Q1 +Q2 gives the
required bound and concludes the proof.



Signature Scheme and Proof of Unforgeability 195

We now consider the notion of unforgeability against chosen message attacks (EUF-CMA).
In this setting, the adversary is given a public key x and she can ask an oracle (called the
signature oracle) to sign messages (m1, . . . ,mr) that she can select at will. The goal of the
adversary is to generate a pair (m,σ) such that m is not one of requests to the signature
oracle and such that σ is a valid signature of m with respect to x. The following theorem
shows the EUF-CMA of the signature scheme in the random oracle model.

Theorem C.2. Let Hash0, Hash1, Hash2, Hashm and Expand be modeled as random oracles,
and let (N, τ, λ, p) be parameters of the signature scheme. Let A be an adversary against the
EUF-CMA security of the scheme running in time tA and making a total of QRO random
oracle queries and Qsign signing queries. Assuming that F is an (tA, εowf)-hard one-way
function and that PRG is a (tA, εprg)-secure pseudorandom generator then A’s advantage in
the EUF-CMA game is

εEUF-CMA ≤ εOWF + εprg + (τN + 2)Q2

22λ + Pr[X + Y = τ ],

where Q = QRO +NHash ·QSig with NHash = 2 + τ(2N − 1) the number of hash computations
in a signature generation, and where X,Y are defined as in Lemma C.1.

Proof. We consider the reduction algorithm B described in the proof of Lemma C.1 which
we extend to answer to the signing queries of the adversary A. We consider three different
games:

• Game 0: B uses a signature oracle OSig(w, x, ·) which perfectly answers signing queries
from A;

• Game 1: the signature oracle is replaced by O′Sig(w, x, ·) which perfectly answers signing
queries from A except that the calls to the PRG are replaced with true randomness;

• Game 2: the signature oracle is replaced by a simulator SSig(x, ·) answering signing
queries from A without being given the secret witness as input.

In Game 0, B behaves exactly as in the proof of Lemma C.1 while additionally answering
the signing queries from A using OSig(w, x, ·). The signing oracle OSig(w, x, ·) makes queries
to the random oracles Hash0, Hash1, Hash2 and Hashm which are answered by B as in the
proof of Lemma C.1, and it computes the signature from the input message and the key pair
(w, x) as described in Protocol 15. The total number of random oracle queries is hence of
Q = QRO +NHash ·QSig. The signing queries being perfectly answered, A produces a valid
signature with probability εEUF-CMA. Then, by the proof of Lemma C.1, B interacting with
A and OSig(w, x, ·) recovers w with probability εGame0 such that

εEUF-CMA ≤ εGame0 + (τN + 1)Q2

22λ + Pr[X + Y = τ ] .

We note that this is insufficient to prove our security statement since the reduction B should
not have access to the oracle OSig(w, x, ·), which is why we need to transit to Game 2.

Game 1 is similar to Game 0 but the signing oracle OSig(w, x, ·) is replaced by an oracle
O′Sig(w, x, ·). The latter works in the exact same way as the original signing oracle except that
the the pseudo-randomness (r[e]

w , r
[e]
β , r

[e]
ψ ) of Phase 1, i.e. the outputs of PRG(salt, e, ρ), is
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replaced by true randomness (independent of the root seed ρ). This is indistinguishable from
the previous reduction given that PRG is a secure pseudorandom generator. We deduce that
the success probability εGame1 of B to recover w while interacting with A and O′Sig(w, x, ·)
satisfies

|εGame0 − εGame1| ≤ εprg .

Finally, Game 2 is similar to the previous games but the signing oracle is replaced by a
simulator SSig(x, ·) which does not take the secret key w as input. Additionally, B keeps a
list Sl of all the salts appearing in random oracle queries. Namely, Algorithm 1 (Hash0),
Algorithm 3 (Hash1) and Algorithm 4 (Hash2) further perform salt→ Sl on any query with
salt as salt. This simulator is depicted in Algorithm 5. Whenever SSig aborts, B also aborts.

Algorithm 5 Signing simulator.

SSig(x,m):

Sample a random salt salt← {0, 1}2λ
If salt ∈ Sl, then abort
Sample random hashes h1 ← {0, 1}2λ and h2 ← {0, 1}2λ
If h1 ∈ Bad or h2 ∈ Bad then abort
Expand h1 as (ε[e])e∈[1:τ ] ← Expand(h1)
Expand h2 as (I [e])e∈[1:τ ] ← Expand(h2)
Randomly generate α[e] for every e ∈ [1 : τ ] s.t. g(α[e]) = 0
Randomly generate the shares Jw[e]Ki, Jβ[e]Ki for every e ∈ [1 : τ ] and i ∈ I [e]

Compute Jα[e]Ki := ϕx,ε[e]
(
Jw[e]Ki, Jβ[e]Ki

)
for every e ∈ [1 : τ ] and i ∈ I [e]

From Jα[e]KI[e] and α[e], reconstruct the shares Jα[e]KS for every e ∈ [1 : τ ]
Compute com[e]

i := Hash0(salt, e, i, Jw[e]Ki, Jβ[e]Ki) for every e ∈ [1 : τ ] and i ∈ I [e]

Sample random commitments com[e]
i ← {0, 1}2λ for every e ∈ [1 : τ ] and i /∈ I [e]

If com[e]
i ∈ Bad for some e ∈ [1 : τ ] and i /∈ I [e], then abort

Compute h̃[e] := MerkleTree(com[e]
1 , . . . , com[e]

N ) for every e ∈ [1 : τ ]
For q1 = (m, salt, h̃[1], . . . , h̃[1:τ ]), let (q1, h1)→ Q1
For q2 = (salt, h1, (Jα[e]KS)e∈[1:τ ]), let (q2, h2)→ Q2

Let auth[e] the authentication path for {com[e]
i }i∈I w.r.t. Merkle root h̃[e]

Let i∗[e] ∈ S \ I [e]

Return σ :=
[
salt | h1 | h2 |

(
(Jw[e]Ki, Jβ[e]Ki)i∈I , auth[e], Jα[e]Ki∗[e]

)
e∈[1:τ ]

]

Let us stress that the random generation of α[e] such that g(α[e]) = 0 is done according
to the real distribution of α[e] in a valid signature. This distribution depends on the MPC
protocol and is independent of w (by the zero-knowledge property).
The signing simulator follows the same principle as the zero-knowledge simulator of the

proof-of-knowledge protocol. By knowing the challenges beforehand, it can generate a
signature with perfect distribution without knowing the secret witness. In the random oracle
model, this simply means randomly generating the answers h1 and h2 of the oracles Hash1
and Hash2 before they are actually queried. In the absence of aborts, we thus get that an
answer of SSig on input (x,m) is identically distributed to an answer of O′Sig on input (w, x, ·).
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We have to deal with an additional subtlety. By randomly generating the commitments
com[e]

i for every e ∈ [1 : τ ] and i /∈ I [e], the simulator implicitly define some outputs of the
Hash0 oracle for which she does not know the input. Since the sharing Jw[e]K is fully defined
by the shares Jw[e]KI[e] and the witness w, and the sharing Jβ[e]K is fully defined by the shares
Jβ[e]KI[e] and the plain value β[e] = ψx(w; r[e]

ψ ), Hash0 should be constrained to answer a
future request q0 = (salt, e, i, Jw[e]Ki, Jβ[e]Ki) by the com[e]

i randomly sampled by the simulator
whenever a match occurs, i.e., whenever

1. (salt, e, i) are such that salt corresponds to a previous signing request for which i 6= I [e],

2. the shares Jw[e]Ki, Jβ[e]Ki in the request q0 are consistent with the full sharings Jw[e]K
and Jβ[e]K defined by the shares Jw[e]KI[e] and Jβ[e]KI[e] of this previous signing request
together with the witness w.

To deal with this, we simply modify Algorithm 1 (Hash0) in the following way. If a new
request q0 = (salt, e, i, Jw[e]Ki, Jβ[e]Ki) is made for which condition 1 above is satisfied, the
algorithm reconstructs a candidate witness w∗ from the shares Jw[e]KI[e] from the previous
signing query and the share Jw[e]Ki from the current q0 query. In case w∗ is a valid witness,
i.e. F (w∗) = x, B returns w∗. We thus have that such event can only occur if B outputs w
and does not affect the event (A wins | B ouputs ⊥) that we are considering here.
The probability to abort due to collisions in Bad is the same for O′Sig and SSig. Indeed,

they both do the same amounts of queries to the random oracles, the simulator just do them
in a different order and handle the queries for h1 and h2 directly. SSig may further aborts in
case of salt collision, which happens with probability at most (QRO +QSig)/22λ. We deduce
that the success probability εGame2 = εeuf-cma of B to recover w while interacting with A and
simulating signing queries with SSig(x, ·) satisfies

|εGame1 − εGame2| ≤
QSig(QRO +QSig)

22λ ≤ Q2

22λ

which concludes the proof.
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